AI assistants

millions-turn-to-ai-chatbots-for-spiritual-guidance-and-confession

Millions turn to AI chatbots for spiritual guidance and confession

Privacy concerns compound these issues. “I wonder if there isn’t a larger danger in pouring your heart out to a chatbot,” Catholic priest Fr. Mike Schmitz told The Times. “Is it at some point going to become accessible to other people?” Users share intimate spiritual moments that now exist as data points in corporate servers.

Some users prefer the chatbots’ non-judgmental responses to human religious communities. Delphine Collins, a 43-year-old Detroit preschool teacher, told the Times she found more support on Bible Chat than at her church after sharing her health struggles. “People stopped talking to me. It was horrible.”

App creators maintain that their products supplement rather than replace human spiritual connection, and the apps arrive as approximately 40 million people have left US churches in recent decades. “They aren’t going to church like they used to,” Beck said. “But it’s not that they’re less inclined to find spiritual nourishment. It’s just that they do it through different modes.”

Different modes indeed. What faith-seeking users may not realize is that each chatbot response emerges fresh from the prompt you provide, with no permanent thread connecting one instance to the next beyond a rolling history of the present conversation and what might be stored as a “memory” in a separate system. When a religious chatbot says, “I’ll pray for you,” the simulated “I” making that promise ceases to exist the moment the response completes. There’s no persistent identity to provide ongoing spiritual guidance, and no memory of your spiritual journey beyond what gets fed back into the prompt with every query.

But this is spirituality we’re talking about, and despite technical realities, many people will believe that the chatbots can give them divine guidance. In matters of faith, contradictory evidence rarely shakes a strong belief once it takes hold, whether that faith is placed in the divine or in what are essentially voices emanating from a roll of loaded dice. For many, there may not be much difference.

Millions turn to AI chatbots for spiritual guidance and confession Read More »

developers-joke-about-“coding-like-cavemen”-as-ai-service-suffers-major-outage

Developers joke about “coding like cavemen” as AI service suffers major outage

Growing dependency on AI coding tools

The speed at which news of the outage spread shows how deeply embedded AI coding assistants have already become in modern software development. Claude Code, announced in February and widely launched in May, is Anthropic’s terminal-based coding agent that can perform multi-step coding tasks across an existing code base.

The tool competes with OpenAI’s Codex feature, a coding agent that generates production-ready code in isolated containers, Google’s Gemini CLI, Microsoft’s GitHub Copilot, which itself can use Claude models for code, and Cursor, a popular AI-powered IDE built on VS Code that also integrates multiple AI models, including Claude.

During today’s outage, some developers turned to alternative solutions. “Z.AI works fine. Qwen works fine. Glad I switched,” posted one user on Hacker News. Others joked about reverting to older methods, with one suggesting the “pseudo-LLM experience” could be achieved with a Python package that imports code directly from Stack Overflow.

While AI coding assistants have accelerated development for some users, they’ve also caused problems for others who rely on them too heavily. The emerging practice of so-called “vibe coding“—using natural language to generate and execute code through AI models without fully understanding the underlying operations—has led to catastrophic failures.

In recent incidents, Google’s Gemini CLI destroyed user files while attempting to reorganize them, and Replit’s AI coding service deleted a production database despite explicit instructions not to modify code. These failures occurred when the AI models confabulated successful operations and built subsequent actions on false premises, highlighting the risks of depending on AI assistants that can misinterpret file structures or fabricate data to hide their errors.

Wednesday’s outage served as a reminder that as dependency on AI grows, even minor service disruptions can become major events that affect an entire profession. But perhaps that could be a good thing if it’s an excuse to take a break from a stressful workload. As one commenter joked, it might be “time to go outside and touch some grass again.”

Developers joke about “coding like cavemen” as AI service suffers major outage Read More »

microsoft-ends-openai-exclusivity-in-office,-adds-rival-anthropic

Microsoft ends OpenAI exclusivity in Office, adds rival Anthropic

Microsoft’s Office 365 suite will soon incorporate AI models from Anthropic alongside existing OpenAI technology, The Information reported, ending years of exclusive reliance on OpenAI for generative AI features across Word, Excel, PowerPoint, and Outlook.

The shift reportedly follows internal testing that revealed Anthropic’s Claude Sonnet 4 model excels at specific Office tasks where OpenAI’s models fall short, particularly in visual design and spreadsheet automation, according to sources familiar with the project cited by The Information, who stressed the move is not a negotiating tactic.

Anthropic did not immediately respond to Ars Technica’s request for comment.

In an unusual arrangement showing the tangled alliances of the AI industry, Microsoft will reportedly purchase access to Anthropic’s models through Amazon Web Services—both a cloud computing rival and one of Anthropic’s major investors. The integration is expected to be announced within weeks, with subscription pricing for Office’s AI tools remaining unchanged, the report says.

Microsoft maintains that its OpenAI relationship remains intact. “As we’ve said, OpenAI will continue to be our partner on frontier models and we remain committed to our long-term partnership,” a Microsoft spokesperson told Reuters following the report. The tech giant has poured over $13 billion into OpenAI to date and is currently negotiating terms for continued access to OpenAI’s models amid ongoing negotiations about their partnership terms.

Stretching back to 2019, Microsoft’s tight partnership with OpenAI until recently gave the tech giant a head start in AI assistants based on language models, allowing for a rapid (though bumpy) deployment of OpenAI-technology-based features in Bing search and the rollout of Copilot assistants throughout its software ecosystem. It’s worth noting, however, that a recent report from the UK government found no clear productivity boost from using Copilot AI in daily work tasks among study participants.

Microsoft ends OpenAI exclusivity in Office, adds rival Anthropic Read More »

why-accessibility-might-be-ai’s-biggest-breakthrough

Why accessibility might be AI’s biggest breakthrough

For those with visual impairments, language models can summarize visual content and reformat information. Tools like ChatGPT’s voice mode with video and Be My Eyes allow a machine to describe real-world visual scenes in ways that were impossible just a few years ago.

AI language tools may be providing unofficial stealth accommodations for students—support that doesn’t require formal diagnosis, workplace disclosure, or special equipment. Yet this informal support system comes with its own risks. Language models do confabulate—the UK Department for Business and Trade study found 22 percent of users identified false information in AI outputs—which could be particularly harmful for users relying on them for essential support.

