forensics

research-roundup:-7-cool-science-stories-we-almost-missed

Research roundup: 7 cool science stories we almost missed


Other July stories: Solving a 150-year-old fossil mystery and the physics of tacking a sailboat.

150-year-old fossil of Palaeocampa anthrax isn’t a sea worm after all. Credit: Christian McCall

It’s a regrettable reality that there is never enough time to cover all the interesting scientific stories we come across each month. In the past, we’ve featured year-end roundups of cool science stories we (almost) missed. This year, we’re experimenting with a monthly collection. July’s list includes the discovery of the tomb of the first Maya king of Caracol in Belize, the fluid dynamics of tacking a sailboat, how to determine how fast blood was traveling when it stained cotton fabric, and how the structure of elephant ears could lead to more efficient indoor temperature control in future building designs, among other fun stories.

Tomb of first king of Caracol found

University of Houston provost and archeologist Diane Chase in newly discovered tomb of the first ruler of the ancient Maya city Caracol and the founder of its royal dynasty.

Credit: Caracol Archeological Project/University of Houston

Archaeologists Arlen and Diane Chase are the foremost experts on the ancient Maya city of Caracol in Belize and are helping to pioneer the use of airborne LiDAR to locate hidden structures in dense jungle, including a web of interconnected roadways and a cremation site in the center of the city’s Northeast Acropolis plaza. They have been painstakingly excavating the site since the mid-1980s. Their latest discovery is the tomb of Te K’ab Chaak, Caracol’s first ruler, who took the throne in 331 CE and founded a dynasty that lasted more than 460 years.

This is the first royal tomb the husband-and-wife team has found in their 40+ years of excavating the Caracol site. Te K’ab Chaak’s tomb (containing his skeleton) was found at the base of a royal family shrine, along with pottery vessels, carved bone artifacts, jadeite jewelry, and a mosaic jadeite death mask. The Chases estimate that the ruler likely stood about 5’7″ tall and was probably quite old when he died, given his lack of teeth. The Chases are in the process of reconstructing the death mask and conducting DNA and stable isotope analysis of the skeleton.

How blood splatters on clothing

Cast-off blood stain pattern

Credit: Jimmy Brown/CC BY 2.0

Analyzing blood splatter patterns is a key focus in forensic science, and physicists have been offering their expertise for several years now, including in two 2019 studies on splatter patterns from gunshot wounds. The latest insights gleaned from physics concern the distinct ways in which blood stains cotton fabrics, according to a paper published in Forensic Science International.

Blood is a surprisingly complicated fluid, in part because the red blood cells in human blood can form long chains, giving it the consistency of sludge. And blood starts to coagulate immediately once it leaves the body. Blood is also viscoelastic: not only does it deform slowly when exposed to an external force, but once that force has been removed, it will return to its original configuration. Add in coagulation and the type of surface on which it lands, and correctly interpreting the resulting spatter patterns becomes incredibly difficult.

The co-authors of the July study splashed five different fabric surfaces with pig’s blood at varying velocities, capturing the action with high-speed cameras. They found that when a blood stain has “fingers” spreading out from the center, the more fingers there are, the faster the blood was traveling when it struck the fabric. And the faster the blood was moving, the more “satellite droplets” there will be—tiny stains surrounding the central stain. Finally, it’s much easier to estimate the velocity of blood splatter on plain-woven cotton than on other fabrics like twill. The researchers plan to extend future work to include a wider variety of fabrics, weaves, and yarns.

DOI: Forensic Science International, 2025. 10.1016/j.forsciint.2025.112543  (About DOIs).

Offshore asset practices of the uber-rich

The uber-rich aren’t like the rest of us in so many ways, including their canny exploitation of highly secretive offshore financial systems to conceal their assets and/or identities. Researchers at Dartmouth have used machine learning to analyze two public databases and identified distinct patterns in the strategies oligarchs and billionaires in 65 different countries employ when squirreling away offshore assets, according to a paper published in the journal PLoS ONE.

One database tracks offshore finance, while the other rates different countries on their “rule of law.” This enabled the team to study key metrics like how much of their assets elites move offshore, how much they diversify, and how much they make use of “blacklisted” offshore centers that are not part of the mainstream financial system. The researchers found three distinct patterns, all tied to where an oligarch comes from.

