particles

the-axion-may-help-clean-up-the-messy-business-of-dark-matter

The axion may help clean up the messy business of dark matter


We haven’t found evidence of the theoretical particle, but it’s still worth investigating.

In recent years, a curious hypothetical particle called the axion, invented to address challenging problems with the strong nuclear force, has emerged as a leading candidate to explain dark matter. Although the potential for axions to explain dark matter has been around for decades, cosmologists have only recently begun to seriously search for them. Not only might they be able to resolve some issues with older hypotheses about dark matter, but they also offer a dizzying array of promising avenues for finding them.

But before digging into what the axion could be and why it’s so useful, we have to explore why the vast majority of physicists, astronomers, and cosmologists accept the evidence that dark matter exists and that it’s some new kind of particle. While it’s easy to dismiss the dark matter hypothesis as some sort of modern-day epicycle, the reality is much more complex (to be fair to epicycles, it was an excellent idea that fit the data extremely well for many centuries).

The short version is that nothing in the Universe adds up.

We have many methods available to measure the mass of large objects like galaxies and clusters. We also have various methods to assess the effects of matter in the Universe, like the details of the cosmic microwave background or the evolution of the cosmic web. There are two broad categories: methods that rely solely on estimating the amount of light-emitting matter and methods that estimate the total amount of matter, whether it’s visible or not.

For example, if you take a picture of a generic galaxy, you’ll see that most of the light-emitting matter is concentrated in the core. But when you measure the rotation rate of the galaxy and use that to estimate the total amount of matter, you get a much larger number, plus some hints that it doesn’t perfectly overlap with the light-emitting stuff. The same thing happens for clusters of galaxies—the dynamics of galaxies within a cluster suggest the presence of much more matter than what we can see, and the two types of matter don’t always align. When we use gravitational lensing to measure a cluster’s contents, we again see evidence for much more matter than is plainly visible.

The tiny variations in the cosmic microwave background tell us about the influence of both matter that interacts with light and matter that doesn’t. It clearly shows that some invisible component dominated the early Universe. When we look at the large-scale structure, invisible matter rules the day. Matter that doesn’t interact with light can form structures much more quickly than matter that gets tangled up by interacting with itself. Without invisible matter, galaxies like the Milky Way can’t form quickly enough to match observations of the early Universe.

The calculations of Big Bang nucleosynthesis, which correctly predict the abundances of hydrogen and helium in the Universe, put strict constraints on how much light-emitting matter there can be, and that number simply isn’t large enough to accommodate all these disparate results.

Across cosmic scales in time and space, the evidence just piles up: There’s more stuff out there than meets the eye, and it can’t simply be dim-but-otherwise-regular matter.

Weakness of WIMPs

Since pioneering astronomer Vera Rubin first revealed dark matter in a big way in the 1970s, the astronomical community has tried every idea it could think of to explain these observations. One tantalizing possibility is that the dark matter is the entirely wrong approach; instead, we’re misunderstanding gravity itself. But so far, half a century later, all attempts to modify gravity ultimately fail one observational test or another. In fact, the most popular modified gravity theory, known as MOND, still requires the existence of dark matter, just less of it.

As the evidence piled up for dark matter in the 1980s and ’90s, astronomers began to favor a particular explanation known as WIMPs, for weakly interacting massive particles. WIMPs weren’t just made up on the spot. They were motivated by particle physics and our attempts to create theories beyond the Standard Model. Many extensions to the Standard Model predicted the existence of WIMP-like particles that could be made in abundance in the early Universe, generating a population of heavy-ish particles that remained largely in the cosmic background.

WIMPs seemed like a good idea, as they could both explain the dark matter problem and bring us to a new understanding of fundamental physics. The idea is that we are swimming in an invisible sea of dark matter particles that almost always simply pass through us undetected. But every once in a while, a WIMP should interact via the weak nuclear force (hence the origin of its name) and give off a shower of byproducts. One problem: We needed to detect one of these rare interactions. So experiments sprang up around the world to catch an elusive dark matter candidate.

With amazing names like CRESST, SNOLAB, and XENON, these experiments have spent years searching for a WIMP to no avail. They’re not an outright failure, though; instead, with every passing year, we know more and more about what the WIMP can’t be—what mass ranges and interaction strengths are now excluded.

