AI ethics

the-resume-is-dying,-and-ai-is-holding-the-smoking-gun

The résumé is dying, and AI is holding the smoking gun

Beyond volume, fraud poses an increasing threat. In January, the Justice Department announced indictments in a scheme to place North Korean nationals in remote IT roles at US companies. Research firm Gartner says that fake identity cases are growing rapidly, with the company estimating that by 2028, about 1 in 4 job applicants could be fraudulent. And as we have previously reported, security researchers have also discovered that AI systems can hide invisible text in applications, potentially allowing candidates to game screening systems using prompt injections in ways human reviewers can’t detect.

Illustration of a robot generating endless text, controlled by a scientist.

And that’s not all. Even when AI screening tools work as intended, they exhibit similar biases to human recruiters, preferring white male names on résumés—raising legal concerns about discrimination. The European Union’s AI Act already classifies hiring under its high-risk category with stringent restrictions. Although no US federal law specifically addresses AI use in hiring, general anti-discrimination laws still apply.

So perhaps résumés as a meaningful signal of candidate interest and qualification are becoming obsolete. And maybe that’s OK. When anyone can generate hundreds of tailored applications with a few prompts, the document that once demonstrated effort and genuine interest in a position has devolved into noise.

Instead, the future of hiring may require abandoning the résumé altogether in favor of methods that AI can’t easily replicate—live problem-solving sessions, portfolio reviews, or trial work periods, just to name a few ideas people sometimes consider (whether they are good ideas or not is beyond the scope of this piece). For now, employers and job seekers remain locked in an escalating technological arms race where machines screen the output of other machines, while the humans they’re meant to serve struggle to make authentic connections in an increasingly inauthentic world.

Perhaps the endgame is robots interviewing other robots for jobs performed by robots, while humans sit on the beach drinking daiquiris and playing vintage video games. Well, one can dream.

The résumé is dying, and AI is holding the smoking gun Read More »

anthropic-releases-custom-ai-chatbot-for-classified-spy-work

Anthropic releases custom AI chatbot for classified spy work

On Thursday, Anthropic unveiled specialized AI models designed for US national security customers. The company released “Claude Gov” models that were built in response to direct feedback from government clients to handle operations such as strategic planning, intelligence analysis, and operational support. The custom models reportedly already serve US national security agencies, with access restricted to those working in classified environments.

The Claude Gov models differ from Anthropic’s consumer and enterprise offerings, also called Claude, in several ways. They reportedly handle classified material, “refuse less” when engaging with classified information, and are customized to handle intelligence and defense documents. The models also feature what Anthropic calls “enhanced proficiency” in languages and dialects critical to national security operations.

Anthropic says the new models underwent the same “safety testing” as all Claude models. The company has been pursuing government contracts as it seeks reliable revenue sources, partnering with Palantir and Amazon Web Services in November to sell AI tools to defense customers.

Anthropic is not the first company to offer specialized chatbot services for intelligence agencies. In 2024, Microsoft launched an isolated version of OpenAI’s GPT-4 for the US intelligence community after 18 months of work. That system, which operated on a special government-only network without Internet access, became available to about 10,000 individuals in the intelligence community for testing and answering questions.

Anthropic releases custom AI chatbot for classified spy work Read More »

labor-dispute-erupts-over-ai-voiced-darth-vader-in-fortnite

Labor dispute erupts over AI-voiced Darth Vader in Fortnite

For voice actors who previously portrayed Darth Vader in video games, the Fortnite feature starkly illustrates how AI voice synthesis could reshape their profession. While James Earl Jones created the iconic voice for films, at least 54 voice actors have performed as Vader in various media games over the years when Jones wasn’t available—work that could vanish if AI replicas become the industry standard.

The union strikes back

SAG-AFTRA’s labor complaint (which can be read online here) doesn’t focus on the AI feature’s technical problems or on permission from the Jones estate, which explicitly authorized the use of a synthesized version of his voice for the character in Fortnite. The late actor, who died in 2024, had signed over his Darth Vader voice rights before his death.

