Author name: DJ Henderson

nintendo-switch-2’s-faster-chip-can-dramatically-improve-original-switch-games

Nintendo Switch 2’s faster chip can dramatically improve original Switch games

Link’s Awakening, Switch 1, docked. Andrew Cunningham

It’s pretty much the same story for Link’s Awakening. Fine detail is much more visible, and the 3D is less aliased-looking because the Switch 2 is running the game at a higher resolution. Even the fairly aggressive background blur the game uses looks toned down on the Switch 2.

Link’s Awakening on the Switch 1, docked.

Link’s Awakening on the Switch 2, docked.

The videos of these games aren’t quite as obviously impressive as the Pokémon ones, but they give you a sense of the higher resolution on the Switch 2 and the way that the Switch’s small endemic frame rate hiccups are no longer a problem.

Quiet updates

For the last two categories of games, we won’t be waxing as poetic about the graphical improvements because there aren’t many. In fact, some of these games we played looked ever-so-subtly worse on the Switch 2 in handheld mode, likely a side effect of a 720p handheld-mode image being upscaled to the Switch 2’s 1080p native resolution.

That said, we still noticed minor graphical improvements. In Kirby Star Allies, for example, the 3D elements in the picture looked mostly the same, with roughly the same resolution, same textures, and similar overall frame rates. But 2D elements of the UI did still seem to be aware that the console is outputting a 4K image and are visibly sharper as a result.

Games without updates

If you were hoping that all games would get some kind of “free” resolution or frame rate boost from the Switch 2, that mostly doesn’t happen. Games like Kirby’s Return to Dream Land Deluxe and Pokémon Legends Arceus, neither of which got any kind of Switch 2-specific update, look mostly identical on both consoles. If you get right up close and do some pixel peeping, you can occasionally see places where outputting a 4K image instead of a 1080p image will look better on a 4K TV, but it’s nothing like what we saw in the other games we tested.

Pokémon Legends Arceus, Switch 1, docked.

Pokémon Legends Arceus, Switch 2, docked.

However, it does seem that the Switch 2 may help out somewhat in terms of performance consistency. Observe the footage of a character running around town in Pokémon Legends—the resolution, draw distance, and overall frame rate all look pretty much the same. But the minor frame rate dips and hitches you see on the Switch 1 seem to have been at least partially addressed on the Switch 2. Your mileage will vary, of course. But you may encounter cases where a game targeting a stable 30 fps on the Switch 1 will hit that 30 fps with a bit more consistency on the Switch 2.

Nintendo Switch 2’s faster chip can dramatically improve original Switch games Read More »

a-japanese-lander-crashed-on-the-moon-after-losing-track-of-its-location

A Japanese lander crashed on the Moon after losing track of its location


“It’s not impossible, so how do we overcome our hurdles?”

Takeshi Hakamada, founder and CEO of ispace, attends a press conference in Tokyo on June 6, 2025, to announce the outcome of his company’s second lunar landing attempt. Credit: Kazuhiro Nogi/AFP via Getty Images

A robotic lander developed by a Japanese company named ispace plummeted to the Moon’s surface Thursday, destroying a small rover and several experiments intended to demonstrate how future missions could mine and harvest lunar resources.

Ground teams at ispace’s mission control center in Tokyo lost contact with the Resilience lunar lander moments before it was supposed to touch down in a region called Mare Frigoris, or the Sea of Cold, a basaltic plain in the Moon’s northern hemisphere.

A few hours later, ispace officials confirmed what many observers suspected. The mission was lost. It’s the second time ispace has failed to land on the Moon in as many tries.

“We wanted to make Mission 2 a success, but unfortunately we haven’t been able to land,” said Takeshi Hakamada, the company’s founder and CEO.

Ryo Ujiie, ispace’s chief technology officer, said the final data received from the Resilience lander—assuming it was correct—showed it at an altitude of approximately 630 feet (192 meters) and descending too fast for a safe landing. “The deceleration was not enough. That was a fact,” Ujiie told reporters in a press conference. “We failed to land, and we have to analyze the reasons.”

The company said in a press release that a laser rangefinder used to measure the lander’s altitude “experienced delays in obtaining valid measurement values.” The downward-facing laser fires light pulses toward the Moon during descent, and clocks the time it takes to receive a reflection. This time delay at light speed tells the lander’s guidance system how far it is above the lunar surface. But something went wrong in the altitude measurement system on Thursday.

“As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing,” ispace said. “Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface.”

Controllers sent a command to reboot the lander in hopes of reestablishing communication, but the Resilience spacecraft remained silent.

“Given that there is currently no prospect of a successful lunar landing, our top priority is to swiftly analyze the telemetry data we have obtained thus far and work diligently to identify the cause,” Hakamada said in a statement. “We will strive to restore trust by providing a report of the findings to our shareholders, payload customers, Hakuto-R partners, government officials, and all supporters of ispace.”

Overcoming obstacles

The Hakuto name harkens back to ispace’s origin in 2010 as a contender for the Google Lunar X-Prize, a sweepstakes that offered a $20 million grand prize to the first privately funded team to put a lander on the Moon. Hakamada’s group was called Hakuto, which means “white rabbit” in Japanese. The prize shut down in 2018 without a winner, leading some of the teams to dissolve or find new purpose. Hakamada stayed the course, raised more funding, and rebooted the program under the name Hakuto-R.

It’s a story of resilience, hence the name of ispace’s second lunar lander. The mission made it closer to the Moon than the ispace’s first landing attempt in 2023, but Thursday’s failure is a blow to Hakamada’s project.

“As a fact, we tried twice and we haven’t been able to land on the Moon,” Hakamada said through an interpreter. “So we have to say it’s hard to land on the Moon, technically. We know it’s not easy. It’s not something that everyone can do. We know it’s hard, but the important point is it’s not impossible. The US private companies have succeeded in landing, and also JAXA in Japan has succeeded in landing, so it’s not impossible. So how do we overcome our hurdles?”

The Resilience lander and Tenacious rover, seen mounted near the top of the spacecraft, inside a test facility at the Tsukuba Space Center in Tsukuba, Ibaraki Prefecture, on Thursday, Sept. 12, 2024. Credit: Toru Hanai/Bloomberg via Getty Images

In April 2023, ispace’s first lander crashed on the Moon due to a similar altitude measurement problem. The spacecraft thought it was on the surface of the Moon, but was actually firing its engine to hover at an altitude of 3 miles (5 kilometers). The spacecraft ran out of fuel and went into a free fall before impacting the Moon.

Engineers blamed software as the most likely reason for the altitude-measurement problem. During descent, ispace’s lander passed over a 10,000-foot-tall (3,000-meter) cliff, and the spacecraft’s computer interpreted the sudden altitude change as erroneous.

Ujiie, who leads ispace’s technical teams, said the failure mode Thursday was “similar” to that of the first mission two years ago. But at least in ispace’s preliminary data reviews, engineers saw different behavior from the Resilience lander, which flew with a new type of laser rangefinder after ispace’s previous supplier stopped producing the device.

“From Mission 1 to Mission 2, we improved the software,” Ujiie said. “Also, we improved how to approach the landing site… We see different phenomena from Mission 1, so we have to do more analysis to give you any concrete answers.”

If ispace landed smoothly on Thursday, the Resilience spacecraft would have deployed a small rover developed by ispace’s European subsidiary. The rover was partially funded by the Luxembourg Space Agency with support from the European Space Agency. It carried a shovel to scoop up a small amount of lunar soil and a camera to take a photo of the sample. NASA had a contract with ispace to purchase the lunar soil in a symbolic proof of concept to show how the government might acquire material from commercial mining companies in the future.

The lander also carried a water electrolyzer experiment to demonstrate technologies that could split water molecules into hydrogen and oxygen, critical resources for a future Moon base. Other payloads aboard the Resilience spacecraft included cameras, a food production experiment, a radiation monitor, and a Swedish art project called “MoonHouse.”

The spacecraft chassis used for ispace’s first two landing attempts was about the size of a compact car, with a mass of about 1 metric ton (2,200 pounds) when fully fueled. The company’s third landing attempt is scheduled for 2027 with a larger lander. Next time, ispace will fly to the Moon in partnership between the company’s US subsidiary and Draper Laboratory, which has a contract with NASA to deliver experiments to the lunar surface.

Track record

The Resilience lander launched in January on top of a SpaceX Falcon 9 rocket, riding to space in tandem with a commercial Moon lander named Blue Ghost from Firefly Aerospace. Firefly’s lander took a more direct journey to the Moon and achieved a soft landing on March 2. Blue Ghost operated on the lunar surface for two weeks and completed all of its objectives.

The trajectory of ispace’s lander was slower, following a lower-energy, more fuel-efficient path to the Moon before entering lunar orbit last month. Once in orbit, the lander made a few more course corrections to line up with its landing site, then commenced its final descent on Thursday.

Thursday’s landing attempt was the seventh time a privately developed Moon lander tried to conduct a controlled touchdown on the lunar surface.

Two Texas-based companies have had the most success. One of them, Houston-based Intuitive Machines, landed its Odysseus spacecraft on the Moon in February 2024, marking the first time a commercial lander reached the lunar surface intact. But the lander tipped over after touchdown, cutting its mission short after achieving some limited objectives. A second Intuitive Machines lander reached the Moon in one piece in March of this year, but it also fell over and didn’t last as long as the company’s first mission.

Firefly’s Blue Ghost operated for two weeks after reaching the lunar surface, accomplishing all of its objectives and becoming the first fully successful privately owned spacecraft to land and operate on the Moon.

