Commercial space

spacex-reveals-why-the-last-two-starships-failed-as-another-launch-draws-near

SpaceX reveals why the last two Starships failed as another launch draws near


“SpaceX can now proceed with Starship Flight 10 launch operations under its current license.”

SpaceX completed a six-engine static fire of the next Starship upper stage on August 1. Credit: SpaceX

SpaceX is continuing with final preparations for the 10th full-scale test flight of the company’s enormous Starship rocket after receiving launch approval Friday from the Federal Aviation Administration.

Engineers completed a final test of Starship’s propulsion system with a so-called “spin prime” test Wednesday at the launch site in South Texas. Ground crews then rolled the ship back to a nearby hangar for engine inspections, touchups to its heat shield, and a handful of other chores to ready it for liftoff.

SpaceX has announced the launch is scheduled for no earlier than next Sunday, August 24, at 6: 30 pm local time in Texas (23: 30 UTC).

Like all previous Starship launches, the huge 403-foot-tall (123-meter) rocket will take off from SpaceX’s test site in Starbase, Texas, just north of the US-Mexico border. The rocket consists of a powerful booster stage named Super Heavy, with 33 methane-fueled Raptor engines. Six Raptors power the upper stage, known simply as Starship.

With this flight, SpaceX officials hope to put several technical problems with the Starship program behind them. SpaceX is riding a streak of four disappointing Starship test flights from January through May, and and the explosion and destruction of another Starship vehicle during a ground test in June.

These setbacks followed a highly successful year for the world’s largest rocket in 2024, when SpaceX flew Starship four times and achieved new objectives on each flight. These accomplishments included the first catch of a Super Heavy booster back at the launch pad, proving the company’s novel concept for recovering and reusing the rocket’s first stage.

Starship’s record so far in 2025 is another story. The rocket’s inability to make it through an entire suborbital test flight has pushed back future program milestones, such as the challenging tasks of recovering and reusing the rocket’s upper stage, and demonstrating the ability to refuel another rocket in orbit. Those would both be firsts in the history of spaceflight.

These future tests, and more, are now expected to occur no sooner than next year. This time last year, SpaceX officials hoped to achieve them in 2025. All of these demonstrations are vital for Elon Musk to meet his promise of sending numerous Starships to build a settlement on Mars. Meanwhile, NASA is eager for SpaceX to reel off these tests as quickly as possible because the agency has selected Starship as the human-rated lunar lander for the Artemis Moon program. Once operational, Starship will also be key to building out SpaceX’s next-generation Starlink broadband network.

A good outcome on the next Starship test flight would give SpaceX footing to finally take a step toward these future demos after months of dithering over design dilemmas.

Elon Musk, SpaceX’s founder and CEO, presented an update on Starship to company employees in May. This chart shows the planned evolution from Starship Version 2 (left) to Version 3 (middle), and an even larger rocket (right) in the more distant future.

The FAA said Friday it formally closed the investigation into Starship’s most recent in-flight failure in May, when the rocket started leaking propellant after reaching space, rendering it unable to complete the test flight.

“The FAA oversaw and accepted the findings of the SpaceX-led investigation,” the federal regulator said in a statement. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

Diagnosing failures

SpaceX identified the most probable cause for the May failure as a faulty main fuel tank pressurization system diffuser located on the forward dome of Starship’s primary methane tank. The diffuser failed a few minutes after launch, when sensors detected a pressure drop in the main methane tank and a pressure increase in the ship’s nose cone just above the tank.

The rocket compensated for the drop in main tank pressure and completed its engine burn, but venting from the nose cone and a worsening fuel leak overwhelmed Starship’s attitude control system. Finally, detecting a major problem, Starship triggered automatic onboard commands to vent all remaining propellant into space and “passivate” itself before an unguided reentry over the Indian Ocean, prematurely ending the test flight.

Engineers recreated the diffuser failure on the ground during the investigation, and then redesigned the part to better direct pressurized gas into the main fuel tank. This will also “substantially decrease” strain on the diffuser structure, SpaceX said.

The FAA, charged with ensuring commercial rocket launches don’t endanger public safety, signed off on the investigation and gave the green light for SpaceX to fly Starship again when it is ready.

“SpaceX can now proceed with Starship Flight 10 launch operations under its current license,” the FAA said.

“The upcoming flight will continue to expand the operating envelope on the Super Heavy booster, with multiple landing burn tests planned,” SpaceX said in an update posted to its website Friday. “It will also target similar objectives as previous missions, including Starship’s first payload deployment and multiple reentry experiments geared towards returning the upper stage to the launch site for catch.”

File photo of Starship’s six Raptor engines firing on a test stand in South Texas. Credit: SpaceX

In the aftermath of the test flight in May, SpaceX hoped to fly Starship again by late June or early July. But another accident June 18, this time on the ground, delayed the program another couple of months. The Starship vehicle SpaceX assigned to the next flight, designated Ship 36, exploded on a test stand in Texas as teams filled it with cryogenic propellants for an engine test-firing.

The accident destroyed the ship and damaged the test site, prompting SpaceX to retrofit the sole active Starship launch pad to support testing of the next ship in line—Ship 37. Those tests included a brief firing of all six of the ship’s Raptor engines August 1.

After Ship 37’s final spin prime test Wednesday, workers transported the rocket back to a hangar for evaluation, and crews immediately got to work transitioning the launch pad back to its normal configuration to host a full Super Heavy/Starship stack.

SpaceX said the explosion on the test stand in June was likely caused by damage to a high-pressure nitrogen storage tank inside Starship’s payload bay section. This tank, called a composite overwrapped pressure vessel, or COPV, violently ruptured and led to the ship’s fiery demise. SpaceX said COPVs on upcoming flights will operate at lower pressures, and managers ordered additional inspections on COPVs to look for damage, more proof testing, more stringent acceptance criteria, and a hardware change to address the problem.

Try, try, try, try again

This year began with the first launch of an upgraded version of Starship, known as Version 2 or Block 2, in January. But the vehicle suffered propulsion failures and lost control before the upper stage completed its engine burn to propel the rocket on a trajectory carrying it halfway around the world to splash down in the Indian Ocean. Instead, the rocket broke apart and rained debris over the Bahamas and the Turks and Caicos Islands more than 1,500 miles downrange from Starbase.

That was followed in March by another Starship launch that had a similar result, again scattering debris near the Bahamas. In May, the ninth Starship test flight made it farther downrange and completed its engine burn before spinning out of control in space, preventing it from making a guided reentry to gather data on its heat shield.

Mastering the design of Starship’s heat shield is critical the future of the program. As it has on all of this year’s test flights, SpaceX has installed on the next Starship several different ceramic and metallic tile designs to test alternative materials to protect the vehicle during its scorching plunge back into Earth’s atmosphere. Starship successfully made it through reentry for a controlled splashdown in the sea several times last year, but sensors detected hot spots on the rocket’s stainless steel skin after some of the tiles fell off during launch and descent.

Making the Starship upper stage reusable like the Super Heavy booster will require better performance from the heat shield. The demands of flying the ship home from orbit and attempting a catch at the launch pad far outweigh the challenge of recovering a booster. Coming back from space, the ship encounters much higher temperatures than the booster sees at lower velocities.

Therefore, SpaceX’s most important goal for the 10th Starship flight will be gathering information about how well the ship’s different heat shield materials hold up during reentry. Engineers want to have this data as soon as possible to inform design decisions about the next iteration of Starship—Version 3 or Block 3—that will actually fly into orbit. So far, all Starship launches have intentionally targeted a speed just shy of orbital velocity, bringing the vehicle back through the atmosphere halfway around the world.

Other objectives on the docket for Starship Flight 10 include the deployment of spacecraft simulators mimicking the size of SpaceX’s next-generation Starlink Internet satellites. Like the heat shield data, this has been part of the flight plan for the last three Starship launches, but the rocket never made it far enough to attempt any payload deployment tests.

Thirty-three Raptor engines power the Super Heavy booster downrange from SpaceX’s launch site near Brownsville, Texas, in January. Credit: SpaceX

Engineers also plan to put the Super Heavy booster through the wringer on the next launch. Instead of coming back to Starbase for a catch at the launch pad—something SpaceX has now done three times—the massive booster stage will target a controlled splashdown in the Gulf of Mexico east of the Texas coast. This will give SpaceX room to try new things with the booster, such as controlling the rocket’s final descent with a different mix of engines to see if it could overcome a problem with one of its three primary landing engines.

SpaceX tried to experiment with new ways of landing of the Super Heavy booster on the last test flight, too. The Super Heavy exploded before reaching the ocean, likely due to a structural failure of the rocket’s fuel transfer tube, an internal pipe where methane flows from the fuel tank at the top of the rocket to the engines at the bottom of the booster. SpaceX said the booster flew a higher angle of attack during its descent in May to test the limits of the rocket’s performance. It seems engineers found the limit, and the booster won’t fly at such a high angle of attack next time.

SpaceX has just two Starship Version 2 vehicles in its inventory before moving on to the taller Version 3 configuration, which will also debut improved Raptor engines.

“Every lesson learned, through both flight and ground testing, continues to feed directly into designs for the next generation of Starship and Super Heavy,” SpaceX said. “Two flights remain with the current generation, each with test objectives designed to expand the envelope on vehicle capabilities as we iterate towards fully and rapidly reusable, reliable rockets.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX reveals why the last two Starships failed as another launch draws near Read More »

trump-orders-cull-of-regulations-governing-commercial-rocket-launches

Trump orders cull of regulations governing commercial rocket launches


The head of the FAA’s commercial spaceflight division will become a political appointee.

Birds take flight at NASA’s Kennedy Space Center in Florida in this 2010 photo. Credit: NASA

President Donald Trump signed an executive order Wednesday directing government agencies to “eliminate or expedite” environmental reviews for commercial launch and reentry licenses.

The Federal Aviation Administration (FAA), part of the Department of Transportation (DOT), grants licenses for commercial launch and reentry operations. The FAA is charged with ensuring launch and reentries comply with environmental laws, comport with US national interests, and don’t endanger the public.

