easter island

how-easter-island’s-giant-statues-“walked”-to-their-final-platforms

How Easter Island’s giant statues “walked” to their final platforms


Workers with ropes could make the moai “walk” in zig-zag motion along roads tailor-made for the purpose.

Easter Island is famous for its giant monumental statues, called moai, built some 800 years ago and typically mounted on platforms called ahu. Scholars have puzzled over the moai on Easter Island for decades, pondering their cultural significance, as well as how a Stone Age culture managed to carve and transport statues weighing as much as 92 tons. One hypothesis, championed by archaeologist Carl Lipo of Binghamton University, among others, is that the statues were transported in a vertical position, with workers using ropes to essentially “walk” the moai onto their platforms.

The oral traditions of the people of Rapa Nui certainly include references to the moai “walking” from the quarry to their platforms, such as a song that tells of an early ancestor who made the statues walk. While there have been rudimentary field tests showing it might have been possible, the hypothesis has also generated a fair amount of criticism. So Lipo has co-authored a new paper published in the Journal of Archaeological Science offering fresh experimental evidence of “walking” moai, based on 3D modeling of the physics and new field tests to recreate that motion.

The first Europeans arrived in the 17th century and found only a few thousand inhabitants on the tiny island (just 14 by 7 miles across) thousands of miles away from any other land. In order to explain the presence of so many moai, the assumption has been that the island was once home to tens of thousands of people. But Lipo thought perhaps the feat could be accomplished with fewer workers. In 2012, Lipo and his colleague, Terry Hunt of the University of Arizona, showed that you could transport a 10-foot, 5-ton moai a few hundred yards with just 18 people and three strong ropes by employing a rocking motion.

In 2018, Lipo followed up with an intriguing hypothesis for how the islanders placed red hats on top of some moai; those can weigh up to 13 tons. He suggested the inhabitants used ropes to roll the hats up a ramp. Lipo and his team later concluded (based on quantitative spatial modeling) that the islanders likely chose the statues’ locations based on the availability of fresh water sources, per a 2019 paper in PLOS One.

The 2012 experiment demonstrated proof of principle, so why is Lipo revisiting it now? “I always felt that the [original] experiment was disconnected to some degree of theory—that we didn’t have particular expectations about numbers of people, rate of transport, road slope that could be walked, and so on,” Lipo told Ars. There were also time constraints because the attempt was being filmed for a NOVA documentary.

“That experiment was basically a test to see if we could make it happen or not,” he explained. “Fortunately, we did, and our joy in doing so is pretty well represented by our hoots and hollers when it started to walk with such limited efforts. Some of the limitation of the work was driven by the nature of TV. [The film crew] just wanted us—in just a day and half—to give it a shot. It was 4: 30 on the last day when it finally worked so we really didn’t get a lot of time to explore variability. We also didn’t have any particular predictions to test.”

Example of a road moai that fell and was abandoned after an attempt to re-erect it by excavating under its base, leaving it partially buried at an angle.

Example of a road moai that fell and was abandoned after an attempt to re-erect it by excavating under its base, leaving it partially buried at an angle. Credit: Carl Lipo

This time around, “We wanted to explore a bit of the physics: to show that what we did was pretty easily predicted by the physical properties of the moai—its shape, size, height, number of people on ropes, etc.—and that our success in terms of team size and rate of walking was consistent with predictions,” said Lipo. “This enables us to address one of the central critiques that always comes up: ‘Well, you did this with a 5-ton version that was 10 feet tall, but it would never work with a 30-ft-tall version that weighs 30 tons or more.'”

All about that base

You can have ahu (platforms) without moai (statues) and moai without ahu, usually along the roads leading to ahu; they were likely being transported and never got to their destination. Lipo and Hunt have amassed a database of 962 moai across the island, compiled through field surveys and photogrammetric documentation. They were particularly interested in 62 statues located along ancient transport roads that seemed to have been abandoned where they fell.

Their analysis revealed that these road moai had significantly wider bases relative to shoulder width, compared to statues mounted on platforms. This creates a stable foundation that lowers the center of mass so that the statue is more conducive to the side-to-side motion of walking transport without toppling over. Platform statues, by contrast, have shoulders wider than the base for a more top-heavy configuration.

The road moai also have a consistent and pronounced forward lean of between 6 degrees to 15 degrees from the vertical position, which moves the center of mass close to or just beyond the base’s front edge. Lipo and Hunt think this was due to careful engineering, not coincidence. It’s not conducive to stable vertical display but it is a boon during walking transport, because the forward lean causes the statue to fall forward when tilted laterally, with the rounded front base edge serving as a crucial pivot point. So every lateral rocking motion results in a forward “step.”