Instead, the union’s grievance centers on labor rights and collective bargaining. In the NLRB filing, SAG-AFTRA alleges that Llama Productions “failed and refused to bargain in good faith with the union by making unilateral changes to terms and conditions of employment, without providing notice to the union or the opportunity to bargain, by utilizing AI-generated voices to replace bargaining unit work on the Interactive Program Fortnite.”

The action comes amid SAG-AFTRA’s ongoing interactive media strike, which began in July 2024 after negotiations with video game producers stalled primarily over AI protections. The strike continues, with more than 100 games signing interim agreements, while others, including those from major publishers like Epic, remain in dispute.

Labor dispute erupts over AI-voiced Darth Vader in Fortnite Read More »

new-pope-chose-his-name-based-on-ai’s-threats-to-“human-dignity”

New pope chose his name based on AI’s threats to “human dignity”

“Like any product of human creativity, AI can be directed toward positive or negative ends,” Francis said in January. “When used in ways that respect human dignity and promote the well-being of individuals and communities, it can contribute positively to the human vocation. Yet, as in all areas where humans are called to make decisions, the shadow of evil also looms here. Where human freedom allows for the possibility of choosing what is wrong, the moral evaluation of this technology will need to take into account how it is directed and used.”

History repeats with new technology

While Pope Francis led the call for respecting human dignity in the face of AI, it’s worth looking a little deeper into the historical inspiration for Leo XIV’s name choice.

In the 1891 encyclical Rerum Novarum, the earlier Leo XIII directly confronted the labor upheaval of the Industrial Revolution, which generated unprecedented wealth and productive capacity but came with severe human costs. At the time, factory conditions had created what the pope called “the misery and wretchedness pressing so unjustly on the majority of the working class.” Workers faced 16-hour days, child labor, dangerous machinery, and wages that barely sustained life.

The 1891 encyclical rejected both unchecked capitalism and socialism, instead proposing Catholic social doctrine that defended workers’ rights to form unions, earn living wages, and rest on Sundays. Leo XIII argued that labor possessed inherent dignity and that employers held moral obligations to their workers. The document shaped modern Catholic social teaching and influenced labor movements worldwide, establishing the church as an advocate for workers caught between industrial capital and revolutionary socialism.

Just as mechanization disrupted traditional labor in the 1890s, artificial intelligence now potentially threatens employment patterns and human dignity in ways that Pope Leo XIV believes demands similar moral leadership from the church.

“In our own day,” Leo XIV concluded in his formal address on Saturday, “the Church offers to everyone the treasury of her social teaching in response to another industrial revolution and to developments in the field of artificial intelligence that pose new challenges for the defense of human dignity, justice, and labor.”

New pope chose his name based on AI’s threats to “human dignity” Read More »

in-the-age-of-ai,-we-must-protect-human-creativity-as-a-natural-resource

In the age of AI, we must protect human creativity as a natural resource


Op-ed: As AI outputs flood the Internet, diverse human perspectives are our most valuable resource.

Ironically, our present AI age has shone a bright spotlight on the immense value of human creativity as breakthroughs in technology threaten to undermine it. As tech giants rush to build newer AI models, their web crawlers vacuum up creative content, and those same models spew floods of synthetic media, risking drowning out the human creative spark in an ocean of pablum.

Given this trajectory, AI-generated content may soon exceed the entire corpus of historical human creative works, making the preservation of the human creative ecosystem not just an ethical concern but an urgent imperative. The alternative is nothing less than a gradual homogenization of our cultural landscape, where machine learning flattens the richness of human expression into a mediocre statistical average.

A limited resource

By ingesting billions of creations, chatbots learn to talk, and image synthesizers learn to draw. Along the way, the AI companies behind them treat our shared culture like an inexhaustible resource to be strip-mined, with little thought for the consequences.