The drive toward deregulation will be welcome news for companies like SpaceX, led by onetime Trump ally Elon Musk; SpaceX conducts nearly all of the commercial launches and reentries licensed by the FAA.

Deregulation time

Trump ordered Transportation Secretary Sean Duffy, who also serves as the acting administrator of NASA, to “use all available authorities to eliminate or expedite… environmental reviews for… launch and reentry licenses and permits.” In the order signed by Trump, White House officials wrote that Duffy should consult with the chair of the Council on Environmental Quality and follow “applicable law” in the regulatory cull.

The executive order also includes a clause directing Duffy to reevaluate, amend, or rescind a slate of launch-safety regulations written during the first Trump administration. The FAA published the new regulations, known as Part 450, in 2020, and they went into effect in 2021, but space companies have complained they are too cumbersome and have slowed down the license approval process.

And there’s more. Trump ordered NASA, the military, and DOT to eliminate duplicative reviews for spaceport development. This is particularly pertinent at federally owned launch ranges like those at Cape Canaveral, Florida; Vandenberg Space Force Base, California; and Wallops Island, Virginia.

The Trump administration also plans to make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This office oversees commercial launch and reentry licensing and was previously led by a career civil servant. Duffy will also hire an advisor on deregulation in the commercial spaceflight industry to join DOT, and the Office of Space Commerce will be elevated to a more prominent position within the Commerce Department.

“It is the policy of the United States to enhance American greatness in space by enabling a competitive launch marketplace and substantially increasing commercial space launch cadence and novel space activities by 2030,” Trump’s executive order reads. “To accomplish this, the federal government will streamline commercial license and permit approvals for United States-based operators.”

News of the executive order was reported last month by ProPublica, which wrote that the Trump administration was circulating draft language among federal agencies to slash rules to protect the environment and the public from the dangers of rocket launches. The executive order signed by Trump and released by the White House on Wednesday confirms ProPublica’s reporting.

Jared Margolis, a senior attorney for the Center for Biological Diversity, criticized the Trump administration’s move.

“This reckless order puts people and wildlife at risk from private companies launching giant rockets that often explode and wreak devastation on surrounding areas,” Margolis said in a statement. “Bending the knee to powerful corporations by allowing federal agencies to ignore bedrock environmental laws is incredibly dangerous and puts all of us in harm’s way. This is clearly not in the public interest.”

Duffy, the first person to lead NASA and another federal department at the same time, argued the order is important to sustain economic growth in the space industry.

“By slashing red tape tying up spaceport construction, streamlining launch licenses so they can occur at scale, and creating high-level space positions in government, we can unleash the next wave of innovation,” Duffy said in a statement. “At NASA, this means continuing to work with commercial space companies and improving our spaceports’ ability to launch.”

Nipping NEPA

The executive order is emblematic of the Trump administration’s broader push to curtail environmental reviews for large infrastructure projects.

The White House has already directed federal agencies to repeal regulations enforcing the National Environmental Policy Act (NEPA), a 1969 law that requires the feds prepare environmental assessments and environmental impact statements to evaluate the effects of government actions—such as licensing approvals—on the environment.

Regarding commercial spaceflight, the White House ordered the Transportation Department to create a list of activities officials there believe are not subject to NEPA and establish exclusions under NEPA for launch and reentry licenses.

Onlookers watch from nearby sand dunes as SpaceX prepares a Starship rocket for launch from Starbase, Texas. Credit: Stephen Clark/Ars Technica

The changes to the environmental review process might be the most controversial part of Trump’s new executive order. Another section of the order—the attempt to reform or rescind the so-called Part 450 launch and reentry regulations—appears to have bipartisan support in Congress.

The FAA started implementing its new Part 450 commercial launch and reentry regulations less than five years ago after writing the rules in response to another Trump executive order signed in 2018. Part 450 was intended to streamline the launch approval process by allowing companies to submit applications for a series of launches or reentries, rather than requiring a new license for each mission.

But industry officials quickly criticized the new regulations, which they said didn’t account for rapid iteration of rockets and spacecraft like SpaceX’s enormous Starship/Super Heavy launch vehicle. The FAA approved a SpaceX request in May to increase the number of approved Starship launches from five to 25 per year from the company’s base in Starship, Texas, near the US-Mexico border.

Last year, the FAA’s leadership under the Biden administration established a committee to examine the shortcomings of Part 450. The Republican and Democratic leaders of the House Science, Space, and Technology Committee submitted a joint request in February for the Government Accountability Office to conduct an independent review of the FAA’s Part 450 regulations.

“Reforming and streamlining commercial launch regulations and licensing is an area the Biden administration knew needed reform,” wrote Laura Forczyk, founder and executive director of the space consulting firm Astralytical, in a post on X. “However, little was done. Will more be done with this executive order? I hope so. This was needed years ago.”

Dave Cavossa, president of the Commercial Spaceflight Federation, applauded the Trump administration’s regulatory policy.

“This executive order will strengthen and grow the US commercial space industry by cutting red tape while maintaining a commitment to public safety, benefitting the American people and the US government that are increasingly reliant on space for our national and economic security,” Cavossa said in a statement.

Specific language in the new Trump executive order calls for the FAA to evaluate which regulations should be waived for hybrid launch or reentry vehicles that hold FAA airworthiness certificates, and which requirements should be remitted for rockets with a flight termination system, an explosive charge designed to destroy a launch vehicle if it veers off its pre-approved course after liftoff. These are similar to the topics the Biden-era FAA was looking at last year.

The new Trump administration policy also seeks to limit the authority of state officials in enforcing their own environmental rules related to the construction or operation of spaceports.

This is especially relevant after the California Coastal Commission rejected a proposal by SpaceX to double its launch cadence at Vandenberg Space Force Base, a spaceport located roughly 140 miles (225 kilometers) northwest of Los Angeles. The Space Force, which owns Vandenberg and is one of SpaceX’s primary customers, backs SpaceX’s push for more launches.

Finally, the order gives the Department of Commerce responsibility for authorizing “novel space activities” such as in-space assembly and manufacturing, asteroid and planetary mining, and missions to remove space debris from orbit.

This story was updated at 12: 30 am EDT on August 14 with statements from the Center for Biological Diversity and the Commercial Spaceflight Federation.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Trump orders cull of regulations governing commercial rocket launches Read More »

blue-origin-boss:-government-should-forget-launch-and-focus-on-“exotic”-missions

Blue Origin boss: Government should forget launch and focus on “exotic” missions


“There’s not yet a commercial reason only to go to the Moon with humans.”

In this long exposure photograph, Blue Origin’s New Glenn rocket pierces a cloud deck over Florida’s Space Coast on its inaugural flight January 16. Credit: Blue Origin

Eighteen months after leaving his job as a vice president at Amazon to take over as Blue Origin’s chief executive, Dave Limp has some thoughts on how commercial companies and government agencies like NASA should explore the Solar System together.

Limp had no background in the space industry before taking the helm of Jeff Bezos’ space company in December 2023. He started his career as a computer scientist at Apple, took a stint at a venture capital firm, and joined Amazon in 2010, where he managed development of consumer devices like Alexa, Kindle, and the Fire TV.

“I had no thoughts of ever running a space company,” Limp said Thursday at a space conference in Washington, DC. “I’ve done consumer electronics my whole life. Started at Apple and did a bunch of other things, and so when I decided to retire from Amazon, I was looking for something that I could give back a little bit, be a little bit more philanthropic in the sort of second half of my career. I didn’t want to stop working, just wanted to do something different. And about that same time, Jeff was looking for a CEO.”

While he’s still a relative newcomer to the space business, Limp’s views align with those of many policy wonks and industry leaders who have the ears of senior officials in the Trump administration, including Jared Isaacman, President Trump’s nominee to become the next NASA administrator. Limp’s long tenure at Amazon and his selection as Blue Origin’s new CEO demonstrate that he also has the trust of Bezos, who was dissatisfied with his company’s slow progress in spaceflight.

“I think Jeff convinced me, and he’s very persuasive, that Blue didn’t need another rocket scientist,” Limp said. “We have thousands of the world’s best rocket scientists. What we needed was a little bit more decisiveness, a little bit more ability to think about: How do we manufacture at scale? And those are things I’ve done in the past, and so I’ve never looked back.”

David Limp, CEO of Blue Origin, speaks during the 2025 Humans to the Moon and Mars Summit at George Washington University in Washington, DC, on May 29, 2025. Credit: Alex Wroblewski / AFP via Getty Images

Leave it to us

In remarks Thursday at the Humans to the Moon & Mars Summit, Limp advocated for commercial companies, like his own, taking a larger role in developing the transportation and infrastructure to meet lofty national objectives established by government leaders.

In some ways, NASA has long been moving in this direction, beginning with initiatives ceding most launch services to private industry in the 1990s. More recently, NASA has turned to commercial companies for crew and cargo deliveries to the International Space Station and cargo and human-rated Moon landers.

However, NASA, with the backing of key congressional leaders, has held an iron grip on having its own heavy-lift launcher and crew capsule to ferry astronauts between Earth and destinations beyond low-Earth orbit. Now, these vehicles—the Space Launch System and Orion spacecraft—may be canceled if Congress agrees with Trump’s proposed NASA budget.

Commercial rockets close to matching or exceeding the Space Launch System’s lift capability are available for purchase or likely will be soon. These include SpaceX’s Starship mega-rocket and Blue Origin’s New Glenn launcher. Both are already key elements of NASA’s Artemis program, which aims to land US astronauts on the Moon as a stepping stone toward human expeditions to Mars.

But NASA still plans to use its government-owned Space Launch System rocket and Orion spacecraft to transport astronauts out to the Moon, where they will rendezvous with a Starship or Blue Origin’s Blue Moon lander to fly to and from the lunar surface.