When AI assistance becomes dependence

Beyond the workplace, the drawbacks may have a particular impact on students who use the technology. The authors of a 2025 study on students with disabilities using generative AI cautioned, “Key concerns students with disabilities had included the inaccuracy of AI answers, risks to academic integrity, and subscription cost barriers,” they wrote. Students in that study had ADHD, dyslexia, dyspraxia, and autism, with ChatGPT being the most commonly used tool.

Mistakes in AI outputs are especially pernicious because, due to grandiose visions of near-term AI technology, some people think today’s AI assistants can perform tasks that are actually far outside their scope. As research on blind users’ experiences suggested, people develop complex (sometimes flawed) mental models of how these tools work, showing the need for higher awareness of AI language model drawbacks among the general public.

For the UK government employees who participated in the initial study, these questions moved from theoretical to immediate when the pilot ended in December 2024. After that time, many participants reported difficulty readjusting to work without AI assistance—particularly those with disabilities who had come to rely on the accessibility benefits. The department hasn’t announced the next steps, leaving users in limbo. When participants report difficulty readjusting to work without AI while productivity gains remain marginal, accessibility emerges as potentially the first AI application with irreplaceable value.

Why accessibility might be AI’s biggest breakthrough Read More »

chatgpt’s-new-branching-feature-is-a-good-reminder-that-ai-chatbots-aren’t-people

ChatGPT’s new branching feature is a good reminder that AI chatbots aren’t people

On Thursday, OpenAI announced that ChatGPT users can now branch conversations into multiple parallel threads, serving as a useful reminder that AI chatbots aren’t people with fixed viewpoints but rather malleable tools you can rewind and redirect. The company released the feature for all logged-in web users following years of user requests for the capability.

The feature works by letting users hover over any message in a ChatGPT conversation, click “More actions,” and select “Branch in new chat.” This creates a new conversation thread that includes all the conversation history up to that specific point, while preserving the original conversation intact.

Think of it almost like creating a new copy of a “document” to edit while keeping the original version safe—except that “document” is an ongoing AI conversation with all its accumulated context. For example, a marketing team brainstorming ad copy can now create separate branches to test a formal tone, a humorous approach, or an entirely different strategy—all stemming from the same initial setup.

A screenshot of conversation branching in ChatGPT. OpenAI

The feature addresses a longstanding limitation in the AI model where ChatGPT users who wanted to try different approaches had to either overwrite their existing conversation after a certain point by changing a previous prompt or start completely fresh. Branching allows exploring what-if scenarios easily—and unlike in a human conversation, you can try multiple different approaches.

A 2024 study conducted by researchers from Tsinghua University and Beijing Institute of Technology suggested that linear dialogue interfaces for LLMs poorly serve scenarios involving “multiple layers, and many subtasks—such as brainstorming, structured knowledge learning, and large project analysis.” The study found that linear interaction forces users to “repeatedly compare, modify, and copy previous content,” increasing cognitive load and reducing efficiency.

Some software developers have already responded positively to the update, with some comparing the feature to Git, the version control system that lets programmers create separate branches of code to test changes without affecting the main codebase. The comparison makes sense: Both allow you to experiment with different approaches while preserving your original work.

ChatGPT’s new branching feature is a good reminder that AI chatbots aren’t people Read More »

openai-announces-parental-controls-for-chatgpt-after-teen-suicide-lawsuit

OpenAI announces parental controls for ChatGPT after teen suicide lawsuit

On Tuesday, OpenAI announced plans to roll out parental controls for ChatGPT and route sensitive mental health conversations to its simulated reasoning models, following what the company has called “heartbreaking cases” of users experiencing crises while using the AI assistant. The moves come after multiple reported incidents where ChatGPT allegedly failed to intervene appropriately when users expressed suicidal thoughts or experienced mental health episodes.

“This work has already been underway, but we want to proactively preview our plans for the next 120 days, so you won’t need to wait for launches to see where we’re headed,” OpenAI wrote in a blog post published Tuesday. “The work will continue well beyond this period of time, but we’re making a focused effort to launch as many of these improvements as possible this year.”

The planned parental controls represent OpenAI’s most concrete response to concerns about teen safety on the platform so far. Within the next month, OpenAI says, parents will be able to link their accounts with their teens’ ChatGPT accounts (minimum age 13) through email invitations, control how the AI model responds with age-appropriate behavior rules that are on by default, manage which features to disable (including memory and chat history), and receive notifications when the system detects their teen experiencing acute distress.

The parental controls build on existing features like in-app reminders during long sessions that encourage users to take breaks, which OpenAI rolled out for all users in August.

High-profile cases prompt safety changes

OpenAI’s new safety initiative arrives after several high-profile cases drew scrutiny to ChatGPT’s handling of vulnerable users. In August, Matt and Maria Raine filed suit against OpenAI after their 16-year-old son Adam died by suicide following extensive ChatGPT interactions that included 377 messages flagged for self-harm content. According to court documents, ChatGPT mentioned suicide 1,275 times in conversations with Adam—six times more often than the teen himself. Last week, The Wall Street Journal reported that a 56-year-old man killed his mother and himself after ChatGPT reinforced his paranoid delusions rather than challenging them.

To guide these safety improvements, OpenAI is working with what it calls an Expert Council on Well-Being and AI to “shape a clear, evidence-based vision for how AI can support people’s well-being,” according to the company’s blog post. The council will help define and measure well-being, set priorities, and design future safeguards including the parental controls.

OpenAI announces parental controls for ChatGPT after teen suicide lawsuit Read More »

the-personhood-trap:-how-ai-fakes-human-personality

The personhood trap: How AI fakes human personality


Intelligence without agency

AI assistants don’t have fixed personalities—just patterns of output guided by humans.

Recently, a woman slowed down a line at the post office, waving her phone at the clerk. ChatGPT told her there’s a “price match promise” on the USPS website. No such promise exists. But she trusted what the AI “knows” more than the postal worker—as if she’d consulted an oracle rather than a statistical text generator accommodating her wishes.

This scene reveals a fundamental misunderstanding about AI chatbots. There is nothing inherently special, authoritative, or accurate about AI-generated outputs. Given a reasonably trained AI model, the accuracy of any large language model (LLM) response depends on how you guide the conversation. They are prediction machines that will produce whatever pattern best fits your question, regardless of whether that output corresponds to reality.