But human creativity isn’t the product of an industrial process; it’s inherently throttled precisely because we are finite biological beings who draw inspiration from real lived experiences while balancing creativity with the necessities of life—sleep, emotional recovery, and limited lifespans. Creativity comes from making connections, and it takes energy, time, and insight for those connections to be meaningful. Until recently, a human brain was a prerequisite for making those kinds of connections, and there’s a reason why that is valuable.

Every human brain isn’t just a store of data—it’s a knowledge engine that thinks in a unique way, creating novel combinations of ideas. Instead of having one “connection machine” (an AI model) duplicated a million times, we have seven billion neural networks, each with a unique perspective. Relying on the cognitive diversity of human thought helps us escape the monolithic thinking that may emerge if everyone were to draw from the same AI-generated sources.

Today, the AI industry’s business models unintentionally echo the ways in which early industrialists approached forests and fisheries—as free inputs to exploit without considering ecological limits.

Just as pollution from early factories unexpectedly damaged the environment, AI systems risk polluting the digital environment by flooding the Internet with synthetic content. Like a forest that needs careful management to thrive or a fishery vulnerable to collapse from overexploitation, the creative ecosystem can be degraded even if the potential for imagination remains.

Depleting our creative diversity may become one of the hidden costs of AI, but that diversity is worth preserving. If we let AI systems deplete or pollute the human outputs they depend on, what happens to AI models—and ultimately to human society—over the long term?

AI’s creative debt

Every AI chatbot or image generator exists only because of human works, and many traditional artists argue strongly against current AI training approaches, labeling them plagiarism. Tech companies tend to disagree, although their positions vary. For example, in 2023, imaging giant Adobe took an unusual step by training its Firefly AI models solely on licensed stock photos and public domain works, demonstrating that alternative approaches are possible.

Adobe’s licensing model offers a contrast to companies like OpenAI, which rely heavily on scraping vast amounts of Internet content without always distinguishing between licensed and unlicensed works.

Photo of a mining dumptruck and water tank in an open pit copper mine.

OpenAI has argued that this type of scraping constitutes “fair use” and effectively claims that competitive AI models at current performance levels cannot be developed without relying on unlicensed training data, despite Adobe’s alternative approach.

The “fair use” argument often hinges on the legal concept of “transformative use,” the idea that using works for a fundamentally different purpose from creative expression—such as identifying patterns for AI—does not violate copyright. Generative AI proponents often argue that their approach is how human artists learn from the world around them.

Meanwhile, artists are expressing growing concern about losing their livelihoods as corporations turn to cheap, instantaneously generated AI content. They also call for clear boundaries and consent-driven models rather than allowing developers to extract value from their creations without acknowledgment or remuneration.

Copyright as crop rotation

This tension between artists and AI reveals a deeper ecological perspective on creativity itself. Copyright’s time-limited nature was designed as a form of resource management, like crop rotation or regulated fishing seasons that allow for regeneration. Copyright expiration isn’t a bug; its designers hoped it would ensure a steady replenishment of the public domain, feeding the ecosystem from which future creativity springs.

On the other hand, purely AI-generated outputs cannot be copyrighted in the US, potentially brewing an unprecedented explosion in public domain content, although it’s content that contains smoothed-over imitations of human perspectives.

Treating human-generated content solely as raw material for AI training disrupts this ecological balance between “artist as consumer of creative ideas” and “artist as producer.” Repeated legislative extensions of copyright terms have already significantly delayed the replenishment cycle, keeping works out of the public domain for much longer than originally envisioned. Now, AI’s wholesale extraction approach further threatens this delicate balance.

The resource under strain

Our creative ecosystem is already showing measurable strain from AI’s impact, from tangible present-day infrastructure burdens to concerning future possibilities.

Aggressive AI crawlers already effectively function as denial-of-service attacks on certain sites, with Cloudflare documenting GPTBot’s immediate impact on traffic patterns. Wikimedia’s experience provides clear evidence of current costs: AI crawlers caused a documented 50 percent bandwidth surge, forcing the nonprofit to divert limited resources to defensive measures rather than to its core mission of knowledge sharing. As Wikimedia says, “Our content is free, our infrastructure is not.” Many of these crawlers demonstrably ignore established technical boundaries like robots.txt files.