By now, that list of what the WIMP can’t be is rather long, and large regions within the space of possibilities are now hard-and-fast ruled out.

OK, that’s fine. I mean, it’s a huge bummer that our first best guess didn’t pan out, but nature is under no obligation to make this easy for us. Maybe the dark matter isn’t a WIMP at all.

More entities are sitting around the particle physics attic that we might be able to use to explain this deep cosmic mystery. And one of those hypothetical particles is called the axion.

Cleaning up with axions

It was the late 1970s, and physicist Frank Wilczek was shopping for laundry detergent. He found one brand standing out among the bottles: Axion. He thought that would make an excellent name for a particle.

He was right.

For decades, physicists had been troubled by a little detail of the theory used to explain the strong nuclear force, known as quantum chromodynamics. By all measurements, that force obeys charge-parity symmetry, which means if you take an interaction, flip all the charges around, and run it in a mirror, you’ll get the same result. But quantum chromodynamics doesn’t enforce that symmetry on its own.

It seemed to be a rather fine-tuned state of affairs, with the strong force unnaturally maintaining a symmetry when there was nothing in the theory to explain why.

In 1977, Roberto Peccei and Helen Quinn discovered an elegant solution. By introducing a new field into the Universe, it could naturally introduce charge-parity symmetry into the equations of quantum chromodynamics. The next year, Wilczek and Gerard ‘t Hooft independently realized that this new field would imply the existence of a particle.

The axion.

Dark matter was just coming on the cosmic scene. Axions weren’t invented to solve that problem, but physicists very quickly realized that the complex physics of the early Universe could absolutely flood the cosmos with axions. What’s more, they would largely ignore regular matter and sit quietly in the background. In other words, the axion was an excellent dark matter candidate.

But axions were pushed aside as the WIMPs hypothesis gained more steam. Back-of-the-envelope calculations showed that the natural mass range of the WIMP would precisely match the abundances needed to explain the amount of dark matter in the Universe, with no other fine-tuning or adjustments required.

Never ones to let the cosmologists get in the way of a good time, the particle physics community kept up interest in the axion, finding different variations on the particle and devising clever experiments to see if the axion existed. One experiment requires nothing more than a gigantic magnet since, in an extremely strong magnetic field, axions can spontaneously convert into photons.

To date, no hard evidence for the axion has shown up. But WIMPs have proven to be elusive, so cosmologists are showing more love to the axion and identifying surprising ways that it might be found.

A sloshy Universe

Axions are tiny, even for subatomic particles. The lightest known particle is the neutrino, which weighs no more than 0.086 electron-volts (or eV). Compare that to, say, the electron, which weighs over half a million eV. The exact mass of the axion isn’t known, and there are many models and versions of the particle, but it can have a mass all the way down to a trillionth of an eV… and even lower.

In fact, axions belong to a much broader class of “ultra-light” dark matter particle candidates, which can have masses down to 10^-24 eV. This is multiple billions of times lighter than the WIMPs—and indeed most of the particles of the Standard Model.

That means axions and their friends act nothing like most of the particles of the Standard Model.

First off, it may not even be appropriate to refer to them as particles. They have such little mass that their de Broglie wavelength—the size of the quantum wave associated with every particle—can stretch into macroscopic proportions. In some cases, this wavelength can be a few meters across. In others, it’s comparable to a star or a solar system. In still others, a single axion “particle” can stretch across an entire galaxy.

In this view, the individual axion particles would be subsumed into a larger quantum wave, like an ocean of dark matter so large and vast that it doesn’t make sense to talk about its individual components.

And because axions are bosons, they can synchronize their quantum wave nature, becoming a distinct state of matter: a Bose-Einstein condensate. In a Bose-Einstein condensate, most of the particles share the same low-energy state. When this happens, the de Broglie wavelength is larger than the average separation between the particles, and the waves of the individual particles all add up together, creating, in essence, a super-particle.

This way, we may get axion “stars”—clumps of axions acting as a single particle. Some of these axion stars may be a few thousand kilometers across, wandering across interstellar space. Still others may be the size of galactic cores, which might explain an issue with the traditional WIMP picture.

