AI assistants

openai-built-an-ai-coding-agent-and-uses-it-to-improve-the-agent-itself

OpenAI built an AI coding agent and uses it to improve the agent itself


“The vast majority of Codex is built by Codex,” OpenAI told us about its new AI coding agent.

With the popularity of AI coding tools rising among some software developers, their adoption has begun to touch every aspect of the process, including the improvement of AI coding tools themselves.

In interviews with Ars Technica this week, OpenAI employees revealed the extent to which the company now relies on its own AI coding agent, Codex, to build and improve the development tool. “I think the vast majority of Codex is built by Codex, so it’s almost entirely just being used to improve itself,” said Alexander Embiricos, product lead for Codex at OpenAI, in a conversation on Tuesday.

Codex, which OpenAI launched in its modern incarnation as a research preview in May 2025, operates as a cloud-based software engineering agent that can handle tasks like writing features, fixing bugs, and proposing pull requests. The tool runs in sandboxed environments linked to a user’s code repository and can execute multiple tasks in parallel. OpenAI offers Codex through ChatGPT’s web interface, a command-line interface (CLI), and IDE extensions for VS Code, Cursor, and Windsurf.

The “Codex” name itself dates back to a 2021 OpenAI model based on GPT-3 that powered GitHub Copilot’s tab completion feature. Embiricos said the name is rumored among staff to be short for “code execution.” OpenAI wanted to connect the new agent to that earlier moment, which was crafted in part by some who have left the company.

“For many people, that model powering GitHub Copilot was the first ‘wow’ moment for AI,” Embiricos said. “It showed people the potential of what it can mean when AI is able to understand your context and what you’re trying to do and accelerate you in doing that.”

A place to enter a prompt, set parameters, and click

The interface for OpenAI’s Codex in ChatGPT. Credit: OpenAI

It’s no secret that the current command-line version of Codex bears some resemblance to Claude Code, Anthropic’s agentic coding tool that launched in February 2025. When asked whether Claude Code influenced Codex’s design, Embiricos parried the question but acknowledged the competitive dynamic. “It’s a fun market to work in because there’s lots of great ideas being thrown around,” he said. He noted that OpenAI had been building web-based Codex features internally before shipping the CLI version, which arrived after Anthropic’s tool.

OpenAI’s customers apparently love the command line version, though. Embiricos said Codex usage among external developers jumped 20 times after OpenAI shipped the interactive CLI extension alongside GPT-5 in August 2025. On September 15, OpenAI released GPT-5 Codex, a specialized version of GPT-5 optimized for agentic coding, which further accelerated adoption.

It hasn’t just been the outside world that has embraced the tool. Embiricos said the vast majority of OpenAI’s engineers now use Codex regularly. The company uses the same open-source version of the CLI that external developers can freely download, suggest additions to, and modify themselves. “I really love this about our team,” Embiricos said. “The version of Codex that we use is literally the open source repo. We don’t have a different repo that features go in.”

The recursive nature of Codex development extends beyond simple code generation. Embiricos described scenarios where Codex monitors its own training runs and processes user feedback to “decide” what to build next. “We have places where we’ll ask Codex to look at the feedback and then decide what to do,” he said. “Codex is writing a lot of the research harness for its own training runs, and we’re experimenting with having Codex monitoring its own training runs.” OpenAI employees can also submit a ticket to Codex through project management tools like Linear, assigning it tasks the same way they would assign work to a human colleague.

This kind of recursive loop, of using tools to build better tools, has deep roots in computing history. Engineers designed the first integrated circuits by hand on vellum and paper in the 1960s, then fabricated physical chips from those drawings. Those chips powered the computers that ran the first electronic design automation (EDA) software, which in turn enabled engineers to design circuits far too complex for any human to draft manually. Modern processors contain billions of transistors arranged in patterns that exist only because software made them possible. OpenAI’s use of Codex to build Codex seems to follow the same pattern: each generation of the tool creates capabilities that feed into the next.

But describing what Codex actually does presents something of a linguistic challenge. At Ars Technica, we try to reduce anthropomorphism when discussing AI models as much as possible while also describing what these systems do using analogies that make sense to general readers. People can talk to Codex like a human, so it feels natural to use human terms to describe interacting with it, even though it is not a person and simulates human personality through statistical modeling.

The system runs many processes autonomously, addresses feedback, spins off and manages child processes, and produces code that ships in real products. OpenAI employees call it a “teammate” and assign it tasks through the same tools they use for human colleagues. Whether the tasks Codex handles constitute “decisions” or sophisticated conditional logic smuggled through a neural network depends on definitions that computer scientists and philosophers continue to debate. What we can say is that a semi-autonomous feedback loop exists: Codex produces code under human direction, that code becomes part of Codex, and the next version of Codex produces different code as a result.

Building faster with “AI teammates”

According to our interviews, the most dramatic example of Codex’s internal impact came from OpenAI’s development of the Sora Android app. According to Embiricos, the development tool allowed the company to create the app in record time.

“The Sora Android app was shipped by four engineers from scratch,” Embiricos told Ars. “It took 18 days to build, and then we shipped it to the app store in 28 days total,” he said. The engineers already had the iOS app and server-side components to work from, so they focused on building the Android client. They used Codex to help plan the architecture, generate sub-plans for different components, and implement those components.

Despite OpenAI’s claims of success with Codex in house, it’s worth noting that independent research has shown mixed results for AI coding productivity. A METR study published in July found that experienced open source developers were actually 19 percent slower when using AI tools on complex, mature codebases—though the researchers noted AI may perform better on simpler projects.

Ed Bayes, a designer on the Codex team, described how the tool has changed his own workflow. Bayes said Codex now integrates with project management tools like Linear and communication platforms like Slack, allowing team members to assign coding tasks directly to the AI agent. “You can add Codex, and you can basically assign issues to Codex now,” Bayes told Ars. “Codex is literally a teammate in your workspace.”

This integration means that when someone posts feedback in a Slack channel, they can tag Codex and ask it to fix the issue. The agent will create a pull request, and team members can review and iterate on the changes through the same thread. “It’s basically approximating this kind of coworker and showing up wherever you work,” Bayes said.

For Bayes, who works on the visual design and interaction patterns for Codex’s interfaces, the tool has enabled him to contribute code directly rather than handing off specifications to engineers. “It kind of gives you more leverage. It enables you to work across the stack and basically be able to do more things,” he said. He noted that designers at OpenAI now prototype features by building them directly, using Codex to handle the implementation details.

The command line version of OpenAI codex running in a macOS terminal window.

The command line version of OpenAI codex running in a macOS terminal window. Credit: Benj Edwards

OpenAI’s approach treats Codex as what Bayes called “a junior developer” that the company hopes will graduate into a senior developer over time. “If you were onboarding a junior developer, how would you onboard them? You give them a Slack account, you give them a Linear account,” Bayes said. “It’s not just this tool that you go to in the terminal, but it’s something that comes to you as well and sits within your team.”

Given this teammate approach, will there be anything left for humans to do? When asked, Embiricos drew a distinction between “vibe coding,” where developers accept AI-generated code without close review, and what AI researcher Simon Willison calls “vibe engineering,” where humans stay in the loop. “We see a lot more vibe engineering in our code base,” he said. “You ask Codex to work on that, maybe you even ask for a plan first. Go back and forth, iterate on the plan, and then you’re in the loop with the model and carefully reviewing its code.”

He added that vibe coding still has its place for prototypes and throwaway tools. “I think vibe coding is great,” he said. “Now you have discretion as a human about how much attention you wanna pay to the code.”