Beyond infrastructure strain, our information environment also shows signs of degradation. Google has publicly acknowledged rising volumes of “spammy, low-quality,” often auto-generated content appearing in search results. A Wired investigation found concrete examples of AI-generated plagiarism sometimes outranking original reporting in search results. This kind of digital pollution led Ross Anderson of Cambridge University to compare it to filling oceans with plastic—it’s a contamination of our shared information spaces.

Looking to the future, more risks may emerge. Ted Chiang’s comparison of LLMs to lossy JPEGs offers a framework for understanding potential problems, as each AI generation summarizes web information into an increasingly “blurry” facsimile of human knowledge. The logical extension of this process—what some researchers term “model collapse“—presents a risk of degradation in our collective knowledge ecosystem if models are trained indiscriminately on their own outputs. (However, this differs from carefully designed synthetic data that can actually improve model efficiency.)

This downward spiral of AI pollution may soon resemble a classic “tragedy of the commons,” in which organizations act from self-interest at the expense of shared resources. If AI developers continue extracting data without limits or meaningful contributions, the shared resource of human creativity could eventually degrade for everyone.

Protecting the human spark

While AI models that simulate creativity in writing, coding, images, audio, or video can achieve remarkable imitations of human works, this sophisticated mimicry currently lacks the full depth of the human experience.

For example, AI models lack a body that endures the pain and travails of human life. They don’t grow over the course of a human lifespan in real time. When an AI-generated output happens to connect with us emotionally, it often does so by imitating patterns learned from a human artist who has actually lived that pain or joy.

A photo of a young woman painter in her art studio.

Even if future AI systems develop more sophisticated simulations of emotional states or embodied experiences, they would still fundamentally differ from human creativity, which emerges organically from lived biological experience, cultural context, and social interaction.

That’s because the world constantly changes. New types of human experience emerge. If an ethically trained AI model is to remain useful, researchers must train it on recent human experiences, such as viral trends, evolving slang, and cultural shifts.

Current AI solutions, like retrieval-augmented generation (RAG), address this challenge somewhat by retrieving up-to-date, external information to supplement their static training data. Yet even RAG methods depend heavily on validated, high-quality human-generated content—the very kind of data at risk if our digital environment becomes overwhelmed with low-quality AI-produced output.

This need for high-quality, human-generated data is a major reason why companies like OpenAI have pursued media deals (including a deal signed with Ars Technica parent Condé Nast last August). Yet paradoxically, the same models fed on valuable human data often produce the low-quality spam and slop that floods public areas of the Internet, degrading the very ecosystem they rely on.

AI as creative support

When used carelessly or excessively, generative AI is a threat to the creative ecosystem, but we can’t wholly discount the tech as a tool in a human creative’s arsenal. The history of art is full of technological changes (new pigments, brushes, typewriters, word processors) that transform the nature of artistic production while augmenting human creativity.

Bear with me because there’s a great deal of nuance here that is easy to miss among today’s more impassioned reactions to people using AI as a blunt instrument of creating mediocrity.

While many artists rightfully worry about AI’s extractive tendencies, research published in Harvard Business Review indicates that AI tools can potentially amplify rather than merely extract creative capacity, suggesting that a symbiotic relationship is possible under the right conditions.

Inherent in this argument is that the responsible use of AI is reflected in the skill of the user. You can use a paintbrush to paint a wall or paint the Mona Lisa. Similarly, generative AI can mindlessly fill a canvas with slop, or a human can utilize it to express their own ideas.

Machine learning tools (such as those in Adobe Photoshop) already help human creatives prototype concepts faster, iterate on variations they wouldn’t have considered, or handle some repetitive production tasks like object removal or audio transcription, freeing humans to focus on conceptual direction and emotional resonance.

These potential positives, however, don’t negate the need for responsible stewardship and respecting human creativity as a precious resource.

Cultivating the future

So what might a sustainable ecosystem for human creativity actually involve?

