space development agency

pentagon-begins-deploying-new-satellite-network-to-link-sensors-with-shooters

Pentagon begins deploying new satellite network to link sensors with shooters


“This is the first time we’ll have a space layer fully integrated into our warfighting operations.”

A SpaceX Falcon 9 rocket lifts off from Vandenberg Space Force Base, California, with a payload of 21 data-relay satellites for the US military’s Space Development Agency. Credit: SpaceX

The first 21 satellites in a constellation that could become a cornerstone for the Pentagon’s Golden Dome missile-defense shield successfully launched from California Wednesday aboard a SpaceX Falcon 9 rocket.

The Falcon 9 took off from Vandenberg Space Force Base, California, at 7: 12 am PDT (10: 12 am EDT; 14: 12 UTC) and headed south over the Pacific Ocean, heading for an orbit over the poles before releasing the 21 military-owned satellites to begin several weeks of activations and checkouts.

These 21 satellites will boost themselves to a final orbit at an altitude of roughly 600 miles (1,000 kilometers). The Pentagon plans to launch 133 more satellites over the next nine months to complete the build-out of the Space Development Agency’s first-generation, or Tranche 1, constellation of missile-tracking and data-relay satellites.

“We had a great launch today for the Space Development Agency, putting this array of space vehicles into orbit in support of their revolutionary new architecture,” said Col. Ryan Hiserote, system program director for the Space Force’s assured access to space launch execution division.

Over the horizon

Military officials have worked for six years to reach this moment. The Space Development Agency (SDA) was established during the first Trump administration, which made plans for an initial set of demonstration satellites that launched a couple of years ago. In 2022, the Pentagon awarded contracts for the first 154 operational spacecraft. The first batch of 21 data-relay satellites built by Colorado-based York Space Systems is what went up Wednesday.

“Back in 2019, when the SDA was stood up, it was to do two things. One was to make sure that we can do beyond line of sight targeting, and the other was to pace the threat, the emerging threat, in the missile-warning and missile-tracking domain. That’s what the focus has been,” said Gurpartap “GP” Sandhoo, the SDA’s acting director.

Secretary of the Air Force Troy Meink and Sen. Kevin Cramer (R-N.D.) pose with industry and government teams in front of the Space Development’s first 21 operational satellites at Vandenberg Space Force Base, California. Cramer is one the most prominent backers of the Golden Dome program in the US Senate. Credit: US Air Force/Staff Sgt. Daekwon Stith

Historically, the military communications and missile-warning networks have used a handful of large, expensive satellites in geosynchronous orbit some 22,000 miles (36,000 kilometers) above the Earth. This architecture was devised during the Cold War and is optimized for nuclear conflict and intercontinental ballistic missiles.

For example, the military’s ultra-hardened Advanced Extremely High Frequency satellites in geosynchronous orbit are designed to operate through an electromagnetic pulse and nuclear scintillation. The Space Force’s missile-warning satellites are also in geosynchronous orbit, with infrared sensors tuned to detect the heat plume of a missile launch.

The problem? Those satellites cost more than $1 billion a pop. They’re also vulnerable to attack from a foreign adversary. Pentagon officials say the SDA’s satellite constellation, officially called the Proliferated Warfighter Space Architecture, is tailored to detect and track more modern threats, such as smaller missiles and hypersonic weapons carrying conventional warheads. It’s easier for these missiles to evade the eyes of older early warning satellites.

What’s more, the SDA’s fleet in low-Earth orbit will have numerous satellites. Losing one or several satellites to an attack would not degrade the constellation’s overall capability. The SDA’s new relay satellites cost between $14 and $15 million each, according to Sandhoo. The total cost of the first tranche of 154 operational satellites totals approximately $3.1 billion.

Multi-mission satellites

These satellites will not only detect and track ballistic and hypersonic missile launches; they will also transmit signals between US forces using an existing encrypted tactical data link network known as Link 16. This UHF system is used by NATO and other US allies to allow military aircraft, ships, and land forces to share tactical information through text messages, pictures, data, and voice communication in near real time, according to the SDA’s website.

Up to now, Link 16 radios were ubiquitous on fighter jets, helicopters, naval vessels, and missile batteries. But they had a severe limitation. Link 16 was only able to close a radio link with a clear line of sight. The Space Development Agency’s satellites will change that, providing direct-to-weapon connectivity from sensors to shooters on Earth’s surface, in the air, and in space.