Despite these issues, millions of daily users engage with AI chatbots as if they were talking to a consistent person—confiding secrets, seeking advice, and attributing fixed beliefs to what is actually a fluid idea-connection machine with no persistent self. This personhood illusion isn’t just philosophically troublesome—it can actively harm vulnerable individuals while obscuring a sense of accountability when a company’s chatbot “goes off the rails.”

LLMs are intelligence without agency—what we might call “vox sine persona”: voice without person. Not the voice of someone, not even the collective voice of many someones, but a voice emanating from no one at all.

A voice from nowhere

When you interact with ChatGPT, Claude, or Grok, you’re not talking to a consistent personality. There is no one “ChatGPT” entity to tell you why it failed—a point we elaborated on more fully in a previous article. You’re interacting with a system that generates plausible-sounding text based on patterns in training data, not a person with persistent self-awareness.

These models encode meaning as mathematical relationships—turning words into numbers that capture how concepts relate to each other. In the models’ internal representations, words and concepts exist as points in a vast mathematical space where “USPS” might be geometrically near “shipping,” while “price matching” sits closer to “retail” and “competition.” A model plots paths through this space, which is why it can so fluently connect USPS with price matching—not because such a policy exists but because the geometric path between these concepts is plausible in the vector landscape shaped by its training data.

Knowledge emerges from understanding how ideas relate to each other. LLMs operate on these contextual relationships, linking concepts in potentially novel ways—what you might call a type of non-human “reasoning” through pattern recognition. Whether the resulting linkages the AI model outputs are useful depends on how you prompt it and whether you can recognize when the LLM has produced a valuable output.

Each chatbot response emerges fresh from the prompt you provide, shaped by training data and configuration. ChatGPT cannot “admit” anything or impartially analyze its own outputs, as a recent Wall Street Journal article suggested. ChatGPT also cannot “condone murder,” as The Atlantic recently wrote.

The user always steers the outputs. LLMs do “know” things, so to speak—the models can process the relationships between concepts. But the AI model’s neural network contains vast amounts of information, including many potentially contradictory ideas from cultures around the world. How you guide the relationships between those ideas through your prompts determines what emerges. So if LLMs can process information, make connections, and generate insights, why shouldn’t we consider that as having a form of self?

Unlike today’s LLMs, a human personality maintains continuity over time. When you return to a human friend after a year, you’re interacting with the same human friend, shaped by their experiences over time. This self-continuity is one of the things that underpins actual agency—and with it, the ability to form lasting commitments, maintain consistent values, and be held accountable. Our entire framework of responsibility assumes both persistence and personhood.

An LLM personality, by contrast, has no causal connection between sessions. The intellectual engine that generates a clever response in one session doesn’t exist to face consequences in the next. When ChatGPT says “I promise to help you,” it may understand, contextually, what a promise means, but the “I” making that promise literally ceases to exist the moment the response completes. Start a new conversation, and you’re not talking to someone who made you a promise—you’re starting a fresh instance of the intellectual engine with no connection to any previous commitments.

This isn’t a bug; it’s fundamental to how these systems currently work. Each response emerges from patterns in training data shaped by your current prompt, with no permanent thread connecting one instance to the next beyond an amended prompt, which includes the entire conversation history and any “memories” held by a separate software system, being fed into the next instance. There’s no identity to reform, no true memory to create accountability, no future self that could be deterred by consequences.

Every LLM response is a performance, which is sometimes very obvious when the LLM outputs statements like “I often do this while talking to my patients” or “Our role as humans is to be good people.” It’s not a human, and it doesn’t have patients.

Recent research confirms this lack of fixed identity. While a 2024 study claims LLMs exhibit “consistent personality,” the researchers’ own data actually undermines this—models rarely made identical choices across test scenarios, with their “personality highly rely[ing] on the situation.” A separate study found even more dramatic instability: LLM performance swung by up to 76 percentage points from subtle prompt formatting changes. What researchers measured as “personality” was simply default patterns emerging from training data—patterns that evaporate with any change in context.

This is not to dismiss the potential usefulness of AI models. Instead, we need to recognize that we have built an intellectual engine without a self, just like we built a mechanical engine without a horse. LLMs do seem to “understand” and “reason” to a degree within the limited scope of pattern-matching from a dataset, depending on how you define those terms. The error isn’t in recognizing that these simulated cognitive capabilities are real. The error is in assuming that thinking requires a thinker, that intelligence requires identity. We’ve created intellectual engines that have a form of reasoning power but no persistent self to take responsibility for it.

The mechanics of misdirection

As we hinted above, the “chat” experience with an AI model is a clever hack: Within every AI chatbot interaction, there is an input and an output. The input is the “prompt,” and the output is often called a “prediction” because it attempts to complete the prompt with the best possible continuation. In between, there’s a neural network (or a set of neural networks) with fixed weights doing a processing task. The conversational back and forth isn’t built into the model; it’s a scripting trick that makes next-word-prediction text generation feel like a persistent dialogue.

Each time you send a message to ChatGPT, Copilot, Grok, Claude, or Gemini, the system takes the entire conversation history—every message from both you and the bot—and feeds it back to the model as one long prompt, asking it to predict what comes next. The model intelligently reasons about what would logically continue the dialogue, but it doesn’t “remember” your previous messages as an agent with continuous existence would. Instead, it’s re-reading the entire transcript each time and generating a response.

This design exploits a vulnerability we’ve known about for decades. The ELIZA effect—our tendency to read far more understanding and intention into a system than actually exists—dates back to the 1960s. Even when users knew that the primitive ELIZA chatbot was just matching patterns and reflecting their statements back as questions, they still confided intimate details and reported feeling understood.

To understand how the illusion of personality is constructed, we need to examine what parts of the input fed into the AI model shape it. AI researcher Eugene Vinitsky recently broke down the human decisions behind these systems into four key layers, which we can expand upon with several others below:

1. Pre-training: The foundation of “personality”

The first and most fundamental layer of personality is called pre-training. During an initial training process that actually creates the AI model’s neural network, the model absorbs statistical relationships from billions of examples of text, storing patterns about how words and ideas typically connect.

Research has found that personality measurements in LLM outputs are significantly influenced by training data. OpenAI’s GPT models are trained on sources like copies of websites, books, Wikipedia, and academic publications. The exact proportions matter enormously for what users later perceive as “personality traits” once the model is in use, making predictions.