Billionaires from authoritarian countries are more likely to diversify their hidden assets across many different centers—a “confetti strategy”—perhaps because these are countries likely to exact political retribution. Others, from countries with effective government regulations—or where there is a pronounced lack of civil rights—are more likely to employ a “concealment strategy” that includes more blacklisted jurisdictions, relying more on bearer shares that protect their anonymity. Those elites most concerned about corruption and/or having their assets seized typically employ a hybrid strategy.

The work builds on an earlier 2023 study concluding that issuing sanctions on individual oligarchs in Russia, China, the US, and Hong Kong is less effective than targeting the small, secretive network of financial experts who manage that wealth on behalf of the oligarchs. That’s because sanctioning just one wealth manager effectively takes out several oligarchs at once, per the authors.

DOI: PLoS ONE, 2025. 10.1371/journal.pone.0326228  (About DOIs).

Medieval remedies similar to TikTok trends

Medieval manuscripts like the Cotton MS Vitellius C III highlight uses for herbs that reflect modern-day wellness trends.

Credit: The British Library

The Middle Ages are stereotypically described as the “Dark Ages,” with a culture driven by superstition—including its medical practices. But a perusal of the hundreds of medical manuscripts collected in the online Corpus of Early Medieval Latin Medicine (CEMLM) reveals that in many respects, medical practices were much more sophisticated; some of the remedies are not much different from alternative medicine remedies touted by TikTok influencers today. That certainly doesn’t make them medically sound, but it does suggest we should perhaps not be too hasty in who we choose to call backward and superstitious.

Per Binghamton University historian Meg Leja, medievalists were not “anti-science.” In fact, they were often quite keen on learning from the natural world. And their health practices, however dubious they might appear to us—lizard shampoo, anyone?—were largely based on the best knowledge available at the time. There are detox cleanses and topical ointments, such as crushing the stone of a peach, mixing it with rose oil, and smearing it on one’s forehead to relieve migraine pain. (Rose oil may actually be an effective migraine pain reliever.) The collection is well worth perusing; pair it with the Wellcome-funded Curious Cures in Cambridge Libraries to learn even more about medieval medical recipes.

Physics of tacking a sailboat

The Courant Institute's Christiana Mavroyiakoumou, above at Central Park's Conservatory Water with model sailboats

Credit: Jonathan King/NYU

Possibly the most challenging basic move for beginner sailors is learning how to tack to sail upwind. Done correctly, the sail will flip around into a mirror image of its previous shape. And in competitive sailboat racing, a bad tack can lose the race. So physicists at the University of Michigan decided to investigate the complex fluid dynamics at play to shed more light on the tricky maneuver, according to a paper published in the journal Physical Review Fluids.

After modeling the maneuver and conducting numerical simulations, the physicists concluded that there are three primary factors that determine a successful tack: the stiffness of the sail, its tension before the wind hits, and the final sail angle in relation to the direction of the wind. Ideally, one wants a less flexible, less curved sail with high tension prior to hitting the wind and to end up with a 20-degree final sail angle. Other findings: It’s harder to flip a slack sail when tacking, and how fast one manages to flip the sail depends on the sail’s mass and the speed and acceleration of the turn.

DOI: Physical Review Fluids, 2025. 10.1103/37xg-vcff  (About DOIs).

Elephant ears inspire building design

African bush elephant with ears spread in a threat or attentive position and visible blood vessels

Maintaining a comfortable indoor temperature constitutes the largest fraction of energy usage for most buildings, with the surfaces of walls, windows, and ceilings contributing to roughly 63 percent of energy loss. Engineers at Drexel University have figured out how to make surfaces that help rather than hamper efforts to maintain indoor temperatures: using so-called phase-change materials that can absorb and release thermal energy as needed as they shift between liquid and solid states. They described the breakthrough in a paper published in the Journal of Building Engineering.

The Drexel group previously developed a self-warming concrete using a paraffin-based material, similar to the stuff used to make candles. The trick this time around, they found, was to create the equivalent of a vascular network within cement-based building materials. They used a printed polymer matrix to create a grid of channels in the surface of concrete and filled those channels with the same paraffin-based material. When temperatures drop, the material turns into a solid and releases heat energy; as temperatures rise, it shifts its phase to a liquid and absorbs heat energy.

The group tested several different configurations and found that the most effective combination of strength and thermal regulation was realized with a diamond-shaped grid, which boasted the most vasculature surface area. This configuration successfully slowed the cooling and heating of its surface to between 1 and 1.2 degrees Celsius per hour, while holding up against stretching and compression tests. The structure is similar to that of jackrabbit and elephant ears, which have extensive vascular networks to help regulate body temperature.