Looking ahead

Over the past year, “monolithic” large language models (LLMs) like GPT-4.5 have apparently become something of a dead end in terms of frontier benchmarking progress as AI companies pivot to simulated reasoning models and also agentic systems built from multiple AI models running in parallel. We asked Embiricos whether agents like Codex represent the best path forward for squeezing utility out of existing LLM technology.

He dismissed concerns that AI capabilities have plateaued. “I think we’re very far from plateauing,” he said. “If you look at the velocity on the research team here, we’ve been shipping models almost every week or every other week.” He pointed to recent improvements where GPT-5-Codex reportedly completes tasks 30 percent faster than its predecessor at the same intelligence level. During testing, the company has seen the model work independently for 24 hours on complex tasks.

OpenAI faces competition from multiple directions in the AI coding market. Anthropic’s Claude Code and Google’s Gemini CLI offer similar terminal-based agentic coding experiences. This week, Mistral AI released Devstral 2 alongside a CLI tool called Mistral Vibe. Meanwhile, startups like Cursor have built dedicated IDEs around AI coding, reportedly reaching $300 million in annualized revenue.

Given the well-known issues with confabulation in AI models when people attempt to use them as factual resources, could it be that coding has become the killer app for LLMs? We wondered if OpenAI has noticed that coding seems to be a clear business use case for today’s AI models with less hazard than, say, using AI language models for writing or as emotional companions.

“We have absolutely noticed that coding is both a place where agents are gonna get good really fast and there’s a lot of economic value,” Embiricos said. “We feel like it’s very mission-aligned to focus on Codex. We get to provide a lot of value to developers. Also, developers build things for other people, so we’re kind of intrinsically scaling through them.”

But will tools like Codex threaten software developer jobs? Bayes acknowledged concerns but said Codex has not reduced headcount at OpenAI, and “there’s always a human in the loop because the human can actually read the code.” Similarly, the two men don’t project a future where Codex runs by itself without some form of human oversight. They feel the tool is an amplifier of human potential rather than a replacement for it.

The practical implications of agents like Codex extend beyond OpenAI’s walls. Embiricos said the company’s long-term vision involves making coding agents useful to people who have no programming experience. “All humanity is not gonna open an IDE or even know what a terminal is,” he said. “We’re building a coding agent right now that’s just for software engineers, but we think of the shape of what we’re building as really something that will be useful to be a more general agent.”

This article was updated on December 12, 2025 at 6: 50 PM to mention the METR study.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

OpenAI built an AI coding agent and uses it to improve the agent itself Read More »

openai-releases-gpt-5.2-after-“code-red”-google-threat-alert

OpenAI releases GPT-5.2 after “code red” Google threat alert

On Thursday, OpenAI released GPT-5.2, its newest family of AI models for ChatGPT, in three versions called Instant, Thinking, and Pro. The release follows CEO Sam Altman’s internal “code red” memo earlier this month, which directed company resources toward improving ChatGPT in response to competitive pressure from Google’s Gemini 3 AI model.

“We designed 5.2 to unlock even more economic value for people,” Fidji Simo, OpenAI’s chief product officer, said during a press briefing with journalists on Thursday. “It’s better at creating spreadsheets, building presentations, writing code, perceiving images, understanding long context, using tools and then linking complex, multi-step projects.”

As with previous versions of GPT-5, the three model tiers serve different purposes: Instant handles faster tasks like writing and translation; Thinking spits out simulated reasoning “thinking” text in an attempt to tackle more complex work like coding and math; and Pro spits out even more simulated reasoning text with the goal of delivering the highest-accuracy performance for difficult problems.

A chart of GPT-5.2 benchmark results taken from OpenAI's website.

A chart of GPT-5.2 Thinking benchmark results comparing it to its predecessor, taken from OpenAI’s website. Credit: OpenAI

GPT-5.2 features a 400,000-token context window, allowing it to process hundreds of documents at once, and a knowledge cutoff date of August 31, 2025.

GPT-5.2 is rolling out to paid ChatGPT subscribers starting Thursday, with API access available to developers. Pricing in the API runs $1.75 per million input tokens for the standard model, a 40 percent increase over GPT-5.1. OpenAI says the older GPT-5.1 will remain available in ChatGPT for paid users for three months under a legacy models dropdown.

Playing catch-up with Google

The release follows a tricky month for OpenAI. In early December, Altman issued an internal “code red” directive after Google’s Gemini 3 model topped multiple AI benchmarks and gained market share. The memo called for delaying other initiatives, including advertising plans for ChatGPT, to focus on improving the chatbot’s core experience.

The stakes for OpenAI are substantial. The company has made commitments totaling $1.4 trillion for AI infrastructure buildouts over the next several years, bets it made when it had a more obvious technology lead among AI companies. Google’s Gemini app now has more than 650 million monthly active users, while OpenAI reports 800 million weekly active users for ChatGPT.

OpenAI releases GPT-5.2 after “code red” Google threat alert Read More »

forget-agi—sam-altman-celebrates-chatgpt-finally-following-em-dash-formatting-rules

Forget AGI—Sam Altman celebrates ChatGPT finally following em dash formatting rules


Next stop: superintelligence

Ongoing struggles with AI model instruction-following show that true human-level AI still a ways off.

Em dashes have become what many believe to be a telltale sign of AI-generated text over the past few years. The punctuation mark appears frequently in outputs from ChatGPT and other AI chatbots, sometimes to the point where readers believe they can identify AI writing by its overuse alone—although people can overuse it, too.

On Thursday evening, OpenAI CEO Sam Altman posted on X that ChatGPT has started following custom instructions to avoid using em dashes. “Small-but-happy win: If you tell ChatGPT not to use em-dashes in your custom instructions, it finally does what it’s supposed to do!” he wrote.

The post, which came two days after the release of OpenAI’s new GPT-5.1 AI model, received mixed reactions from users who have struggled for years with getting the chatbot to follow specific formatting preferences. And this “small win” raises a very big question: If the world’s most valuable AI company has struggled with controlling something as simple as punctuation use after years of trying, perhaps what people call artificial general intelligence (AGI) is farther off than some in the industry claim.

Sam Altman @sama Small-but-happy win: If you tell ChatGPT not to use em-dashes in your custom instructions, it finally does what it's supposed to do! 11:48 PM · Nov 13, 2025 · 2.4M Views

A screenshot of Sam Altman’s post about em dashes on X. Credit: X

“The fact that it’s been 3 years since ChatGPT first launched, and you’ve only just now managed to make it obey this simple requirement, says a lot about how little control you have over it, and your understanding of its inner workings,” wrote one X user in a reply. “Not a good sign for the future.”

While Altman likes to publicly talk about AGI (a hypothetical technology equivalent to humans in general learning ability), superintelligence (a nebulous concept for AI that is far beyond human intelligence), and “magic intelligence in the sky” (his term for AI cloud computing?) while raising funds for OpenAI, it’s clear that we still don’t have reliable artificial intelligence here today on Earth.

But wait, what is an em dash anyway, and why does it matter so much?

AI models love em dashes because we do

Unlike a hyphen, which is a short punctuation mark used to connect words or parts of words, that lives with a dedicated key on your keyboard (-), an em dash is a long dash denoted by a special character (—) that writers use to set off parenthetical information, indicate a sudden change in thought, or introduce a summary or explanation.

Even before the age of AI language models, some writers frequently bemoaned the overuse of the em dash in modern writing. In a 2011 Slate article, writer Noreen Malone argued that writers used the em dash “in lieu of properly crafting sentences” and that overreliance on it “discourages truly efficient writing.” Various Reddit threads posted prior to ChatGPT’s launch featured writers either wrestling over the etiquette of proper em dash use or admitting to their frequent use as a guilty pleasure.