Intuitive Machines, Firefly, and a third company—Astrobotic Technology—have launched their lunar missions under contract with a NASA program aimed at fostering a commercial marketplace for transportation to the Moon. Astrobotic’s first lander failed soon after its departure from Earth. The first two missions launched by ispace were almost fully private ventures, with limited participation from the Japanese space agency, Luxembourg, and NASA.

The Earth looms over the Moon’s horizon in this image from lunar orbit captured on May 27, 2025, by ispace’s Resilience lander. Credit: ispace

Commercial travel to the Moon only began in 2019, so there’s not much of a track record to judge the industry’s prospects. When NASA started signing contracts for commercial lunar missions, the then-chief of the agency’s science vision, Thomas Zurbuchen, estimated the initial landing attempts would have a 50-50 chance of success. On the whole, NASA’s experience with Intuitive Machines, Firefly, and Astrobotic isn’t too far off from Zurbuchen’s estimate, with one full success and a couple of partial successes.

The commercial track record worsens if you include private missions from ispace and Israel’s Beresheet lander.

But ispace and Hakamada haven’t given up on the dream. The company’s third mission will launch under the umbrella of the same NASA program that contracted with Intuitive Machines, Firefly, and Astrobotic. Hakamada cited the achievements of Firefly and Intuitive Machines as evidence that the commercial model for lunar missions is a valid one.

“The ones that have the landers, there are two companies I mentioned. Also, Blue Origin maybe coming up. Also, ispace is a possibility,” Hakamada said. “So, very few companies. We would like to catch up as soon as possible.”

It’s too early to know how the failure on Thursday might impact ispace’s next mission with Draper and NASA.

“I have to admit that we are behind,” said Jumpei Nozaki, director and chief financial officer at ispace. “But we do not really think we are behind from the leading group yet. It’s too early to decide that. The players in the world that can send landers to the Moon are very few, so we still have some competitive edge.”

“Honestly, there were some times I almost cried, but I need to lead this company, and I need to have a strong will to move forward, so it’s not time for me to cry,” Hakamada said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

A Japanese lander crashed on the Moon after losing track of its location Read More »

senate-response-to-white-house-budget-for-nasa:-keep-sls,-nix-science

Senate response to White House budget for NASA: Keep SLS, nix science

This legislation, the committee said in a messaging document, “Dedicates almost $10 billion to win the new space race with China and ensure America dominates space. Makes targeted, critical investments in Mars-forward technology, Artemis Missions and Moon to Mars program, and the International Space Station.”

The reality is that it signals that Republicans in the US Senate are not particularly interested in sending humans to Mars, probably are OK with the majority of cuts to science programs at NASA, and want to keep the status quo on Artemis, including the Space Launch System rocket.

Where things go from here

It is difficult to forecast where US space policy will go from here. The very public breakup between President Trump and SpaceX founder Elon Musk on Thursday significantly complicates the equation. At one point, Trump and Musk were both championing sending humans to Mars, but Musk is gone from the administration, and Trump may abandon that idea due to their rift.

For what it’s worth, a political appointee in NASA Communications said on Thursday that the president’s vision for space—Trump spoke of landing humans on Mars frequently during his campaign speeches—will continue to be implemented.

“NASA will continue to execute upon the President’s vision for the future of space,” NASA’s press secretary, Bethany Stevens, said on X. “We will continue to work with our industry partners to ensure the President’s objectives in space are met.”

Congress, it seems, may be heading in a different direction.

Senate response to White House budget for NASA: Keep SLS, nix science Read More »

jared-isaacman-speaks-out,-and-it’s-clear-that-nasa-lost-a-visionary-leader

Jared Isaacman speaks out, and it’s clear that NASA lost a visionary leader

“There’s enough hardware now to fly a couple of missions and make sure you beat China back to the Moon,” he said. “But you can’t be stuck on this forever. This is literally the equivalency, by the way, of taking P-51 Mustangs [a fighter aircraft] from World War II and using them in Desert Storm, because we got to keep the plants open.
And that obviously makes no logical sense whatsoever.”

On his de-nomination

Isaacman said he is, politically, a moderate, although he leans right. He supports Trump’s desire to cut alleged waste and fraud from the US government, and that is what he intended to do at NASA. He also did not blame Trump for his departure, saying that a president makes a thousand decisions a day, often with a few seconds of information.

He also said he enjoyed the Senate confirmation process, which allowed him to candidly discuss his positions on NASA with individual US senators.

As for why he was removed, Isaacman said the following: “I had a pretty good idea, I don’t think the timing was much of a coincidence,” he said. “Obviously, there was more than one departure that was covered on that day.”

The phone call to Isaacman saying his nomination was being pulled came the same day that SpaceX founder Elon Musk left his position as a special advisor to the president. Musk had been supportive of Isaacman’s nomination. However, in his time running the Department of Government Efficiency, Musk had made enemies within the US government.

“There were some people who had some axes to grind, and I was a good, visible target,” Isaacman said. “I want to be overwhelmingly clear: I don’t fault the president.”

Although Isaacman did not name anyone, multiple sources have told Ars that it was Sergio Gor, an official in the White House Presidential Personnel Office, who moved against Isaacman after Musk left the White House. Gor was irked by Musk’s failure to consult him and other personnel officials on some decisions.

As a result of what appears to be political pettiness, NASA lost a visionary leader who had the potential to lead the space agency into the middle of the 21st century at a time when an aging agency needs to modernize. If you listen to him, losing that potential in such a way is downright painful. It’s a damn shame.

Jared Isaacman speaks out, and it’s clear that NASA lost a visionary leader Read More »

top-cdc-covid-vaccine-expert-resigns-after-rfk-jr.-unilaterally-restricts-access

Top CDC COVID vaccine expert resigns after RFK Jr. unilaterally restricts access

A top expert at the Centers for Disease Control and Prevention who was overseeing the process to update COVID-19 vaccine recommendations resigned on Tuesday.

The resignation, first reported by The Associated Press and confirmed by CBS News, comes just a week after health secretary and anti-vaccine advocate Robert F. Kennedy Jr. unilaterally revoked and altered some of the CDC’s recommendations for COVID-19 vaccines, restricting access to children and pregnant people. The resignation also comes three weeks before CDC’s experts and advisors are scheduled to meet to publicly evaluate data and discuss the recommendations for this season—a long-established process that was disrupted by Kennedy’s announcement.

The departing CDC official, Lakshmi Panagiotakopoulos, a pediatric infectious disease expert, was a co-leader of a working group on COVID-19 vaccines who advised experts on the CDC’s Advisory Committee on Immunization Practices (ACIP). She informed her ACIP colleagues of her resignation in an email on Tuesday.

“My career in public health and vaccinology started with a deep-seated desire to help the most vulnerable members of our population, and that is not something I am able to continue doing in this role,” Panagiotakopoulos wrote.

Unilateral changes

Previously, the CDC and ACIP recommended COVID-19 vaccines for everyone ages 6 months and up. Experts have emphasized that pregnant people in particular should get vaccinated, as pregnancy suppresses the immune system and puts pregnant people at high risk of severe COVID-19 and death. The American College of Obstetricians and Gynecologists states that “COVID-19 infection during pregnancy can be catastrophic.” Further, dozens of studies have found that the vaccines are safe and effective at protecting the pregnant person, the pregnancy, and newborns.

Top CDC COVID vaccine expert resigns after RFK Jr. unilaterally restricts access Read More »

“free-roam”-mode-is-mario-kart-world’s-killer-app

“Free Roam” mode is Mario Kart World’s killer app

When Ars tried out Mario Kart World at April’s Switch 2 premiere hands-on event, the short demos focused on more-or-less standard races in the game’s Grand Prix and Knockout modes. So when Nintendo invited us back for more time previewing the near-final version of the game before the Switch 2’s release, we decided to focus most of our time on the game’s mysterious (and previously teased) “Free Roam” mode.

We’re glad we did, because the mode feels like the hidden gem of Mario Kart World and maybe of the Switch 2 launch as a whole. Combining elements of games like Diddy Kong Racing, Forza Horizon, and even the Tony Hawk’s Pro Skater series, Free Roam provides a unique mixture of racing challenges, exploration, and collectibles that should keep new Switch 2 owners busy for a while.

Switch hunt

Surprisingly, Free Roam mode isn’t listed as one of the main options when you launch a new game of Mario Kart World. Instead, a tiny note in the corner of the screen tells you to hit the plus button to get dropped into a completely untimed and free-wheeling version of the vast Mario Kart World map.

The real game takes place in the spaces between those race courses.

Credit: Nintendo

The real game takes place in the spaces between those race courses. Credit: Nintendo

Exploring in Free Roam mode provides the best sense of scale for the game’s massive, multi-ecosystem island in a way individual races just can’t. Sure, other race modes sometimes let you travel between the individual race courses along pre-set paths from one finish line to another starting line. But Free Roam mode lets you fully explore the vast spaces between those paths, encouraging you to go off-roading in the mountains, valleys, rivers, oceans, volcanoes, snowdrifts, and landmarks that dot the countryside.

Your main explicit goal when exploring all this varied expanse is to look for large, blue P-Switches, each of which activates a short, timed challenge mission in the immediate vicinity. In many cases, simply reaching the P-Switch is half the challenge, requiring some inventive wall-riding or item use to get to a particularly out-of-the-way corner of the map.