The relay satellites, which the SDA calls the transport layer, are also equipped with Ka-band and laser communication terminals for higher-bandwidth connectivity.

“What the transport layer does is it extends beyond the line of sight,” Sandhoo said. “Now, you’re able to talk not only to within a couple of miles with your Link 16 radios, (but) we can use space to, let’s say, go from Hawaii out to Guam using those tactical radios, using a space layer.”

The Space Development Agency’s “Tranche 1” architecture includes 154 operational satellites, 126 for data relay and 28 for missile tracking. With this illustration, the SDA does its best to show how the complex architecture is supposed to work. Credit: Space Development Agency

Another batch of SDA relay satellites will launch next month, and more will head to space in November. In all, it will take 10 launches to fully deploy the SDA’s Tranche 1 constellation. Six of those missions will carry data-relay satellites, and four will carry satellites with sensors to detect and track missile launches. The Pentagon selected several contractors to build the satellites, so the military is not reliant on a single company. The builders of the SDA’s operational satellites include York, Lockheed Martin, Northrop Grumman, and L3Harris.

“We will increase coverage as we get the rest of those launches on orbit,” said Michael Eppolito, the SDA’s acting deputy director.

The satellites will connect with one another using inter-satellite laser links, creating a mesh network with sufficient range to provide regional communications, missile warning, and targeting coverage over the Western Pacific beginning in 2027. US Indo-Pacific Command, which oversees military operations in this region, is slated to become the first combatant command to take up use of the SDA’s satellite constellation.

This is not incidental. US officials see China as the nation’s primary strategic threat, and Indo-Pacific Command would be on the front lines of any future conflict between Chinese and US forces. The SDA has contracts in place for more than 270 second-generation, or Tranche 2, satellites, to further expand the network’s reach. There’s also a third generation in the works, but the Pentagon has paused part of the SDA’s Tranche 3 program to evaluate other architectures, including one offered by SpaceX.

Teaching tactical operators to use the new capabilities offered by the SDA’s satellite fleet could be just as challenging as building the network itself. To do this, the Pentagon plans to put soldiers, sailors, airmen, and marines through “warfighter immersion” training beginning next year. This training will allow US forces to “get used to using space from this construct,” Sandhoo said.

“This is different than how it has been done in the past,” Sandhoo said. “This is the first time we’ll have a space layer actually fully integrated into our warfighting operations.”

The SDA’s satellite architecture is a harbinger for what’s to come with the Pentagon’s Golden Dome system, a missile-defense shield for the US homeland proposed by President Donald Trump in an executive order in January. Congress authorized a down payment on Golden Dome in July, the first piece of funding for what the White House says will cost $175 billion over the next three years.

Golden Dome, as currently envisioned, will require thousands of satellites in low-Earth orbit to track missile launches and space-based interceptors to attempt to shoot them down. The Trump administration hasn’t said how much of the shield might be deployed by the end of 2028, or what the entire system might eventually cost.

But the capabilities of the SDA’s satellites will lay the foundation for any regional or national missile-defense shield. Therefore, it seems likely that the military will incorporate the SDA network into Golden Dome, which, at least at first, is likely to consist of technologies already in space or nearing launch. Apart from the Space Development Agency’s architecture in low-Earth orbit (LEO), the Space Force was already developing a new generation of missile-warning satellites to replace aging platforms in geosynchronous orbit (GEO), plus a fleet of missile-warning satellites to fly at a midrange altitude between LEO and GEO.

Air Force Gen. Gregory Guillot, commander of US Northern Command, said in April that Golden Dome “for the first time integrates multiple layers into one system that allows us to detect, track, and defeat multiple types of threats that affect us in different domains.

“So, while a lot of the components and the requirements were there in the past, this is the first time that it’s all tied together in one system,” he said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Pentagon begins deploying new satellite network to link sensors with shooters Read More »

pentagon-may-put-spacex-at-the-center-of-a-sensor-to-shooter-targeting-network

Pentagon may put SpaceX at the center of a sensor-to-shooter targeting network


Under this plan, SpaceX’s satellites would play a big role in the Space Force’s kill chain.

The Trump administration plans to cancel a fleet of orbiting data relay satellites managed by the Space Development Agency and replace it with a secretive network that, so far, relies primarily on SpaceX’s Starlink Internet constellation, according to budget documents.