Per the authors, there is strong archaeological evidence that carvers modified the statues once they arrived at their platform destinations, modifying the base to eliminate the lean by removing material from the front. This shifted the center of mass over the base area for a stable upright position. The road moai even lack the carved eye sockets designed to hold white coral eyes with obsidian or red scoria for pupils—a final post-transport step once the statues had been mounted on their platforms.

Based on 3D modeling, Lipo and his team created a precisely scaled replica of one of the road moai, weighing 4.35 metric tons with the same proportions and mass distribution of the original statue. “Of course, we’d love to build a 30-foot-tall version, but the physical impossibility of doing so makes it a challenging task, nor is it entirely necessary,” said Lipo. “Through physics, we can now predict how many people it would take and how it would be done. That is key.”

Lipo's team created 3D models of moai to determine the unique characteristics that made them able to be

Lipo’s team created 3D models of moai to determine the unique characteristics that made them able to be “walked” across Rapa Nui. Credit: Carl Lipo

The new field trials required 18 people, four on each lateral rope and 10 on a rear rope, to achieve the side-to-side walking motion, and they were efficient enough in coordinating their efforts to move the statue forward 100 meters in just 40 minutes. That’s because the method operates on basic pendulum dynamics, per the authors, which minimizes friction between the base and the ground. It’s also a technique that exploits the gradual build-up of amplitude, which “suggests a sophisticated understanding of resonance principles,” Lipo and Hunt wrote.

So the actual statues could have been moved several kilometers over the course of weeks with only modest-sized crews of between 20-50 people, i.e., roughly the size of an extended family or “small lineage group” on Easter Island. Once the crew gets the statue rocking side to side—which can require between 15 to 60 people, depending on the size and weight of the moai—the resulting oscillation only needs minimal energy input from a smaller team of rope handlers to maintain that motion. They mostly provide guidance.

Lipo was not the first to test the walking hypothesis. Earlier work includes that of Czech experimental archaeologist Pavel Pavel, who conducted similar practical experiments on Easter Island in the 1980s after being inspired by Thor Heyerdahl’s Kon Tiki. (Heyerdahl even participated in the experiments.) Pavel’s team was able to demonstrate a kind of “shuffling” motion, and he concluded that just 16 men and one leader were sufficient to transport the statues.

Per Lipo and Hunt, Pavel’s demonstration didn’t result in broad acceptance of the walking hypothesis because it still required a huge amount of effort to tilt the statue, producing more of a twisting motion rather than efficient forward movement. This would only have moved a large statue 100 meters a day under ideal conditions. The base was also likely to be damaged from friction with the ground. Lipo and Hunt maintain this is because Pavel (and others who later tried to reproduce his efforts) used the wrong form of moai for those earlier field tests: those erected on the platforms, already modified for vertical stability and permanent display, and not the road moai with shapes more conducive to vertical transport.

“Pavel deserves recognition for taking oral traditions seriously and challenging the dominant assumption of horizontal transport, a move that invited ridicule from established scholars,” Lipo and Hunt wrote. “His experiments suggested that vertical transport was feasible and consistent with cultural memory. Our contribution builds on this by showing that ancestral engineers intentionally designed statues for walking. Those statues were later modified to stand erect on ceremonial platforms, a transformation that effectively erased the morphological features essential for movement.”

The evidence of the roadways

Lipo and Hunt also analyzed the roadways, noting that these ancient roadbeds had concave cross sections that would have been problematic for moving the statues horizontally using wooden rollers or frames perpendicular to those roads. But that concave shape would help constrain rocking movement during vertical transport. And the moai roads were remarkably level with slopes of, on average, 2–3 percent. For the occasional steeper slopes, such as walking a moai up a ramp to the top of an ahu, Lipo and Hunt’s field experiments showed that these could be navigated successfully through controlled stepping.

Furthermore, the distribution pattern of the roadways is consistent with the road moai being left due to mechanical failure. “Arguments that the moai were placed ceremonially in preparation for quarrying have become more common,” said Lipo. “The algorithm there is to claim that positions are ritual, without presenting anything that is falsifiable. There is no reason why the places the statues fell due to mechanical reasons couldn’t later become ‘ritual,’ in the same way that everything on the island could be claimed to be ritual—a circular argument. But to argue that they were placed there purposefully for ritual purposes demands framing the explanation in a way that is falsifiable.”