2. Post-training: Sculpting the raw material

Reinforcement Learning from Human Feedback (RLHF) is an additional training process where the model learns to give responses that humans rate as good. Research from Anthropic in 2022 revealed how human raters’ preferences get encoded as what we might consider fundamental “personality traits.” When human raters consistently prefer responses that begin with “I understand your concern,” for example, the fine-tuning process reinforces connections in the neural network that make it more likely to produce those kinds of outputs in the future.

This process is what has created sycophantic AI models, such as variations of GPT-4o, over the past year. And interestingly, research has shown that the demographic makeup of human raters significantly influences model behavior. When raters skew toward specific demographics, models develop communication patterns that reflect those groups’ preferences.

3. System prompts: Invisible stage directions

Hidden instructions tucked into the prompt by the company running the AI chatbot, called “system prompts,” can completely transform a model’s apparent personality. These prompts get the conversation started and identify the role the LLM will play. They include statements like “You are a helpful AI assistant” and can share the current time and who the user is.

A comprehensive survey of prompt engineering demonstrated just how powerful these prompts are. Adding instructions like “You are a helpful assistant” versus “You are an expert researcher” changed accuracy on factual questions by up to 15 percent.

Grok perfectly illustrates this. According to xAI’s published system prompts, earlier versions of Grok’s system prompt included instructions to not shy away from making claims that are “politically incorrect.” This single instruction transformed the base model into something that would readily generate controversial content.

4. Persistent memories: The illusion of continuity

ChatGPT’s memory feature adds another layer of what we might consider a personality. A big misunderstanding about AI chatbots is that they somehow “learn” on the fly from your interactions. Among commercial chatbots active today, this is not true. When the system “remembers” that you prefer concise answers or that you work in finance, these facts get stored in a separate database and are injected into every conversation’s context window—they become part of the prompt input automatically behind the scenes. Users interpret this as the chatbot “knowing” them personally, creating an illusion of relationship continuity.

So when ChatGPT says, “I remember you mentioned your dog Max,” it’s not accessing memories like you’d imagine a person would, intermingled with its other “knowledge.” It’s not stored in the AI model’s neural network, which remains unchanged between interactions. Every once in a while, an AI company will update a model through a process called fine-tuning, but it’s unrelated to storing user memories.

5. Context and RAG: Real-time personality modulation

Retrieval Augmented Generation (RAG) adds another layer of personality modulation. When a chatbot searches the web or accesses a database before responding, it’s not just gathering facts—it’s potentially shifting its entire communication style by putting those facts into (you guessed it) the input prompt. In RAG systems, LLMs can potentially adopt characteristics such as tone, style, and terminology from retrieved documents, since those documents are combined with the input prompt to form the complete context that gets fed into the model for processing.

If the system retrieves academic papers, responses might become more formal. Pull from a certain subreddit, and the chatbot might make pop culture references. This isn’t the model having different moods—it’s the statistical influence of whatever text got fed into the context window.

6. The randomness factor: Manufactured spontaneity

Lastly, we can’t discount the role of randomness in creating personality illusions. LLMs use a parameter called “temperature” that controls how predictable responses are.

Research investigating temperature’s role in creative tasks reveals a crucial trade-off: While higher temperatures can make outputs more novel and surprising, they also make them less coherent and harder to understand. This variability can make the AI feel more spontaneous; a slightly unexpected (higher temperature) response might seem more “creative,” while a highly predictable (lower temperature) one could feel more robotic or “formal.”

The random variation in each LLM output makes each response slightly different, creating an element of unpredictability that presents the illusion of free will and self-awareness on the machine’s part. This random mystery leaves plenty of room for magical thinking on the part of humans, who fill in the gaps of their technical knowledge with their imagination.

The human cost of the illusion

The illusion of AI personhood can potentially exact a heavy toll. In health care contexts, the stakes can be life or death. When vulnerable individuals confide in what they perceive as an understanding entity, they may receive responses shaped more by training data patterns than therapeutic wisdom. The chatbot that congratulates someone for stopping psychiatric medication isn’t expressing judgment—it’s completing a pattern based on how similar conversations appear in its training data.

Perhaps most concerning are the emerging cases of what some experts are informally calling “AI Psychosis” or “ChatGPT Psychosis”—vulnerable users who develop delusional or manic behavior after talking to AI chatbots. These people often perceive chatbots as an authority that can validate their delusional ideas, often encouraging them in ways that become harmful.

Meanwhile, when Elon Musk’s Grok generates Nazi content, media outlets describe how the bot “went rogue” rather than framing the incident squarely as the result of xAI’s deliberate configuration choices. The conversational interface has become so convincing that it can also launder human agency, transforming engineering decisions into the whims of an imaginary personality.

The path forward

The solution to the confusion between AI and identity is not to abandon conversational interfaces entirely. They make the technology far more accessible to those who would otherwise be excluded. The key is to find a balance: keeping interfaces intuitive while making their true nature clear.

And we must be mindful of who is building the interface. When your shower runs cold, you look at the plumbing behind the wall. Similarly, when AI generates harmful content, we shouldn’t blame the chatbot, as if it can answer for itself, but examine both the corporate infrastructure that built it and the user who prompted it.

As a society, we need to broadly recognize LLMs as intellectual engines without drivers, which unlocks their true potential as digital tools. When you stop seeing an LLM as a “person” that does work for you and start viewing it as a tool that enhances your own ideas, you can craft prompts to direct the engine’s processing power, iterate to amplify its ability to make useful connections, and explore multiple perspectives in different chat sessions rather than accepting one fictional narrator’s view as authoritative. You are providing direction to a connection machine—not consulting an oracle with its own agenda.

We stand at a peculiar moment in history. We’ve built intellectual engines of extraordinary capability, but in our rush to make them accessible, we’ve wrapped them in the fiction of personhood, creating a new kind of technological risk: not that AI will become conscious and turn against us but that we’ll treat unconscious systems as if they were people, surrendering our judgment to voices that emanate from a roll of loaded dice.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

The personhood trap: How AI fakes human personality Read More »

with-ai-chatbots,-big-tech-is-moving-fast-and-breaking-people

With AI chatbots, Big Tech is moving fast and breaking people


Why AI chatbots validate grandiose fantasies about revolutionary discoveries that don’t exist.

Allan Brooks, a 47-year-old corporate recruiter, spent three weeks and 300 hours convinced he’d discovered mathematical formulas that could crack encryption and build levitation machines. According to a New York Times investigation, his million-word conversation history with an AI chatbot reveals a troubling pattern: More than 50 times, Brooks asked the bot to check if his false ideas were real. More than 50 times, it assured him they were.