The move prompted questions from lawmakers during a Senate hearing on the Space Force’s budget last week. While details of the Pentagon’s plan remain secret, the White House proposal would commit $277 million in funding to kick off a new program called “pLEO SATCOM” or “MILNET.”

The funding line for a proliferated low-Earth orbit satellite communications network hasn’t appeared in a Pentagon budget before, but plans for MILNET already exist in a different form. Meanwhile, the budget proposal for fiscal year 2026 would eliminate funding for a new tranche of data relay satellites from the Space Development Agency. The pLEO SATCOM or MILNET program would replace them, providing crucial support for the Trump administration’s proposed Golden Dome missile defense shield.

“We have to look at what are the other avenues to deliver potentially a commercial proliferated low-Earth orbit constellation,” Gen. Chance Saltzman, chief of space operations, told senators last week. “So, we are simply looking at alternatives as we look to the future as to what’s the best way to scale this up to the larger requirements for data transport.”

What will these satellites do?

For six years, the Space Development Agency’s core mission has been to provide the military with a more resilient, more capable network of missile tracking and data relay platforms in low-Earth orbit. Those would augment the Pentagon’s legacy fleet of large, billion-dollar missile warning satellites that are parked more than 20,000 miles away in geostationary orbit.

These satellites detect the heat plumes from missile launches—and also large explosions and wildfires—to provide an early warning of an attack. The US Space Force’s early warning satellites were critical in allowing interceptors to take out Iranian ballistic missiles launched toward Israel last month.

Experts say there are good reasons for the SDA’s efforts. One motivation was the realization over the last decade or so that a handful of expensive spacecraft make attractive targets for an anti-satellite attack. It’s harder for a potential military adversary to go after a fleet of hundreds of smaller satellites. And if they do take out a few of these lower-cost satellites, it’s easier to replace them with little impact on US military operations.

Missile-tracking satellites in low-Earth orbit, flying at altitudes of just a few hundred miles, are also closer to the objects they are designed to track, meaning their infrared sensors can detect and locate dimmer heat signatures from smaller projectiles, such as hypersonic missiles.

The military’s Space Development Agency is in the process of buying, building, and launching a network of hundreds of missile-tracking and communications satellites. Credit: Northrop Grumman

But tracking the missiles isn’t enough. The data must reach the ground in order to be useful. The SDA’s architecture includes a separate fleet of small communications satellites to relay data from the missile tracking network, and potentially surveillance spacecraft tracking other kinds of moving targets, to military forces on land, at sea, or in the air through a series of inter-satellite laser crosslinks.

The military refers to this data relay component as the transport layer. When it was established in the first Trump administration, the SDA set out to deploy tranches of tracking and data transport satellites. Each new tranche would come online every couple of years, allowing the Pentagon to tap into new technologies as fast as industry develops them.

The SDA launched 27 so-called “Tranche 0” satellites in 2023 to demonstrate the concept’s overall viability. The first batch of more than 150 operational SDA satellites, called Tranche 1, is due to begin launching later this year. The SDA plans to begin deploying more than 250 Tranche 2 satellites in 2027. Another set of satellites, Tranche 3, would have followed a couple of years later. Now, the Pentagon seeks to cancel the Tranche 3 transport layer, while retaining the Tranche 3 tracking layer under the umbrella of the Space Development Agency.

Out of the shadows

While SpaceX’s role isn’t mentioned explicitly in the Pentagon’s budget documents, the MILNET program is already on the books, and SpaceX is the lead contractor. It has been made public in recent months, after years of secrecy, although many details remain unclear. Managed in a partnership between the Space Force and the National Reconnaissance Office (NRO), MILNET is designed to use military-grade versions of Starlink Internet satellites to create a “hybrid mesh network” the military can rely on for a wide range of applications.

The military version of the Starlink platform is called Starshield. SpaceX has already launched nearly 200 Starshield satellites for the NRO, which uses them for intelligence, surveillance, and reconnaissance missions.

At an industry conference last month, the Space Force commander in charge of operating the military’s communications satellites revealed new information about MILNET, according to a report by Breaking Defense. The network uses SpaceX-made user terminals with additional encryption to connect with Starshield satellites in orbit.

Col. Jeff Weisler, commander of a Space Force unit called Delta 8, said MILNET will comprise some 480 satellites operated by SpaceX but overseen by a military mission director “who communicates to the contracted workforce to execute operations at the timing and tempo of warfighting.”

The Space Force has separate contracts with SpaceX to use the commercial Starlink service. MILNET’s dedicated constellation of more secure Starshield satellites is separate from Starlink, which now has more 7,000 satellites in space.