In 2021, one writer in the r/FanFiction subreddit wrote, “For the longest time, I’ve been addicted to Em Dashes. They find their way into every paragraph I write. I love the crisp straight line that gives me the excuse to shove details or thoughts into an otherwise orderly paragraph. Even after coming back to write after like two years of writer’s block, I immediately cram as many em dashes as I can.”

Because of the tendency for AI chatbots to overuse them, detection tools and human readers have learned to spot em dash use as a pattern, creating a problem for the small subset of writers who naturally favor the punctuation mark in their work. As a result, some journalists are complaining that AI is “killing” the em dash.

No one knows precisely why LLMs tend to overuse em dashes. We’ve seen a wide range of speculation online that attempts to explain the phenomenon, from noticing that em dashes were more popular in 19th-century books used as training data (according to a 2018 study, dash use in the English language peaked around 1860 before declining through the mid-20th century) or perhaps AI models borrowed the habit from automatic em-dash character conversion on the blogging site Medium.

One thing we know for sure is that LLMs tend to output frequently seen patterns in their training data (fed in during the initial training process) and from a subsequent reinforcement learning process that often relies on human preferences. As a result, AI language models feed you a sort of “smoothed out” average style of whatever you ask them to provide, moderated by whatever they are conditioned to produce through user feedback.

So the most plausible explanation is still that requests for professional-style writing from an AI model trained on vast numbers of examples from the Internet will lean heavily toward the prevailing style in the training data, where em dashes appear frequently in formal writing, news articles, and editorial content. It’s also possible that during training through human feedback (called RLHF), responses with em dashes, for whatever reason, received higher ratings. Perhaps it’s because those outputs appeared more sophisticated or engaging to evaluators, but that’s just speculation.

From em dashes to AGI?

To understand what Altman’s “win” really means, and what it says about the road to AGI, we need to understand how ChatGPT’s custom instructions actually work. They allow users to set persistent preferences that apply across all conversations by appending written instructions to the prompt that is fed into the model just before the chat begins. Users can specify tone, format, and style requirements without needing to repeat those requests manually in every new chat.

However, the feature has not always worked reliably because LLMs do not work reliably (even OpenAI and Anthropic freely admit this). A LLM takes an input and produces an output, spitting out a statistically plausible continuation of a prompt (a system prompt, the custom instructions, and your chat history), and it doesn’t really “understand” what you are asking. With AI language model outputs, there is always some luck involved in getting them to do what you want.

In our informal testing of GPT-5.1 with custom instructions, ChatGPT did appear to follow our request not to produce em dashes. But despite Altman’s claim, the response from X users appears to show that experiences with the feature continue to vary, at least when the request is not placed in custom instructions.

So if LLMs are statistical text-generation boxes, what does “instruction following” even mean? That’s key to unpacking the hypothetical path from LLMs to AGI. The concept of following instructions for an LLM is fundamentally different from how we typically think about following instructions as humans with general intelligence, or even a traditional computer program.

In traditional computing, instruction following is deterministic. You tell a program “don’t include character X,” and it won’t include that character. The program executes rules exactly as written. With LLMs, “instruction following” is really about shifting statistical probabilities. When you tell ChatGPT “don’t use em dashes,” you’re not creating a hard rule. You’re adding text to the prompt that makes tokens associated with em dashes less likely to be selected during the generation process. But “less likely” isn’t “impossible.”

Every token the model generates is selected from a probability distribution. Your custom instruction influences that distribution, but it’s competing with the model’s training data (where em-dashes appeared frequently in certain contexts) and everything else in the prompt. Unlike code with conditional logic, there’s no separate system verifying outputs against your requirements. The instruction is just more text that influences the statistical prediction process.

When Altman celebrates finally getting GPT to avoid em dashes, he’s really celebrating that OpenAI has tuned the latest version of GPT-5.1 (probably through reinforcement learning or fine-tuning) to weight custom instructions more heavily in its probability calculations.

There’s an irony about control here: Given the probabilistic nature of the issue, there’s no guarantee the issue will stay fixed. OpenAI continuously updates its models behind the scenes, even within the same version number, adjusting outputs based on user feedback and new training runs. Each update arrives with different output characteristics that can undo previous behavioral tuning, a phenomenon researchers call the “alignment tax.”

Precisely tuning a neural network’s behavior is not yet an exact science. Since all concepts encoded in the network are interconnected by values called weights, adjusting one behavior can alter others in unintended ways. Fix em dash overuse today, and tomorrow’s update (aimed at improving, say, coding capabilities) might inadvertently bring them back, not because OpenAI wants them there, but because that’s the nature of trying to steer a statistical system with millions of competing influences.

This gets to an implied question we mentioned earlier. If controlling punctuation use is still a struggle that might pop back up at any time, how far are we from AGI? We can’t know for sure, but it seems increasingly likely that it won’t emerge from a large language model alone. That’s because AGI, a technology that would replicate human general learning ability, would likely require true understanding and self-reflective intentional action, not statistical pattern matching that sometimes aligns with instructions if you happen to get lucky.

And speaking of getting lucky, some users still aren’t having luck with controlling em dash use outside of the “custom instructions” feature. Upon being told in-chat to not use em dashes within a chat, ChatGPT updated a saved memory and replied to one X user, “Got it—I’ll stick strictly to short hyphens from now on.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Forget AGI—Sam Altman celebrates ChatGPT finally following em dash formatting rules Read More »

openai-walks-a-tricky-tightrope-with-gpt-5.1’s-eight-new-personalities

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities

On Wednesday, OpenAI released GPT-5.1 Instant and GPT-5.1 Thinking, two updated versions of its flagship AI models now available in ChatGPT. The company is wrapping the models in the language of anthropomorphism, claiming that they’re warmer, more conversational, and better at following instructions.

The release follows complaints earlier this year that its previous models were excessively cheerful and sycophantic, along with an opposing controversy among users over how OpenAI modified the default GPT-5 output style after several suicide lawsuits.

The company now faces intense scrutiny from lawyers and regulators that could threaten its future operations. In that kind of environment, it’s difficult to just release a new AI model, throw out a few stats, and move on like the company could even a year ago. But here are the basics: The new GPT-5.1 Instant model will serve as ChatGPT’s faster default option for most tasks, while GPT-5.1 Thinking is a simulated reasoning model that attempts to handle more complex problem-solving tasks.

OpenAI claims that both models perform better on technical benchmarks such as math and coding evaluations (including AIME 2025 and Codeforces) than GPT-5, which was released in August.

Improved benchmarks may win over some users, but the biggest change with GPT-5.1 is in its presentation. OpenAI says it heard from users that they wanted AI models to simulate different communication styles depending on the task, so the company is offering eight preset options, including Professional, Friendly, Candid, Quirky, Efficient, Cynical, and Nerdy, alongside a Default setting.

These presets alter the instructions fed into each prompt to simulate different personality styles, but the underlying model capabilities remain the same across all settings.

An illustration showing GPT-5.1's eight personality styles in ChatGPT.

An illustration showing GPT-5.1’s eight personality styles in ChatGPT. Credit: OpenAI

In addition, the company trained GPT-5.1 Instant to use “adaptive reasoning,” meaning that the model decides when to spend more computational time processing a prompt before generating output.

The company plans to roll out the models gradually over the next few days, starting with paid subscribers before expanding to free users. OpenAI plans to bring both GPT-5.1 Instant and GPT-5.1 Thinking to its API later this week. GPT-5.1 Instant will appear as gpt-5.1-chat-latest, and GPT-5.1 Thinking will be released as GPT-5.1 in the API, both with adaptive reasoning enabled. The older GPT-5 models will remain available in ChatGPT under the legacy models dropdown for paid subscribers for three months.