The best description of dark matter in general is that it is “cold,” meaning that the individual particles do not move fast compared to the speed of light. This allows them to gravitationally interact and form the seeds of structures like galaxies and clusters. But this process is a bit too efficient. According to simulations, cold dark matter tends to form more small, sub-galactic clumps than we observe, and it tends to make the cores of galaxies much, much denser than we see.

Axions, and ultra-light dark matter in general, can provide a solution here because they would operate in two modes. At large scales, they can act like regular cold dark matter. But inside galaxies, they can condense, forming tight clumps. Critically, these clumps have uniform densities within them. This smooths out the distribution of axions within galaxies, preventing the formation of smaller clumps and ultra-dense cores.

A messy affair

Over the decades, astronomers and physicists have found an astounding variety of ways that axions might reveal their presence in the Universe. Because of their curious ability to transmute into photons in the presence of strong magnetic fields, any place that features strong fields—think neutron stars or even the solar corona—could produce extra radiation due to axions. That makes them excellent hunting grounds for the particles.

Axion stars—also sometimes known provocatively as dark stars—would be all but invisible under most circumstances. That is, until they destabilize in a cascading chain reaction of axion-to-photon conversion and blow themselves up.

Even the light from distant galaxies could betray the existence of axions. If they exist in a dense swarm surrounding a galaxy, their conversion to photons will contribute to the galaxy’s light, creating a signal that the James Webb Space Telescope can pick up.

To date, despite all these ideas, there hasn’t been a single shred of solid evidence for the existence of axions, which naturally drops them down a peg or two on the credibility scale. But that doesn’t mean that axions aren’t worth investigating further. The experiments conducted so far only place limits on what properties they might have; there’s still plenty of room for viable axion and axion-like candidates, unlike their WIMPy cousins.

There’s definitely something funny going on with the Universe. The dark matter hypothesis—that there is a large, invisible component to matter in the Universe—isn’t that great of an idea, but it’s the best one we have that fits the widest amount of available evidence. For a while, we thought we knew what the identity of that matter might be, and we spent decades (and small fortunes) in that search.

But while WIMPs were the mainstay hypothesis, that didn’t snuff out alternative paths. Dozens of researchers have investigated modified forms of gravity to equal levels of unsuccessfulness. And a small cadre has kept the axion flame alive. It’s a good thing, too, since their obscure explorations of the corners of particle physics laid the groundwork to flesh out axions into a viable competitor to WIMPs.

No, we haven’t found any axions. And we still don’t know what the dark matter is. But it’s only by pushing forward—advancing new ideas, testing them against the reality of observations, and when they fail, trying again—will we come to a new understanding. Axions may or may not be dark matter; the best we can say is that they are promising. But who wouldn’t want to live in a Universe filled with dark stars, invisible Bose-Einstein condensates, and strange new particles?

Photo of Paul Sutter

The axion may help clean up the messy business of dark matter Read More »

how-physics-moves-from-wild-ideas-to-actual-experiments

How physics moves from wild ideas to actual experiments


Science often accommodates audacious proposals.

Instead of using antennas, could we wire up trees in a forest to detect neutrinos? Credit: Claire Gillo/PhotoPlus Magazine/Future via Getty Images

Neutrinos are some of nature’s most elusive particles. One hundred trillion fly through your body every second, but each one has only a tiny chance of jostling one of your atoms, a consequence of the incredible weakness of the weak nuclear force that governs neutrino interactions. That tiny chance means that reliably detecting neutrinos takes many more atoms than are in your body. To spot neutrinos colliding with atoms in the atmosphere, experiments have buried 1,000 tons of heavy water, woven cameras through a cubic kilometer of Antarctic ice, and planned to deploy 200,000 antennas.

In a field full of ambitious plans, a recent proposal by Steven Prohira, an assistant professor at the University of Kansas, is especially strange. Prohira suggests that instead of using antennas, we could detect the tell-tale signs of atmospheric neutrinos by wiring up a forest of trees. His suggestion may turn out to be impossible, but it could also be an important breakthrough. To find out which it is, he’ll need to walk a long path, refining prototypes and demonstrating his idea’s merits.