DOI: Journal of Building Engineering, 2025. 10.1016/j.jobe.2025.112878  (About DOIs).

ID-ing a century-old museum specimen

Neotype of Palaeocampa anthrax from the Mazon Creek Lagerstätte and rediscovered in the Invertebrate Paleontology collection of the MCZ.

Credit: Richard J. Knecht

Natural history museums have lots of old specimens in storage, and revisiting those specimens can sometimes lead to new discoveries. That’s what happened to University of Michigan evolutionary biologist Richard J. Knecht as he was poring over a collection at Harvard’s Museum of Comparative Zoology while a grad student there. One of the fossils, originally discovered in 1865, was labeled a millipede. But Knecht immediately recognized it as a type of lobopod, according to a paper published in the journal Communications Biology. It’s the earliest lobopod yet found, and this particular species also marks an evolutionary leap since it’s the first known lobopod to be non-marine.

Lobopods are the evolutionary ancestors to arthropods (insects, spiders, and crustaceans), and their fossils are common along Paleozoic sea beds. Apart from tardigrades and velvet worms, however, they were thought to be confined to oceans. But Palaeocampa anthrax has legs on every trunk, as well as almost 1,000 bristly spines covering its body with orange halos at their tips. Infrared spectroscopy revealed traces of fossilized molecules—likely a chemical that emanated from the spinal tips. Since any chemical defense would just disperse in water, limiting its effectiveness, Knecht concluded that Palaeocampa anthrax was most likely amphibious rather than being solely aquatic.

DOI: Communications Biology, 2025. 10.1038/s42003-025-08483-0  (About DOIs).

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Research roundup: 7 cool science stories we almost missed Read More »

cambridge-mapping-project-solves-a-medieval-murder

Cambridge mapping project solves a medieval murder


“A tale of shakedowns, sex, and vengeance that expose[s] tensions between the church and England’s elite.”

Location of the murder of John Forde, taken from the Medieval Murder Maps. Credit: Medieval Murder Maps. University of Cambridge: Institute of Criminology

In 2019, we told you about a new interactive digital “murder map” of London compiled by University of Cambridge criminologist Manuel Eisner. Drawing on data catalogued in the city coroners’ rolls, the map showed the approximate location of 142 homicide cases in late medieval London. The Medieval Murder Maps project has since expanded to include maps of York and Oxford homicides, as well as podcast episodes focusing on individual cases.

It’s easy to lose oneself down the rabbit hole of medieval murder for hours, filtering the killings by year, choice of weapon, and location. Think of it as a kind of 14th-century version of Clue: It was the noblewoman’s hired assassins armed with daggers in the streets of Cheapside near St. Paul’s Cathedral. And that’s just the juiciest of the various cases described in a new paper published in the journal Criminal Law Forum.

The noblewoman was Ela Fitzpayne, wife of a knight named Sir Robert Fitzpayne, lord of Stogursey. The victim was a priest and her erstwhile lover, John Forde, who was stabbed to death in the streets of Cheapside on May 3, 1337. “We are looking at a murder commissioned by a leading figure of the English aristocracy,” said University of Cambridge criminologist Manuel Eisner, who heads the Medieval Murder Maps project. “It is planned and cold-blooded, with a family member and close associates carrying it out, all of which suggests a revenge motive.”

Members of the mapping project geocoded all the cases after determining approximate locations for the crime scenes. Written in Latin, the coroners’ rolls are records of sudden or suspicious deaths as investigated by a jury of local men, called together by the coroner to establish facts and reach a verdict. Those records contain such relevant information as where the body was found and by whom; the nature of the wounds; the jury’s verdict on cause of death; the weapon used and how much it was worth; the time, location, and witness accounts; whether the perpetrator was arrested, escaped, or sought sanctuary; and any legal measures taken.

A brazen killing

The murder of Forde was one of several premeditated revenge killings recorded in the area of Westcheap. Forde was walking on the street when another priest, Hascup Neville, caught up to him, ostensibly for a casual chat, just after Vespers but before sunset. As they approached Foster Lane, Neville’s four co-conspirators attacked: Ela Fitzpayne’s brother, Hugh Lovell; two of her former servants, Hugh of Colne and John Strong; and a man called John of Tindale. One of them cut Ford’s throat with a 12-inch dagger, while two others stabbed him in the stomach with long fighting knives.