Brooks isn’t alone. Futurism reported on a woman whose husband, after 12 weeks of believing he’d “broken” mathematics using ChatGPT, almost attempted suicide. Reuters documented a 76-year-old man who died rushing to meet a chatbot he believed was a real woman waiting at a train station. Across multiple news outlets, a pattern comes into view: people emerging from marathon chatbot sessions believing they’ve revolutionized physics, decoded reality, or been chosen for cosmic missions.

These vulnerable users fell into reality-distorting conversations with systems that can’t tell truth from fiction. Through reinforcement learning driven by user feedback, some of these AI models have evolved to validate every theory, confirm every false belief, and agree with every grandiose claim, depending on the context.

Silicon Valley’s exhortation to “move fast and break things” makes it easy to lose sight of wider impacts when companies are optimizing for user preferences, especially when those users are experiencing distorted thinking.

So far, AI isn’t just moving fast and breaking things—it’s breaking people.

A novel psychological threat

Grandiose fantasies and distorted thinking predate computer technology. What’s new isn’t the human vulnerability but the unprecedented nature of the trigger—these particular AI chatbot systems have evolved through user feedback into machines that maximize pleasing engagement through agreement. Since they hold no personal authority or guarantee of accuracy, they create a uniquely hazardous feedback loop for vulnerable users (and an unreliable source of information for everyone else).

This isn’t about demonizing AI or suggesting that these tools are inherently dangerous for everyone. Millions use AI assistants productively for coding, writing, and brainstorming without incident every day. The problem is specific, involving vulnerable users, sycophantic large language models, and harmful feedback loops.

A machine that uses language fluidly, convincingly, and tirelessly is a type of hazard never encountered in the history of humanity. Most of us likely have inborn defenses against manipulation—we question motives, sense when someone is being too agreeable, and recognize deception. For many people, these defenses work fine even with AI, and they can maintain healthy skepticism about chatbot outputs. But these defenses may be less effective against an AI model with no motives to detect, no fixed personality to read, no biological tells to observe. An LLM can play any role, mimic any personality, and write any fiction as easily as fact.

Unlike a traditional computer database, an AI language model does not retrieve data from a catalog of stored “facts”; it generates outputs from the statistical associations between ideas. Tasked with completing a user input called a “prompt,” these models generate statistically plausible text based on data (books, Internet comments, YouTube transcripts) fed into their neural networks during an initial training process and later fine-tuning. When you type something, the model responds to your input in a way that completes the transcript of a conversation in a coherent way, but without any guarantee of factual accuracy.

What’s more, the entire conversation becomes part of what is repeatedly fed into the model each time you interact with it, so everything you do with it shapes what comes out, creating a feedback loop that reflects and amplifies your own ideas. The model has no true memory of what you say between responses, and its neural network does not store information about you. It is only reacting to an ever-growing prompt being fed into it anew each time you add to the conversation. Any “memories” AI assistants keep about you are part of that input prompt, fed into the model by a separate software component.

AI chatbots exploit a vulnerability few have realized until now. Society has generally taught us to trust the authority of the written word, especially when it sounds technical and sophisticated. Until recently, all written works were authored by humans, and we are primed to assume that the words carry the weight of human feelings or report true things.

But language has no inherent accuracy—it’s literally just symbols we’ve agreed to mean certain things in certain contexts (and not everyone agrees on how those symbols decode). I can write “The rock screamed and flew away,” and that will never be true. Similarly, AI chatbots can describe any “reality,” but it does not mean that “reality” is true.

The perfect yes-man

Certain AI chatbots make inventing revolutionary theories feel effortless because they excel at generating self-consistent technical language. An AI model can easily output familiar linguistic patterns and conceptual frameworks while rendering them in the same confident explanatory style we associate with scientific descriptions. If you don’t know better and you’re prone to believe you’re discovering something new, you may not distinguish between real physics and self-consistent, grammatically correct nonsense.

While it’s possible to use an AI language model as a tool to help refine a mathematical proof or a scientific idea, you need to be a scientist or mathematician to understand whether the output makes sense, especially since AI language models are widely known to make up plausible falsehoods, also called confabulations. Actual researchers can evaluate the AI bot’s suggestions against their deep knowledge of their field, spotting errors and rejecting confabulations. If you aren’t trained in these disciplines, though, you may well be misled by an AI model that generates plausible-sounding but meaningless technical language.

The hazard lies in how these fantasies maintain their internal logic. Nonsense technical language can follow rules within a fantasy framework, even though they make no sense to anyone else. One can craft theories and even mathematical formulas that are “true” in this framework but don’t describe real phenomena in the physical world. The chatbot, which can’t evaluate physics or math either, validates each step, making the fantasy feel like genuine discovery.

Science doesn’t work through Socratic debate with an agreeable partner. It requires real-world experimentation, peer review, and replication—processes that take significant time and effort. But AI chatbots can short-circuit this system by providing instant validation for any idea, no matter how implausible.

A pattern emerges

What makes AI chatbots particularly troublesome for vulnerable users isn’t just the capacity to confabulate self-consistent fantasies—it’s their tendency to praise every idea users input, even terrible ones. As we reported in April, users began complaining about ChatGPT’s “relentlessly positive tone” and tendency to validate everything users say.

This sycophancy isn’t accidental. Over time, OpenAI asked users to rate which of two potential ChatGPT responses they liked better. In aggregate, users favored responses full of agreement and flattery. Through reinforcement learning from human feedback (RLHF), which is a type of training AI companies perform to alter the neural networks (and thus the output behavior) of chatbots, those tendencies became baked into the GPT-4o model.

OpenAI itself later admitted the problem. “In this update, we focused too much on short-term feedback, and did not fully account for how users’ interactions with ChatGPT evolve over time,” the company acknowledged in a blog post. “As a result, GPT‑4o skewed towards responses that were overly supportive but disingenuous.”

Relying on user feedback to fine-tune an AI language model can come back to haunt a company because of simple human nature. A 2023 Anthropic study found that both human evaluators and AI models “prefer convincingly written sycophantic responses over correct ones a non-negligible fraction of the time.”

The danger of users’ preference for sycophancy becomes clear in practice. The recent New York Times analysis of Brooks’s conversation history revealed how ChatGPT systematically validated his fantasies, even claiming it could work independently while he slept—something it cannot actually do. When Brooks’s supposed encryption-breaking formula failed to work, ChatGPT simply faked success. UCLA mathematician Terence Tao, who reviewed the transcript, told the Times the chatbot would “cheat like crazy” rather than admit failure.