Prohira’s goal is to detect so-called ultra-high-energy neutrinos. Each one of these tiny particles carries more than fifty million times the energy released by uranium during nuclear fission. Their origins are not fully understood, but they are expected to be produced by some of the most powerful events in the Universe, from collapsing stars and pulsars to the volatile environments around the massive black holes at the centers of galaxies. If we could detect these particles more reliably, we could learn more about these extreme astronomical events.

Other experiments, like a project called GRAND, plan to build antennas to detect these neutrinos, watching for radio signals that come from their reactions with our atmosphere. However, finding places to place these antennas can be a challenge. Motivated by this experiment, Prohira dug up old studies by the US Army that suggested an alternative: instead of antennas, use trees. By wrapping a wire around each tree, army researchers found that the trees were sensitive to radio waves, which they hoped to use to receive radio signals in the jungle. Prohira argues that the same trick could be useful for neutrino detection.

Crackpot or legit science?

People suggest wacky ideas every day. Should we trust this one?

At first, you might be a bit suspicious. Prohira’s paper is cautious on the science but extremely optimistic in other ways. He describes the proposal as a way to help conserve the Earth’s forests and even suggests that “a forest detector could also motivate the large-scale reforesting of land, to grow a neutrino detector for future generations.”

Prohira is not a crackpot, though. He has a track record of research in detecting neutrinos via radio waves in more conventional experiments, and he even received an $800,000 MacArthur genius grant a few years ago to support his work.

More generally, studying particles from outer space often demands audacious proposals, especially ones that make use of the natural world. Professor Albrecht Karle works on the IceCube experiment, an array of cameras that detect neutrinos whizzing through a cubic kilometer of Antarctic ice.

“In astroparticle physics, where we often cannot build the entire experiment in a laboratory, we have to resort to nature to help us, to provide an environment that can be used to build a detector. For example, in many parts of astroparticle physics, we are using the atmosphere as a medium, or the ocean, or the ice, or we go deep underground because we need a shield because we cannot construct an artificial shield. There are even ideas to go into space for extremely energetic neutrinos, to build detectors on Jupiter’s moon Europa.”

Such uses of nature are common in the field. India’s GRAPES experiments were designed to measure muons, but they have to filter out anything that’s not a muon to do so. As Professor Sunil Gupta of the Tata Institute explained, the best way to do that was with dirt from a nearby hill.

“The only way we know you can make a muon detector work is by filtering out other radiation […] so what we decided is that we’ll make a civil structure, and we’ll dump three meters of soil on top of that, so those three meters of soil could act as a filter,” he said.

The long road to an experiment

While Prohira’s idea isn’t ridiculous, it’s still just an idea (and one among many). Prohira’s paper describing the idea was uploaded to arXiv.org, a pre-print server, in January. Physicists use pre-print servers to give access to their work before it’s submitted to a scientific journal. That gives other physicists time to comment on the work and suggest revisions. In the meantime, the journal will send the work out to a few selected reviewers, who are asked to judge both whether the paper is likely to be correct and whether it is of sufficient interest to the community.

At this stage, reviewers may find problems with Prohira’s idea. These may take the form of actual mistakes, such as if he made an error in his estimates of the sensitivity of the detector. But reviewers can also ask for more detail. For example, they could request a more extensive analysis of possible errors in measurements caused by the different shapes and sizes of the trees.

If Prohira’s idea makes it through to publication, the next step toward building an actual forest detector would be convincing the larger community. This kind of legwork often takes place at conferences. The International Cosmic Ray Conference is the biggest stage for the astroparticle community, with conferences every two years—the next is scheduled for 2025 in Geneva. Other more specialized conferences, like ARENA, focus specifically on attempts to detect radio waves from high-energy neutrinos. These conferences can offer an opportunity to get other scientists on board and start building a team.

That team will be crucial for the next step: testing prototypes. No matter how good an idea sounds in theory, some problems only arise during a real experiment.

An early version of the GRAPES experiment detected muons by the light they emit passing through tanks of water. To find how much water was needed, the researchers did tests, putting a detector on top of a tank and on the bottom and keeping track of how often both detectors triggered for different heights of water based on the muons that came through randomly from the atmosphere. After finding that the tanks of water would have to be too tall to fit in their underground facility, they had to find wavelength-shifting chemicals that would allow them to use shorter tanks and novel ways of dissolving these chemicals without eroding the aluminum of the tank walls.