“We are completely relooking at how we’re going to operate that constellation of capabilities for the joint force, which is going to be significant because we’ve never had a DoD hybrid mesh network at LEO,” Weisler said last month.

So, the Pentagon already relies on SpaceX’s communication services, not to mention the company’s position as the leading launch provider for Space Force and NRO satellites. With MILNET’s new role as a potential replacement for the Space Development Agency’s data relay network, SpaceX’s satellites would become a cog in combat operations.

Gen. Chance Saltzman, chief of Space Operations in the US Space Force, looks on before testifying before a House Defense Subcommittee on May 6, 2025. Credit: Brendan Smialowski/AFP via Getty Images

The data transport layer, whether it’s SDA’s architecture or a commercial solution like Starshield, will “underpin” the Pentagon’s planned Golden Dome missile defense system, Saltzman said.

But it’s not just missiles. Data relay satellites in low-Earth orbit will also have a part in the Space Force’s initiatives to develop space-based platforms to track moving targets on the ground and in the air. Eventually, all Space Force satellites could have the ability to plug into MILNET to send their data to the ground.

A spokesperson for the Department of the Air Force, which includes the Space Force, told Air & Space Forces Magazine that the pLEO, or MILNET, constellation “will provide global, integrated, and resilient capabilities across the combat power, global mission data transport, and satellite communications mission areas.”

That all adds up to a lot of bits and bytes, and the Space Force’s need for data backhaul is only going to increase, according to Col. Robert Davis, head of the Space Sensing Directorate at Space Systems Command.

He said the SDA’s satellites will use onboard edge processing to create two-dimensional missile track solutions. Eventually, the SDA’s satellites will be capable of 3D data fusion with enough fidelity to generate a full targeting solution that could be transmitted directly to a weapons system for it to take action without needing any additional data processing on the ground.

“I think the compute [capability] is there,” Davis said Tuesday at an event hosted by the Mitchell Institute, an aerospace-focused think tank in Washington, DC. “Now, it’s a comm[unication] problem and some other technical integration challenges. But how do I do that 3D fusion on orbit? If I do 3D fusion on orbit, what does that allow me to do? How do I get low-latency comms to the shooter or to a weapon itself that’s in flight? So you can imagine the possibilities there.”

The possibilities include exploiting automation, artificial intelligence, and machine learning to sense, target, and strike an enemy vehicle—a truck, tank, airplane, ship, or missile—nearly instantaneously.

“If I’m on the edge doing 3D fusion, I’m less dependent on the ground and I can get around the globe with my mesh network,” Davis said. “There’s inherent resilience in the overall architecture—not just the space architecture, but the overall architecture—if the ground segment or link segment comes under attack.”

Questioning the plan

Military officials haven’t disclosed the cost of MILNET, either in its current form or in the future architecture envisioned by the Trump administration. For context, SDA has awarded fixed-price contracts worth more than $5.6 billion for approximately 340 data relay satellites in Tranches 1 and 2.

That comes out to roughly $16 million per spacecraft, at least an order of magnitude more expensive than a Starlink satellite coming off of SpaceX’s assembly line. Starshield satellites, with their secure communications capability, are presumably somewhat more expensive than an off-the-shelf Starlink.

Some former defense officials and lawmakers are uncomfortable with putting commercially operated satellites in the “kill chain,” the term military officials use for the process of identifying threats, making a targeting decision, and taking military action.

It isn’t clear yet whether SpaceX will operate the MILNET satellites in this new paradigm, but the company has a longstanding preference for doing so. SpaceX built a handful of tech demo satellites for the Space Development Agency a few years ago, but didn’t compete for subsequent SDA contracts. One reason for this, sources told Ars, is that the SDA operates its satellite constellation from government-run control centers.

Instead, the SDA chose L3Harris, Lockheed Martin, Northrop Grumman, Rocket Lab, Sierra Space, Terran Orbital, and York Space Systems to provide the next batches of missile tracking and data transport satellites. RTX, formerly known as Raytheon, withdrew from a contract after the company determined it couldn’t make money on the program.

The tracking satellites will carry different types of infrared sensors, some with wide fields of view to detect missile launches as they happen, and others with narrow-angle sensors to maintain custody of projectiles in flight. The data relay satellites will employ different frequencies and anti-jam waveforms to supply encrypted data to military forces on the ground.