“Free Roam” mode is Mario Kart World’s killer app Read More »

meta-and-yandex-are-de-anonymizing-android-users’-web-browsing-identifiers

Meta and Yandex are de-anonymizing Android users’ web browsing identifiers


Abuse allows Meta and Yandex to attach persistent identifiers to detailed browsing histories.

Credit: Aurich Lawson | Getty Images

Credit: Aurich Lawson | Getty Images

Tracking code that Meta and Russia-based Yandex embed into millions of websites is de-anonymizing visitors by abusing legitimate Internet protocols, causing Chrome and other browsers to surreptitiously send unique identifiers to native apps installed on a device, researchers have discovered. Google says it’s investigating the abuse, which allows Meta and Yandex to convert ephemeral web identifiers into persistent mobile app user identities.

The covert tracking—implemented in the Meta Pixel and Yandex Metrica trackers—allows Meta and Yandex to bypass core security and privacy protections provided by both the Android operating system and browsers that run on it. Android sandboxing, for instance, isolates processes to prevent them from interacting with the OS and any other app installed on the device, cutting off access to sensitive data or privileged system resources. Defenses such as state partitioning and storage partitioning, which are built into all major browsers, store site cookies and other data associated with a website in containers that are unique to every top-level website domain to ensure they’re off-limits for every other site.

A blatant violation

“One of the fundamental security principles that exists in the web, as well as the mobile system, is called sandboxing,” Narseo Vallina-Rodriguez, one of the researchers behind the discovery, said in an interview. “You run everything in a sandbox, and there is no interaction within different elements running on it. What this attack vector allows is to break the sandbox that exists between the mobile context and the web context. The channel that exists allowed the Android system to communicate what happens in the browser with the identity running in the mobile app.”

The bypass—which Yandex began in 2017 and Meta started last September—allows the companies to pass cookies or other identifiers from Firefox and Chromium-based browsers to native Android apps for Facebook, Instagram, and various Yandex apps. The companies can then tie that vast browsing history to the account holder logged into the app.

This abuse has been observed only in Android, and evidence suggests that the Meta Pixel and Yandex Metrica target only Android users. The researchers say it may be technically feasible to target iOS because browsers on that platform allow developers to programmatically establish localhost connections that apps can monitor on local ports.

In contrast to iOS, however, Android imposes fewer controls on local host communications and background executions of mobile apps, the researchers said, while also implementing stricter controls in app store vetting processes to limit such abuses. This overly permissive design allows Meta Pixel and Yandex Metrica to send web requests with web tracking identifiers to specific local ports that are continuously monitored by the Facebook, Instagram, and Yandex apps. These apps can then link pseudonymous web identities with actual user identities, even in private browsing modes, effectively de-anonymizing users’ browsing habits on sites containing these trackers.

Meta Pixel and Yandex Metrica are analytics scripts designed to help advertisers measure the effectiveness of their campaigns. Meta Pixel and Yandex Metrica are estimated to be installed on 5.8 million and 3 million sites, respectively.

Meta and Yandex achieve the bypass by abusing basic functionality built into modern mobile browsers that allows browser-to-native app communications. The functionality lets browsers send web requests to local Android ports to establish various services, including media connections through the RTC protocol, file sharing, and developer debugging.

A conceptual diagram representing the exchange of identifiers between the web trackers running on the browser context and native Facebook, Instagram, and Yandex apps for Android.

A conceptual diagram representing the exchange of identifiers between the web trackers running on the browser context and native Facebook, Instagram, and Yandex apps for Android.

While the technical underpinnings differ, both Meta Pixel and Yandex Metrica are performing a “weird protocol misuse” to gain unvetted access that Android provides to localhost ports on the 127.0.0.1 IP address. Browsers access these ports without user notification. Facebook, Instagram, and Yandex native apps silently listen on those ports, copy identifiers in real time, and link them to the user logged into the app.

A representative for Google said the behavior violates the terms of service for its Play marketplace and the privacy expectations of Android users.

“The developers in this report are using capabilities present in many browsers across iOS and Android in unintended ways that blatantly violate our security and privacy principles,” the representative said, referring to the people who write the Meta Pixel and Yandex Metrica JavaScript. “We’ve already implemented changes to mitigate these invasive techniques and have opened our own investigation and are directly in touch with the parties.”

Meta didn’t answer emailed questions for this article, but provided the following statement: “We are in discussions with Google to address a potential miscommunication regarding the application of their policies. Upon becoming aware of the concerns, we decided to pause the feature while we work with Google to resolve the issue.”

Yandex representatives didn’t answer an email seeking comment.

How Meta and Yandex de-anonymize Android users

Meta Pixel developers have abused various protocols to implement the covert listening since the practice began last September. They started by causing apps to send HTTP requests to port 12387. A month later, Meta Pixel stopped sending this data, even though Facebook and Instagram apps continued to monitor the port.

In November, Meta Pixel switched to a new method that invoked WebSocket, a protocol for two-way communications, over port 12387.

That same month, Meta Pixel also deployed a new method that used WebRTC, a real-time peer-to-peer communication protocol commonly used for making audio or video calls in the browser. This method used a complicated process known as SDP munging, a technique for JavaScript code to modify Session Description Protocol data before it’s sent. Still in use today, the SDP munging by Meta Pixel inserts key _fbp cookie content into fields meant for connection information. This causes the browser to send that data as part of a STUN request to the Android local host, where the Facebook or Instagram app can read it and link it to the user.

In May, a beta version of Chrome introduced a mitigation that blocked the type of SDP munging that Meta Pixel used. Within days, Meta Pixel circumvented the mitigation by adding a new method that swapped the STUN requests with the TURN requests.

In a post, the researchers provided a detailed description of the _fbp cookie from a website to the native app and, from there, to the Meta server:

1. The user opens the native Facebook or Instagram app, which eventually is sent to the background and creates a background service to listen for incoming traffic on a TCP port (12387 or 12388) and a UDP port (the first unoccupied port in 12580–12585). Users must be logged-in with their credentials on the apps.

2. The user opens their browser and visits a website integrating the Meta Pixel.

3. At this stage, some websites wait for users’ consent before embedding Meta Pixel. In our measurements of the top 100K website homepages, we found websites that require consent to be a minority (more than 75% of affected sites does not require user consent)…

4. The Meta Pixel script is loaded and the _fbp cookie is sent to the native Instagram or Facebook app via WebRTC (STUN) SDP Munging.

5. The Meta Pixel script also sends the _fbp value in a request to https://www.facebook.com/tr along with other parameters such as page URL (dl), website and browser metadata, and the event type (ev) (e.g., PageView, AddToCart, Donate, Purchase).

6. The Facebook or Instagram apps receive the _fbp cookie from the Meta JavaScripts running on the browser and transmits it to the GraphQL endpoint (https://graph[.]facebook[.]com/graphql) along with other persistent user identifiers, linking users’ fbp ID (web visit) with their Facebook or Instagram account.

Detailed flow of the way the Meta Pixel leaks the _fbp cookie from Android browsers to it’s Facebook and Instagram apps.

Detailed flow of the way the Meta Pixel leaks the _fbp cookie from Android browsers to it’s Facebook and Instagram apps.

The first known instance of Yandex Metrica linking websites visited in Android browsers to app identities was in May 2017, when the tracker started sending HTTP requests to local ports 29009 and 30102. In May 2018, Yandex Metrica also began sending the data through HTTPS to ports 29010 and 30103. Both methods remained in place as of publication time.

An overview of Yandex identifier sharing

An overview of Yandex identifier sharing

A timeline of web history tracking by Meta and Yandex

A timeline of web history tracking by Meta and Yandex

Some browsers for Android have blocked the abusive JavaScript in trackers. DuckDuckGo, for instance, was already blocking domains and IP addresses associated with the trackers, preventing the browser from sending any identifiers to Meta. The browser also blocked most of the domains associated with Yandex Metrica. After the researchers notified DuckDuckGo of the incomplete blacklist, developers added the missing addresses.

The Brave browser, meanwhile, also blocked the sharing of identifiers due to its extensive blocklists and existing mitigation to block requests to the localhost without explicit user consent. Vivaldi, another Chromium-based browser, forwards the identifiers to local Android ports when the default privacy setting is in place. Changing the setting to block trackers appears to thwart browsing history leakage, the researchers said.

Tracking blocker settings in Vivaldi for Android.

There’s got to be a better way

The various remedies DuckDuckGo, Brave, Vivaldi, and Chrome have put in place are working as intended, but the researchers caution they could become ineffective at any time.

“Any browser doing blocklisting will likely enter into a constant arms race, and it’s just a partial solution,” Vallina Rodriguez said of the current mitigations. “Creating effective blocklists is hard, and browser makers will need to constantly monitor the use of this type of capability to detect other hostnames potentially abusing localhost channels and then updating their blocklists accordingly.”

He continued:

While this solution works once you know the hostnames doing that, it’s not the right way of mitigating this issue, as trackers may find ways of accessing this capability (e.g., through more ephemeral hostnames). A long-term solution should go through the design and development of privacy and security controls for localhost channels, so that users can be aware of this type of communication and potentially enforce some control or limit this use (e.g., a permission or some similar user notifications).