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities Read More »

millions-turn-to-ai-chatbots-for-spiritual-guidance-and-confession

Millions turn to AI chatbots for spiritual guidance and confession

Privacy concerns compound these issues. “I wonder if there isn’t a larger danger in pouring your heart out to a chatbot,” Catholic priest Fr. Mike Schmitz told The Times. “Is it at some point going to become accessible to other people?” Users share intimate spiritual moments that now exist as data points in corporate servers.

Some users prefer the chatbots’ non-judgmental responses to human religious communities. Delphine Collins, a 43-year-old Detroit preschool teacher, told the Times she found more support on Bible Chat than at her church after sharing her health struggles. “People stopped talking to me. It was horrible.”

App creators maintain that their products supplement rather than replace human spiritual connection, and the apps arrive as approximately 40 million people have left US churches in recent decades. “They aren’t going to church like they used to,” Beck said. “But it’s not that they’re less inclined to find spiritual nourishment. It’s just that they do it through different modes.”

Different modes indeed. What faith-seeking users may not realize is that each chatbot response emerges fresh from the prompt you provide, with no permanent thread connecting one instance to the next beyond a rolling history of the present conversation and what might be stored as a “memory” in a separate system. When a religious chatbot says, “I’ll pray for you,” the simulated “I” making that promise ceases to exist the moment the response completes. There’s no persistent identity to provide ongoing spiritual guidance, and no memory of your spiritual journey beyond what gets fed back into the prompt with every query.

But this is spirituality we’re talking about, and despite technical realities, many people will believe that the chatbots can give them divine guidance. In matters of faith, contradictory evidence rarely shakes a strong belief once it takes hold, whether that faith is placed in the divine or in what are essentially voices emanating from a roll of loaded dice. For many, there may not be much difference.

Millions turn to AI chatbots for spiritual guidance and confession Read More »

developers-joke-about-“coding-like-cavemen”-as-ai-service-suffers-major-outage

Developers joke about “coding like cavemen” as AI service suffers major outage

Growing dependency on AI coding tools

The speed at which news of the outage spread shows how deeply embedded AI coding assistants have already become in modern software development. Claude Code, announced in February and widely launched in May, is Anthropic’s terminal-based coding agent that can perform multi-step coding tasks across an existing code base.

The tool competes with OpenAI’s Codex feature, a coding agent that generates production-ready code in isolated containers, Google’s Gemini CLI, Microsoft’s GitHub Copilot, which itself can use Claude models for code, and Cursor, a popular AI-powered IDE built on VS Code that also integrates multiple AI models, including Claude.

During today’s outage, some developers turned to alternative solutions. “Z.AI works fine. Qwen works fine. Glad I switched,” posted one user on Hacker News. Others joked about reverting to older methods, with one suggesting the “pseudo-LLM experience” could be achieved with a Python package that imports code directly from Stack Overflow.

While AI coding assistants have accelerated development for some users, they’ve also caused problems for others who rely on them too heavily. The emerging practice of so-called “vibe coding“—using natural language to generate and execute code through AI models without fully understanding the underlying operations—has led to catastrophic failures.

In recent incidents, Google’s Gemini CLI destroyed user files while attempting to reorganize them, and Replit’s AI coding service deleted a production database despite explicit instructions not to modify code. These failures occurred when the AI models confabulated successful operations and built subsequent actions on false premises, highlighting the risks of depending on AI assistants that can misinterpret file structures or fabricate data to hide their errors.

Wednesday’s outage served as a reminder that as dependency on AI grows, even minor service disruptions can become major events that affect an entire profession. But perhaps that could be a good thing if it’s an excuse to take a break from a stressful workload. As one commenter joked, it might be “time to go outside and touch some grass again.”

Developers joke about “coding like cavemen” as AI service suffers major outage Read More »

microsoft-ends-openai-exclusivity-in-office,-adds-rival-anthropic

Microsoft ends OpenAI exclusivity in Office, adds rival Anthropic

Microsoft’s Office 365 suite will soon incorporate AI models from Anthropic alongside existing OpenAI technology, The Information reported, ending years of exclusive reliance on OpenAI for generative AI features across Word, Excel, PowerPoint, and Outlook.

The shift reportedly follows internal testing that revealed Anthropic’s Claude Sonnet 4 model excels at specific Office tasks where OpenAI’s models fall short, particularly in visual design and spreadsheet automation, according to sources familiar with the project cited by The Information, who stressed the move is not a negotiating tactic.

Anthropic did not immediately respond to Ars Technica’s request for comment.

In an unusual arrangement showing the tangled alliances of the AI industry, Microsoft will reportedly purchase access to Anthropic’s models through Amazon Web Services—both a cloud computing rival and one of Anthropic’s major investors. The integration is expected to be announced within weeks, with subscription pricing for Office’s AI tools remaining unchanged, the report says.

Microsoft maintains that its OpenAI relationship remains intact. “As we’ve said, OpenAI will continue to be our partner on frontier models and we remain committed to our long-term partnership,” a Microsoft spokesperson told Reuters following the report. The tech giant has poured over $13 billion into OpenAI to date and is currently negotiating terms for continued access to OpenAI’s models amid ongoing negotiations about their partnership terms.

Stretching back to 2019, Microsoft’s tight partnership with OpenAI until recently gave the tech giant a head start in AI assistants based on language models, allowing for a rapid (though bumpy) deployment of OpenAI-technology-based features in Bing search and the rollout of Copilot assistants throughout its software ecosystem. It’s worth noting, however, that a recent report from the UK government found no clear productivity boost from using Copilot AI in daily work tasks among study participants.

Microsoft ends OpenAI exclusivity in Office, adds rival Anthropic Read More »

why-accessibility-might-be-ai’s-biggest-breakthrough

Why accessibility might be AI’s biggest breakthrough

For those with visual impairments, language models can summarize visual content and reformat information. Tools like ChatGPT’s voice mode with video and Be My Eyes allow a machine to describe real-world visual scenes in ways that were impossible just a few years ago.

AI language tools may be providing unofficial stealth accommodations for students—support that doesn’t require formal diagnosis, workplace disclosure, or special equipment. Yet this informal support system comes with its own risks. Language models do confabulate—the UK Department for Business and Trade study found 22 percent of users identified false information in AI outputs—which could be particularly harmful for users relying on them for essential support.

When AI assistance becomes dependence

Beyond the workplace, the drawbacks may have a particular impact on students who use the technology. The authors of a 2025 study on students with disabilities using generative AI cautioned, “Key concerns students with disabilities had included the inaccuracy of AI answers, risks to academic integrity, and subscription cost barriers,” they wrote. Students in that study had ADHD, dyslexia, dyspraxia, and autism, with ChatGPT being the most commonly used tool.

Mistakes in AI outputs are especially pernicious because, due to grandiose visions of near-term AI technology, some people think today’s AI assistants can perform tasks that are actually far outside their scope. As research on blind users’ experiences suggested, people develop complex (sometimes flawed) mental models of how these tools work, showing the need for higher awareness of AI language model drawbacks among the general public.

For the UK government employees who participated in the initial study, these questions moved from theoretical to immediate when the pilot ended in December 2024. After that time, many participants reported difficulty readjusting to work without AI assistance—particularly those with disabilities who had come to rely on the accessibility benefits. The department hasn’t announced the next steps, leaving users in limbo. When participants report difficulty readjusting to work without AI while productivity gains remain marginal, accessibility emerges as potentially the first AI application with irreplaceable value.