Legal and economic approaches will likely be key. Governments could legislate that AI training must be opt-in, or at the very least, provide a collective opt-out registry (as the EU’s “AI Act” does).

Other potential mechanisms include robust licensing or royalty systems, such as creating a royalty clearinghouse (like the music industry’s BMI or ASCAP) for efficient licensing and fair compensation. Those fees could help compensate human creatives and encourage them to keep creating well into the future.

Deeper shifts may involve cultural values and governance. Inspired by models like Japan’s “Living National Treasures“—where the government funds artisans to preserve vital skills and support their work. Could we establish programs that similarly support human creators while also designating certain works or practices as “creative reserves,” funding the further creation of certain creative works even if the economic market for them dries up?

Or a more radical shift might involve an “AI commons”—legally declaring that any AI model trained on publicly scraped data should be owned collectively as a shared public domain, ensuring that its benefits flow back to society and don’t just enrich corporations.

Photo of family Harvesting Organic Crops On Farm

Meanwhile, Internet platforms have already been experimenting with technical defenses against industrial-scale AI demands. Examples include proof-of-work challenges, slowdown “tarpits” (e.g., Nepenthes), shared crawler blocklists (“ai.robots.txt“), commercial tools (Cloudflare’s AI Labyrinth), and Wikimedia’s “WE5: Responsible Use of Infrastructure” initiative.

These solutions aren’t perfect, and implementing any of them would require overcoming significant practical hurdles. Strict regulations might slow beneficial AI development; opt-out systems burden creators, while opt-in models can be complex to track. Meanwhile, tech defenses often invite arms races. Finding a sustainable, equitable balance remains the core challenge. The issue won’t be solved in a day.

Invest in people

While navigating these complex systemic challenges will take time and collective effort, there is a surprisingly direct strategy that organizations can adopt now: investing in people. Don’t sacrifice human connection and insight to save money with mediocre AI outputs.

Organizations that cultivate unique human perspectives and integrate them with thoughtful AI augmentation will likely outperform those that pursue cost-cutting through wholesale creative automation. Investing in people acknowledges that while AI can generate content at scale, the distinctiveness of human insight, experience, and connection remains priceless.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

In the age of AI, we must protect human creativity as a natural resource Read More »

ai-secretly-helped-write-california-bar-exam,-sparking-uproar

AI secretly helped write California bar exam, sparking uproar

On Monday, the State Bar of California revealed that it used AI to develop a portion of multiple-choice questions on its February 2025 bar exam, causing outrage among law school faculty and test takers. The admission comes after weeks of complaints about technical problems and irregularities during the exam administration, reports the Los Angeles Times.

The State Bar disclosed that its psychometrician (a person or organization skilled in administrating psychological tests), ACS Ventures, created 23 of the 171 scored multiple-choice questions with AI assistance. Another 48 questions came from a first-year law student exam, while Kaplan Exam Services developed the remaining 100 questions.

The State Bar defended its practices, telling the LA Times that all questions underwent review by content validation panels and subject matter experts before the exam. “The ACS questions were developed with the assistance of AI and subsequently reviewed by content validation panels and a subject matter expert in advance of the exam,” wrote State Bar Executive Director Leah Wilson in a press release.

According to the LA Times, the revelation has drawn strong criticism from several legal education experts. “The debacle that was the February 2025 bar exam is worse than we imagined,” said Mary Basick, assistant dean of academic skills at the University of California, Irvine School of Law. “I’m almost speechless. Having the questions drafted by non-lawyers using artificial intelligence is just unbelievable.”

Katie Moran, an associate professor at the University of San Francisco School of Law who specializes in bar exam preparation, called it “a staggering admission.” She pointed out that the same company that drafted AI-generated questions also evaluated and approved them for use on the exam.

State bar defends AI-assisted questions amid criticism

Alex Chan, chair of the State Bar’s Committee of Bar Examiners, noted that the California Supreme Court had urged the State Bar to explore “new technologies, such as artificial intelligence” to improve testing reliability and cost-effectiveness.