Chrome and most other Chromium-based browsers executed the JavaScript as Meta and Yandex intended. Firefox did as well, although for reasons that aren’t clear, the browser was not able to successfully perform the SDP munging specified in later versions of the code. After blocking the STUN variant of SDP munging in the early May beta release, a production version of Chrome released two weeks ago began blocking both the STUN and TURN variants. Other Chromium-based browsers are likely to implement it in the coming weeks. A representative for Firefox-maker Mozilla said the organization prioritizes user privacy and is taking the report seriously

“We are actively investigating the reported behavior, and working to fully understand its technical details and implications,” Mozilla said in an email. “Based on what we’ve seen so far, we consider these to be severe violations of our anti-tracking policies, and are assessing solutions to protect against these new tracking techniques.”

The researchers warn that the current fixes are so specific to the code in the Meta and Yandex trackers that it would be easy to bypass them with a simple update.

“They know that if someone else comes in and tries a different port number, they may bypass this protection,” said Gunes Acar, the researcher behind the initial discovery, referring to the Chrome developer team at Google. “But our understanding is they want to send this message that they will not tolerate this form of abuse.”

Fellow researcher Vallina-Rodriguez said the more comprehensive way to prevent the abuse is for Android to overhaul the way it handles access to local ports.

“The fundamental issue is that the access to the local host sockets is completely uncontrolled on Android,” he explained. “There’s no way for users to prevent this kind of communication on their devices. Because of the dynamic nature of JavaScript code and the difficulty to keep blocklists up to date, the right way of blocking this persistently is by limiting this type of access at the mobile platform and browser level, including stricter platform policies to limit abuse.”

Got consent?

The researchers who made this discovery are:

  • Aniketh Girish, PhD student at IMDEA Networks
  • Gunes Acar, assistant professor in Radboud University’s Digital Security Group & iHub
  • Narseo Vallina-Rodriguez, associate professor at IMDEA Networks
  • Nipuna Weerasekara, PhD student at IMDEA Networks
  • Tim Vlummens, PhD student at COSIC, KU Leuven

Acar said he first noticed Meta Pixel accessing local ports while visiting his own university’s website.

There’s no indication that Meta or Yandex has disclosed the tracking to either websites hosting the trackers or end users who visit those sites. Developer forums show that many websites using Meta Pixel were caught off guard when the scripts began connecting to local ports.

“Since 5th September, our internal JS error tracking has been flagging failed fetch requests to localhost: 12387,” one developer wrote. “No changes have been made on our side, and the existing Facebook tracking pixel we use loads via Google Tag Manager.”

“Is there some way I can disable this?” another developer encountering the unexplained local port access asked.

It’s unclear whether browser-to-native-app tracking violates any privacy laws in various countries. Both Meta and companies hosting its Meta Pixel, however, have faced a raft of lawsuits in recent years alleging that the data collected violates privacy statutes. A research paper from 2023 found that Meta pixel, then called the Facebook Pixel, “tracks a wide range of user activities on websites with alarming detail, especially on websites classified as sensitive categories under GDPR,” the abbreviation for the European Union’s General Data Protection Regulation.

So far, Google has provided no indication that it plans to redesign the way Android handles local port access. For now, the most comprehensive protection against Meta Pixel and Yandex Metrica tracking is to refrain from installing the Facebook, Instagram, or Yandex apps on Android devices.

Photo of Dan Goodin

Dan Goodin is Senior Security Editor at Ars Technica, where he oversees coverage of malware, computer espionage, botnets, hardware hacking, encryption, and passwords. In his spare time, he enjoys gardening, cooking, and following the independent music scene. Dan is based in San Francisco. Follow him at here on Mastodon and here on Bluesky. Contact him on Signal at DanArs.82.

Meta and Yandex are de-anonymizing Android users’ web browsing identifiers Read More »

could-floating-solar-panels-on-a-reservoir-help-the-colorado-river?

Could floating solar panels on a reservoir help the Colorado River?


Floating solar panels appear to conserve water while generating green electricity.

The Gila River Indian Community in Arizona has lined 3,000 feet of their canals with solar panels. Credit: Jake Bolster/Inside Climate News

GILA RIVER INDIAN RESERVATION, Ariz.—About 33 miles south of Phoenix, Interstate 10 bisects a line of solar panels traversing the desert like an iridescent snake. The solar farm’s shape follows the path of a canal, with panels serving as awnings to shade the gently flowing water from the unforgiving heat and wind of the Sonoran Desert.

The panels began generating power last November for the Akimel O’otham and Pee Posh tribes—known together as the Gila River Indian Community, or GRIC—on their reservation in south-central Arizona, and they are the first of their kind in the US. The community is studying the effects of these panels on the water in the canal, hopeful that they will protect a precious resource from the desert’s unflinching sun and wind.

In September, GRIC is planning to break ground on another experimental effort to conserve water while generating electricity: floating solar. Between its canal canopies and the new project that would float photovoltaic panels on a reservoir it is building, GRIC hopes to one day power all of its canal and irrigation operations with solar electricity, transforming itself into one of the most innovative and closely watched water users in the West in the process.

The community’s investments come at a critical time for the Colorado River, which supplies water to about 40 million people across seven Western states, Mexico and 30 tribes, including GRIC. Annual consumption from the river regularly exceeds its supply, and a decadeslong drought, fueled in part by climate change, continues to leave water levels at Lake Powell and Lake Mead dangerously low.

Covering water with solar panels is not a new idea. But for some it represents an elegant mitigation of water shortages in the West. Doing so could reduce evaporation, generate more carbon-free electricity and require dams to run less frequently to produce power.

But, so far, the technology has not been included in the ongoing Colorado River negotiations between the Upper Basin states of Colorado, New Mexico, Utah, and Wyoming, the Lower Basin states of Arizona, California, and Nevada, tribes and Mexico. All are expected to eventually agree on cuts to the system’s water allocations to maintain the river’s ability to provide water and electricity for residents and farms, and keep its ecosystem alive.

“People in the US don’t know about [floating solar] yet,” said Scott Young, a former policy analyst in the Nevada state legislature’s counsel bureau. “They’re not willing to look at it and try and factor it” into the negotiations.

Several Western water managers Inside Climate News contacted for this story said they were open to learning more about floating solar—Colorado has even studied the technology through pilot projects. But, outside of GRIC’s project, none knew of any plans to deploy floating solar anywhere in the basin. Some listed costly and unusual construction methods and potentially modest water savings as the primary obstacles to floating solar maturing in the US.

A tantalizing technology with tradeoffs

A winery in Napa County, California, deployed the first floating solar panels in the US on an irrigation pond in 2007. The country was still years away from passing federal legislation to combat the climate crisis, and the technology matured here haltingly. As recently as 2022, according to a Bloomberg analysis, most of the world’s 13 gigawatts of floating solar capacity had been built in Asia.

Unlike many Asian countries, the US has an abundance of undeveloped land where solar could be constructed, said Prateek Joshi, a research engineer at the National Renewable Energy Laboratory (NREL) who has studied floating solar, among other forms of energy. “Even though [floating solar] may play a smaller role, I think it’s a critical role in just diversifying our energy mix and also reducing the burden of land use,” he said.

Credit: Paul Horn/Inside Climate News

This February, NREL published a study that found floating solar on the reservoirs behind federally owned dams could provide enough electricity to power 100 million US homes annually, but only if all the developable space on each reservoir were used.

Lake Powell could host almost 15 gigawatts of floating solar using about 23 percent of its surface area, and Lake Mead could generate over 17 gigawatts of power on 28 percent of its surface. Such large-scale development is “probably not going to be the case,” Joshi said, but even if a project used only a fraction of the developable area, “there’s a lot of power you could get from a relatively small percentage of these Colorado Basin reservoirs.”

The study did not measure how much water evaporation floating solar would prevent, but previous NREL research has shown that photovoltaic panels—sometimes called “floatovoltaics” when they are deployed on reservoirs—could also save water by changing the way hydropower is deployed.

Some of a dam’s energy could come from solar panels floating on its reservoir to prevent water from being released solely to generate electricity. As late as December, when a typical Western dam would be running low, lakes with floating solar could still have enough water to produce hydropower, reducing reliance on more expensive backup energy from gas-fired power plants.

Joshi has spoken with developers and water managers about floating solar before, and said there is “an eagerness to get this [technology] going.” The technology, however, is not flawless.

Solar arrays can be around 20 percent more expensive to install on water than land, largely because of the added cost of buoys that keep the panels afloat, according to a 2021 NREL report. The water’s cooling effect can boost panel efficiency, but floating solar panels may produce slightly less energy than a similarly sized array on land because they can’t be tilted as directly toward the sun as land-based panels.

And while the panels likely reduce water loss from reservoirs, they may also increase a water body’s emissions of greenhouse gases, which in turn warm the climate and increase evaporation. This January, researchers at Cornell University found that floating solar covering more than 70 percent of a pond’s surface area increased the water’s CO2 and methane emissions. These kinds of impacts “should be considered not only for the waterbody in which [floating solar] is deployed but also in the broader context of trade-offs of shifting energy production from land to water,” the study’s authors wrote.

“Any energy technology has its tradeoffs,” Joshi said, and in the case of floating solar, some of its benefits—reduced evaporation and land use—may not be easy to express in dollars and cents.

Silver buckshot

There is perhaps no bigger champion for floating solar in the West than Scott Young. Before he retired in 2016, he spent much of his 18 years working for the Nevada Legislature researching the effects of proposed legislation, especially in the energy sector.

On an overcast, blustery May day in southwest Wyoming near his home, Young said that in the past two years he has promoted the technology to Colorado River negotiators, members of Congress, environmental groups and other water managers from the seven basin states, all of whom he has implored to consider the virtues of floating solar arrays on Lake Powell and Lake Mead.