SLS and Orion are expensive vehicles, costing more than $4 billion per launch for the initial set of four Artemis missions, according to a report by NASA’s inspector general. While commercial companies like Boeing, Lockheed Martin, and Northrop Grumman build elements of SLS and Orion, NASA acts as the prime integrator. The agency signed cost-plus contracts with the companies building SLS and Orion, meaning the government is on the hook for cost overruns. And there have been many.

Artist’s concept of Blue Ring, a propulsive spacecraft platform Blue Origin says it is developing to carry payloads to different orbits, and possibly all the way to Mars, at lower costs than feasible today. Credit: Blue Origin

NASA’s robotic science probes are also getting more expensive, even when accounting for inflation. Given the way NASA procures science probes, it would cost NASA more today to send an orbiter to Mars than it did for a similarly sized spacecraft a quarter-century ago.

This has to change in order for NASA and private companies like Blue Origin and SpaceX to make their ambitions a reality, Limp said Thursday.

“I think commercial folks can worry about the infrastructure,” he said. “We can do the launch. We can build the satellite buses that can get you to Mars much more frequently, that don’t cost billions of dollars. We can take a zero, and over time, maybe two zeros off of that. And if the governments around the world leave that to the commercial side, then there are a lot more resources that are freed up for the science side, for the national prestige side, and those types of things.”

The bottom line

Limp followed these comments with a dose of realism you don’t often hear from space industry executives. While there’s a growing list of commercially viable markets in space (things like Starlink and satellite servicing wouldn’t have been money-makers 20 years ago), the market for human spaceflight still requires some level of government commitment.

“I think the thing about bringing commercial aspects to exploration, to science, to the Moon, to Mars, is that we have to see a business prospect for it,” Limp said. “We have to turn it into a business, and that benefits American taxpayers because we will use that capital as efficiently as we can to get to the Moon, to get to Mars in a safe way, but in a way that’s the most efficient.

“We’re committed to that, no matter what the architecture looks like, but it does take the US government and international governments to have the motivation to do it,” he continued. “There’s not yet a commercial reason only to go to the Moon with humans. There are lots of commercial reasons to put robotics on the Moon and other types of things. So, we do need to have conviction that the Moon is important and Mars is important as well.”

Trump and Musk, an ally and advisor to the president, rekindled the question of Moon or Mars in a series of remarks during the early weeks of the new Trump administration. The Artemis Moon program began during the first Trump administration, with the goal of returning astronauts to the Moon for the first time since 1972. NASA would establish a sustained presence at the Moon, using our nearest planetary body as a proving ground for the next destination for humans in Solar System exploration: Mars.

Space industry rivals Jeff Bezos, second from left, and Elon Musk, second from right, inside the US Capitol for President Donald Trump’s inauguration on January 20, 2025. Credit: Chip Somodevilla/Getty Images

SpaceX’s Starship, while capable of one day landing on the Moon, was designed for long-duration cruises to Mars. Blue Origin’s Blue Moon is tailored for lunar landings.

“As an American, I don’t want another Sputnik moment,” Limp said. “From my standpoint, getting boots on the Moon and setting the groundwork for permanence on the Moon is of national importance and urgency. Rest assured, Blue will do everything in its power to try to make that happen, but in a cost-effective way.”

NASA, please don’t leave us

Since retaking office in January, Trump has mentioned human missions to Mars multiple times, but not the Moon. Isaacman, who may be confirmed as NASA administrator by the Senate as soon as next week, told lawmakers in April that the agency should pursue human missions to the Moon and Mars simultaneously. The details of how that might work haven’t been released but could come out in the White House’s detailed budget proposal for fiscal-year 2026.

A blueprint of Trump’s spending proposal released May 2 includes a 25 percent cut to NASA’s overall budget, but the plan would provide additional money for human space exploration at the Moon and Mars. “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the White House budget office wrote.

This part of the budget request is not controversial for industry leaders like Limp. On the other hand, the budget blueprint proposes slashing NASA’s space science budget by nearly $2.3 billion, Earth science by almost $1.2 billion, and space technology by $531 million.

While Limp didn’t directly address these budget proposals, these parts of NASA are largely focused on research projects that lack a commercial business case. Who else but a government space agency, or perhaps an especially generous type of philanthropic multi-billionaire, would pay to send a probe to study Jupiter’s icy moon Europa? Or a robot to zip by Pluto? Or how about a mission like Landsat, which documents everything from water resources to farms and urban sprawl and makes its data freely available to anyone with an Internet connection?

Most experts agree there are better ways to do these things. Reusable rockets, mass-produced satellite platforms, and improved contracting practices can bring down the costs of these missions. Bezos’ long-term goal for Blue Origin, which is to move all polluting factories off the Earth and into space, will be easier to achieve with government support, not just funding, Limp said.

“Getting up there, building factories on the Moon is a great step, and the government can really help with research dollars around that,” he said. “But it still does need the labs. The science missions need the JPLs [Jet Propulsion Laboratory] of the world. To make the human experience right, we need the Johnson Space Centers of the world to be able to kind of use that gold mine of institutional knowledge.

“I would say, and it might be a little provocative, let’s have those smart brains look on the forward-thinking types of things, the really edge of science, planning the really exotic missions, figuring out how to get to planetary bodies we haven’t gotten to before, and staying there,” Limp said.

Mark it down

For the first decade after Bezos founded Blue Origin in 2000, the company operated under the radar and seemed to move at a glacial pace. It launched its first small rocket in 2006 to an altitude of less than 300 feet and reached space with the suborbital New Shepard booster in 2015. Blue Origin finally reached orbit in January of this year on the debut test flight of its heavy-lift New Glenn rocket. Meanwhile, Blue Origin inked a deal with United Launch Alliance to supply a version of its New Glenn main engine to power that company’s Vulcan rocket.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship, NASA’s other Artemis lunar lander. Credit: Blue Origin

The next big mission for Blue Origin will be the first flight of its Blue Moon lander. The first version of Blue Moon, called MK1, will launch on a New Glenn rocket later this year and attempt to become the largest spacecraft to ever land on the Moon. This demonstration, without anyone onboard, is fully funded by Blue Origin, Limp said.

A future human-rated version, called MK2, is under development with the assistance of NASA. It will be larger and will require refueling to reach the lunar surface. Blue Moon MK1 can make a landing on one tank.

These are tangible achievements that would be the envy of any space industry startup not named SpaceX. But Musk’s rocket company left Blue Origin in the dust as it broke launch industry records repeatedly and began delivering NASA astronauts to the International Space Station in 2020. My colleague, Eric Berger, wrote a story in January describing Blue Origin’s culture. For much of its existence, one former employee said, Blue Origin had “zero incentive” to operate like SpaceX.

To ensure he would be in lock-step with his boss, Limp felt he had to ask a question that was on the minds of many industry insiders. He got the answer he wanted.

“The only question I really asked Jeff when I was talking about taking this job was, ‘What do you want Blue to be? Is it a hobby, or is it a business?'” Limp said. “And he had the right answer, which is, it’s a business, because I don’t know how to run a hobby, and I don’t think it’s sustainable.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin boss: Government should forget launch and focus on “exotic” missions Read More »

spacex-may-have-solved-one-problem-only-to-find-more-on-latest-starship-flight

SpaceX may have solved one problem only to find more on latest Starship flight


SpaceX’s ninth Starship survived launch, but engineers now have more problems to overcome.

An onboard camera shows the six Raptor engines on SpaceX’s Starship upper stage, roughly three minutes after launching from South Texas on Tuesday. Credit: SpaceX

SpaceX made some progress on another test flight of the world’s most powerful rocket Tuesday, finally overcoming technical problems that plagued the program’s two previous launches.

But minutes into the mission, SpaceX’s Starship lost control as it cruised through space, then tumbled back into the atmosphere somewhere over the Indian Ocean nearly an hour after taking off from Starbase, Texas, the company’s privately owned spaceport near the US-Mexico border.

SpaceX’s next-generation rocket is designed to eventually ferry cargo and private and government crews between the Earth, the Moon, and Mars. The rocket is complex and gargantuan, wider and longer than a Boeing 747 jumbo jet, and after nearly two years of steady progress since its first test flight in 2023, this has been a year of setbacks for Starship.

During the rocket’s two previous test flights—each using an upgraded “Block 2” Starship design—problems in the ship’s propulsion system led to leaks during launch, eventually triggering an early shutdown of the rocket’s main engines. On both flights, the vehicle spun out of control and broke apart, spreading debris over an area near the Bahamas and the Turks and Caicos Islands.

The good news is that that didn’t happen Tuesday. The ship’s main engines fired for their full duration, putting the vehicle on its expected trajectory toward a splashdown in the Indian Ocean. For a short time, it appeared the ship was on track for a successful flight.

“Starship made it to the scheduled ship engine cutoff, so big improvement over last flight! Also, no significant loss of heat shield tiles during ascent,” wrote Elon Musk, SpaceX’s founder and CEO, on X.

The bad news is that Tuesday’s test flight revealed more problems, preventing SpaceX from achieving the most important goals Musk outlined going into the launch.

“Leaks caused loss of main tank pressure during the coast and reentry phase,” Musk posted on X. “Lot of good data to review.”

With the loss of tank pressure, the rocket started slowly spinning as it coasted through the blackness of space more than 100 miles above the Earth. This loss of control spelled another premature end to a Starship test flight. Most notable among the flight’s unmet objectives was SpaceX’s desire to study the performance of the ship’s heat shield, which includes improved heat-absorbing tiles to better withstand the scorching temperatures of reentry back into the atmosphere.

“The most important thing is data on how to improve the tile design, so it’s basically data during the high heating, reentry phase in order to improve the tiles for the next iteration,” Musk told Ars Technica before Tuesday’s flight. “So we’ve got like a dozen or more tile experiments. We’re trying different coatings on tiles. We’re trying different fabrication techniques, different attachment techniques. We’re varying the gap filler for the tiles.”