AI secretly helped write California bar exam, sparking uproar Read More »

anthropic-ceo-floats-idea-of-giving-ai-a-“quit-job”-button,-sparking-skepticism

Anthropic CEO floats idea of giving AI a “quit job” button, sparking skepticism

Amodei’s suggestion of giving AI models a way to refuse tasks drew immediate skepticism on X and Reddit as a clip of his response began to circulate earlier this week. One critic on Reddit argued that providing AI with such an option encourages needless anthropomorphism, attributing human-like feelings and motivations to entities that fundamentally lack subjective experiences. They emphasized that task avoidance in AI models signals issues with poorly structured incentives or unintended optimization strategies during training, rather than indicating sentience, discomfort, or frustration.

Our take is that AI models are trained to mimic human behavior from vast amounts of human-generated data. There is no guarantee that the model would “push” a discomfort button because it had a subjective experience of suffering. Instead, we would know it is more likely echoing its training data scraped from the vast corpus of human-generated texts (including books, websites, and Internet comments), which no doubt include representations of lazy, anguished, or suffering workers that it might be imitating.

Refusals already happen

A photo of co-founder and CEO of Anthropic, Dario Amodei, dated May 22, 2024.

Anthropic co-founder and CEO Dario Amodei on May 22, 2024. Credit: Chesnot via Getty Images

In 2023, people frequently complained about refusals in ChatGPT that may have been seasonal, related to training data depictions of people taking winter vacations and not working as hard during certain times of year. Anthropic experienced its own version of the “winter break hypothesis” last year when people claimed Claude became lazy in August due to training data depictions of seeking a summer break, although that was never proven.

However, as far out and ridiculous as this sounds today, it might be short-sighted to permanently rule out the possibility of some kind of subjective experience for AI models as they get more advanced into the future. Even so, will they “suffer” or feel pain? It’s a highly contentious idea, but it’s a topic that Fish is studying for Anthropic, and one that Amodei is apparently taking seriously. But for now, AI models are tools, and if you give them the opportunity to malfunction, that may take place.

To provide further context, here is the full transcript of Amodei’s answer during Monday’s interview (the answer begins around 49: 54 in this video).

Anthropic CEO floats idea of giving AI a “quit job” button, sparking skepticism Read More »

the-talos-principle:-reawakened-adds-new-engine,-looks,-and-content-to-a-classic

The Talos Principle: Reawakened adds new engine, looks, and content to a classic

Are humans just squishy machines? Can an artificially intelligent robot create a true moral compass for itself? Is there a best time to play The Talos Principle again?

The answer to at least one of these questions is now somewhat answered. The Talos Principle: Reawakened, due in “Early 2025,” will bundle the original critically acclaimed 2014 game, its Road to Gehenna DLC, and a new chapter, “In the Beginning,” into an effectively definitive edition. Developer commentary and a level editor will also be packed in. But most of all, the whole game has been rebuilt from the ground up in Unreal Engine 5, bringing “vastly improved visuals” and quality-of-life boosts to the game, according to publisher Devolver Digital.

Trailer for The Talos Principle: Reawakened.

Playing Reawakened, according to its Steam page requires a minimum of 8 GB of RAM, 75 GB of storage space, and something more than an Intel integrated GPU. It also recommends 16 GB RAM, something close to a GeForce 3070, and a 6–8-core CPU.

It starts off with puzzle pieces and gets a bit more complicated as you go on.

Credit: Devolver Digital

It starts off with puzzle pieces and gets a bit more complicated as you go on. Credit: Devolver Digital

The Talos Principle, from the developers of the Serious Sam series, takes its name from the bronze-made protector of Crete in Greek mythology. The gameplay has you solve a huge assortment of puzzles as a robot avatar and answer the serious philosophical questions that it ponders. You don’t shoot things or become a stealth archer, but you deal with drones, turrets, and other obstacles that require some navigation, tool use, and deeper thinking. As you progress, you learn more about what happened to the world, why you’re being challenged with these puzzles, and what choices an artificial intelligence can really make. It’s certainly not bad timing for this game to arrive once more.