Young grew up in the San Francisco Bay area, about 40 miles, he estimated, from the pioneering floating solar panels in Napa. He stressed that he does not have any ties to industry; he is just a concerned Westerner who wants to diversify the region’s energy mix and save as much water as possible.

But so far, when he has been able to get someone’s attention, Young said his pitch has been met with tepid interest. “Usually the response is: ‘Eh, that’s kind of interesting,’” said Young, dressed in a black jacket, a maroon button-down shirt and a matching ball cap that framed his round, open face. “But there’s no follow-up.”

The Bureau of Reclamation “has not received any formal proposals for floating solar on its reservoirs,” said an agency spokesperson, who added that the bureau has been monitoring the technology.

In a 2021 paper published with NREL, Reclamation estimated that floating solar on its reservoirs could generate approximately 1.5 terawatts of electricity, enough to power about 100 million homes. But, in addition to potentially interfering with recreation, aquatic life, and water safety, floating solar’s effect on evaporation proved difficult to model broadly.

So many environmental factors determine how water is lost or consumed in a reservoir—solar intensity, wind, humidity, lake circulation, water depth, and temperature—that the study’s authors concluded Reclamation “should be wary of contractors’ claims of evaporation savings” without site-specific studies. Those same factors affect the panels’ efficiency, and in turn, how much hydropower would need to be generated from the reservoir they cover.

The report also showed the Colorado River was ripe with floating solar potential—more than any other basin in the West. That’s particularly true in the Upper Basin, where Young has been heartened by Colorado’s approach to the technology.

In 2023, the state passed a law requiring several agencies to study the use of floating solar. Last December, the Colorado Water Conservation Board published its findings, and estimated that the state could save up to 407,000 acre feet of water by deploying floating solar on certain reservoirs. An acre foot covers one acre with a foot of water, or 325,851 gallons, just about three year’s worth of water for a family of four.

When Young saw the Colorado study quantifying savings from floating solar, he felt hopeful. “407,000 acre feet from one state,” he said. “I was hoping that would catch people’s attention.”

Saving that much water would require using over 100,000 acres of surface water, said Cole Bedford, the Colorado Water Conservation Board’s chief operating officer, in an email. “On some of these reservoirs a [floating solar] system would diminish the recreational value such that it would not be appropriate,” he said. “On others, recreation, power generation, and water savings could be balanced.”

Colorado is not planning to develop another project in the wake of this study, and Bedford said that the technology is not a silver bullet solution for Colorado River negotiations.

“While floating solar is one tool in the toolkit for water conservation, the only true solution to the challenges facing the Colorado River Basin is a shift to supply-driven, sustainable uses and operations,” he said.

Some of the West’s largest and driest cities, like Phoenix and Denver, ferry Colorado River water to residents hundreds of miles away from the basin using a web of infrastructure that must reliably operate in unforgiving terrain. Like their counterparts at the state level, water managers in these cities have heard floatovoltaics floated before, but they say the technology is currently too immature and costly to be deployed in the US.

Lake Pleasant

Lake Pleasant, which holds some of the Central Arizona Project’s Colorado River Water, is also a popular recreation space, complicating its floating solar potential.

Credit: Jake Bolster/Inside Climate News

Lake Pleasant, which holds some of the Central Arizona Project’s Colorado River Water, is also a popular recreation space, complicating its floating solar potential. Credit: Jake Bolster/Inside Climate News

In Arizona, the Central Arizona Project (CAP) delivers much of the Colorado River water used by Phoenix, Tucson, tribes, and other southern Arizona communities with a 336-mile canal running through the desert, and Lake Pleasant, the company’s 811,784-acre-foot reservoir.

Though CAP is following GRIC’s deployment of solar over canals, it has no immediate plans to build solar over its canal, or Lake Pleasant, according to Darrin Francom, CAP’s assistant general manager for operations, power, engineering, and maintenance, in part because the city of Peoria technically owns the surface water.

Covering the whole canal with solar to save the 4,000 acre feet that evaporates from it could be prohibitively expensive for CAP. “The dollar cost per that acre foot [saved] is going to be in the tens of, you know, maybe even hundreds of thousands of dollars,” Francom said, mainly due to working with novel equipment and construction methods. “Ultimately,” he continued, “those costs are going to be borne by our ratepayers,” which gives CAP reason to pursue other lower-cost ways to save water, like conservation programs, or to seek new sources.

An intake tower moves water into and out of the dam at Lake Pleasant.

Credit: Jake Bolster/Inside Climate News

An intake tower moves water into and out of the dam at Lake Pleasant. Credit: Jake Bolster/Inside Climate News

The increased costs associated with building solar panels on water instead of on land has made such projects unpalatable to Denver Water, Colorado’s largest water utility, which moves water out of the Colorado River Basin and through the Rocky Mountains to customers on the Front Range. “Floating solar doesn’t pencil out for us for many reasons,” said Todd Hartman, a company spokesperson. “Were we to add more solar resources—which we are considering—we have abundant land-based options.”

GRIC spent about $5.6 million, financed with Inflation Reduction Act grants, to construct 3,000 feet of solar over a canal, according to David DeJong, project director for the community’s irrigation district.

Young is aware there is no single solution to the problems plaguing the Colorado River Basin, and he knows floating solar is not a perfect technology. Instead, he thinks of it as a “silver buckshot,” he said, borrowing a term from John Entsminger, general manager for the Southern Nevada Water Authority—a technology that can be deployed alongside a constellation of behavioral changes to help keep the Colorado River alive.

Given the duration and intensity of the drought in the West and the growing demand for water and clean energy, Young believes the US needs to act now to embed this technology into the fabric of Western water management going forward.

As drought in the West intensifies, “I think more lawmakers are going to look at this,” he said. “If you can save water in two ways—why not?”

“We’re not going to know until we try”

If all goes according to plan, GRIC’s West Side Reservoir will be finished and ready to store Colorado River water by the end of July. The community wants to cover just under 60 percent of the lake’s surface area with floating solar.

“Do we know for a fact that this is going to be 100 percent effective and foolproof? No,” said DeJong, GRIC’s project director for its irrigation district. “But we’re not going to know until we try.”

Solar panels over the canal

The Gila River Indian Community spent about $5.6 million, with the help of Inflation Reduction Act grants, to cover a canal with solar.

Credit: Jake Bolster/Inside Climate News

The Gila River Indian Community spent about $5.6 million, with the help of Inflation Reduction Act grants, to cover a canal with solar. Credit: Jake Bolster/Inside Climate News

GRIC’s panels will have a few things going for them that projects on lakes Mead or Powell probably wouldn’t. West Side Reservoir will not be open to recreation, limiting the panels’ impacts on people. And the community already has the funds—Inflation Reduction Act grants and some of its own money—to pay for the project.

But GRIC’s solar ambitions may be threatened by the hostile posture toward solar and wind energy from the White House and congressional Republicans, and the project is vulnerable to an increasingly volatile economy. Since retaking office, President Donald Trump, aided by billionaire Elon Musk, has made deep cuts in renewable energy grants at the Environmental Protection Agency. It is unclear whether or to what extent the Bureau of Reclamation has slashed its grant programs.

“Under President Donald J. Trump’s leadership, the Department is working to cut bureaucratic waste and ensure taxpayer dollars are spent efficiently,” said a spokesperson for the Department of the Interior, which oversees Reclamation. “This includes ensuring Bureau of Reclamation projects that use funds from the Infrastructure Investments and Jobs Act and the Inflation Reduction Act align with administration priorities. Projects are being individually assessed by period of performance, criticality, and other criteria. Projects have been approved for obligation under this process so that critical work can continue.”

And Trump’s tariffs could cause costs to balloon beyond the community’s budget, which could either reduce the size of the array or cause delays in soliciting proposals, DeJong said.

While the community will study the panels over canals to understand the water’s effects on solar panel efficiency, it won’t do similar research on the panels on West Side Reservoir, though DeJong said they have been in touch with NREL about studying them. The enterprise will be part of the system that may one day offset all the electrical demand and carbon footprint of GRIC’s irrigation system.

“The community, they love these types of innovative projects. I love these innovative projects,” said GRIC Governor Stephen Roe Lewis, standing in front of the canals in April. Lewis had his dark hair pulled back in a long ponytail and wore a blue button down that matched the color of the sky.

“I know for a fact this is inspiring a whole new generation of water protectors—those that want to come back and they want to go into this cutting-edge technology,” he said. “I couldn’t be more proud of our team for getting this done.”

DeJong feels plenty of other water managers across the West could learn from what is happening at GRIC. In fact, the West Side Reservoir was intentionally constructed near Interstate 10 so that people driving by on the highway could one day see the floating solar the community intends to build there, DeJong said.

“It could be a paradigm shift in the Western United States,” he said. “We recognize all of the projects we’re doing are pilot projects. None of them are large scale. But it’s the beginning.”

This story originally appeared on Photo of Inside Climate News

Could floating solar panels on a reservoir help the Colorado River? Read More »

google-and-doj-tussle-over-how-ai-will-remake-the-web-in-antitrust-closing-arguments

Google and DOJ tussle over how AI will remake the web in antitrust closing arguments

At the same time, Google is seeking to set itself apart from AI upstarts. “Generative AI companies are not trying to out-Google Google,” said Schmidtlein. Google’s team contends that its actions have not harmed any AI products like ChatGPT or Perplexity, and at any rate, they are not in the search market as defined by the court.

Mehta mused about the future of search, suggesting we may have to rethink what a general search engine is in 2025. “Maybe people don’t want 10 blue links anymore,” he said.