Engineers are hungry for data on the changes to the heat shield, which can’t be fully tested on the ground. SpaceX officials hope the new tiles will be more robust than the ones flown on the first-generation, or Block 1, version of Starship, allowing future ships to land and quickly launch again, without the need for time-consuming inspections, refurbishment, and in some cases, tile replacements. This is a core tenet of SpaceX’s plans for Starship, which include delivering astronauts to the surface of the Moon, proliferating low-Earth orbit with refueling tankers, and eventually helping establish a settlement on Mars, all of which are predicated on rapid reusability of Starship and its Super Heavy booster.

Last year, SpaceX successfully landed three Starships in the Indian Ocean after they survived hellish reentries, but they came down with damaged heat shields. After an early end to Tuesday’s test flight, SpaceX’s heat shield engineers will have to wait a while longer to satiate their appetites. And the longer they have to wait, the longer the wait for other important Starship developmental tests, such as a full orbital flight, in-space refueling, and recovery and reuse of the ship itself, replicating what SpaceX has now accomplished with the Super Heavy booster.

Failing forward or falling short?

The ninth flight of Starship began with a booming departure from SpaceX’s Starbase launch site at 6: 35 pm CDT (7: 35 pm EDT; 23: 35 UTC) Tuesday.

After a brief hold to resolve last-minute technical glitches, SpaceX resumed the countdown clock to tick away the final seconds before liftoff. A gush of water poured over the deck of the launch pad just before 33 methane-fueled Raptor engines ignited on the rocket’s massive Super Heavy first stage booster. Once all 33 engines lit, the enormous stainless steel rocket—towering more than 400 feet (123 meters)—began to climb away from Starbase.

SpaceX’s Starship rocket, flying with a reused first-stage booster for the first time, climbs away from Starbase, Texas. Credit: SpaceX

Heading east, the Super Heavy booster produced more than twice the power of NASA’s Saturn V rocket, an icon of the Apollo Moon program, as it soared over the Gulf of Mexico. After two-and-a-half minutes, the Raptor engines switched off and the Super Heavy booster separated from Starship’s upper stage.

Six Raptor engines fired on the ship to continue pushing it into space. As the booster started maneuvering for an attempt to target an intact splashdown in the sea, the ship burned its engines more than six minutes, reaching a top speed of 16,462 mph (26,493 kilometers per hour), right in line with preflight predictions.

A member of SpaceX’s launch team declared “nominal orbit insertion” a little more than nine minutes into the flight, indicating the rocket reached its planned trajectory, just shy of the velocity required to enter a stable orbit around the Earth.

The flight profile was supposed to take Starship halfway around the world, with the mission culminating in a controlled splashdown in the Indian Ocean northwest of Australia. But a few minutes after engine shutdown, the ship started to diverge from SpaceX’s flight plan.

First, SpaceX aborted an attempt to release eight simulated Starlink Internet satellites in the first test of the Starship’s payload deployer. The cargo bay door would not fully open, and engineers called off the demonstration, according to Dan Huot, a member of SpaceX’s communications team who hosted the company’s live launch broadcast Tuesday.

That, alone, would not have been a big deal. However, a few minutes later, Huot made a more troubling announcement.

“We are in a little bit of a spin,” he said. “We did spring a leak in some of the fuel tank systems inside of Starship, which a lot of those are used for attitude control. So, at this point, we’ve essentially lost our attitude control with Starship.”

This eliminated any chance for a controlled reentry and an opportunity to thoroughly scrutinize the performance of Starship’s heat shield. The spin also prevented a brief restart of one of the ship’s Raptor engines in space.

“Not looking great for a lot of our on-orbit objectives for today,” Huot said.

SpaceX continued streaming live video from Starship as it soared over the Atlantic Ocean and Africa. Then, a blanket of super-heated plasma enveloped the vehicle as it plunged into the atmosphere. Still in a slow tumble, the ship started shedding scorched chunks of its skin before the screen went black. SpaceX lost contact with the vehicle around 46 minutes into the flight. The ship likely broke apart over the Indian Ocean, dropping debris into a remote swath of sea within its expected flight corridor.

Victories where you find them

Although the flight did not end as well as SpaceX officials hoped, the company made some tangible progress Tuesday. Most importantly, it broke the streak of back-to-back launch failures on Starship’s two most recent test flights in January and March.

SpaceX’s investigation earlier this year into a January 16 launch failure concluded vibrations likely triggered fuel leaks and fires in the ship’s engine compartment, causing an early shutdown of the rocket’s engines. Engineers said the vibrations were likely in resonance with the vehicle’s natural frequency, intensifying the shaking beyond the levels SpaceX predicted.

Engineers made fixes and launched the next Starship test flight March 6, but it again encountered trouble midway through the ship’s main engine burn. SpaceX said earlier this month that the inquiry into the March 6 failure found its most probable root cause was a hardware failure in one of the upper stage’s center engines, resulting in “inadvertent propellant mixing and ignition.”

In its official statement, the company was silent on the nature of the hardware failure but said engines for future test flights will receive additional preload on key joints, a new nitrogen purge system, and improvements to the propellant drain system. A new generation of Raptor engines, known as Raptor 3, should begin flying around the end of this year with additional improvements to address the failure mechanism, SpaceX said.

Another bright spot in Tuesday’s test flight was that it marked the first time SpaceX reused a Super Heavy booster from a prior launch. The booster used Tuesday previously launched on Starship’s seventh test flight in January before it was caught back at the launch pad and refurbished for another space shot.

Booster 14 comes in for the catch after flying to the edge of space on January 16. SpaceX flew this booster again Tuesday but did not attempt a catch. Credit: SpaceX

After releasing the Starship upper stage to continue its journey into space, the Super Heavy booster flipped around to fly tail-first and reignited 13 of its engines to begin boosting itself back toward the South Texas coast. On this test flight, SpaceX aimed the booster for a hard splashdown in the ocean just offshore from Starbase, rather than a mid-air catch back at the launch pad, which SpaceX accomplished on three of its four most recent test flights.

SpaceX made the change for a few reasons. First, engineers programmed the booster to fly at a higher angle of attack during its descent, increasing the amount of atmospheric drag on the vehicle compared to past flights. This change should reduce propellant usage on the booster’s landing burn, which occurs just before the rocket is caught by the launch pad’s mechanical arms, or “chopsticks,” on a recovery flight.

During the landing burn itself, engineers wanted to demonstrate the booster’s ability to respond to an engine failure on descent by using just two of the rocket’s 33 engines for the end of the burn, rather than the usual three. Instead, the rocket appeared to explode around the beginning of the landing burn before it could complete the final landing maneuver.

Before the explosion at the end of its flight, the booster appeared to fly as designed. Data displayed on SpaceX’s live broadcast of the launch showed all 33 of the rocket’s engines fired normally during its initial ascent from Texas, a reassuring sign for the reliability of the Super Heavy booster.

SpaceX kicked off the year with the ambition to launch as many as 25 Starship test flights in 2025, a goal that now seems to be unattainable. However, an X post by Musk on Tuesday night suggested a faster cadence of launches in the coming months. He said the next three Starships could launch at intervals of about once every three to four weeks. After that, SpaceX is expected to transition to a third-generation, or Block 3, Starship design with more changes.

It wasn’t immediately clear how long it might take SpaceX to correct whatever problems caused Tuesday’s test flight woes. The Starship vehicle for the next flight is already built and completed cryogenic prooftesting April 27. For the last few ships, SpaceX has completed this cryogenic testing milestone around one-and-a-half to three months prior to launch.

A spokesperson for the Federal Aviation Administration said the agency is “actively working” with SpaceX in the aftermath of Tuesday’s test flight but did not say if the FAA will require SpaceX to conduct a formal mishap investigation.

Shana Diez, director of Starship engineering at SpaceX, chimed in with her own post on X. Based on preliminary data from Tuesday’s flight, she is optimistic the next test flight will fly soon. She said engineers still need to examine data to confirm none of the problems from Starship’s previous flight recurred on this launch but added that “all evidence points to a new failure mode” on Tuesday’s test flight.

SpaceX will also study what caused the Super Heavy booster to explode on descent before moving forward with another booster catch attempt at Starbase, she said.

“Feeling both relieved and a bit disappointed,” Diez wrote. “Could have gone better today but also could have gone much worse.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX may have solved one problem only to find more on latest Starship flight Read More »

the-top-fell-off-australia’s-first-orbital-class-rocket,-delaying-its-launch

The top fell off Australia’s first orbital-class rocket, delaying its launch

This was unusual

Payload fairing problems have caused a number of rocket failures, usually because they don’t jettison during launch, or only partially deploy, leaving too much extra weight on the launch vehicle for it to reach orbit.

Gilmour said it is postponing the Eris launch campaign “to fully understand what happened and make any necessary updates.” The company was founded by two brothers—Adam and James Gilmourin 2012, and has raised approximately $90 million from venture capital firms and government funds to get the first Eris rocket to the launch pad.

The astronauts on NASA’s Gemini 9A mission snapped this photo of a target vehicle they were supposed to dock with in orbit. But the rocket’s nose shroud only partially opened, inadvertently illustrating the method in which payload fairings are designed to jettison from their rockets in flight. Credit: NASA

The Eris rocket was aiming to become the first all-Australian launcher to reach orbit. Australia hosted a handful of satellite launches by US and British rockets more than 50 years ago.

Gilmour is headquartered in Gold Coast, Australia, about 600 miles south of the Eris launch pad near the coastal town of Bowen. In a statement, Gilmour said it has a replacement payload fairing in its factory in Gold Coast. The company will send it to the launch site and install it on the Eris rocket after a “full investigation” into the cause of the premature fairing deployment.

“While we’re disappointed by the delay, our team is already working on a solution and we expect to be back at the pad soon,” Gilmour said.

Officials did not say how long it might take to investigate the problem, correct it, and fit a new nose cone on the Eris rocket.

This setback follows more than a year of delays Gilmour blamed primarily on holdups in receiving regulatory approval for the launch from the Australian government.

Like many rocket companies have done before, Gilmour set modest expectations for the first test flight of Eris. While the rocket has everything needed to fly to low-Earth orbit, officials said they were looking for just 10 to 20 seconds of stable flight on the first launch, enough to gather data about the performance of the rocket and its unconventional hybrid propulsion system.