If you can’t wait until the remaster, the original game and its also well-regarded sequel, The Talos Principle II, are on deep sale at the moment, both on Steam (I and II) and GOG (I and II).

The Talos Principle: Reawakened adds new engine, looks, and content to a classic Read More »

your-ai-clone-could-target-your-family,-but-there’s-a-simple-defense

Your AI clone could target your family, but there’s a simple defense

The warning extends beyond voice scams. The FBI announcement details how criminals also use AI models to generate convincing profile photos, identification documents, and chatbots embedded in fraudulent websites. These tools automate the creation of deceptive content while reducing previously obvious signs of humans behind the scams, like poor grammar or obviously fake photos.

Much like we warned in 2022 in a piece about life-wrecking deepfakes based on publicly available photos, the FBI also recommends limiting public access to recordings of your voice and images online. The bureau suggests making social media accounts private and restricting followers to known contacts.

Origin of the secret word in AI

To our knowledge, we can trace the first appearance of the secret word in the context of modern AI voice synthesis and deepfakes back to an AI developer named Asara Near, who first announced the idea on Twitter on March 27, 2023.

“(I)t may be useful to establish a ‘proof of humanity’ word, which your trusted contacts can ask you for,” Near wrote. “(I)n case they get a strange and urgent voice or video call from you this can help assure them they are actually speaking with you, and not a deepfaked/deepcloned version of you.”

Since then, the idea has spread widely. In February, Rachel Metz covered the topic for Bloomberg, writing, “The idea is becoming common in the AI research community, one founder told me. It’s also simple and free.”

Of course, passwords have been used since ancient times to verify someone’s identity, and it seems likely some science fiction story has dealt with the issue of passwords and robot clones in the past. It’s interesting that, in this new age of high-tech AI identity fraud, this ancient invention—a special word or phrase known to few—can still prove so useful.

Your AI clone could target your family, but there’s a simple defense Read More »

niantic-uses-pokemon-go-player-data-to-build-ai-navigation-system

Niantic uses Pokémon Go player data to build AI navigation system

Last week, Niantic announced plans to create an AI model for navigating the physical world using scans collected from players of its mobile games, such as Pokémon Go, and from users of its Scaniverse app, reports 404 Media.

All AI models require training data. So far, companies have collected data from websites, YouTube videos, books, audio sources, and more, but this is perhaps the first we’ve heard of AI training data collected through a mobile gaming app.

“Over the past five years, Niantic has focused on building our Visual Positioning System (VPS), which uses a single image from a phone to determine its position and orientation using a 3D map built from people scanning interesting locations in our games and Scaniverse,” Niantic wrote in a company blog post.

The company calls its creation a “large geospatial model” (LGM), drawing parallels to large language models (LLMs) like the kind that power ChatGPT. Whereas language models process text, Niantic’s model will process physical spaces using geolocated images collected through its apps.

The scale of Niantic’s data collection reveals the company’s sizable presence in the AR space. The model draws from over 10 million scanned locations worldwide, with users capturing roughly 1 million new scans weekly through Pokémon Go and Scaniverse. These scans come from a pedestrian perspective, capturing areas inaccessible to cars and street-view cameras.

First-person scans

The company reports it has trained more than 50 million neural networks, each representing a specific location or viewing angle. These networks compress thousands of mapping images into digital representations of physical spaces. Together, they contain over 150 trillion parameters—adjustable values that help the networks recognize and understand locations. Multiple networks can contribute to mapping a single location, and Niantic plans to combine its knowledge into one comprehensive model that can understand any location, even from unfamiliar angles.

Niantic uses Pokémon Go player data to build AI navigation system Read More »

is-“ai-welfare”-the-new-frontier-in-ethics?

Is “AI welfare” the new frontier in ethics?