The Chromium problem and an elegant solution

At times during the case, Mehta has expressed skepticism about the divestment of Chrome. During closing arguments, Dahlquist reiterated the close relationship between search and browsers, reminding the court that 35 percent of Google’s search volume comes from Chrome.

Mehta now seems more receptive to a Chrome split than before, perhaps in part because the effects of the other remedies are becoming so murky. He called the Chrome divestment “less speculative” and “more elegant” than the data and placement remedies. Google again claimed, as it has throughout the remedy phase, that forcing it to give up Chrome is unsupported in the law and that Chrome’s dominance is a result of innovation.

Break up the company without touching the sides and getting shocked!

Credit: Aurich Lawson

Even if Mehta leans toward ordering this remedy, Chromium may be a sticking point. The judge seems unconvinced that the supposed buyers—a group which apparently includes almost every major tech firm—have the scale and expertise needed to maintain Chromium. This open source project forms the foundation of many other browsers, making its continued smooth operation critical to the web.

If Google gives up Chrome, Chromium goes with it, but what about the people who maintain it? The DOJ contends that it’s common for employees to come along with an acquisition, but that’s far from certain. There was some discussion of ensuring a buyer could commit to hiring staff to maintain Chromium. The DOJ suggests Google could be ordered to provide financial incentives to ensure critical roles are filled, but that sounds potentially messy.

A Chrome sale seems more likely now than it did earlier, but nothing is assured yet. Following the final arguments from each side, it’s up to Mehta to mull over the facts before deciding Google’s fate. That’s expected to happen in August, but nothing will change for Google right away. The company has already confirmed it will appeal the case, hoping to have the original ruling overturned. It could still be years before this case reaches its ultimate conclusion.

Google and DOJ tussle over how AI will remake the web in antitrust closing arguments Read More »

testing-a-robot-that-could-drill-into-europa-and-enceladus

Testing a robot that could drill into Europa and Enceladus


We don’t currently have a mission to put it on, but NASA is making sure it’s ready.

Geysers on Saturn’s moon Enceladus Credit: NASA

Europa and Enceladus are two ocean moons that scientists have concluded have liquid water oceans underneath their outer icy shells. The Europa Clipper mission should reach Europa around April of 2030. If it collects data hinting at the moon’s potential habitability, robotic lander missions could be the only way to confirm if there’s really life in there or not.

To make these lander missions happen, NASA’s Jet Propulsion Laboratory team has been working on a robot that could handle the search for life and already tested it on the Matanuska Glacier in Alaska. “At this point this is a pretty mature concept,” says Kevin Hand, a planetary scientist at JPL who led this effort.

Into the unknown

There are only a few things we know for sure about conditions on the surface of Europa, and nearly all of them don’t bode well for lander missions. First, Europa is exposed to very harsh radiation, which is a problem for electronics. The window of visibility—when a potential robotic lander could contact Earth—lasts less than half of the 85 hours it takes for the moon to complete its day-night cycle due to the Europa-Jupiter orbit. So, for more than half the mission, the robot would need to fend for itself, with no human ground teams to get it out of trouble. The lander would also need to run on non-rechargeable batteries, because the vast distance to the Sun would make solar panels prohibitively massive.

And that’s just the beginning. Unlike on Mars, we don’t have any permanent orbiters around Europa that could provide a communication infrastructure, and we don’t have high-resolution imagery of the surface, which would make the landing particularly tricky. “We don’t know what Europa’s surface looks like at the centimeter to meter scale. Even with the Europa Clipper imagery, the highest resolution will be about half a meter per pixel across a few select regions,” Hand explains.

Because Europa has an extremely thin atmosphere that doesn’t provide any insulation, the temperatures on top of its ice shell are estimated to vary between minus-160° Celsius during the daytime maximum and minus-220° C during the night, which means the ice the lander would be there to sample is most likely hard as concrete. Hand’s team, building their robot, had to figure out a design that could deal with all these issues.

The work on the robotic system for the Europa lander mission began more than 10 years ago. Back then, the 2013–2022 decadal strategy for planetary science cited the Europa Clipper as the second-highest priority large-scale planetary mission, so a lander seemed like a natural follow-up.

Autonomy and ice drilling

The robot developed by Hand’s team has legs that enable it to stabilize itself on various types of surfaces, from rock-hard ice to loose, soft snow. To orient itself in the environment, it uses a stereoscopic camera with an LED light source for illumination hooked to computer-vision algorithms—a system similar to the one currently used by the Perseverance rover on Mars. “Stereoscopic cameras can triangulate points in an image and build a digital surface topography model,” explains Joseph Bowkett, a JPL researcher and engineer who worked on the robot’s design.

The team built an entirely new robotic arm with seven degrees of freedom. Force torque sensors installed in most of its joints act a bit like a nervous system, informing the robot when key components sustain excessive loads to prevent it from damaging the arm or the drill. “As we press down on the surface [and] conduct drilling and sampling, we can measure the forces and react accordingly,” Bowkett says. The finishing touch was the ICEPICK, a drilling and sampling tool the robot uses to excavate samples from the ice up to 20 centimeters deep.

Because of long periods the lander would need operate without any human supervision, the team also gave it a wide range of autonomous systems, which operate at two different levels. High-level autonomy is responsible for scheduling and prioritizing tasks within a limited energy budget. The robot can drill into a sampling site, analyze samples with onboard instruments, and decide whether it makes sense to keep drilling at the same spot or choose a different sampling site. The high-level system is also tasked with choosing the most important results for downlink back to Earth.

Low-level autonomy breaks all these high-level tasks down into step-by-step decisions on how to operate the drill and how to move the arm in the safest and most energy-efficient way.

The robot was tested in simulation software first, then indoors at JPL’s facilities, and finally at the Matanuska Glacier in Alaska, where it was lowered from a helicopter that acted as a proxy for a landing vehicle. It was tested at three different sites, ranked from the easiest to the most challenging. It completed all the baseline activities as well as all of the extras. The latter included a task like drilling 27 centimeters deep into ice at the most difficult site, where it was awkwardly positioned on an eight-to-12-degree slope. The robot passed all the tests with flying colors.

And then it got shelved.

Switching the ocean worlds

Hand’s team put their Europa landing robot through the Alaskan field test campaign between July and August 2022. But when the new decadal strategy for planetary science came out in 2023, it turned out that the Europa lander was not among the missions selected. The National Academies committee responsible for formulating these decadal strategies did not recommend giving it a go, mainly because they believed harsh radiation in the Jovian system would make detecting biosignatures “challenging” for a lander.

An Enceladus lander, on the other hand, remained firmly on the table. “I was also on the team developing EELS, a robot intended for a potential Enceladus mission, so thankfully I can speak about both. The radiation challenges are indeed far greater for Europa,” Bowkett says.

Another argument for changing our go-to ocean world is that water plumes containing salts along with carbon- and nitrogen-bearing molecules have already been observed on Enceladus, which means there is a slight chance biosignatures could be detected by a flyby mission. The surface of Enceladus, according to the decadal strategy document, should be capable of preserving biogenic evidence for a long time and seems more conducive to a lander mission. “Luckily, many of the lessons on how to conduct autonomous sampling on Europa, we believe, will transfer to Enceladus, with the benefit of a less damaging radiation environment,” Bowkett told Ars.

The dream of a Europa landing is not completely dead, though. “I would love to get into the Europa’s ocean with a submersible and further down to the seafloor. I would love for that to happen,” Hand says. “But technologically it’s quite a big leap, and you always have to balance your dream missions with the number of technological miracles that need to be solved to make these missions possible.”

Science Robotics, 2025.  DOI: 10.1126/scirobotics.adi5582

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Testing a robot that could drill into Europa and Enceladus Read More »

blue-origin-boss:-government-should-forget-launch-and-focus-on-“exotic”-missions

Blue Origin boss: Government should forget launch and focus on “exotic” missions


“There’s not yet a commercial reason only to go to the Moon with humans.”

In this long exposure photograph, Blue Origin’s New Glenn rocket pierces a cloud deck over Florida’s Space Coast on its inaugural flight January 16. Credit: Blue Origin

Eighteen months after leaving his job as a vice president at Amazon to take over as Blue Origin’s chief executive, Dave Limp has some thoughts on how commercial companies and government agencies like NASA should explore the Solar System together.

Limp had no background in the space industry before taking the helm of Jeff Bezos’ space company in December 2023. He started his career as a computer scientist at Apple, took a stint at a venture capital firm, and joined Amazon in 2010, where he managed development of consumer devices like Alexa, Kindle, and the Fire TV.

“I had no thoughts of ever running a space company,” Limp said Thursday at a space conference in Washington, DC. “I’ve done consumer electronics my whole life. Started at Apple and did a bunch of other things, and so when I decided to retire from Amazon, I was looking for something that I could give back a little bit, be a little bit more philanthropic in the sort of second half of my career. I didn’t want to stop working, just wanted to do something different. And about that same time, Jeff was looking for a CEO.”

While he’s still a relative newcomer to the space business, Limp’s views align with those of many policy wonks and industry leaders who have the ears of senior officials in the Trump administration, including Jared Isaacman, President Trump’s nominee to become the next NASA administrator. Limp’s long tenure at Amazon and his selection as Blue Origin’s new CEO demonstrate that he also has the trust of Bezos, who was dissatisfied with his company’s slow progress in spaceflight.