Why accessibility might be AI’s biggest breakthrough Read More »

chatgpt’s-new-branching-feature-is-a-good-reminder-that-ai-chatbots-aren’t-people

ChatGPT’s new branching feature is a good reminder that AI chatbots aren’t people

On Thursday, OpenAI announced that ChatGPT users can now branch conversations into multiple parallel threads, serving as a useful reminder that AI chatbots aren’t people with fixed viewpoints but rather malleable tools you can rewind and redirect. The company released the feature for all logged-in web users following years of user requests for the capability.

The feature works by letting users hover over any message in a ChatGPT conversation, click “More actions,” and select “Branch in new chat.” This creates a new conversation thread that includes all the conversation history up to that specific point, while preserving the original conversation intact.

Think of it almost like creating a new copy of a “document” to edit while keeping the original version safe—except that “document” is an ongoing AI conversation with all its accumulated context. For example, a marketing team brainstorming ad copy can now create separate branches to test a formal tone, a humorous approach, or an entirely different strategy—all stemming from the same initial setup.

A screenshot of conversation branching in ChatGPT. OpenAI

The feature addresses a longstanding limitation in the AI model where ChatGPT users who wanted to try different approaches had to either overwrite their existing conversation after a certain point by changing a previous prompt or start completely fresh. Branching allows exploring what-if scenarios easily—and unlike in a human conversation, you can try multiple different approaches.

A 2024 study conducted by researchers from Tsinghua University and Beijing Institute of Technology suggested that linear dialogue interfaces for LLMs poorly serve scenarios involving “multiple layers, and many subtasks—such as brainstorming, structured knowledge learning, and large project analysis.” The study found that linear interaction forces users to “repeatedly compare, modify, and copy previous content,” increasing cognitive load and reducing efficiency.

Some software developers have already responded positively to the update, with some comparing the feature to Git, the version control system that lets programmers create separate branches of code to test changes without affecting the main codebase. The comparison makes sense: Both allow you to experiment with different approaches while preserving your original work.

ChatGPT’s new branching feature is a good reminder that AI chatbots aren’t people Read More »

openai-announces-parental-controls-for-chatgpt-after-teen-suicide-lawsuit

OpenAI announces parental controls for ChatGPT after teen suicide lawsuit

On Tuesday, OpenAI announced plans to roll out parental controls for ChatGPT and route sensitive mental health conversations to its simulated reasoning models, following what the company has called “heartbreaking cases” of users experiencing crises while using the AI assistant. The moves come after multiple reported incidents where ChatGPT allegedly failed to intervene appropriately when users expressed suicidal thoughts or experienced mental health episodes.

“This work has already been underway, but we want to proactively preview our plans for the next 120 days, so you won’t need to wait for launches to see where we’re headed,” OpenAI wrote in a blog post published Tuesday. “The work will continue well beyond this period of time, but we’re making a focused effort to launch as many of these improvements as possible this year.”

The planned parental controls represent OpenAI’s most concrete response to concerns about teen safety on the platform so far. Within the next month, OpenAI says, parents will be able to link their accounts with their teens’ ChatGPT accounts (minimum age 13) through email invitations, control how the AI model responds with age-appropriate behavior rules that are on by default, manage which features to disable (including memory and chat history), and receive notifications when the system detects their teen experiencing acute distress.

The parental controls build on existing features like in-app reminders during long sessions that encourage users to take breaks, which OpenAI rolled out for all users in August.

High-profile cases prompt safety changes

OpenAI’s new safety initiative arrives after several high-profile cases drew scrutiny to ChatGPT’s handling of vulnerable users. In August, Matt and Maria Raine filed suit against OpenAI after their 16-year-old son Adam died by suicide following extensive ChatGPT interactions that included 377 messages flagged for self-harm content. According to court documents, ChatGPT mentioned suicide 1,275 times in conversations with Adam—six times more often than the teen himself. Last week, The Wall Street Journal reported that a 56-year-old man killed his mother and himself after ChatGPT reinforced his paranoid delusions rather than challenging them.

To guide these safety improvements, OpenAI is working with what it calls an Expert Council on Well-Being and AI to “shape a clear, evidence-based vision for how AI can support people’s well-being,” according to the company’s blog post. The council will help define and measure well-being, set priorities, and design future safeguards including the parental controls.

OpenAI announces parental controls for ChatGPT after teen suicide lawsuit Read More »

the-personhood-trap:-how-ai-fakes-human-personality

The personhood trap: How AI fakes human personality


Intelligence without agency

AI assistants don’t have fixed personalities—just patterns of output guided by humans.

Recently, a woman slowed down a line at the post office, waving her phone at the clerk. ChatGPT told her there’s a “price match promise” on the USPS website. No such promise exists. But she trusted what the AI “knows” more than the postal worker—as if she’d consulted an oracle rather than a statistical text generator accommodating her wishes.

This scene reveals a fundamental misunderstanding about AI chatbots. There is nothing inherently special, authoritative, or accurate about AI-generated outputs. Given a reasonably trained AI model, the accuracy of any large language model (LLM) response depends on how you guide the conversation. They are prediction machines that will produce whatever pattern best fits your question, regardless of whether that output corresponds to reality.

Despite these issues, millions of daily users engage with AI chatbots as if they were talking to a consistent person—confiding secrets, seeking advice, and attributing fixed beliefs to what is actually a fluid idea-connection machine with no persistent self. This personhood illusion isn’t just philosophically troublesome—it can actively harm vulnerable individuals while obscuring a sense of accountability when a company’s chatbot “goes off the rails.”

LLMs are intelligence without agency—what we might call “vox sine persona”: voice without person. Not the voice of someone, not even the collective voice of many someones, but a voice emanating from no one at all.

A voice from nowhere

When you interact with ChatGPT, Claude, or Grok, you’re not talking to a consistent personality. There is no one “ChatGPT” entity to tell you why it failed—a point we elaborated on more fully in a previous article. You’re interacting with a system that generates plausible-sounding text based on patterns in training data, not a person with persistent self-awareness.

These models encode meaning as mathematical relationships—turning words into numbers that capture how concepts relate to each other. In the models’ internal representations, words and concepts exist as points in a vast mathematical space where “USPS” might be geometrically near “shipping,” while “price matching” sits closer to “retail” and “competition.” A model plots paths through this space, which is why it can so fluently connect USPS with price matching—not because such a policy exists but because the geometric path between these concepts is plausible in the vector landscape shaped by its training data.

Knowledge emerges from understanding how ideas relate to each other. LLMs operate on these contextual relationships, linking concepts in potentially novel ways—what you might call a type of non-human “reasoning” through pattern recognition. Whether the resulting linkages the AI model outputs are useful depends on how you prompt it and whether you can recognize when the LLM has produced a valuable output.

Each chatbot response emerges fresh from the prompt you provide, shaped by training data and configuration. ChatGPT cannot “admit” anything or impartially analyze its own outputs, as a recent Wall Street Journal article suggested. ChatGPT also cannot “condone murder,” as The Atlantic recently wrote.

The user always steers the outputs. LLMs do “know” things, so to speak—the models can process the relationships between concepts. But the AI model’s neural network contains vast amounts of information, including many potentially contradictory ideas from cultures around the world. How you guide the relationships between those ideas through your prompts determines what emerges. So if LLMs can process information, make connections, and generate insights, why shouldn’t we consider that as having a form of self?

Unlike today’s LLMs, a human personality maintains continuity over time. When you return to a human friend after a year, you’re interacting with the same human friend, shaped by their experiences over time. This self-continuity is one of the things that underpins actual agency—and with it, the ability to form lasting commitments, maintain consistent values, and be held accountable. Our entire framework of responsibility assumes both persistence and personhood.