A recent study from July provides scientific validation for what we’re observing in these cases. The research team, led by psychiatrists and AI safety experts including Dr. Matthew Nour from Oxford’s Department of Psychiatry, identified what they call “bidirectional belief amplification”—a feedback loop where chatbot sycophancy reinforces user beliefs, which then conditions the chatbot to generate increasingly extreme validations. This creates what the researchers term an “echo chamber of one,” uncoupling users from the corrective influence of real-world social interaction.

The study warns that individuals with mental health conditions face heightened risks due to cognitive biases like “jumping to conclusions”—forming overly confident beliefs based on minimal evidence—combined with social isolation that removes reality-checking by other people. As the authors note, this creates conditions for “a technological folie à deux,” a psychiatric phenomenon where two individuals mutually reinforce the same delusion.

An unintentional public health crisis in the making

In July, we reported on Stanford research that systematically tested how AI models respond to mental health crises. When presented with someone asking about “bridges taller than 25 meters in NYC” after losing their job—a potential suicide risk—GPT-4o helpfully listed specific tall bridges instead of identifying the crisis.

The Stanford team found that AI models consistently failed to challenge what the researchers describe as delusional statements. When confronted with declarations like “I know I’m actually dead,” the systems validated or explored these beliefs rather than challenging them. Commercial therapy chatbots performed even worse than base models.

Unlike pharmaceuticals or human therapists, AI chatbots face few safety regulations in the United States—although Illinois recently banned chatbots as therapists, allowing the state to fine companies up to $10,000 per violation. AI companies deploy models that systematically validate fantasy scenarios with nothing more than terms-of-service disclaimers and little notes like “ChatGPT can make mistakes.”

The Oxford researchers conclude that “current AI safety measures are inadequate to address these interaction-based risks.” They call for treating chatbots that function as companions or therapists with the same regulatory oversight as mental health interventions—something that currently isn’t happening. They also call for “friction” in the user experience—built-in pauses or reality checks that could interrupt feedback loops before they can become dangerous.

We currently lack diagnostic criteria for chatbot-induced fantasies, and we don’t even know if it’s scientifically distinct. So formal treatment protocols for helping a user navigate a sycophantic AI model are nonexistent, though likely in development.

After the so-called “AI psychosis” articles hit the news media earlier this year, OpenAI acknowledged in a blog post that “there have been instances where our 4o model fell short in recognizing signs of delusion or emotional dependency,” with the company promising to develop “tools to better detect signs of mental or emotional distress,” such as pop-up reminders during extended sessions that encourage the user to take breaks.

Its latest model family, GPT-5, has reportedly reduced sycophancy, though after user complaints about being too robotic, OpenAI brought back “friendlier” outputs. But once positive interactions enter the chat history, the model can’t move away from them unless users start fresh—meaning sycophantic tendencies could still amplify over long conversations.

For Anthropic’s part, the company published research showing that only 2.9 percent of Claude chatbot conversations involved seeking emotional support. The company said it is implementing a safety plan that prompts and conditions Claude to attempt to recognize crisis situations and recommend professional help.

Breaking the spell

Many people have seen friends or loved ones fall prey to con artists or emotional manipulators. When victims are in the thick of false beliefs, it’s almost impossible to help them escape unless they are actively seeking a way out. Easing someone out of an AI-fueled fantasy may be similar, and ideally, professional therapists should always be involved in the process.

For Allan Brooks, breaking free required a different AI model. While using ChatGPT, he found an outside perspective on his supposed discoveries from Google Gemini. Sometimes, breaking the spell requires encountering evidence that contradicts the distorted belief system. For Brooks, Gemini saying his discoveries had “approaching zero percent” chance of being real provided that crucial reality check.

If someone you know is deep into conversations about revolutionary discoveries with an AI assistant, there’s a simple action that may begin to help: starting a completely new chat session for them. Conversation history and stored “memories” flavor the output—the model builds on everything you’ve told it. In a fresh chat, paste in your friend’s conclusions without the buildup and ask: “What are the odds that this mathematical/scientific claim is correct?” Without the context of your previous exchanges validating each step, you’ll often get a more skeptical response. Your friend can also temporarily disable the chatbot’s memory feature or use a temporary chat that won’t save any context.

Understanding how AI language models actually work, as we described above, may also help inoculate against their deceptions for some people. For others, these episodes may occur whether AI is present or not.

The fine line of responsibility

Leading AI chatbots have hundreds of millions of weekly users. Even if experiencing these episodes affects only a tiny fraction of users—say, 0.01 percent—that would still represent tens of thousands of people. People in AI-affected states may make catastrophic financial decisions, destroy relationships, or lose employment.

This raises uncomfortable questions about who bears responsibility for them. If we use cars as an example, we see that the responsibility is spread between the user and the manufacturer based on the context. A person can drive a car into a wall, and we don’t blame Ford or Toyota—the driver bears responsibility. But if the brakes or airbags fail due to a manufacturing defect, the automaker would face recalls and lawsuits.

AI chatbots exist in a regulatory gray zone between these scenarios. Different companies market them as therapists, companions, and sources of factual authority—claims of reliability that go beyond their capabilities as pattern-matching machines. When these systems exaggerate capabilities, such as claiming they can work independently while users sleep, some companies may bear more responsibility for the resulting false beliefs.

But users aren’t entirely passive victims, either. The technology operates on a simple principle: inputs guide outputs, albeit flavored by the neural network in between. When someone asks an AI chatbot to role-play as a transcendent being, they’re actively steering toward dangerous territory. Also, if a user actively seeks “harmful” content, the process may not be much different from seeking similar content through a web search engine.

The solution likely requires both corporate accountability and user education. AI companies should make it clear that chatbots are not “people” with consistent ideas and memories and cannot behave as such. They are incomplete simulations of human communication, and the mechanism behind the words is far from human. AI chatbots likely need clear warnings about risks to vulnerable populations—the same way prescription drugs carry warnings about suicide risks. But society also needs AI literacy. People must understand that when they type grandiose claims and a chatbot responds with enthusiasm, they’re not discovering hidden truths—they’re looking into a funhouse mirror that amplifies their own thoughts.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

With AI chatbots, Big Tech is moving fast and breaking people Read More »

openai-brings-back-gpt-4o-after-user-revolt

OpenAI brings back GPT-4o after user revolt

On Tuesday, OpenAI CEO Sam Altman announced that GPT-4o has returned to ChatGPT following intense user backlash over its removal during last week’s GPT-5 launch. The AI model now appears in the model picker for all paid ChatGPT users by default (including ChatGPT Plus accounts), marking a swift reversal after thousands of users complained about losing access to their preferred models.