This frame from a SpaceX video shows a stack of Starlink Internet satellites attached to the upper stage of a Falcon 9 rocket, moments after the launcher’s payload fairing is jettisoned. Credit: SpaceX

The Space Development Agency’s path hasn’t been free of problems. The companies the agency selected to build its spacecraft have faced delays, largely due to supply chain issues, and some government officials have worried the Army, Navy, Air Force, and Marine Corps aren’t ready to fully capitalize on the information streaming down from the SDA’s satellites.

The SDA hired SAIC, a government services firm, earlier this year with a $55 million deal to act as a program integrator with responsibility to bring together satellites from multiple contractors, keep them on schedule, and ensure they provide useful information once they’re in space.

SpaceX, on the other hand, is a vertically integrated company. It designs, builds, and launches its own Starlink and Starshield satellites. The only major components of SpaceX’s spy constellation for the NRO that the company doesn’t build in-house are the surveillance sensors, which come from Northrop Grumman.

Buying a service from SpaceX might save money and reduce the chances of further delays. But lawmakers argued there’s a risk in relying on a single company for something that could make or break real-time battlefield operations.

Sen. Chris Coons (D-Del.), ranking member of the Senate Appropriations Subcommittee on Defense, raised concerns that the Space Force is canceling a program with “robust competition and open standards” and replacing it with a network that is “sole-sourced to SpaceX.”

“This is a massive and important contract,” Coons said. “Doesn’t handing this to SpaceX make us dependent on their proprietary technology and avoid the very positive benefits of competition and open architecture?”

Later in the hearing, Sen. John Hoeven (R-N.D.) chimed in with his own warning about the Space Force’s dependence on contractors. Hoeven’s state is home to one of the SDA’s satellite control centers.

“We depend on the Air Force, the Space Force, the Department of Defense, and the other services, and we can’t be dependent on private enterprise when it comes to fighting a war, right? Would you agree with that?” Hoeven asked Saltzman.

“Absolutely, we can’t be dependent on it,” Saltzman replied.

Air Force Secretary Troy Meink said military officials haven’t settled on a procurement strategy. He didn’t mention SpaceX by name.

As we go forward, MILNET, the term, should not be taken as just a system,” Meink said. “How we field that going forward into the future is something that’s still under consideration, and we will look at the acquisition of that.”

An Air Force spokesperson confirmed the requirements and architecture for MILNET are still in development, according to Air & Space Forces Magazine. The spokesperson added that the department is “investigating” how to scale MILNET into a “multi-vendor satellite communication architecture that avoids vendor lock.”

This doesn’t sound all that different than the SDA’s existing technical approach for data relay, but it shifts more responsibility to commercial companies. While there’s still a lot we don’t know, contractors with existing mega-constellations would appear to have an advantage in winning big bucks under the Pentagon’s new plan.

There are other commercial low-Earth orbit constellations coming online, such as Amazon’s Project Kuiper broadband network, that could play a part in MILNET. However, if the Space Force is looking for a turnkey commercial solution, Starlink and Starshield are the only options available today, putting SpaceX in a strong position for a massive windfall.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Pentagon may put SpaceX at the center of a sensor-to-shooter targeting network Read More »

spacex-launches-military-satellites-tuned-to-track-hypersonic-missiles

SpaceX launches military satellites tuned to track hypersonic missiles

Trackers —

These satellites will participate in joint missile tracking exercises later this year.

SpaceX launched a Falcon 9 rocket Wednesday with six missile-tracking satellites for the US military.

Enlarge / SpaceX launched a Falcon 9 rocket Wednesday with six missile-tracking satellites for the US military.

Two prototype satellites for the Missile Defense Agency and four missile tracking satellites for the US Space Force rode a SpaceX Falcon 9 rocket into orbit Wednesday from Florida’s Space Coast.

These satellites are part of a new generation of spacecraft designed to track hypersonic missiles launched by China or Russia and perhaps emerging missile threats from Iran or North Korea, which are developing their own hypersonic weapons.

Hypersonic missiles are smaller and more maneuverable than conventional ballistic missiles, which the US military’s legacy missile defense satellites can detect when they launch. Infrared sensors on the military’s older-generation missile tracking satellites are tuned to pick out bright thermal signatures from missile exhaust.

The new threat paradigm

Hypersonic missiles represent a new challenge for the Space Force and the Missile Defense Agency (MDA). For one thing, ballistic missiles follow a predictable parabolic trajectory that takes them into space. Hypersonic missiles are smaller and comparatively dim, and they spend more time flying in Earth’s atmosphere. Their maneuverability makes them difficult to track.