The top fell off Australia’s first orbital-class rocket, delaying its launch Read More »

a-rocket-launch-monday-night-may-finally-jump-start-amazon’s-answer-to-starlink

A rocket launch Monday night may finally jump-start Amazon’s answer to Starlink

“This launch marks the first step toward the future of our partnership and increased launch cadence,” Bruno said. “We have been steadily modifying our launch facilities in Cape Canaveral to support the capacity for future Project Kuiper missions in a manner that will ultimately benefit both our commercial and government customers as we endeavor to save lives, explore the universe, and connect the world.”

The Atlas V rocket was powered by a Russian-made RD-180 main engine and five strap-on solid rocket boosters. Credit: United Launch Alliance

Amazon ground controllers in Redmond, Washington, are overseeing the operation of the first 27 Kuiper satellites. Engineers there will test each satellite’s ability to independently maneuver and communicate with mission control. So far, this appears to be going well.

The next step will involve activating the satellites’ electric propulsion systems to gradually climb to their assigned orbit of 392 miles (630 kilometers).

“While the satellites complete the orbit-raising process, we will look ahead to our ultimate mission objective: providing end-to-end network connectivity,” Amazon said in a press release. “This involves sending data from the Internet, through our ground infrastructure, up to the satellites, and down to customer terminal antennas, and then repeating the journey in the other direction.”

A moveable deadline

While most of the rockets Amazon will use for the Kuiper network have only recently entered service, that’s not true of the Atlas V. Delays in spacecraft manufacturing at Amazon’s factory near Seattle kept the first Kuiper satellites on the ground until now.

An Amazon spokesperson told Ars that the company is already shipping Kuiper satellites for the next launch on an Atlas V rocket. Sources suggest that mission could lift off in June.

Amazon released this image of Kuiper user terminals in 2023. Credit: Amazon

Amazon and its launch suppliers need to get moving. Kuiper officials face a July 2026 deadline from the Federal Communications Commission to deploy half of the fleet’s 3,236 satellites to maintain network authorization. This is not going to happen. It would require an average of nearly one launch per week, starting now.

The time limit is movable, and the FCC has extended network authorization deadlines before. Brendan Carr, the Trump-appointed chairman of the FCC, has argued for a more “market-friendly regulatory environment” in a chapter he authored for the Heritage Foundation’s Project 2025, widely seen as a blueprint for the Trump administration’s strategies.

But Carr is a close ally of Elon Musk, owner of Kuiper’s primary competitor, Starlink.

Amazon is not selling subscriptions for Kuiper service yet, and the company has said its initial focus will be on testing Kuiper connectivity with “enterprise customers” before moving on to consumer broadband. Apart from challenging Starlink, Kuiper will also compete in some market segments with Eutelsat OneWeb, the London-based operator of the only other active Internet megaconstellation.

OneWeb’s more than 600 satellites provide service to businesses, governments, schools, and hospitals rather than direct service to individual consumers.

A rocket launch Monday night may finally jump-start Amazon’s answer to Starlink Read More »

esa-finally-has-a-commercial-launch-strategy,-but-will-member-states-pay?

ESA finally has a commercial launch strategy, but will member states pay?


Late this year, European governments will have the opportunity to pay up or shut up.

The European Space Agency is inviting proposals to inject competition into the European launch market, an important step toward fostering a dynamic multiplayer industry officials hope, one day, will mimic that of the United States.

The near-term plan for the European Launcher Challenge is for ESA to select companies for service contracts to transport ESA and other European government payloads to orbit from 2026 through 2030. A second component of the challenge is for companies to perform at least one demonstration of an upgraded launch vehicle by 2028. The competition is open to any European company working in the launch business.

“What we expect is that these companies will make a step in improving and upgrading their capacity with respect to what they’re presently working on,” said Toni Tolker-Nielsen, ESA’s acting director of space transportation. “In terms of economics and physics, it’s better to have a bigger launcher than a smaller launcher in terms of price per kilogram to orbit.”

“The ultimate goal is, we should be establishing privately developed competitive launch services in Europe, which will allow us to procure launch services in open competition,” Tolker-Nielsen said in an interview with Ars.

From one to many?

ESA and other European institutions currently have just one European provider, Arianespace, to award launch contracts for the continent’s scientific, Earth observation, navigation, and military satellites. Arianespace operates the Ariane 6 and Vega C rockets. Vega C operations will soon be taken over by Italian aerospace company Avio. Both rockets were developed with ESA funding.

The launcher challenge is modeled on NASA’s use of commercial contracting methods beginning nearly 20 years ago with the agency’s commercial cargo program, which kickstarted the development of SpaceX’s Dragon and Northrop Grumman’s Cygnus resupply freighters for the International Space Station. NASA later applied the same model to commercial crew, and most recently for commercial lunar landers.

Uncharacteristically for ESA, the agency is taking a hands-off approach for the launcher challenge. One of the few major requirements is that the winners should offer a “European launch service” that flies from European territory, which includes the French-run Guiana Space Center in South America.

Europe’s second Ariane 6 rocket lifted off March 6 with a French military spy satellite. Credit: European Space Agency

“We are trying something different, where they are completely free to organize themselves,” Tolker-Nielsen said. “We are not pushing anything. We are in a complete service-oriented model here. That’s the principal difference between the new approach and the old approach.”

ESA also isn’t setting requirements on launcher performance, reusability, or the exact number of companies it will select in the challenge. But ESA would like to limit the number of challengers “to a minimum” to ensure the agency’s support is meaningful, without spreading its funding too thin, Tolker-Nielsen said.

“For the ESA-developed launchers, which are Ariane 6 and Vega C, we own the launch system,” Tolker-Nielsen said. “We finished the development, and the deliverables were the launch systems that we own at ESA, and we make it available to an operator—Arianespace, and Avio soon for Vega C—to exploit.”

These ESA-led launcher projects were expensive. The development of Ariane 6 cost European governments more than $4 billion. Ariane 6 is now flying, but none of the up-and-coming European alternatives is operational.

Next steps

It has taken a while to set up the European Launcher Challenge, which won preliminary approval from ESA’s 23 member states at a ministerial-level meeting in 2023. ESA released an “invitation to tender,” soliciting proposals from European launch companies Monday, with submissions due by May 5. This summer, ESA expects to select the top proposals and prepare a funding package for consideration by its member states at the next ministerial meeting in November.

The top factors ESA will consider in this first phase of the challenge are each proposer’s business plan, technical credibility, and financial credibility.

In a statement, ESA said it has allotted up to 169 million euros ($182 million at today’s exchange rates) per challenger. This is significant funding for Europe’s crop of cash-hungry launch startups, each of which has raised no more than a few hundred million euros. But this allotment comes with a catch. ESA’s leaders and the winners of the launch challenge must persuade their home governments to pay up.

Let’s take a moment to compare Europe’s launch industry with that of the United States.

There are multiple viable US commercial launch companies. In the United States, it’s easier to attract venture capital, the government has been a more reliable proponent of commercial spaceflight, and billionaires are part of the launch landscape. SpaceX, led by Elon Musk, dominates the market. Jeff Bezos’s space company, Blue Origin, and United Launch Alliance are also big players with heavy-lift rockets.

Rocket Lab and Firefly Aerospace fly smaller, privately developed launchers. Northrop Grumman’s medium-class launch division is currently in between rockets, although it still occasionally launches small US military satellites on Minotaur rockets derived from decommissioned ICBMs.

Of course, it’s not surprising the sum of US launch companies is higher than in Europe. According to the World Bank, the US economy is about 50 percent larger than the European Union’s. But six American companies with operational orbital rockets, compared to one in Europe today? That is woefully out of proportion.

European officials would like to regain a leading position in the global commercial launch market. With SpaceX’s dominance, that’s a tall hill to climb. At the very least, European politicians don’t want to rely on other countries for access to space. In the last three years, they’ve seen their access to Russian launchers dry up after Russia’s invasion of Ukraine, and after signing a few launch contracts with SpaceX to bridge the gap before the first flight of Ariane 6, they now view the US government and Elon Musk as unreliable partners.

Open your checkbook, please

ESA’s governance structure isn’t favorable for taking quick action. On one hand, ESA member states approve the agency’s budget in multiyear increments, giving its projects a sense of stability over time. However, it takes time to get new projects approved, and ESA’s member states expect to receive benefits—jobs, investment, and infrastructure—commensurate with their spending on European space programs. This policy is known as geographical return, or geo-return.

For example, France has placed a high strategic importance on fielding an independent European launch capability for more than 60 years. The administration of French President Charles de Gaulle made this determination during the Cold War, around the same time he decided France should have a nuclear deterrent fully independent of the United States and NATO.

In order to match this policy, France has been more willing than other European nations to invest in launchers. This means the Ariane rocket family, developed and funded through ESA contracts, has been largely a French enterprise since the first Ariane launch in 1979.

This model is becoming antiquated in the era of commercial spaceflight. Startups across Europe, primarily in France, Germany, the United Kingdom, and Spain, are developing small launchers designed to carry up to 1.5 metric tons of payload to low-Earth orbit. This is too small to directly compete with the Ariane 6 rocket, but eventually, these companies would like to develop larger launchers.

Some European officials, including the former head of the French space agency, blamed geo-return as a reason the Ariane 6 rocket missed its price target.

Toni Tolker-Nielsen, ESA’s acting director of space transportation, speaks at an event in 2021. Credit: ESA/V. Stefanelli

With the European Launcher Challenge, ESA will experiment with a new funding model for the first time. This new “fair contribution” approach will see ESA leadership put forward a plan to its member states at the next big ministerial conference in November. The space agency will ask the countries that benefit most from the winners of the launcher challenge to provide the bulk of the funding for the challengers’ contracts.

So, let’s say Isar Aerospace, which is set to launch its first rocket as soon as this week, is one of the challenge winners. Isar is headquartered in Munich, and its current launch site is in Norway. In this case, expect ESA to ask the governments of Germany and Norway to contribute the most money to pay for Isar’s contract.