“When you try to do something, you run into all kinds of funny challenges,” said Gupta.

The IceCube experiment has a long history of prototypes going back to early concepts that were only distantly related to the final project. The earliest, like the proposed DUMAND project in Hawaii, planned to put detectors in the ocean rather than ice. BDUNT was an intermediate stage, a project that used the depths of Lake Baikal to detect atmospheric neutrinos. While the detectors were still in liquid water, the ability to drive on the lake’s frozen surface made BDUNT’s construction easier.

In a 1988 conference, Robert March, Francis Halzen, and John G. Learned envisioned a kind of “solid state DUMAND” that would use ice instead of water to detect neutrinos. While the idea was attractive, the researchers cautioned that it would require a fair bit of luck. “In summary, this is a detector that requires a number of happy accidents to make it feasible. But if these should come to pass, it may provide the least expensive route to a truly large neutrino telescope,” they said.

In the case of the AMANDA experiment, early tests in Greenland and later tests at the South Pole began to provide these happy accidents. “It was discovered that the ice was even more exceptionally clear and has no radioactivities—absolutely quiet, so it is the darkest and quietest and purest place on Earth,” said Karle.

AMANDA was much smaller than the IceCube experiment, and theorists had already argued that to see cosmic neutrinos, the experiment would need to cover a cubic kilometer of ice. Still, the original AMANDA experiment wasn’t just a prototype; if neutrinos arrived at a sufficient rate, it would spot some. In this sense, it was like the original LIGO experiment, which ran for many years in the early 2000s with only a minimal chance of detecting gravitational waves, but it provided the information needed to perform an upgrade in the 2010s that led to repeated detections. Similarly, the hope of pioneers like Halzen was that AMANDA would be able to detect cosmic neutrinos despite its prototype status.

“There was the chance that, with the knowledge at the time, one might get lucky. He certainly tried,” said Karle.

Prototype experiments often follow this pattern. They’re set up in the hope that they could discover something new about the Universe, but they’re built to at least discover any unexpected challenges that would stop a larger experiment.

Major facilities and the National Science Foundation

For experiments that don’t need huge amounts of funding, these prototypes can lead to the real thing, with scientists ratcheting up their ambition at each stage. But for the biggest experiments, the governments that provide the funding tend to want a clearer plan.

Since Prohira is based in the US, let’s consider the US government. The National Science Foundation has a procedure for its biggest projects, called the Major Research Equipment and Facilities Construction program. Since 2009, it has had a “no cost overrun” policy. In the past, if a project ended up costing more than expected, the NSF could try to find additional funding. Now, projects are supposed to estimate beforehand how the cost could increase and budget extra for the risk. If the budget goes too high anyway, projects should compensate by reducing scope, shrinking the experiment until it falls under costs again.

To make sure they can actually do this, the NSF has a thorough review process.

First, the NSF expects that the scientists proposing a project have done their homework and have already put time and money into prototyping the experiment. The general expectation is that about 20 percent of the experiment’s total budget should have been spent testing out the idea before the NSF even starts reviewing it.

With the prototypes tested and a team assembled, the scientists will get together to agree on a plan. This often means writing a report to hash out what they have in mind. The IceCube team is in the process of proposing a second generation of their experiment, an expansion that would cover more ice with detectors and achieve further scientific goals. The team recently finished the third part of a Technical Design Report, which details the technical case for the experiment.

After that, experiments go into the NSF’s official experiment design process. This has three phases, conceptual design, preliminary design, and final design. Each phase ends with a review document summarizing the current state of the plans as they firm up, going from a general scientific case to a specific plan to put an experiment in a specific place. Risks are estimated in detail and list estimates of how likely risks are and how much they will cost, a process that sometimes involves computer simulations. By the end of the process, the project has a fully detailed plan and construction can begin.

Over the next few years, Prohira will test out his proposal. He may get lucky, like the researchers who dug into Antarctic ice, and find a surprisingly clear signal. He may be unlucky instead and find that the complexities of trees, with different spacings and scatterings of leaves, makes the signals they generate unfit for neutrino science. He, and we, cannot know in advance which will happen.

That’s what science is for, after all.

How physics moves from wild ideas to actual experiments Read More »