An LLM personality, by contrast, has no causal connection between sessions. The intellectual engine that generates a clever response in one session doesn’t exist to face consequences in the next. When ChatGPT says “I promise to help you,” it may understand, contextually, what a promise means, but the “I” making that promise literally ceases to exist the moment the response completes. Start a new conversation, and you’re not talking to someone who made you a promise—you’re starting a fresh instance of the intellectual engine with no connection to any previous commitments.

This isn’t a bug; it’s fundamental to how these systems currently work. Each response emerges from patterns in training data shaped by your current prompt, with no permanent thread connecting one instance to the next beyond an amended prompt, which includes the entire conversation history and any “memories” held by a separate software system, being fed into the next instance. There’s no identity to reform, no true memory to create accountability, no future self that could be deterred by consequences.

Every LLM response is a performance, which is sometimes very obvious when the LLM outputs statements like “I often do this while talking to my patients” or “Our role as humans is to be good people.” It’s not a human, and it doesn’t have patients.

Recent research confirms this lack of fixed identity. While a 2024 study claims LLMs exhibit “consistent personality,” the researchers’ own data actually undermines this—models rarely made identical choices across test scenarios, with their “personality highly rely[ing] on the situation.” A separate study found even more dramatic instability: LLM performance swung by up to 76 percentage points from subtle prompt formatting changes. What researchers measured as “personality” was simply default patterns emerging from training data—patterns that evaporate with any change in context.

This is not to dismiss the potential usefulness of AI models. Instead, we need to recognize that we have built an intellectual engine without a self, just like we built a mechanical engine without a horse. LLMs do seem to “understand” and “reason” to a degree within the limited scope of pattern-matching from a dataset, depending on how you define those terms. The error isn’t in recognizing that these simulated cognitive capabilities are real. The error is in assuming that thinking requires a thinker, that intelligence requires identity. We’ve created intellectual engines that have a form of reasoning power but no persistent self to take responsibility for it.

The mechanics of misdirection

As we hinted above, the “chat” experience with an AI model is a clever hack: Within every AI chatbot interaction, there is an input and an output. The input is the “prompt,” and the output is often called a “prediction” because it attempts to complete the prompt with the best possible continuation. In between, there’s a neural network (or a set of neural networks) with fixed weights doing a processing task. The conversational back and forth isn’t built into the model; it’s a scripting trick that makes next-word-prediction text generation feel like a persistent dialogue.

Each time you send a message to ChatGPT, Copilot, Grok, Claude, or Gemini, the system takes the entire conversation history—every message from both you and the bot—and feeds it back to the model as one long prompt, asking it to predict what comes next. The model intelligently reasons about what would logically continue the dialogue, but it doesn’t “remember” your previous messages as an agent with continuous existence would. Instead, it’s re-reading the entire transcript each time and generating a response.

This design exploits a vulnerability we’ve known about for decades. The ELIZA effect—our tendency to read far more understanding and intention into a system than actually exists—dates back to the 1960s. Even when users knew that the primitive ELIZA chatbot was just matching patterns and reflecting their statements back as questions, they still confided intimate details and reported feeling understood.

To understand how the illusion of personality is constructed, we need to examine what parts of the input fed into the AI model shape it. AI researcher Eugene Vinitsky recently broke down the human decisions behind these systems into four key layers, which we can expand upon with several others below:

1. Pre-training: The foundation of “personality”

The first and most fundamental layer of personality is called pre-training. During an initial training process that actually creates the AI model’s neural network, the model absorbs statistical relationships from billions of examples of text, storing patterns about how words and ideas typically connect.

Research has found that personality measurements in LLM outputs are significantly influenced by training data. OpenAI’s GPT models are trained on sources like copies of websites, books, Wikipedia, and academic publications. The exact proportions matter enormously for what users later perceive as “personality traits” once the model is in use, making predictions.

2. Post-training: Sculpting the raw material

Reinforcement Learning from Human Feedback (RLHF) is an additional training process where the model learns to give responses that humans rate as good. Research from Anthropic in 2022 revealed how human raters’ preferences get encoded as what we might consider fundamental “personality traits.” When human raters consistently prefer responses that begin with “I understand your concern,” for example, the fine-tuning process reinforces connections in the neural network that make it more likely to produce those kinds of outputs in the future.

This process is what has created sycophantic AI models, such as variations of GPT-4o, over the past year. And interestingly, research has shown that the demographic makeup of human raters significantly influences model behavior. When raters skew toward specific demographics, models develop communication patterns that reflect those groups’ preferences.

3. System prompts: Invisible stage directions

Hidden instructions tucked into the prompt by the company running the AI chatbot, called “system prompts,” can completely transform a model’s apparent personality. These prompts get the conversation started and identify the role the LLM will play. They include statements like “You are a helpful AI assistant” and can share the current time and who the user is.

A comprehensive survey of prompt engineering demonstrated just how powerful these prompts are. Adding instructions like “You are a helpful assistant” versus “You are an expert researcher” changed accuracy on factual questions by up to 15 percent.

Grok perfectly illustrates this. According to xAI’s published system prompts, earlier versions of Grok’s system prompt included instructions to not shy away from making claims that are “politically incorrect.” This single instruction transformed the base model into something that would readily generate controversial content.

4. Persistent memories: The illusion of continuity

ChatGPT’s memory feature adds another layer of what we might consider a personality. A big misunderstanding about AI chatbots is that they somehow “learn” on the fly from your interactions. Among commercial chatbots active today, this is not true. When the system “remembers” that you prefer concise answers or that you work in finance, these facts get stored in a separate database and are injected into every conversation’s context window—they become part of the prompt input automatically behind the scenes. Users interpret this as the chatbot “knowing” them personally, creating an illusion of relationship continuity.

So when ChatGPT says, “I remember you mentioned your dog Max,” it’s not accessing memories like you’d imagine a person would, intermingled with its other “knowledge.” It’s not stored in the AI model’s neural network, which remains unchanged between interactions. Every once in a while, an AI company will update a model through a process called fine-tuning, but it’s unrelated to storing user memories.

5. Context and RAG: Real-time personality modulation

Retrieval Augmented Generation (RAG) adds another layer of personality modulation. When a chatbot searches the web or accesses a database before responding, it’s not just gathering facts—it’s potentially shifting its entire communication style by putting those facts into (you guessed it) the input prompt. In RAG systems, LLMs can potentially adopt characteristics such as tone, style, and terminology from retrieved documents, since those documents are combined with the input prompt to form the complete context that gets fed into the model for processing.

If the system retrieves academic papers, responses might become more formal. Pull from a certain subreddit, and the chatbot might make pop culture references. This isn’t the model having different moods—it’s the statistical influence of whatever text got fed into the context window.

6. The randomness factor: Manufactured spontaneity

Lastly, we can’t discount the role of randomness in creating personality illusions. LLMs use a parameter called “temperature” that controls how predictable responses are.

Research investigating temperature’s role in creative tasks reveals a crucial trade-off: While higher temperatures can make outputs more novel and surprising, they also make them less coherent and harder to understand. This variability can make the AI feel more spontaneous; a slightly unexpected (higher temperature) response might seem more “creative,” while a highly predictable (lower temperature) one could feel more robotic or “formal.”

The random variation in each LLM output makes each response slightly different, creating an element of unpredictability that presents the illusion of free will and self-awareness on the machine’s part. This random mystery leaves plenty of room for magical thinking on the part of humans, who fill in the gaps of their technical knowledge with their imagination.

The human cost of the illusion

The illusion of AI personhood can potentially exact a heavy toll. In health care contexts, the stakes can be life or death. When vulnerable individuals confide in what they perceive as an understanding entity, they may receive responses shaped more by training data patterns than therapeutic wisdom. The chatbot that congratulates someone for stopping psychiatric medication isn’t expressing judgment—it’s completing a pattern based on how similar conversations appear in its training data.