MaiaSpace, a French subsidiary of ArianeGroup, the parent company of Arianespace, is also a contender in the launcher challenge. MaiaSpace plans to launch from French Guiana. Therefore, if MaiaSpace gets a contract, France would be on the hook for the lion’s share of the deal’s funding.

Tolker-Nielsen said he anticipates a “number” of the launch challengers will win the backing of their home countries in November, but “maybe not all.”

“So, first there is this criteria that they have to be eligible, and then they have to be funded as well,” he said. “We don’t want to propose funding for companies that we don’t see as credible.”

Assuming the challengers’ contracts get funded, ESA will then work with the European Commission to assign specific satellites to launch on the new commercial rockets.

“The way I look at this is we are not going to choose winners,” Tolker-Nielsen said. “The challenge is not the competition we are doing right now. It is to deliver on the contract. That’s the challenge.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

ESA finally has a commercial launch strategy, but will member states pay? Read More »

this-launcher-is-about-to-displace-the-v-2-as-germany’s-largest-rocket

This launcher is about to displace the V-2 as Germany’s largest rocket


Isar Aerospace’s first Spectrum rocket will launch from Andøya Spaceport in Norway.

Seven years ago, three classmates at the Technical University of Munich believed their student engineering project might hold some promise in the private sector.

At the time, Daniel Metzler led a team of 40 students working on rocket engines and launching sounding rockets. Josef Fleischmann was on the team that won the first SpaceX Hyperloop competition. Together with another classmate, Markus Brandl, they crafted rocket parts in a campus workshop before taking the leap and establishing Isar Aerospace, named for the river running through the Bavarian capital.

Now, Isar’s big moment has arrived. The company’s orbital-class first rocket, named Spectrum, is set to lift off from a shoreline launch pad in Norway as soon as Monday.

The three-hour launch window opens at 12: 30 pm local time in Norway, or 7: 30 am EDT in the United States. “The launch date remains subject to weather, safety and range infrastructure,” Isar said in a statement.

Isar’s Spectrum rocket rolls out to its launch pad in Norway. Credit: Isar Aerospace

Isar said it received a launch license from the Norwegian Civil Aviation Authority on March 14, following the final qualification test on the Spectrum rocket in February to validate its readiness for flight.

Notably, this will be the first orbital launch attempt from a launch pad in Western Europe. The French-run Guiana Space Center in South America is the primary spaceport for European rockets. Virgin Orbit staged an airborne launch attempt from an airport in the United Kingdom in 2023, and the Plesetsk Cosmodrome is located in European Russia.

No guarantees

Success is never assured on the inaugural launch of a new rocket. Isar is the first in a wave of European launch startups to arrive at this point. The company developed the Spectrum rocket with mostly private funding, although Isar received multimillion-euro investments from the European Space Agency, the German government, and the NATO Innovation Fund.

All told, Isar says it has raised more than 400 million euros, or $435 million at today’s currency exchange rate, more than any other European launch startup.

“We are approaching the most important moment of our journey so far, and I would like to thank all our team, partners, customers and investors who have been accompanying and trusting us,” said Daniel Metzler, Isar’s co-founder and CEO, in a statement.

Most privately developed rockets have failed to reach orbit on the first try. Several US launch companies that evolved in a similar mold as Isar—such as Rocket Lab, Firefly Aerospace, and Astra—faltered on the way to orbit on their rockets’ first flights.

“With this mission, Isar Aerospace aims to collect as much data and experience as possible on its in-house-developed launch vehicle. It is the first integrated test of all systems,” said Alexandre Dalloneau, Isar’s vice president of mission and launch operations.

“The test results will feed into the iterations and development of future Spectrum vehicles, which are being built and tested in parallel,” Isar said in a statement.

Look familiar? Isar Aerospace’s Spectrum rocket is powered by nine first-stage engines arranged in an “octaweb” configuration patterned on SpaceX’s Falcon 9 rocket. Credit: Isar Aerospace/Wingmen Media

Europe has struggled to regain its footing after SpaceX took over the dominant position in the global commercial launch market, a segment led for three decades by Europe’s Ariane rocket family before SpaceX proved the reliability of the lower-cost, partially reusable Falcon 9 launcher. The continent’s new Ariane 6 rocket, funded by ESA and built by a consortium owned by multinational firms Airbus and Safran, is more expensive than the Falcon 9 and years behind schedule. It finally debuted last year.

One ton to LEO

Isar’s Spectrum rocket is not as powerful as SpaceX’s Falcon 9 or Arianespace’s Ariane 6. But even SpaceX had to start somewhere. Its small Falcon 1 rocket failed three times before tasting success. Spectrum is somewhat larger and more capable than Falcon 1, with performance in line with Firefly’s Alpha rocket.

The fully assembled Spectrum rocket stands about 92 feet (28 meters) tall and measures more than 6 feet (2 meters) in diameter. The expendable launcher is designed to haul payloads up to 1 metric ton (2,200 pounds) into low-Earth orbit. Spectrum is powered by nine Aquila engines on its first stage, and one engine on the second stage, burning a mixture of propane and liquid oxygen propellants.

There are no customer satellites aboard the first Spectrum test flight. The rocket will climb into a polar orbit from Andøya Spaceport in northern Norway, but Isar hasn’t published a launch timeline or the exact parameters of the target orbit.

While modest in size next to Europe’s Ariane launcher family, Isar’s Spectrum is the largest German rocket since the V-2, the World War II weapon of terror launched by Nazi Germany against targets in Great Britain, Belgium, and other places. In the 80 years since the war, German industry developed a handful of small sounding rockets and manufactured upper stages for Ariane rockets.

But German governments have long shunned spending on launchers at levels commensurate with the nation’s place as a top contributor to ESA. France took the lead in the continent’s postwar rocket industry, providing the lion’s share of funding for Ariane and taking responsibility for building engines and booster stages.

Now, 80 years to the week since the last V-2 launch of World War II, Germany again has a homegrown liquid-fueled rocket on the launch pad. This time, it’s for a much different purpose.

As a first step, Isar and other companies in Europe are vying to inject competition with Arianespace into the European launch market. This will begin with small government-funded satellites that otherwise would have likely launched on rideshare flights by SpaceX or Arianespace.

In 2022, the German space agency (known as DLR) announced the selection of research and demo payloads slated to fly on Spectrum’s second launch. The Norwegian Space Agency revealed a contract earlier this month for Isar to launch a pair of satellites for the country’s Arctic Ocean Surveillance program.

Within the next few days, ESA is expected to release an “invitation to tender” for European industry to submit proposals for the European Launcher Challenge. This summer, ESA will select winners from Europe’s crop of launch startups to demonstrate that their rockets can deliver the agency’s scientific satellites to orbit. This is the first time ESA has experimented with a fully commercial business model, with launch service contracts to private companies. Isar is a leading contender to win the launcher challenge, alongside other European companies like Rocket Factory Augsburg, HyImpulse, MaiaSpace, and others.

Previously, ESA has provided billions of euros to Europe’s big incumbent rocket companies for development of new generations of Ariane rockets. Now, ESA wants to follow the path of NASA, which has used fixed-price service contracts to foster commercial cargo and crew transportation to the International Space Station, and most recently, privately owned landers on the Moon.

“Whatever the outcome, Isar Aerospace’s upcoming Spectrum launch will be historic: the first commercial orbital launch from mainland Europe,” Josef Aschbacher, ESA’s director general, posted on X. “The support and co-funding the European Space Agency has given Isar Aerospace and other launch service provider startups is paying off for increased autonomy in Europe. Wishing Isar Aerospace a great launch day with fair weather and most importantly, that the data they receive from the liftoff will speed next iterations of their rockets.”

Toni Tolker-Nielsen, ESA’s acting director of space transportation, called this moment a “paradigm shift” for Europe’s launcher strategy.

“In the last 40 years, we have had these ESA-developed launchers that we have been relying on,” Tolker-Nielsen told Ars in an interview. “So we started with Ariane 1 up to Ariane 6. Vega C came onboard. And it’s been working like that for the last 40 years. Now, we are moving into in the ’30s, and the next decades, to have privately developed launchers.”

Isar Aerospace’s first Spectrum rocket will lift off from the remote Andøya Spaceport in Norway, a gorgeous location that might be the world’s most picturesque launch site. Nestled on the western coast of an island inside the Arctic Circle, Andøya offers an open path over the Norwegian Sea for rockets to fly north, where they can place satellites into polar orbit.

The spaceport is operated by Andøya Space, a company 90 percent owned by the Norwegian government through the Ministry for Trade, Industry, and Fisheries. Until now, Andøya Spaceport has been used for launches of suborbital sounding rockets.

The geography of Norway permits northerly launches from Andøya Spaceport. Credit: Andøya Space

No better time than now

Isar’s first launch comes amid an abrupt turn in European strategic policy as the continent’s leaders struggle with how to respond to moves by President Donald Trump in his first two months in office. In recent weeks, the Trump administration put European leaders on their heels with sudden policy reversals and unpredictable statements on Ukraine, NATO, and the US government’s long-term backstopping of European security.

Friedrich Merz, set to become Germany’s next chancellor, said last month that Europe should strive to “achieve independence” from the United States. “It is clear that the Americans, at least this part of the Americans, this administration, are largely indifferent to the fate of Europe.”

Last week, Merz shepherded a bill through German parliament to amend the country’s constitution, allowing for a significant increase in German defense spending. The incoming chancellor said the change is “nothing less than the first major step towards a new European defense community.”

The erosion of Europe’s trust in the Trump administration prompted rumors that the US government could trigger a “kill switch” to turn off combat capabilities of F-35 fighter jets sold to US allies. This would have previously seemed like a far-fetched conspiracy theory, but some European officials felt compelled to make statements denying the kill switch reports. Still, the recent turbulence in trans-Atlantic relations has some US allies rethinking their plans to buy more US-made fighter jets and weapons systems.

“Reliable and predictable orders should go to European manufacturers whenever possible,” Merz said.