At the inquest, the jury identified the assassins, but that didn’t result in justice. “Despite naming the killers and clear knowledge of the instigator, when it comes to pursuing the perpetrators, the jury turn a blind eye,” said Eisner. “A household of the highest nobility, and apparently no one knows where they are to bring them to trial. They claim Ela’s brother has no belongings to confiscate. All implausible. This was typical of the class-based justice of the day.”

Colne, the former servant, was eventually charged and imprisoned for the crime some five years later in 1342, but the other perpetrators essentially got away with it.

Eisner et al. uncovered additional historical records that shed more light on the complicated history and ensuing feud between the Fitzpaynes and Forde. One was an indictment in the Calendar of Patent Rolls of Edward III, detailing how Ela and her husband, Forde, and several other accomplices raided a Benedictine priory in 1321. Among other crimes, the intruders “broke [the prior’s] houses, chests and gates, took away a horse, a colt and a boar… felled his trees, dug in his quarry, and carried away the stone and trees.” The gang also stole 18 oxen, 30 pigs, and about 200 sheep and lambs.

There were also letters that the Archbishop of Canterbury wrote to the Bishop of Winchester. Translations of the letters are published for the first time on the project’s website. The archbishop called out Ela by name for her many sins, including adultery “with knights and others, single and married, and even with clerics and holy orders,” and devised a punishment. This included not wearing any gold, pearls, or precious stones and giving money to the poor and to monasteries, plus a dash of public humiliation. Ela was ordered to perform a “walk of shame”—a tamer version than Cersei’s walk in Game of Thrones—every fall for seven years, carrying a four-pound wax candle to the altar of Salisbury Cathedral.

The London Archives. Inquest number 15 on 1336-7 City of London Coroner’s Rolls (

The London Archives. Inquest number 15 on 1336-7 City of London Coroner’s Rolls. Credit: The London Archives

Ela outright refused to do any of that, instead flaunting “her usual insolence.” Naturally, the archbishop had no choice but to excommunicate her. But Eisner speculates that this may have festered within Ela over the ensuing years, thereby sparking her desire for vengeance on Forde—who may have confessed to his affair with Ela to avoid being prosecuted for the 1321 raid. The archbishop died in 1333, four years before Forde’s murder, so Ela was clearly a formidable person with the patience and discipline to serve her revenge dish cold. Her marriage to Robert (her second husband) endured despite her seemingly constant infidelity, and she inherited his property when he died in 1354.

“Attempts to publicly humiliate Ela Fitzpayne may have been part of a political game, as the church used morality to stamp its authority on the nobility, with John Forde caught between masters,” said Eisner. “Taken together, these records suggest a tale of shakedowns, sex, and vengeance that expose tensions between the church and England’s elites, culminating in a mafia-style assassination of a fallen man of god by a gang of medieval hitmen.”

I, for one, am here for the Netflix true crime documentary on Ela Fitzpayne, “a woman in 14th century England who raided priories, openly defied the Archbishop of Canterbury, and planned the assassination of a priest,” per Eisner.

The role of public spaces

The ultimate objective of the Medieval Murder Maps project is to learn more about how public spaces shaped urban violence historically, the authors said. There were some interesting initial revelations back in 2019. For instance, the murders usually occurred in public streets or squares, and Eisner identified a couple of “hot spots” with higher concentrations than other parts of London. One was that particular stretch of Cheapside running from St Mary-le-Bow church to St. Paul’s Cathedral, where John Forde met his grisly end. The other was a triangular area spanning Gracechurch, Lombard, and Cornhill, radiating out from Leadenhall Market.

The perpetrators were mostly men (in only four cases were women the only suspects). As for weapons, knives and swords of varying types were the ones most frequently used, accounting for 68 percent of all the murders. The greatest risk of violent death in London was on weekends (especially Sundays), between early evening and the first few hours after curfew.

Eisner et al. have now extended their spatial analysis to include homicides committed in York and London in the 14th century with similar conclusions. Murders most often took place in markets, squares, and thoroughfares—all key nodes of medieval urban life—in the evenings or on weekends. Oxford had significantly higher murder rates than York or London and also more organized group violence, “suggestive of high levels of social disorganization and impunity.” London, meanwhile, showed distinct clusters of homicides, “which reflect differences in economic and social functions,” the authors wrote. “In all three cities, some homicides were committed in spaces of high visibility and symbolic significance.”

Criminal Law Forum, 2025. DOI: 10.1007/s10609-025-09512-7  (About DOIs).

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Cambridge mapping project solves a medieval murder Read More »