“I think Jeff convinced me, and he’s very persuasive, that Blue didn’t need another rocket scientist,” Limp said. “We have thousands of the world’s best rocket scientists. What we needed was a little bit more decisiveness, a little bit more ability to think about: How do we manufacture at scale? And those are things I’ve done in the past, and so I’ve never looked back.”

David Limp, CEO of Blue Origin, speaks during the 2025 Humans to the Moon and Mars Summit at George Washington University in Washington, DC, on May 29, 2025. Credit: Alex Wroblewski / AFP via Getty Images

Leave it to us

In remarks Thursday at the Humans to the Moon & Mars Summit, Limp advocated for commercial companies, like his own, taking a larger role in developing the transportation and infrastructure to meet lofty national objectives established by government leaders.

In some ways, NASA has long been moving in this direction, beginning with initiatives ceding most launch services to private industry in the 1990s. More recently, NASA has turned to commercial companies for crew and cargo deliveries to the International Space Station and cargo and human-rated Moon landers.

However, NASA, with the backing of key congressional leaders, has held an iron grip on having its own heavy-lift launcher and crew capsule to ferry astronauts between Earth and destinations beyond low-Earth orbit. Now, these vehicles—the Space Launch System and Orion spacecraft—may be canceled if Congress agrees with Trump’s proposed NASA budget.

Commercial rockets close to matching or exceeding the Space Launch System’s lift capability are available for purchase or likely will be soon. These include SpaceX’s Starship mega-rocket and Blue Origin’s New Glenn launcher. Both are already key elements of NASA’s Artemis program, which aims to land US astronauts on the Moon as a stepping stone toward human expeditions to Mars.

But NASA still plans to use its government-owned Space Launch System rocket and Orion spacecraft to transport astronauts out to the Moon, where they will rendezvous with a Starship or Blue Origin’s Blue Moon lander to fly to and from the lunar surface.

SLS and Orion are expensive vehicles, costing more than $4 billion per launch for the initial set of four Artemis missions, according to a report by NASA’s inspector general. While commercial companies like Boeing, Lockheed Martin, and Northrop Grumman build elements of SLS and Orion, NASA acts as the prime integrator. The agency signed cost-plus contracts with the companies building SLS and Orion, meaning the government is on the hook for cost overruns. And there have been many.

Artist’s concept of Blue Ring, a propulsive spacecraft platform Blue Origin says it is developing to carry payloads to different orbits, and possibly all the way to Mars, at lower costs than feasible today. Credit: Blue Origin

NASA’s robotic science probes are also getting more expensive, even when accounting for inflation. Given the way NASA procures science probes, it would cost NASA more today to send an orbiter to Mars than it did for a similarly sized spacecraft a quarter-century ago.

This has to change in order for NASA and private companies like Blue Origin and SpaceX to make their ambitions a reality, Limp said Thursday.

“I think commercial folks can worry about the infrastructure,” he said. “We can do the launch. We can build the satellite buses that can get you to Mars much more frequently, that don’t cost billions of dollars. We can take a zero, and over time, maybe two zeros off of that. And if the governments around the world leave that to the commercial side, then there are a lot more resources that are freed up for the science side, for the national prestige side, and those types of things.”

The bottom line

Limp followed these comments with a dose of realism you don’t often hear from space industry executives. While there’s a growing list of commercially viable markets in space (things like Starlink and satellite servicing wouldn’t have been money-makers 20 years ago), the market for human spaceflight still requires some level of government commitment.

“I think the thing about bringing commercial aspects to exploration, to science, to the Moon, to Mars, is that we have to see a business prospect for it,” Limp said. “We have to turn it into a business, and that benefits American taxpayers because we will use that capital as efficiently as we can to get to the Moon, to get to Mars in a safe way, but in a way that’s the most efficient.

“We’re committed to that, no matter what the architecture looks like, but it does take the US government and international governments to have the motivation to do it,” he continued. “There’s not yet a commercial reason only to go to the Moon with humans. There are lots of commercial reasons to put robotics on the Moon and other types of things. So, we do need to have conviction that the Moon is important and Mars is important as well.”

Trump and Musk, an ally and advisor to the president, rekindled the question of Moon or Mars in a series of remarks during the early weeks of the new Trump administration. The Artemis Moon program began during the first Trump administration, with the goal of returning astronauts to the Moon for the first time since 1972. NASA would establish a sustained presence at the Moon, using our nearest planetary body as a proving ground for the next destination for humans in Solar System exploration: Mars.

Space industry rivals Jeff Bezos, second from left, and Elon Musk, second from right, inside the US Capitol for President Donald Trump’s inauguration on January 20, 2025. Credit: Chip Somodevilla/Getty Images

SpaceX’s Starship, while capable of one day landing on the Moon, was designed for long-duration cruises to Mars. Blue Origin’s Blue Moon is tailored for lunar landings.

“As an American, I don’t want another Sputnik moment,” Limp said. “From my standpoint, getting boots on the Moon and setting the groundwork for permanence on the Moon is of national importance and urgency. Rest assured, Blue will do everything in its power to try to make that happen, but in a cost-effective way.”

NASA, please don’t leave us

Since retaking office in January, Trump has mentioned human missions to Mars multiple times, but not the Moon. Isaacman, who may be confirmed as NASA administrator by the Senate as soon as next week, told lawmakers in April that the agency should pursue human missions to the Moon and Mars simultaneously. The details of how that might work haven’t been released but could come out in the White House’s detailed budget proposal for fiscal-year 2026.

A blueprint of Trump’s spending proposal released May 2 includes a 25 percent cut to NASA’s overall budget, but the plan would provide additional money for human space exploration at the Moon and Mars. “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the White House budget office wrote.

This part of the budget request is not controversial for industry leaders like Limp. On the other hand, the budget blueprint proposes slashing NASA’s space science budget by nearly $2.3 billion, Earth science by almost $1.2 billion, and space technology by $531 million.

While Limp didn’t directly address these budget proposals, these parts of NASA are largely focused on research projects that lack a commercial business case. Who else but a government space agency, or perhaps an especially generous type of philanthropic multi-billionaire, would pay to send a probe to study Jupiter’s icy moon Europa? Or a robot to zip by Pluto? Or how about a mission like Landsat, which documents everything from water resources to farms and urban sprawl and makes its data freely available to anyone with an Internet connection?

Most experts agree there are better ways to do these things. Reusable rockets, mass-produced satellite platforms, and improved contracting practices can bring down the costs of these missions. Bezos’ long-term goal for Blue Origin, which is to move all polluting factories off the Earth and into space, will be easier to achieve with government support, not just funding, Limp said.

“Getting up there, building factories on the Moon is a great step, and the government can really help with research dollars around that,” he said. “But it still does need the labs. The science missions need the JPLs [Jet Propulsion Laboratory] of the world. To make the human experience right, we need the Johnson Space Centers of the world to be able to kind of use that gold mine of institutional knowledge.

“I would say, and it might be a little provocative, let’s have those smart brains look on the forward-thinking types of things, the really edge of science, planning the really exotic missions, figuring out how to get to planetary bodies we haven’t gotten to before, and staying there,” Limp said.

Mark it down

For the first decade after Bezos founded Blue Origin in 2000, the company operated under the radar and seemed to move at a glacial pace. It launched its first small rocket in 2006 to an altitude of less than 300 feet and reached space with the suborbital New Shepard booster in 2015. Blue Origin finally reached orbit in January of this year on the debut test flight of its heavy-lift New Glenn rocket. Meanwhile, Blue Origin inked a deal with United Launch Alliance to supply a version of its New Glenn main engine to power that company’s Vulcan rocket.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship, NASA’s other Artemis lunar lander. Credit: Blue Origin

The next big mission for Blue Origin will be the first flight of its Blue Moon lander. The first version of Blue Moon, called MK1, will launch on a New Glenn rocket later this year and attempt to become the largest spacecraft to ever land on the Moon. This demonstration, without anyone onboard, is fully funded by Blue Origin, Limp said.

A future human-rated version, called MK2, is under development with the assistance of NASA. It will be larger and will require refueling to reach the lunar surface. Blue Moon MK1 can make a landing on one tank.

These are tangible achievements that would be the envy of any space industry startup not named SpaceX. But Musk’s rocket company left Blue Origin in the dust as it broke launch industry records repeatedly and began delivering NASA astronauts to the International Space Station in 2020. My colleague, Eric Berger, wrote a story in January describing Blue Origin’s culture. For much of its existence, one former employee said, Blue Origin had “zero incentive” to operate like SpaceX.

To ensure he would be in lock-step with his boss, Limp felt he had to ask a question that was on the minds of many industry insiders. He got the answer he wanted.

“The only question I really asked Jeff when I was talking about taking this job was, ‘What do you want Blue to be? Is it a hobby, or is it a business?'” Limp said. “And he had the right answer, which is, it’s a business, because I don’t know how to run a hobby, and I don’t think it’s sustainable.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin boss: Government should forget launch and focus on “exotic” missions Read More »

rocket-report:-northrop-backs-firefly-and-names-its-rocket;-xodiac-will-fly-no-more

Rocket Report: Northrop backs Firefly and names its rocket; Xodiac will fly no more


“This is a design change that I really had to push the team very hard to do.”