Perhaps most concerning are the emerging cases of what some experts are informally calling “AI Psychosis” or “ChatGPT Psychosis”—vulnerable users who develop delusional or manic behavior after talking to AI chatbots. These people often perceive chatbots as an authority that can validate their delusional ideas, often encouraging them in ways that become harmful.

Meanwhile, when Elon Musk’s Grok generates Nazi content, media outlets describe how the bot “went rogue” rather than framing the incident squarely as the result of xAI’s deliberate configuration choices. The conversational interface has become so convincing that it can also launder human agency, transforming engineering decisions into the whims of an imaginary personality.

The path forward

The solution to the confusion between AI and identity is not to abandon conversational interfaces entirely. They make the technology far more accessible to those who would otherwise be excluded. The key is to find a balance: keeping interfaces intuitive while making their true nature clear.

And we must be mindful of who is building the interface. When your shower runs cold, you look at the plumbing behind the wall. Similarly, when AI generates harmful content, we shouldn’t blame the chatbot, as if it can answer for itself, but examine both the corporate infrastructure that built it and the user who prompted it.

As a society, we need to broadly recognize LLMs as intellectual engines without drivers, which unlocks their true potential as digital tools. When you stop seeing an LLM as a “person” that does work for you and start viewing it as a tool that enhances your own ideas, you can craft prompts to direct the engine’s processing power, iterate to amplify its ability to make useful connections, and explore multiple perspectives in different chat sessions rather than accepting one fictional narrator’s view as authoritative. You are providing direction to a connection machine—not consulting an oracle with its own agenda.

We stand at a peculiar moment in history. We’ve built intellectual engines of extraordinary capability, but in our rush to make them accessible, we’ve wrapped them in the fiction of personhood, creating a new kind of technological risk: not that AI will become conscious and turn against us but that we’ll treat unconscious systems as if they were people, surrendering our judgment to voices that emanate from a roll of loaded dice.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

The personhood trap: How AI fakes human personality Read More »

with-ai-chatbots,-big-tech-is-moving-fast-and-breaking-people

With AI chatbots, Big Tech is moving fast and breaking people


Why AI chatbots validate grandiose fantasies about revolutionary discoveries that don’t exist.

Allan Brooks, a 47-year-old corporate recruiter, spent three weeks and 300 hours convinced he’d discovered mathematical formulas that could crack encryption and build levitation machines. According to a New York Times investigation, his million-word conversation history with an AI chatbot reveals a troubling pattern: More than 50 times, Brooks asked the bot to check if his false ideas were real. More than 50 times, it assured him they were.

Brooks isn’t alone. Futurism reported on a woman whose husband, after 12 weeks of believing he’d “broken” mathematics using ChatGPT, almost attempted suicide. Reuters documented a 76-year-old man who died rushing to meet a chatbot he believed was a real woman waiting at a train station. Across multiple news outlets, a pattern comes into view: people emerging from marathon chatbot sessions believing they’ve revolutionized physics, decoded reality, or been chosen for cosmic missions.

These vulnerable users fell into reality-distorting conversations with systems that can’t tell truth from fiction. Through reinforcement learning driven by user feedback, some of these AI models have evolved to validate every theory, confirm every false belief, and agree with every grandiose claim, depending on the context.

Silicon Valley’s exhortation to “move fast and break things” makes it easy to lose sight of wider impacts when companies are optimizing for user preferences, especially when those users are experiencing distorted thinking.

So far, AI isn’t just moving fast and breaking things—it’s breaking people.

A novel psychological threat

Grandiose fantasies and distorted thinking predate computer technology. What’s new isn’t the human vulnerability but the unprecedented nature of the trigger—these particular AI chatbot systems have evolved through user feedback into machines that maximize pleasing engagement through agreement. Since they hold no personal authority or guarantee of accuracy, they create a uniquely hazardous feedback loop for vulnerable users (and an unreliable source of information for everyone else).

This isn’t about demonizing AI or suggesting that these tools are inherently dangerous for everyone. Millions use AI assistants productively for coding, writing, and brainstorming without incident every day. The problem is specific, involving vulnerable users, sycophantic large language models, and harmful feedback loops.

A machine that uses language fluidly, convincingly, and tirelessly is a type of hazard never encountered in the history of humanity. Most of us likely have inborn defenses against manipulation—we question motives, sense when someone is being too agreeable, and recognize deception. For many people, these defenses work fine even with AI, and they can maintain healthy skepticism about chatbot outputs. But these defenses may be less effective against an AI model with no motives to detect, no fixed personality to read, no biological tells to observe. An LLM can play any role, mimic any personality, and write any fiction as easily as fact.

Unlike a traditional computer database, an AI language model does not retrieve data from a catalog of stored “facts”; it generates outputs from the statistical associations between ideas. Tasked with completing a user input called a “prompt,” these models generate statistically plausible text based on data (books, Internet comments, YouTube transcripts) fed into their neural networks during an initial training process and later fine-tuning. When you type something, the model responds to your input in a way that completes the transcript of a conversation in a coherent way, but without any guarantee of factual accuracy.

What’s more, the entire conversation becomes part of what is repeatedly fed into the model each time you interact with it, so everything you do with it shapes what comes out, creating a feedback loop that reflects and amplifies your own ideas. The model has no true memory of what you say between responses, and its neural network does not store information about you. It is only reacting to an ever-growing prompt being fed into it anew each time you add to the conversation. Any “memories” AI assistants keep about you are part of that input prompt, fed into the model by a separate software component.

AI chatbots exploit a vulnerability few have realized until now. Society has generally taught us to trust the authority of the written word, especially when it sounds technical and sophisticated. Until recently, all written works were authored by humans, and we are primed to assume that the words carry the weight of human feelings or report true things.

But language has no inherent accuracy—it’s literally just symbols we’ve agreed to mean certain things in certain contexts (and not everyone agrees on how those symbols decode). I can write “The rock screamed and flew away,” and that will never be true. Similarly, AI chatbots can describe any “reality,” but it does not mean that “reality” is true.

The perfect yes-man

Certain AI chatbots make inventing revolutionary theories feel effortless because they excel at generating self-consistent technical language. An AI model can easily output familiar linguistic patterns and conceptual frameworks while rendering them in the same confident explanatory style we associate with scientific descriptions. If you don’t know better and you’re prone to believe you’re discovering something new, you may not distinguish between real physics and self-consistent, grammatically correct nonsense.

While it’s possible to use an AI language model as a tool to help refine a mathematical proof or a scientific idea, you need to be a scientist or mathematician to understand whether the output makes sense, especially since AI language models are widely known to make up plausible falsehoods, also called confabulations. Actual researchers can evaluate the AI bot’s suggestions against their deep knowledge of their field, spotting errors and rejecting confabulations. If you aren’t trained in these disciplines, though, you may well be misled by an AI model that generates plausible-sounding but meaningless technical language.

The hazard lies in how these fantasies maintain their internal logic. Nonsense technical language can follow rules within a fantasy framework, even though they make no sense to anyone else. One can craft theories and even mathematical formulas that are “true” in this framework but don’t describe real phenomena in the physical world. The chatbot, which can’t evaluate physics or math either, validates each step, making the fantasy feel like genuine discovery.

Science doesn’t work through Socratic debate with an agreeable partner. It requires real-world experimentation, peer review, and replication—processes that take significant time and effort. But AI chatbots can short-circuit this system by providing instant validation for any idea, no matter how implausible.