Robert Habeck, Germany’s vice chancellor and economics minister, tours Isar Aerospace in Ottobrunn, Germany, in 2023. Credit: Marijan Murat/picture alliance via Getty Images

This uncertainty extends to space, where it is most apparent in the launch industry. SpaceX, founded and led by Trump ally Elon Musk, dominates the global commercial launch business. European governments have repeatedly turned to SpaceX to launch multiple defense and scientific satellites over the last several years, while Europe encountered delays with its homegrown Ariane 6 and Vega rockets.

Until 2022, Europe and Russia jointly operated Soyuz rockets from the Guiana Space Center in South America to deploy government and commercial payloads to orbit. The partnership ended with Russia’s invasion of Ukraine.

Europe’s flagship Ariane 5 rocket retired in 2023, a year before its replacement—the Ariane 6—debuted on its first test flight from the Guiana Space Center. The first operational flight of the Ariane 6 delivered a French military spy satellite to orbit March 6. The smaller Vega C rocket successfully launched in December, two years after officials grounded the vehicle due to an in-flight failure.

ESA funded development of the Ariane 6 and Vega C in partnership with ArianeGroup, a joint venture between Airbus and Safran, and the Italian defense contractor Avio.

For the moment, Europe’s launcher program is back on track to provide autonomous access to space, a capability European officials consider a strategic imperative. Philippe Baptiste, France’s minister for research and higher education, said after the Ariane 6 flight earlier this month that the launch was “proof” of European space sovereignty.

“The return of Donald Trump to the White House, with Elon Musk at his side, already has significant consequences on our research partnerships, on our commercial partnerships,” Baptiste said in his remarkably pointed prepared remarks. “If we want to maintain our independence, ensure our security, and preserve our sovereignty, we must equip ourselves with the means for strategic autonomy, and space is an essential part of this.”

The problem? Ariane 6 and Vega C are costly, lack a path to reusability, and aren’t geared to match SpaceX’s blistering launch cadence. If Europe wants autonomous access to space, European taxpayers will have to pay a premium. Isar’s Spectrum also isn’t reusable, but European officials hope competition from new startups will produce fresh launch options, and perhaps stimulate an inspired response from Europe’s entrenched launch companies.

“In today’s geopolitical climate, our first test flight is about much more than a rocket launch: Space is one of the most critical platforms for our security, resilience, and technological advancement,” Metzler said. “In the next days, Isar Aerospace will lay the foundations to regain much needed independent and competitive access to space from Europe.”

Tolker-Nielsen, in charge of ESA’s space transportation division, said this is the first of many steps for Europe to develop a thriving commercial launch sector.

“This launch is a milestone, which is very important,” he said. “It’s the first conclusion of all this work, so I will be looking carefully on that. I cross my fingers that it goes well.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

This launcher is about to displace the V-2 as Germany’s largest rocket Read More »

here’s-the-secret-to-how-firefly-was-able-to-nail-its-first-lunar-landing

Here’s the secret to how Firefly was able to nail its first lunar landing


Darkness fell over Mare Crisium, ending a daily dose of dazzling images from the Moon.

Firefly’s X-band communications antenna (left) is marked with the logos of NASA, Firefly Aerospace, and the US flag. Credit: Firefly Aerospace

Firefly Aerospace’s Blue Ghost science station accomplished a lot on the Moon in the last two weeks. Among other things, its instruments drilled into the Moon’s surface, tested an extraterrestrial vacuum cleaner, and showed that future missions could use GPS navigation signals to navigate on the lunar surface.

These are all important achievements, gathering data that could shed light on the Moon’s formation and evolution, demonstrating new ways of collecting samples on other planets, and revealing the remarkable reach of the US military’s GPS satellite network.

But the pièce de résistance for Firefly’s first Moon mission might be the daily dose of imagery that streamed down from the Blue Ghost spacecraft. A suite of cameras recorded the cloud of dust created as the lander’s engine plume blew away the uppermost layer of lunar soil as it touched down March 2 in Mare Crisium, or the Sea of Crises. This location is in a flat basin situated on the upper right quadrant of the side of the Moon always facing the Earth.

Other images from Firefly’s lander showed the craft shooting tethered electrodes out onto the lunar surface, like a baseball outfielder trying to throw out a runner at home plate. Firefly’s cameras also showed the lander’s drill as it began to probe several meters into the Moon’s crust.

The first Blue Ghost mission is part of NASA’s Commercial Lunar Payload Services (CLPS) program established in 2018 to partner with US companies for cargo transportation to the Moon. Firefly is one of 13 companies eligible to compete for CLPS missions, precursors to future astronaut landings on the Moon under NASA’s Artemis program.

Now, Firefly finds itself at the top of the pack of firms seeking to gain a foothold at the Moon.

Blue Ghost landed just after sunrise at Mare Crisium, an event shown in the blow video captured with four cameras mounted on the lander to observe how its engine plume interacted with loose soil on the lunar surface. The information will be useful as NASA plans to land astronauts on the Moon in the coming years.

“Although the data is still preliminary, the 3,000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, project manager for NASA’s SCALPSS experiment.

One of the vehicle’s payloads, named Lunar PlanetVac, dropped from the bottom of the lander and released a blast of gas to blow fine-grained lunar soil into a collection chamber for sieving. Provided by a company named Honeybee Robotics, this device could be used as a cheaper alternative to other sample collection methods, such as robotic arms, on future planetary science missions.

Just over 4 days on the Moon’s surface and #BlueGhost is checking off several science milestones! 8 out of 10 @NASA payloads, including LPV, EDS, NGLR, RAC, RadPC, LuGRE, LISTER, and SCALPSS, have already met their mission objectives with more to come. Lunar PlanetVac for example… pic.twitter.com/i7pOg70qYi

— Firefly Aerospace (@Firefly_Space) March 6, 2025

After two weeks of pioneering work, the Blue Ghost lander fell into darkness Sunday when the Sun sank below the horizon, robbing it of solar power and plunging temperatures below minus 200° Fahrenheit (148°Celcius). The spacecraft’s internal electronics likely won’t survive the two-week-long lunar night.

A precoded message from Blue Ghost marked the moment Sunday afternoon, signaling a transition to “monument mode.”

“Goodnight friends,” Blue Ghost radioed Firefly’s mission control center in Central Texas. “After exchanging our final bits of data, I will hold vigil in this spot in Mare Crisium to watch humanity’s continued journey to the stars. Here, I will outlast your mightiest rivers, your tallest mountains, and perhaps even your species as we know it.”

Blue Ghost’s legacy is now secure as the first fully successful commercial lunar lander. Its two-week mission was perhaps just as remarkable for what didn’t happen as it was for what did. The spacecraft encountered no significant problems on its transit to the Moon, its final descent, or during surface operations.

One of the few surprises of the mission was that the lander got hotter a little sooner than engineers predicted. At lunar noon, when the Sun is highest in the sky, temperatures can soar to 250° F (121° C).

“We started noticing that the lander was getting hotter than we expected, and we couldn’t really figure out why, because it was a little early for lunar noon,” Ray Allensworth, Firefly’s spacecraft program director, told Ars. “So we went back and started evaluating and realized that the crater that we landed next to was actually reflecting a really significant amount of heat. So we went back and we updated our thermal models, incorporated that crater into it, and it matched the environment we were seeing.”

Early Friday morning, the Blue Ghost spacecraft captured the first high-definition views of a total solar eclipse from the Moon. At the same time that skywatchers on Earth were looking up to see the Moon turn an eerie blood red, Firefly’s cameras were looking back at us as the Sun, Earth, and Moon moved into alignment and darkness fell at Mare Crisium.

Diamond ring

The eclipse was a bonus for Firefly. It just happened to occur during the spacecraft’s two-week mission at the Moon, the timing of which was dependent on numerous factors, ranging from the readiness of the Blue Ghost lander to weather conditions at its launch site in Florida.

“We weren’t actually planning to have an eclipse until a few months prior to our launch, when we started evaluating and realizing that an eclipse was happening right before lunar sunset,” Allensworth said. “So luckily, that gave us some time to work some procedures and basically set up what we wanted to take images of, what cameras we wanted to run.”

The extra work paid off. Firefly released an image Friday showing a glint of sunlight reaching around the curvature of the Earth, some 250,000 miles (402,000 kilometers) away. This phenomenon is known as the “diamond ring” and is a subject of pursuit for many eclipse chasers, who travel to far-flung locations for a few minutes of totality.

A “diamond ring” appears around the edge of the Earth, a quarter-million miles from Firefly’s science station on the lunar surface. Credit: Firefly Aerospace

The Blue Ghost spacecraft, named for a species of firefly, took eclipse chasing to new heights. Not only did it see the Earth block the Sun from an unexplored location on the Moon, but the lander fell into shadow for 2 hours and 16 minutes, about 18 times longer than the longest possible total solar eclipse on the Earth.

The eclipse presented challenges for Firefly’s engineers monitoring the mission from Texas. Temperatures at the spacecraft’s airless landing site plummeted as darkness took hold, creating what Allensworth called a “pseudo lunar night.”

“We were seeing those temperatures rapidly start dropping,” Allensworth said Friday. “So it was kind of an interesting game of to play with the hardware to keep everything in its temperature bounds but also still powered on and capturing data.”

Shaping up

Using navigation cameras and autonomous guidance algorithms, the spacecraft detected potential hazards at its original landing site and diverted to a safer location more than 230 feet (70 meters) away, according to Allensworth.

Finally happy with the terrain below, Blue Ghost’s computer sent the command for landing, powered by eight thrusters pulsing in rapid succession to control the craft’s descent rate. The landing was gentler than engineers anticipated, coming down at less than 2.2 mph (1 meter per second).

According to preliminary data, Blue Ghost settled in a location just outside of its 330-foot (100-meter) target landing ellipse, probably due to the last-minute divert maneuvers ordered by the vehicle’s hazard avoidance system.

It looks like we’re slightly out of it, but it’s really OK,” Allensworth said. “NASA has told us, more than anything, that they want us to make sure we land softly… They seem comfortable where we’re at.”