Schematic representation of the moai transport method using coordinated rope pulling to achieve a

Schematic representation of the moai transport method using coordinated rope pulling to achieve a “walking” motion. Credit: Carl Lipo and Terry Hunt, 2025

“The only line of evidence that is presented in this way is the presence of ‘platforms’ that were found beneath the base of one moai, which is indeed intriguing,” Lipo continued. “However, those platforms can be explained in other ways, given that the moai certainly weren’t moved from the quarry to the ahu in one single event. They were paused along the way, as is clear from the fact that the roads appear to have been constructed in segments with different features. Their construction appears to be part of the overall transport process.”

Lipo’s work has received a fair share of criticism from other scholars over the years, and his and Hunt’s paper includes a substantial section rebutting the most common of those critiques. “Archaeologists tend to reject (in practice) the idea that the discipline can construct cumulative knowledge,” said Lipo. “In the case of moai transport, we’ve strived to assemble as much empirical evidence as possible and have forwarded an explanation that best accounts for what we can observe. Challenges to these ideas, however, do not come from additional studies with new data but rather just new assertions.”

“This leads the public to believe that we (as a discipline) can never really figure anything out and are always going to be a speculative enterprise, spinning yarns and arguing with each other,” Lipo continued. “With the erosion of trust in science, this is fairly catastrophic to archaeology as a whole but also the whole scientific enterprise. Summarizing the results in the way we do here is an attempt to point out that we can build falsifiable accounts and can make contributions to cumulative knowledge that have empirical consequences—even with something as remarkable as the transport of moai.”

Experimental archaeology is a relatively new field that some believe could be the future of archaeology. “I think experimental archaeology has potential when it’s tied to physics and chemistry,” said Lipo. “It’s not just recreating something and then arguing it was done in the same way in the past. Physics and chemistry are our time machines, allowing us to explain why things are the way they are in the present in terms of the events that occurred in the past. The more we can link the theory needed to explain the present, the better we can explain the past.”

DOI: Journal of Archaeological Science, 2025. 10.1016/j.jas.2025.106383  (About DOIs).

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

How Easter Island’s giant statues “walked” to their final platforms Read More »

old-easter-island-genomes-show-no-sign-of-a-population-collapse

Old Easter Island genomes show no sign of a population collapse

A row of grey rock sculptures of human torsos and heads, arranged in a long line.

Rapa Nui, often referred to as Easter Island, is one of the most remote populated islands in the world. It’s so distant that Europeans didn’t stumble onto it until centuries after they had started exploring the Pacific. When they arrived, though, they found that the relatively small island supported a population of thousands, one that had built imposing monumental statues called moai. Arguments over how this population got there and what happened once it did have gone on ever since.

Some of these arguments, such as the idea that the island’s indigenous people had traveled there from South America, have since been put to rest. Genomes from people native to the island show that its original population was part of the Polynesian expansion across the Pacific. But others, such as the role of ecological collapse in limiting the island’s population and altering its culture, continue to be debated.

Researchers have now obtained genome sequence from the remains of 15 Rapa Nui natives who predate European contact. And they indicate that the population of the island appears to have grown slowly and steadily, without any sign of a bottleneck that could be associated with an ecological collapse. And roughly 10 percent of the genomes appear to have a Native American source that likely dates from roughly the same time that the island was settled.

Out of the museum

The remains that provided these genomes weren’t found on Rapa Nui, at least not recently. Instead, they reside at the Muséum National d’Histoire Naturelle in France, having been obtained at some uncertain point in the past. Their presence there is a point of contention for the indigenous people of Rapa Nui, but the researchers behind the new work had the cooperation of the islanders in this project, having worked with them extensively. The researchers’ description of these interactions could be viewed as a model for how this sort of work should be done:

Throughout the course of the study, we met with representatives of the Rapanui community on the island, the Comisión de Desarrollo Rapa Nui and the Comisión Asesora de Monumentos Nacionales, where we presented our research goals and ongoing results. Both commissions voted in favor of us continuing with the research… We presented the research project in public talks, a short video and radio interviews on the island, giving us the opportunity to inquire about the questions that are most relevant to the Rapanui community. These discussions have informed the research topics we investigated in this work.

Given the questionable record-keeping at various points in the past, one of the goals of this work was simply to determine whether these remains truly had originated on Rapa Nui. That was unambiguously true. All comparisons with genomes of modern populations show that all 15 of these genomes have a Polynesian origin and are most closely related to modern residents of Rapa Nui. “The confirmation of the origin of these individuals through genomic analyses will inform repatriation efforts led by the Rapa Nui Repatriation Program (Ka Haka Hoki Mai Te Mana Tupuna),” the authors suggest.