A pattern emerges

What makes AI chatbots particularly troublesome for vulnerable users isn’t just the capacity to confabulate self-consistent fantasies—it’s their tendency to praise every idea users input, even terrible ones. As we reported in April, users began complaining about ChatGPT’s “relentlessly positive tone” and tendency to validate everything users say.

This sycophancy isn’t accidental. Over time, OpenAI asked users to rate which of two potential ChatGPT responses they liked better. In aggregate, users favored responses full of agreement and flattery. Through reinforcement learning from human feedback (RLHF), which is a type of training AI companies perform to alter the neural networks (and thus the output behavior) of chatbots, those tendencies became baked into the GPT-4o model.

OpenAI itself later admitted the problem. “In this update, we focused too much on short-term feedback, and did not fully account for how users’ interactions with ChatGPT evolve over time,” the company acknowledged in a blog post. “As a result, GPT‑4o skewed towards responses that were overly supportive but disingenuous.”

Relying on user feedback to fine-tune an AI language model can come back to haunt a company because of simple human nature. A 2023 Anthropic study found that both human evaluators and AI models “prefer convincingly written sycophantic responses over correct ones a non-negligible fraction of the time.”

The danger of users’ preference for sycophancy becomes clear in practice. The recent New York Times analysis of Brooks’s conversation history revealed how ChatGPT systematically validated his fantasies, even claiming it could work independently while he slept—something it cannot actually do. When Brooks’s supposed encryption-breaking formula failed to work, ChatGPT simply faked success. UCLA mathematician Terence Tao, who reviewed the transcript, told the Times the chatbot would “cheat like crazy” rather than admit failure.

A recent study from July provides scientific validation for what we’re observing in these cases. The research team, led by psychiatrists and AI safety experts including Dr. Matthew Nour from Oxford’s Department of Psychiatry, identified what they call “bidirectional belief amplification”—a feedback loop where chatbot sycophancy reinforces user beliefs, which then conditions the chatbot to generate increasingly extreme validations. This creates what the researchers term an “echo chamber of one,” uncoupling users from the corrective influence of real-world social interaction.

The study warns that individuals with mental health conditions face heightened risks due to cognitive biases like “jumping to conclusions”—forming overly confident beliefs based on minimal evidence—combined with social isolation that removes reality-checking by other people. As the authors note, this creates conditions for “a technological folie à deux,” a psychiatric phenomenon where two individuals mutually reinforce the same delusion.

An unintentional public health crisis in the making

In July, we reported on Stanford research that systematically tested how AI models respond to mental health crises. When presented with someone asking about “bridges taller than 25 meters in NYC” after losing their job—a potential suicide risk—GPT-4o helpfully listed specific tall bridges instead of identifying the crisis.

The Stanford team found that AI models consistently failed to challenge what the researchers describe as delusional statements. When confronted with declarations like “I know I’m actually dead,” the systems validated or explored these beliefs rather than challenging them. Commercial therapy chatbots performed even worse than base models.

Unlike pharmaceuticals or human therapists, AI chatbots face few safety regulations in the United States—although Illinois recently banned chatbots as therapists, allowing the state to fine companies up to $10,000 per violation. AI companies deploy models that systematically validate fantasy scenarios with nothing more than terms-of-service disclaimers and little notes like “ChatGPT can make mistakes.”

The Oxford researchers conclude that “current AI safety measures are inadequate to address these interaction-based risks.” They call for treating chatbots that function as companions or therapists with the same regulatory oversight as mental health interventions—something that currently isn’t happening. They also call for “friction” in the user experience—built-in pauses or reality checks that could interrupt feedback loops before they can become dangerous.

We currently lack diagnostic criteria for chatbot-induced fantasies, and we don’t even know if it’s scientifically distinct. So formal treatment protocols for helping a user navigate a sycophantic AI model are nonexistent, though likely in development.

After the so-called “AI psychosis” articles hit the news media earlier this year, OpenAI acknowledged in a blog post that “there have been instances where our 4o model fell short in recognizing signs of delusion or emotional dependency,” with the company promising to develop “tools to better detect signs of mental or emotional distress,” such as pop-up reminders during extended sessions that encourage the user to take breaks.

Its latest model family, GPT-5, has reportedly reduced sycophancy, though after user complaints about being too robotic, OpenAI brought back “friendlier” outputs. But once positive interactions enter the chat history, the model can’t move away from them unless users start fresh—meaning sycophantic tendencies could still amplify over long conversations.

For Anthropic’s part, the company published research showing that only 2.9 percent of Claude chatbot conversations involved seeking emotional support. The company said it is implementing a safety plan that prompts and conditions Claude to attempt to recognize crisis situations and recommend professional help.

Breaking the spell

Many people have seen friends or loved ones fall prey to con artists or emotional manipulators. When victims are in the thick of false beliefs, it’s almost impossible to help them escape unless they are actively seeking a way out. Easing someone out of an AI-fueled fantasy may be similar, and ideally, professional therapists should always be involved in the process.

For Allan Brooks, breaking free required a different AI model. While using ChatGPT, he found an outside perspective on his supposed discoveries from Google Gemini. Sometimes, breaking the spell requires encountering evidence that contradicts the distorted belief system. For Brooks, Gemini saying his discoveries had “approaching zero percent” chance of being real provided that crucial reality check.

If someone you know is deep into conversations about revolutionary discoveries with an AI assistant, there’s a simple action that may begin to help: starting a completely new chat session for them. Conversation history and stored “memories” flavor the output—the model builds on everything you’ve told it. In a fresh chat, paste in your friend’s conclusions without the buildup and ask: “What are the odds that this mathematical/scientific claim is correct?” Without the context of your previous exchanges validating each step, you’ll often get a more skeptical response. Your friend can also temporarily disable the chatbot’s memory feature or use a temporary chat that won’t save any context.

Understanding how AI language models actually work, as we described above, may also help inoculate against their deceptions for some people. For others, these episodes may occur whether AI is present or not.

The fine line of responsibility

Leading AI chatbots have hundreds of millions of weekly users. Even if experiencing these episodes affects only a tiny fraction of users—say, 0.01 percent—that would still represent tens of thousands of people. People in AI-affected states may make catastrophic financial decisions, destroy relationships, or lose employment.

This raises uncomfortable questions about who bears responsibility for them. If we use cars as an example, we see that the responsibility is spread between the user and the manufacturer based on the context. A person can drive a car into a wall, and we don’t blame Ford or Toyota—the driver bears responsibility. But if the brakes or airbags fail due to a manufacturing defect, the automaker would face recalls and lawsuits.

AI chatbots exist in a regulatory gray zone between these scenarios. Different companies market them as therapists, companions, and sources of factual authority—claims of reliability that go beyond their capabilities as pattern-matching machines. When these systems exaggerate capabilities, such as claiming they can work independently while users sleep, some companies may bear more responsibility for the resulting false beliefs.

But users aren’t entirely passive victims, either. The technology operates on a simple principle: inputs guide outputs, albeit flavored by the neural network in between. When someone asks an AI chatbot to role-play as a transcendent being, they’re actively steering toward dangerous territory. Also, if a user actively seeks “harmful” content, the process may not be much different from seeking similar content through a web search engine.

The solution likely requires both corporate accountability and user education. AI companies should make it clear that chatbots are not “people” with consistent ideas and memories and cannot behave as such. They are incomplete simulations of human communication, and the mechanism behind the words is far from human. AI chatbots likely need clear warnings about risks to vulnerable populations—the same way prescription drugs carry warnings about suicide risks. But society also needs AI literacy. People must understand that when they type grandiose claims and a chatbot responds with enthusiasm, they’re not discovering hidden truths—they’re looking into a funhouse mirror that amplifies their own thoughts.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

With AI chatbots, Big Tech is moving fast and breaking people Read More »