Firefly originally intended to develop a spacecraft based on the design of Israel’s Beresheet lander, which was the first private mission to attempt a landing on the Moon in 2019. The spacecraft crashed, and Firefly opted to go with a new design more responsive to NASA’s requirements.

“Managing the center of gravity and the mass of the lander is most significant, and that informs a lot of how it physically takes shape,” Allensworth said. “So we did want to keep certain things in mind about that, and that really is what led to the lander being wider, shorter, broader. We have these bigger foot pads on there. All of those things were very intentional to help make the lander as stable and predictable as possible.”

Firefly’s Blue Ghost lander, seen here inside the company’s spacecraft manufacturing facility in Cedar Park, Texas. Credit: Stephen Clark/Ars Technica

These design choices must happen early in a spacecraft’s development. Landing on the Moon comes with numerous complications, including an often-uneven surface and the lack of an atmosphere, rendering parachutes useless. A lander targeting the Moon must navigate itself to a safe landing site without input from the ground.

The Odysseus, or Nova-C, lander built by Intuitive Machines snapped one of its legs and fell over on its side after arriving on the Moon last year. The altimeter on Odysseus failed, causing it to come down with too much horizontal velocity. The lander returned some scientific data from the Moon and qualified as a partial success. The spacecraft couldn’t recharge its batteries after landing on its side, and Odysseus shut down a few days after landing.

The second mission by Intuitive Machines reached the Moon on March 6, but it suffered the same fate. After tipping over, the Athena lander succumbed to low power within hours, preventing it from accomplishing its science mission for NASA.

The landers designed by Intuitive Machines are tall and skinny, towering more than 14 feet (4.3 meters) tall with a width of about 5.2 feet (1.6 meters). The Blue Ghost vehicle is short and squatty in shape—about 6.6 feet tall and 11.5 feet wide (2-by-3.5 meters). Firefly’s approach requires fewer landing legs than Intuitive Machines—four instead of six.

Steve Altemus, co-founder and CEO of Intuitive Machines, defended the design of his company’s lander in a press briefing after the second lunar landing tip-over earlier this month. The Nova-C lander isn’t too top-heavy for a safe landing because most of its cargo attaches to the bottom of the spacecraft, and for now, Altemus said Intuitive Machines is not considering a redesign.

Intuitive Machines stacked its two fuel and oxidizer tanks on top of each other, resulting in a taller vehicle. The Nova-C vehicle uses super-cold methane and liquid oxygen propellants, enabling a fast journey to the Moon over just a few days. The four propellant tanks on Blue Ghost are arranged in a diagonal configuration, with two containing hydrazine fuel and two holding an oxidizer called nitrogen tetroxide. Firefly’s Blue Ghost took about six weeks to travel from launch until landing.

The design trade-off means Firefly’s lander is heavier, with four tanks instead of two, according to Will Coogan, Blue Ghost’s chief engineer at Firefly. By going with a stockier lander design, Firefly needed to install four tanks because the spacecraft’s fuel and oxidizer have different densities. If Firefly went with just two tanks side-by-side, the spacecraft’s center of mass would change continually as it burns propellant during the final descent to the Moon, creating an unnecessary problem for the lander’s guidance, navigation, and control system to overcome.

“You want to avoid that,” Coogan told Ars before Blue Ghost’s launch. “What you can do is you can either get four tanks and have fuel and oxidizer at diagonal angles, and then you’re always centered, or you can stay with two tanks, and you can stack them.”

A camera on Firefly’s Blue Ghost lander captured a view of its shadow after touching down on the Moon just after sunrise on March 2. Earth looms over the horizon. Credit: Firefly Aerospace

The four landing legs on the Blue Ghost vehicle have shock-absorbing feet, with bowl-shaped pads able to bend if the lander comes down on a rock or a slope.

“If we did come in a little bit faster, we needed the legs to be able to take that, so we tested the legs really significantly on the ground,” Allensworth said. “We basically loaded them up on a makeshift weight bench at different angles and slammed it into the ground, slammed it into concrete, slammed it into regular simulant rocks, boulders, at different angles to really characterize what the legs could do.

“It’s actually really funny, because one of the edge cases that we didn’t test is if we came down very lightly, with almost no acceleration,” she said. “And that was the case that the lander landed in. I was joking with our structural engineer that he wasted all his time.”

Proof positive

Firefly delivered 10 NASA-sponsored science and technology demonstration experiments to the lunar surface, operating under contract with NASA’s CLPS program. CLPS builds on the commercial, service-based business model of NASA’s commercial cargo and crew program for transportation to the International Space Station.

NASA officials knew this approach was risky. The last landing on the Moon by a US spacecraft was the last Apollo mission in 1972, and most of the companies involved in CLPS are less than 20 years old, with little experience in deep space missions.

A Pittsburgh company named Astrobotic failed to reach the Moon on its first attempt in January 2024. The next month, Houston-based Intuitive Machines landed its Nova-C spacecraft on the lunar surface, but it tipped over after one of its legs snapped at the moment of touchdown.

Firefly, based in Cedar Park, Texas, was the third company to try a landing. Originally established as a rocket developer, Firefly signed up to be a CLPS provider and won a $101 million contract with NASA in 2021 to transport a government-funded science package to the Moon. NASA’s instruments aboard the Blue Ghost lander cost about $44 million.

The successful landing of Firefly’s Blue Ghost earlier this month buoyed NASA’s expectations for CLPS. “Overall, it’s been a fabulous, wonderful proof positive that the CLPS model does work,” said Brad Bailey, assistant deputy associate administrator for exploration in NASA’s Science Mission Directorate.

NASA has seven more CLPS missions on contract. The next could launch as soon as August when Blue Origin plans to send its first Blue Moon lander to the Moon. NASA has booked two more Blue Ghost missions with Firefly and two more landing attempts with Intuitive Machines, plus one more flight by Astrobotic and one lander from Draper Laboratory.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s the secret to how Firefly was able to nail its first lunar landing Read More »

the-starship-program-hits-another-speed-bump-with-second-consecutive-failure

The Starship program hits another speed bump with second consecutive failure

The flight flight plan going into Thursday’s mission called for sending Starship on a journey halfway around the world from Texas, culminating in a controlled reentry over the Indian Ocean before splashing down northwest of Australia.

The test flight was supposed to be a do-over of the previous Starship flight on January 16, when the rocket’s upper stage—itself known as Starship, or ship—succumbed to fires fueled by leaking propellants in its engine bay. Engineers determined the most likely cause of the propellant leak was a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected.

The Super Heavy booster returned to Starbase in Texas to be caught back at the launch pad. Credit: SpaceX

Engineers test-fired the Starship vehicle for this week’s test flight earlier this month, validating changes to the ship’s fuel feed lines leading its six Raptor engines, adjustments to propellant temperatures, and a new operating thrust.

But engineers missed something. On Thursday, the Raptor engines began shutting down on Starship about eight minutes into the flight, and the rocket started tumbling 90 miles (146 kilometers) over the southeastern Gulf of Mexico. SpaceX ground controllers lost all contact with the rocket about nine-and-a-half minutes after liftoff.

“Prior to the end of the ascent burn, an energetic event in the aft portion of Starship resulted in the loss of several Raptor engines,” SpaceX wrote on X. “This in turn led to a loss of attitude control and ultimately a loss of communications with Starship.”

Just like in January, residents and tourists across the Florida peninsula, the Bahamas, and the Turks and Caicos Islands shared videos of fiery debris trails appearing in the twilight sky. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint, just as they did in response to the January incident.

There were no immediate reports Thursday of any Starship wreckage falling over populated areas. In January, residents in the Turks and Caicos Islands recovered small debris fragments, including one piece that caused minor damage when it struck a car. The debris field from Thursday’s failed flight appeared to fall west of the areas where debris fell after Starship Flight 7.

A spokesperson for the Federal Aviation Administration said the regulatory agency will require SpaceX perform an investigation into Thursday’s Starship failure.

The Starship program hits another speed bump with second consecutive failure Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

german-startup-to-attempt-the-first-orbital-launch-from-western-europe

German startup to attempt the first orbital launch from Western Europe

The nine-engine first stage for Isar Aerospace’s Spectrum rocket lights up on the launch pad on February 14. Credit: Isar Aerospace

Isar builds almost all of its rockets in-house, including Spectrum’s Aquila engines.

“The flight will be the first integrated test of tens of thousands of components,” said Josef Fleischmann, Isar’s co-founder and chief technical officer. “Regardless of how far we get, this first test flight will hopefully generate an enormous amount of data and experience which we can apply to future missions.”

Isar is the first European startup to reach this point in development. “Reaching this milestone is a huge success in itself,” Meltzer said in a statement. “And while Spectrum is ready for its first test flight, launch vehicles for flights two and three are already in production.”

Another Bavarian company, Rocket Factory Augsburg, destroyed its first booster during a test-firing on its launch pad in Scotland last year, ceding the frontrunner mantle to Isar. RFA received its launch license from the UK government last month and aims to deliver its second booster to the launch site for hot-fire testing and a launch attempt later this year.

There’s an appetite within the European launch industry for new companies to compete with Arianespace, the continent’s sole operational launch services provider backed by substantial government support. Delays in developing the Ariane 6 rocket and several failures of Europe’s smaller Vega launcher forced European satellite operators to look abroad, primarily to SpaceX, to launch their payloads.

The European Space Agency is organizing the European Launcher Challenge, a competition that will set aside some of the agency’s satellites for launch opportunities with a new crop of startups. Isar is one of the top contenders in the competition to win money from ESA. The agency expects to award funding to multiple European launch providers after releasing a final solicitation later this year.

The first flight of the Spectrum rocket will attempt to reach a polar orbit, flying north from Andøya Spaceport. Located at approximately 69 degrees north latitude, the spaceport is poised to become the world’s northernmost orbital launch site.

Because the inaugural launch of the Spectrum rocket is a test flight, it won’t carry any customer payloads, an Isar spokesperson told Ars.

German startup to attempt the first orbital launch from Western Europe Read More »