A second question was whether the remains predate European contact. The researchers attempted to perform carbon dating, but it produced dates that made no sense. Some of the remains had dates that were potentially after they had been collected, according to museum records. And all of them were from the 1800s, well after European contact and introduced diseases had shrunk the native population and mixed in DNA from non-Polynesians. Yet none of the genomes showed more than one percent European ancestry, a fraction low enough to be ascribed to a spurious statistical fluke.

So the precise date these individuals lived is uncertain. But the genetic data clearly indicates that they were born prior to the arrival of Europeans. They can therefore tell us about what the population was experiencing in the period between Rapa Nui’s settlement and the arrival of colonial powers.

Back from the Americas

While these genomes showed no sign of European ancestry, they were not fully Polynesian. Instead, roughly 10 percent of the genome appeared to be derived from a Native American population. This is the highest percentage seen in any Polynesian population, including some that show hints of Native American contact that dates to before Europeans arrived on the scene.

Isolating these DNA sequences and comparing them to populations from across the world showed that the group most closely related to the one who contributed to the Rapa Nui population presently resides in the central Andes region of South America. That’s in contrast to the earlier results, which suggested the contact was with populations further north in South America.

Old Easter Island genomes show no sign of a population collapse Read More »

we-now-have-even-more-evidence-against-the-“ecocide”-theory-of-easter-island

We now have even more evidence against the “ecocide” theory of Easter Island

counting rock gardens —

AI analysis of satellite imagery data is a new method for estimating population size.

statues on easter island arranged in a horizontal row

Enlarge / New research lends further credence to the “population crash” theory about Easter Island being just a myth.

Arian Zwegers/CC BY 2.0

For centuries, Western scholars have touted the fate of the native population on Easter Island (Rapa Nui) as a case study in the devastating cost of environmentally unsustainable living. The story goes that the people on the remote island chopped down all the trees to build massive stone statues, triggering a population collapse. Their numbers were further depleted when Europeans discovered the island and brought foreign diseases, among other factors. But an alternative narrative began to emerge in the 21st century that the earliest inhabitants actually lived quite sustainably until that point. A new paper published in the journal Science Advances offers another key piece of evidence in support of that alternative hypothesis.

As previously reported, Easter Island is famous for its giant monumental statues, called moai, built some 800 years ago and typically mounted on platforms called ahu. Scholars have puzzled over the moai on Easter Island for decades, pondering their cultural significance, as well as how a Stone Age culture managed to carve and transport statues weighing as much as 92 tons. The first Europeans arrived in the 17th century and found only a few thousand inhabitants on a tiny island (just 14 by 7 miles across) thousands of miles away from any other land. Since then, in order to explain the presence of so many moai, the assumption has been that the island was once home to tens of thousands of people.

But perhaps they didn’t need tens of thousands of people to accomplish that feat. Back in 2012, Carl Lipo of Binghamton University and Terry Hunt of the University of Arizona showed that you could transport a 10-foot, 5-ton moai a few hundred yards with just 18 people and three strong ropes by employing a rocking motion. In 2018, Lipo proposed an intriguing hypothesis for how the islanders placed red hats on top of some moai; those can weigh up to 13 tons. He suggested the inhabitants used ropes to roll the hats up a ramp. Lipo and his team later concluded (based on quantitative spatial modeling) that the islanders likely chose the statues’ locations based on the availability of fresh water sources, per a 2019 paper in PLOS One.

In 2020, Lipo and his team turned their attention to establishing a better chronology of human occupation of Rapa Nui. While it’s generally agreed that people arrived in Eastern Polynesia and on Rapa Nui sometime in the late 12th century or early 13th century, we don’t really know very much about the timing and tempo of events related to ahu construction and moai transport in particular. In his bestselling 2005 book Collapse, Jared Diamond offered the societal collapse of Easter Island (aka Rapa Nui), around 1600, as a cautionary tale. Diamond controversially argued that the destruction of the island’s ecological environment triggered a downward spiral of internal warfare, population decline, and cannibalism, resulting in an eventual breakdown of social and political structures.

Challenging a narrative

Lipo has long challenged that narrative, arguing as far back as 2007 against the “ecocide” theory. He and Hunt published a paper that year noting the lack of evidence of any warfare on Easter Island compared to other Polynesian islands. There are no known fortifications, and the obsidian tools found were clearly used for agriculture. Nor is there much evidence of violence among skeletal remains. He and Hunt concluded that the people of Rapa Nui continued to thrive well after 1600, which would warrant a rethinking of the popular narrative that the island was destitute when Europeans arrived in 1722.