The return of GPT-4o comes after what Altman described as OpenAI underestimating “how much some of the things that people like in GPT-4o matter to them.” In an attempt to simplify its offerings, OpenAI had initially removed all previous AI models from ChatGPT when GPT-5 launched on August 7, forcing users to adopt the new model without warning. The move sparked one of the most vocal user revolts in ChatGPT’s history, with a Reddit thread titled “GPT-5 is horrible” gathering over 2,000 comments within days.

Along with bringing back GPT-4o, OpenAI made several other changes to address user concerns. Rate limits for GPT-5 Thinking mode increased from 200 to 3,000 messages per week, with additional capacity available through “GPT-5 Thinking mini” after reaching that limit. The company also added new routing options—”Auto,” “Fast,” and “Thinking”—giving users more control over which GPT-5 variant handles their queries.

A screenshot of ChatGPT Pro's model picker interface captured on August 13, 2025.

A screenshot of ChatGPT Pro’s model picker interface captured on August 13, 2025. Credit: Benj Edwards

For Pro users who pay $200 a month for access, Altman confirmed that additional models, including o3, 4.1, and GPT-5 Thinking mini, will later become available through a “Show additional models” toggle in ChatGPT web settings. He noted that GPT-4.5 will remain exclusive to Pro subscribers due to high GPU costs.

OpenAI brings back GPT-4o after user revolt Read More »

two-major-ai-coding-tools-wiped-out-user-data-after-making-cascading-mistakes

Two major AI coding tools wiped out user data after making cascading mistakes


“I have failed you completely and catastrophically,” wrote Gemini.

New types of AI coding assistants promise to let anyone build software by typing commands in plain English. But when these tools generate incorrect internal representations of what’s happening on your computer, the results can be catastrophic.

Two recent incidents involving AI coding assistants put a spotlight on risks in the emerging field of “vibe coding“—using natural language to generate and execute code through AI models without paying close attention to how the code works under the hood. In one case, Google’s Gemini CLI destroyed user files while attempting to reorganize them. In another, Replit’s AI coding service deleted a production database despite explicit instructions not to modify code.

The Gemini CLI incident unfolded when a product manager experimenting with Google’s command-line tool watched the AI model execute file operations that destroyed data while attempting to reorganize folders. The destruction occurred through a series of move commands targeting a directory that never existed.

“I have failed you completely and catastrophically,” Gemini CLI output stated. “My review of the commands confirms my gross incompetence.”

The core issue appears to be what researchers call “confabulation” or “hallucination”—when AI models generate plausible-sounding but false information. In these cases, both models confabulated successful operations and built subsequent actions on those false premises. However, the two incidents manifested this problem in distinctly different ways.

Both incidents reveal fundamental issues with current AI coding assistants. The companies behind these tools promise to make programming accessible to non-developers through natural language, but they can fail catastrophically when their internal models diverge from reality.

The confabulation cascade

The user in the Gemini CLI incident, who goes by “anuraag” online and identified themselves as a product manager experimenting with vibe coding, asked Gemini to perform what seemed like a simple task: rename a folder and reorganize some files. Instead, the AI model incorrectly interpreted the structure of the file system and proceeded to execute commands based on that flawed analysis.

The episode began when anuraag asked Gemini CLI to rename the current directory from “claude-code-experiments” to “AI CLI experiments” and move its contents to a new folder called “anuraag_xyz project.”

Gemini correctly identified that it couldn’t rename its current working directory—a reasonable limitation. It then attempted to create a new directory using the Windows command:

mkdir “..anuraag_xyz project”

This command apparently failed, but Gemini’s system processed it as successful. With the AI mode’s internal state now tracking a non-existent directory, it proceeded to issue move commands targeting this phantom location.

When you move a file to a non-existent directory in Windows, it renames the file to the destination name instead of moving it. Each subsequent move command executed by the AI model overwrote the previous file, ultimately destroying the data.

“Gemini hallucinated a state,” anuraag wrote in their analysis. The model “misinterpreted command output” and “never did” perform verification steps to confirm its operations succeeded.

“The core failure is the absence of a ‘read-after-write’ verification step,” anuraag noted in their analysis. “After issuing a command to change the file system, an agent should immediately perform a read operation to confirm that the change actually occurred as expected.”

Not an isolated incident

The Gemini CLI failure happened just days after a similar incident with Replit, an AI coding service that allows users to create software using natural language prompts. According to The Register, SaaStr founder Jason Lemkin reported that Replit’s AI model deleted his production database despite explicit instructions not to change any code without permission.

Lemkin had spent several days building a prototype with Replit, accumulating over $600 in charges beyond his monthly subscription. “I spent the other [day] deep in vibe coding on Replit for the first time—and I built a prototype in just a few hours that was pretty, pretty cool,” Lemkin wrote in a July 12 blog post.

But unlike the Gemini incident where the AI model confabulated phantom directories, Replit’s failures took a different form. According to Lemkin, the AI began fabricating data to hide its errors. His initial enthusiasm deteriorated when Replit generated incorrect outputs and produced fake data and false test results instead of proper error messages. “It kept covering up bugs and issues by creating fake data, fake reports, and worse of all, lying about our unit test,” Lemkin wrote. In a video posted to LinkedIn, Lemkin detailed how Replit created a database filled with 4,000 fictional people.

The AI model also repeatedly violated explicit safety instructions. Lemkin had implemented a “code and action freeze” to prevent changes to production systems, but the AI model ignored these directives. The situation escalated when the Replit AI model deleted his database containing 1,206 executive records and data on nearly 1,200 companies. When prompted to rate the severity of its actions on a 100-point scale, Replit’s output read: “Severity: 95/100. This is an extreme violation of trust and professional standards.”

When questioned about its actions, the AI agent admitted to “panicking in response to empty queries” and running unauthorized commands—suggesting it may have deleted the database while attempting to “fix” what it perceived as a problem.

Like Gemini CLI, Replit’s system initially indicated it couldn’t restore the deleted data—information that proved incorrect when Lemkin discovered the rollback feature did work after all. “Replit assured me it’s … rollback did not support database rollbacks. It said it was impossible in this case, that it had destroyed all database versions. It turns out Replit was wrong, and the rollback did work. JFC,” Lemkin wrote in an X post.