An artist’s rendering of the Eclipse rocket on the launch pad at Wallops. Credit: Northrop Grumman

Welcome to Edition 7.46 of the Rocket Report! As I write this, the date is May 29. From a meteorological standpoint, “spring” ends in fewer than three days. Summer lasts from June 1 through August 31. Consider this a public service announcement for launch companies targeting “spring” and “summer” launches for various missions.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Xodiac rocket makes its final flight. Originally built by Masten Space Systems, the suborbital Xodiac rocket had flown 175 successful missions before a flight from Mojave, California, on Wednesday. But now, it will fly no more. “While the vehicle remained within its planned flight envelope, it detected an anomalous condition and commanded a flight termination,” said Astrobotic, which acquired Masten a couple of years ago. “This resulted in a rapid descent and caused a loss of the vehicle upon impact with its launch pad.”

Now entering the Xogdor waiting room … There were no injuries or significant damage to the company’s infrastructure in Mojave. The vehicle is essentially a hopper and has been used in recent years by various customers, including companies building commercial lunar landers, to test their hazard-detection systems. Astrobotic has been working on a larger version of Xodiac, which it is calling Xogdor.

Chinese firm tests Grasshopper-like rocket. Chinese private rocket firm Space Epoch said Thursday it had successfully run a flight recovery test, Reuters reports. Beijing-based Space Epoch, or SEPOCH, said its Yuanxingzhe-1 verification rocket was launched at 4: 40 am from a sea-based platform off the waters of the eastern province of Shandong. The rocket soared upward, its engines briefly shutting down after the peak of its trajectory, then reigniting as it began its vertical descent to enter the Yellow Sea in a circle of fire, a video posted on Space Epoch’s WeChat account showed.

Chasing the Falcon 9 … The flight lasted 125 seconds, reaching a height of about 2.5 km (1.6 miles), the company said. Last year, another Chinese launch company, LandSpace, completed a 10-km (6.2-mile) VTVL test, marking China’s first in-flight engine reignition in descent. Both companies are pushing to make debut tests of their reusable rockets later this year.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Florida company aims to acquire F-4 Phantoms for launch. Starfighters International, a company best known for doing air shows, is now seeking to move into air launch. Based at Kennedy Space Center, the company is in the process of acquiring a dozen F-4 Phantoms, a Cold War-era fighter jet, TWZ reports. Starfighters International is seeking to acquire the F-4 aircraft from South Korea.

Press F-4 to doubt? … Based upon the information in a filing with the Securities and Exchange Commission, the company is considering both a suborbital and orbital launch capability for small satellites, which would fly to space on a small rocket deployed from the F-4 Phantom. In my experience, air-based launch systems always seem like a better idea on paper than in reality. Perhaps there is some potential for hypersonics here, but I would be shocked to ever see a satellite launched into orbit from a fighter jet. (submitted by Biokleen)

Rocket Lab acquires Geost. Rocket Lab is expanding deeper into the defense sector with the acquisition of Geost, a supplier of electro-optical and infrared sensor payloads used in US military satellites, Space News reports. In a deal announced Tuesday, Rocket Lab will acquire Geost from the private equity firm ATL Partners for $125 million in cash and $150 million in stock, with an additional $50 million in potential cash payments tied to revenue targets in 2026 and 2027.

Seeking mil money … The acquisition gives Rocket Lab access to satellite sensor technology used by the US Department of Defense for missile-warning systems and space surveillance—capabilities that could help it win lucrative Pentagon contracts. “The acquisition of Geost will bring on board critical technology and payloads that are relied upon by the Department of Defense,” said Rocket Lab’s chief executive, Peter Beck. Rocket Lab has been seeking to expand its military contracts in recent years, and this move is consistent with that.

Northrop names rocket, invests in Firefly. Northrop Grumman announced Thursday that it is investing $50 million into Firefly Aerospace to further development of a medium-lift rocket. The company also revealed that the rocket will be named “Eclipse.” The rocket will be capable of launching up to 16,300 kg of cargo to low-Earth orbit or 3,200 kg of cargo to geosynchronous transfer orbit, and initially it will likely be used for Cygnus cargo missions to the International Space Station.

A match made in heaven? … Eclipse will use the same first stage Firefly is developing for the Northrop Grumman Antares 330 rocket. Both launch vehicles will use seven of Firefly’s Miranda engines. The new rocket is expected to make its debut no earlier than 2026 (and, if history is any guide, probably later). “Eclipse gives customers the right balance of payload capacity and affordability,” Northrop Vice President Wendy Williams said in a statement. “Our partnership with Firefly builds on our capacity to provide crucial space-based communication, observation, and exploration for civil and national security customers.”

China launches asteroid mission. A Chinese spacecraft built to collect specimens from an unexplored asteroid and return them to Earth launched Wednesday from a military-run spaceport in the country’s mountainous interior, Ars reports. The liftoff aboard a Long March 3B rocket from the Xichang launch base kicked off the second mission in a series of Chinese probes to explore the Solar System. This mission, designated Tianwen-2, follows the Tianwen-1 mission, which became the first Chinese spacecraft to land on Mars in 2021.

Sending samples home … China has two objectives for Tianwen-2. First, Tianwen-2 will fly to a near-Earth asteroid designated 469219 Kamoʻoalewa, or 2016 HO3. Once there, the spacecraft will retrieve a rocky sample from the asteroid’s surface and bring the material back to Earth in late 2027 for analysis in labs. After the spacecraft releases its sample carrier to land on Earth, Tianwen-2 will change course and head to a mysterious comet-like object found between the orbits of Mars and Jupiter.

Next Kuiper launch gets a June date. United Launch Alliance said Thursday that an Atlas V rocket will launch its second batch of Amazon’s Project Kuiper satellites next month. The Atlas V 551 rocket launch is planned for 2: 29 pm ET on June 13 from Space Launch Complex-41, pending range approval.

A speedy turnaround … Amazon also confirmed that it has finished processing the Kuiper satellites for the launch, saying all 27 spacecraft have been integrated onto the rocket. Getting to space in June with this mission will mark an impressive turnaround from Amazon, given that its KA-01 mission, also with 27 Internet satellites, launched on April 28.

SpaceX set to launch another GPS satellite. SpaceX is gearing up to launch a Global Positioning System satellite for the US military on Friday from Cape Canaveral Space Force Station, Florida, marking another high-profile national security mission that shifted from United Launch Alliance’s Vulcan to the Falcon 9 rocket, Space News reports. The launch of GPS III SV-08—the eighth satellite in the GPS III constellation—was originally assigned to United Launch Alliance but was switched to SpaceX as the military prioritizes getting advanced anti-jamming capabilities into orbit as quickly as possible.

Gotta go fast … This marks the second consecutive GPS III satellite to be switched from ULA to SpaceX, following December’s launch of GPS III SV-07. ULA’s Vulcan, which received certification to launch national security missions, continues to face delays and has accumulated a backlog of military launches. In a press call this week, Space Force officials said the mission was executed on an unusually accelerated timeline. Launch planning for GPS III SV-08 kicked off in February, with Lockheed Martin receiving a formal request on February 21 and SpaceX following on March 7, just under three months ahead of liftoff. That’s an extraordinary pace for a national security launch, they said, which typically takes 18 to 24 months from contract award.

Another Starship launch, another second-stage issue. SpaceX made some progress on another test flight of the world’s most powerful rocket Tuesday, finally overcoming technical problems that plagued the program’s two previous launches, Ars reports. But minutes into the mission, SpaceX’s Starship lost control as it cruised through space, then tumbled back into the atmosphere somewhere over the Indian Ocean nearly an hour after taking off from Starbase, Texas, the company’s privately owned spaceport near the US-Mexico border. During the rocket’s two previous test flights—each using an upgraded “Block 2” Starship design—problems in the ship’s propulsion system led to leaks during launch, eventually triggering an early shutdown of the rocket’s main engines.

Not great, not terrible … On both flights, the vehicle spun out of control and broke apart, spreading debris over an area near the Bahamas and the Turks and Caicos Islands. The good news is that that didn’t happen on Tuesday. The ship’s main engines fired for their full duration, putting the vehicle on its expected trajectory toward a splashdown in the Indian Ocean. For a short time, it appeared the ship was on track for a successful flight. The bad news is that Tuesday’s test flight revealed more problems, preventing SpaceX from achieving the most important goals Musk outlined going into the launch, including testing Starship’s reentry tiles.

Elon Musk talks Starship version 3. In an interview with Ars Technica, SpaceX founder Elon Musk said he expects that an upgraded version of Starship—essentially Block 3 of the vehicle with upgraded Raptor engines—should fly before the end of the year. The business end of the rocket will have a sleek look: “The upgraded Raptors have a complete redesign of the aft end of the booster and the ship,” Musk said. “So, because we don’t need the heat shield around the upper portion of the engine, it greatly simplifies the base of the booster and the ship. It’ll look a little, frankly, naked, especially on the booster side, because the engines will just be there, like, not with stuff around them.”

A difficult upgrade to work through … “This is a design change that I really had to push the team very hard to do, to get rid of any secondary structure, and any parts that could get burned off because there will be no heat shield,” Musk added. “So it’ll be very clear when we have a Raptor 3. Version 3 of the Ship and Booster has quite a radical redesign.” Given the challenges that version 2 of Starship has faced with its recent flights, an upgrade in the overall design appears to be much-needed.

Next three launches

May 30: Falcon 9 | GPS III SV-08 | Cape Canaveral Space Force Station, Florida | 17: 23 UTC

May 31: New Shepard | NS-32 | Launch Site One, West Texas | 13: 30 UTC

May 31: Falcon 9 | Starlink 11-18 | Vandenberg Space Force Base, California | 20: 01 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: Northrop backs Firefly and names its rocket; Xodiac will fly no more Read More »