For their 2020 study, the team applied a Bayesian model-based method to existing radiocarbon dates collected from prior excavations at 11 different sites with ahu. That work met with some mixed opinions from Lipo’s fellow archaeologists, with some suggesting that his team cherry-picked its radiocarbon dating—an allegation he dismissed at the time as “simply baloney and misinformed thinking.” They filtered their radiocarbon samples to just those they were confident related to human occupation and human-related events, meaning they analyzed a smaller subset of all the available ages—not an unusual strategy to eliminate bias due to issues with old carbon—and the results for colonization estimates were about the same as before.

Binghamton University's Robert J. DiNapoli stands next to a rock garden on Rapa Nui, or Easter Island.

Enlarge / Binghamton University’s Robert J. DiNapoli stands next to a rock garden on Rapa Nui, or Easter Island.

Robert J. DiNapoli

The model also integrated the order and position of the island’s distinctive architecture, as well as ethnohistoric accounts, thereby quantifying the onset of monument construction, the rate at which it occurred, and when it likely ended. This allowed the researchers to test Diamond’s “collapse” hypothesis by building a more precise timeline of when construction took place at each of the sites. The results demonstrated a lack of evidence for a pre-contact collapse and instead offered strong support for a new emerging model of resilient communities that continued their long-term traditions despite the impacts of European arrival.

Fresh evidence

Now Lipo is back with fresh findings in support of his alternative theory, having analyzed the landscape to identify all the agricultural areas on the island. “We really wanted to look at the evidence for whether the island could in fact support such a large number of people,” he said during a media briefing. “What we know about the pre-contact people living on the island is that they survived on a combination of marine resources—fishing accounted for about 50 percent of their diet—and growing crops,” particularly the sweet potato, as well as taro and yams.

He and his co-authors set out to determine how much food could be produced agriculturally, extrapolating from that the size of a sustainable population. The volcanic soil on Easter Island is highly weathered and thus poor in nutrients essential for plant growth: nitrogen, phosphorus and potassium primarily, but also calcium, magnesium, and sulfur. To increase yields, the natives initially cut down the island’s trees to get nutrients back into the soil.

When there were no more trees, they engaged in a practice called “lithic mulching,” a form of rock gardening in which broken rocks were added to the first 20 to 25 centimeters (about 8 to 10 inches) of soil. This added essential nutrients back into the soil. “We do it ourselves with non-organic fertilizer,” said Lipo. “Essentially we use machines to crush rock into tiny pieces, which is effective because it exposes a lot of surface area. The people in Rapa Nui are doing it by hand, literally breaking up rocks and sticking them in dirt.”

There had been only one 2013 study aimed at determining the island’s rock-garden capacity, which relied on near-infrared bands from satellite images. The authors of that study estimated that between 4.9 and 21.2 km2 of the island’s total area comprised rock gardens, although they acknowledged this was likely an inaccurate estimation.

A map of results from the analysis of rock gardens on Easter Island.

Enlarge / A map of results from the analysis of rock gardens on Easter Island.

Carl Lipo

Lipo et al. examined satellite imagery data collected over the last five years, not just in the near-infrared, but also short-wave infrared (SWIR) and other visible spectra. SWIR is particularly sensitive to detecting water and nitrogen levels, making it easier to pinpoint areas where lithic mulching occurred. They trained machine-learning models on archaeological field identifications of rock garden features to analyze the SWIR data for a new estimation of capacity.

The result: Lipo et al. determined that the prevalence of rock gardening was about one-fifth of even the most conservative previous estimates of population size on Easter Island. They estimate that the island could support about 3,000 people—roughly the same number of inhabitants European explorers encountered when they arrived. “Previous studies had estimated that the island was fairly covered with mulch gardening, which led to estimates of up to 16,000 people,” said Lipo. “We’re saying that the island could never have supported 16,000 people; it didn’t have the productivity to do so. This pre-European collapse narrative simply has no basis in the archaeological record.”

“We don’t see demographic change decline in populations prior to Europeans’ arrival,” Lipo said. “All the [cumulative] evidence to date shows a continuous growth until some plateau is reached. It certainly was never an easy place to live, but people were able to figure out a means of doing so and lived within the boundaries of the capacity of the island up until European arrival.” So rather than being a cautionary tale, “Easter Island is a great case of how populations adapt to limited resources on a finite place, and do so sustainably.”

DOI: Science Advances, 2024. 10.1126/sciadv.ado1459  (About DOIs).

Binghamton University archaeologist Carl Lipo has shed light on some of the ancient mysteries of Easter Island (Rapa Nui) through his ongoing research. Credit: Binghamton University, State University of New York

We now have even more evidence against the “ecocide” theory of Easter Island Read More »