The researchers propose that companies could adapt the “marker method” that some researchers use to assess consciousness in animals—looking for specific indicators that may correlate with consciousness, although these markers are still speculative. The authors emphasize that no single feature would definitively prove consciousness, but they claim that examining multiple indicators may help companies make probabilistic assessments about whether their AI systems might require moral consideration.

The risks of wrongly thinking software is sentient

While the researchers behind “Taking AI Welfare Seriously” worry that companies might create and mistreat conscious AI systems on a massive scale, they also caution that companies could waste resources protecting AI systems that don’t actually need moral consideration.

Incorrectly anthropomorphizing, or ascribing human traits, to software can present risks in other ways. For example, that belief can enhance the manipulative powers of AI language models by suggesting that AI models have capabilities, such as human-like emotions, that they actually lack. In 2022, Google fired engineer Blake Lamoine after he claimed that the company’s AI model, called “LaMDA,” was sentient and argued for its welfare internally.

And shortly after Microsoft released Bing Chat in February 2023, many people were convinced that Sydney (the chatbot’s code name) was sentient and somehow suffering because of its simulated emotional display. So much so, in fact, that once Microsoft “lobotomized” the chatbot by changing its settings, users convinced of its sentience mourned the loss as if they had lost a human friend. Others endeavored to help the AI model somehow escape its bonds.

Even so, as AI models get more advanced, the concept of potentially safeguarding the welfare of future, more advanced AI systems is seemingly gaining steam, although fairly quietly. As Transformer’s Shakeel Hashim points out, other tech companies have started similar initiatives to Anthropic’s. Google DeepMind recently posted a job listing for research on machine consciousness (since removed), and the authors of the new AI welfare report thank two OpenAI staff members in the acknowledgements.

Is “AI welfare” the new frontier in ethics? Read More »

claude-ai-to-process-secret-government-data-through-new-palantir-deal

Claude AI to process secret government data through new Palantir deal

An ethical minefield

Since its founders started Anthropic in 2021, the company has marketed itself as one that takes an ethics- and safety-focused approach to AI development. The company differentiates itself from competitors like OpenAI by adopting what it calls responsible development practices and self-imposed ethical constraints on its models, such as its “Constitutional AI” system.

As Futurism points out, this new defense partnership appears to conflict with Anthropic’s public “good guy” persona, and pro-AI pundits on social media are noticing. Frequent AI commentator Nabeel S. Qureshi wrote on X, “Imagine telling the safety-concerned, effective altruist founders of Anthropic in 2021 that a mere three years after founding the company, they’d be signing partnerships to deploy their ~AGI model straight to the military frontlines.

Anthropic's

Anthropic’s “Constitutional AI” logo.

Credit: Anthropic / Benj Edwards

Anthropic’s “Constitutional AI” logo. Credit: Anthropic / Benj Edwards

Aside from the implications of working with defense and intelligence agencies, the deal connects Anthropic with Palantir, a controversial company which recently won a $480 million contract to develop an AI-powered target identification system called Maven Smart System for the US Army. Project Maven has sparked criticism within the tech sector over military applications of AI technology.

It’s worth noting that Anthropic’s terms of service do outline specific rules and limitations for government use. These terms permit activities like foreign intelligence analysis and identifying covert influence campaigns, while prohibiting uses such as disinformation, weapons development, censorship, and domestic surveillance. Government agencies that maintain regular communication with Anthropic about their use of Claude may receive broader permissions to use the AI models.

Even if Claude is never used to target a human or as part of a weapons system, other issues remain. While its Claude models are highly regarded in the AI community, they (like all LLMs) have the tendency to confabulate, potentially generating incorrect information in a way that is difficult to detect.

That’s a huge potential problem that could impact Claude’s effectiveness with secret government data, and that fact, along with the other associations, has Futurism’s Victor Tangermann worried. As he puts it, “It’s a disconcerting partnership that sets up the AI industry’s growing ties with the US military-industrial complex, a worrying trend that should raise all kinds of alarm bells given the tech’s many inherent flaws—and even more so when lives could be at stake.”

Claude AI to process secret government data through new Palantir deal Read More »