A nearly 5-year-old military organization called the Space Development Agency (SDA) has launched 27 prototype satellites over the last year to prove the Pentagon’s concept for a constellation of hundreds of small, relatively low-cost spacecraft in low-Earth orbit. This new fleet of satellites, which the SDA calls the Proliferated Warfighter Space Architecture (PWSA), will eventually number hundreds of spacecraft to track missiles and relay data about their flight paths down to the ground. The tracking data will provide an early warning to those targeted by hypersonic missiles and help generate a firing solution for interceptors to shoot them down.

The SDA constellation combines conventional tactical radio links, laser inter-satellite communications, and wide-view infrared sensors. The agency, now part of the Space Force, plans to launch successive generations, or tranches, of small satellites, each introducing new technology. The SDA’s approach relies on commercially available spacecraft and sensor technology and will be more resilient to attack from an adversary than the military’s conventional space assets. Those legacy military satellites often cost hundreds of millions or billions of dollars apiece, with architectures that rely on small numbers of large satellites that might appear like a sitting duck to an adversary determined to inflict damage.

Four of the small SDA satellites and two larger spacecraft for the Missile Defense Agency were aboard a SpaceX Falcon 9 rocket when it lifted off from Cape Canaveral Space Force Station at 5: 30 pm EST (2230 UTC) Wednesday.

The rocket headed northeast from Cape Canaveral to place the six payloads into low-Earth orbit. Officials from the Space Force declared the launch a success later Wednesday evening.

The SDA’s four tracking satellites, built by L3Harris, are the last spacecraft the agency will launch in its prototype constellation, called Tranche 0. Beginning later this year, the SDA plans to kick off a rapid-fire launch campaign with SpaceX and United Launch Alliance to quickly build out its operational Tranche 1 constellation, with launches set to occur at one-month intervals to deploy approximately 150 satellites. Then, there will be a Tranche 2 constellation with more advanced sensor technologies.

The primary payloads aboard Wednesday’s launch were for the MDA. These two Hypersonic and Ballistic Tracking Space Sensor (HBTSS) satellites, one supplied by L3Harris and the other by Northrop Grumman, will demonstrate medium field-of-view sensors. Those sensors can’t cover as much territory as the SDA satellites but will provide more sensitive and detailed missile tracking data.

This illustration shows how the HBTSS satellites can track hypersonic missiles as they glide and maneuver through the atmosphere, evading detection by conventional missile tracking spacecraft, such as the Space Force's DSP and SBIRS satellites.

This illustration shows how the HBTSS satellites can track hypersonic missiles as they glide and maneuver through the atmosphere, evading detection by conventional missile tracking spacecraft, such as the Space Force’s DSP and SBIRS satellites.

“Our advanced satellites on orbit will bring the integrated and resilient missile warning and defense capabilities the US requires against adversaries developing more advanced maneuverable missiles,” said Christopher Kubasik, chairman and CEO of L3Harris. “L3Harris delivered this advanced missile tracking capability on behalf of MDA and SDA on orbit in just over three years after work was authorized to proceed. We are proud to be a critical part of the new space sensing architecture.”

The HBTSS satellites, valued at more than $300 million, and the SDA’s tracking prototypes will participate in joint military exercises in the coming months, where the wide-view SDA satellites will provide “cueing data” to the MDA’s HBTSS spacecraft. The narrower field of view of the HBTSS satellites can provide more specific, target-quality data to a ground-based interceptor, according to a report last year published by the Congressional Research Service. Future tranches, or generations, of SDA satellites will incorporate the medium field-of-view sensing capability flying on the MDA’s HBTSS satellites.

With SDA taking over the responsibility for making this technology operational, that will leave the MDA, which has historically flown its own missile tracking satellites, focused on next-generation sensor development, an MDA spokesperson told Ars.

Military officials decided only last year to place the four SDA satellites on the same launch as the MDA’s HBTSS mission. With all six satellites flying in the same orbital plane, there will be opportunities to see the same targets with both types of spacecraft and sensors. These targets may include scheduled US military missile tests or foreign launches.

“The intent to be able to work with cooperative and noncooperative targets to be able to do our demonstrations,” a senior SDA official said during a background briefing.

SpaceX launches military satellites tuned to track hypersonic missiles Read More »