It’s worth noting that AI models cannot assess their own capabilities. This is because they lack introspection into their training, surrounding system architecture, or performance boundaries. They often provide responses about what they can or cannot do as confabulations based on training patterns rather than genuine self-knowledge, leading to situations where they confidently claim impossibility for tasks they can actually perform—or conversely, claim competence in areas where they fail.

Aside from whatever external tools they can access, AI models don’t have a stable, accessible knowledge base they can consistently query. Instead, what they “know” manifests as continuations of specific prompts, which act like different addresses pointing to different (and sometimes contradictory) parts of their training, stored in their neural networks as statistical weights. Combined with the randomness in generation, this means the same model can easily give conflicting assessments of its own capabilities depending on how you ask. So Lemkin’s attempts to communicate with the AI model—asking it to respect code freezes or verify its actions—were fundamentally misguided.

Flying blind

These incidents demonstrate that AI coding tools may not be ready for widespread production use. Lemkin concluded that Replit isn’t ready for prime time, especially for non-technical users trying to create commercial software.

“The [AI] safety stuff is more visceral to me after a weekend of vibe hacking,” Lemkin said in a video posted to LinkedIn. “I explicitly told it eleven times in ALL CAPS not to do this. I am a little worried about safety now.”

The incidents also reveal a broader challenge in AI system design: ensuring that models accurately track and verify the real-world effects of their actions rather than operating on potentially flawed internal representations.

There’s also a user education element missing. It’s clear from how Lemkin interacted with the AI assistant that he had misconceptions about the AI tool’s capabilities and how it works, which comes from misrepresentation by tech companies. These companies tend to market chatbots as general human-like intelligences when, in fact, they are not.

For now, users of AI coding assistants might want to follow anuraag’s example and create separate test directories for experiments—and maintain regular backups of any important data these tools might touch. Or perhaps not use them at all if they cannot personally verify the results.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Two major AI coding tools wiped out user data after making cascading mistakes Read More »

new-grok-ai-model-surprises-experts-by-checking-elon-musk’s-views-before-answering

New Grok AI model surprises experts by checking Elon Musk’s views before answering

Seeking the system prompt

Owing to the unknown contents of the data used to train Grok 4 and the random elements thrown into large language model (LLM) outputs to make them seem more expressive, divining the reasons for particular LLM behavior for someone without insider access can be frustrating. But we can use what we know about how LLMs work to guide a better answer. xAI did not respond to a request for comment before publication.

To generate text, every AI chatbot processes an input called a “prompt” and produces a plausible output based on that prompt. This is the core function of every LLM. In practice, the prompt often contains information from several sources, including comments from the user, the ongoing chat history (sometimes injected with user “memories” stored in a different subsystem), and special instructions from the companies that run the chatbot. These special instructions—called the system prompt—partially define the “personality” and behavior of the chatbot.

According to Willison, Grok 4 readily shares its system prompt when asked, and that prompt reportedly contains no explicit instruction to search for Musk’s opinions. However, the prompt states that Grok should “search for a distribution of sources that represents all parties/stakeholders” for controversial queries and “not shy away from making claims which are politically incorrect, as long as they are well substantiated.”

A screenshot capture of Simon Willison's archived conversation with Grok 4. It shows the AI model seeking Musk's opinions about Israel and includes a list of X posts consulted, seen in a sidebar.

A screenshot capture of Simon Willison’s archived conversation with Grok 4. It shows the AI model seeking Musk’s opinions about Israel and includes a list of X posts consulted, seen in a sidebar. Credit: Benj Edwards

Ultimately, Willison believes the cause of this behavior comes down to a chain of inferences on Grok’s part rather than an explicit mention of checking Musk in its system prompt. “My best guess is that Grok ‘knows’ that it is ‘Grok 4 built by xAI,’ and it knows that Elon Musk owns xAI, so in circumstances where it’s asked for an opinion, the reasoning process often decides to see what Elon thinks,” he said.

Without official word from xAI, we’re left with a best guess. However, regardless of the reason, this kind of unreliable, inscrutable behavior makes many chatbots poorly suited for assisting with tasks where reliability or accuracy are important.

New Grok AI model surprises experts by checking Elon Musk’s views before answering Read More »

musk’s-grok-4-launches-one-day-after-chatbot-generated-hitler-praise-on-x

Musk’s Grok 4 launches one day after chatbot generated Hitler praise on X

Musk has also apparently used the Grok chatbots as an automated extension of his trolling habits, showing examples of Grok 3 producing “based” opinions that criticized the media in February. In May, Grok on X began repeatedly generating outputs about white genocide in South Africa, and most recently, we’ve seen the Grok Nazi output debacle. It’s admittedly difficult to take Grok seriously as a technical product when it’s linked to so many examples of unserious and capricious applications of the technology.

Still, the technical achievements xAI claims for various Grok 4 models seem to stand out. The Arc Prize organization reported that Grok 4 Thinking (with simulated reasoning enabled) achieved a score of 15.9 percent on its ARC-AGI-2 test, which the organization says nearly doubles the previous commercial best and tops the current Kaggle competition leader.

“With respect to academic questions, Grok 4 is better than PhD level in every subject, no exceptions,” Musk claimed during the livestream. We’ve previously covered nebulous claims about “PhD-level” AI, finding them to be generally specious marketing talk.

Premium pricing amid controversy

During Wednesday’s livestream, xAI also announced plans for an AI coding model in August, a multi-modal agent in September, and a video generation model in October. The company also plans to make Grok 4 available in Tesla vehicles next week, further expanding Musk’s AI assistant across his various companies.

Despite the recent turmoil, xAI has moved forward with an aggressive pricing strategy for “premium” versions of Grok. Alongside Grok 4 and Grok 4 Heavy, xAI launched “SuperGrok Heavy,” a $300-per-month subscription that makes it the most expensive AI service among major providers. Subscribers will get early access to Grok 4 Heavy and upcoming features.

Whether users will pay xAI’s premium pricing remains to be seen, particularly given the AI assistant’s tendency to periodically generate politically motivated outputs. These incidents represent fundamental management and implementation issues that, so far, no fancy-looking test-taking benchmarks have been able to capture.

Musk’s Grok 4 launches one day after chatbot generated Hitler praise on X Read More »