AI writing

scientists-once-hoarded-pre-nuclear-steel;-now-we’re-hoarding-pre-ai-content

Scientists once hoarded pre-nuclear steel; now we’re hoarding pre-AI content

A time capsule of human expression

Graham-Cumming is no stranger to tech preservation efforts. He’s a British software engineer and writer best known for creating POPFile, an open source email spam filtering program, and for successfully petitioning the UK government to apologize for its persecution of codebreaker Alan Turing—an apology that Prime Minister Gordon Brown issued in 2009.

As it turns out, his pre-AI website isn’t new, but it has languished unannounced until now. “I created it back in March 2023 as a clearinghouse for online resources that hadn’t been contaminated with AI-generated content,” he wrote on his blog.

The website points to several major archives of pre-AI content, including a Wikipedia dump from August 2022 (before ChatGPT’s November 2022 release), Project Gutenberg’s collection of public domain books, the Library of Congress photo archive, and GitHub’s Arctic Code Vault—a snapshot of open source code buried in a former coal mine near the North Pole in February 2020. The wordfreq project appears on the list as well, flash-frozen from a time before AI contamination made its methodology untenable.

The site accepts submissions of other pre-AI content sources through its Tumblr page. Graham-Cumming emphasizes that the project aims to document human creativity from before the AI era, not to make a statement against AI itself. As atmospheric nuclear testing ended and background radiation returned to natural levels, low-background steel eventually became unnecessary for most uses. Whether pre-AI content will follow a similar trajectory remains a question.

Still, it feels reasonable to protect sources of human creativity now, including archival ones, because these repositories may become useful in ways that few appreciate at the moment. For example, in 2020, I proposed creating a so-called “cryptographic ark”—a timestamped archive of pre-AI media that future historians could verify as authentic, collected before my then-arbitrary cutoff date of January 1, 2022. AI slop pollutes more than the current discourse—it could cloud the historical record as well.

For now, lowbackgroundsteel.ai stands as a modest catalog of human expression from what may someday be seen as the last pre-AI era. It’s a digital archaeology project marking the boundary between human-generated and hybrid human-AI cultures. In an age where distinguishing between human and machine output grows increasingly difficult, these archives may prove valuable for understanding how human communication evolved before AI entered the chat.

Scientists once hoarded pre-nuclear steel; now we’re hoarding pre-AI content Read More »

researchers-surprised-to-find-less-educated-areas-adopting-ai-writing-tools-faster

Researchers surprised to find less-educated areas adopting AI writing tools faster


From the mouths of machines

Stanford researchers analyzed 305 million texts, revealing AI-writing trends.

Since the launch of ChatGPT in late 2022, experts have debated how widely AI language models would impact the world. A few years later, the picture is getting clear. According to new Stanford University-led research examining over 300 million text samples across multiple sectors, AI language models now assist in writing up to a quarter of professional communications across sectors. It’s having a large impact, especially in less-educated parts of the United States.

“Our study shows the emergence of a new reality in which firms, consumers and even international organizations substantially rely on generative AI for communications,” wrote the researchers.

The researchers tracked large language model (LLM) adoption across industries from January 2022 to September 2024 using a dataset that included 687,241 consumer complaints submitted to the US Consumer Financial Protection Bureau (CFPB), 537,413 corporate press releases, 304.3 million job postings, and 15,919 United Nations press releases.

By using a statistical detection system that tracked word usage patterns, the researchers found that roughly 18 percent of financial consumer complaints (including 30 percent of all complaints from Arkansas), 24 percent of corporate press releases, up to 15 percent of job postings, and 14 percent of UN press releases showed signs of AI assistance during that period of time.

The study also found that while urban areas showed higher adoption overall (18.2 percent versus 10.9 percent in rural areas), regions with lower educational attainment used AI writing tools more frequently (19.9 percent compared to 17.4 percent in higher-education areas). The researchers note that this contradicts typical technology adoption patterns where more educated populations adopt new tools fastest.

“In the consumer complaint domain, the geographic and demographic patterns in LLM adoption present an intriguing departure from historical technology diffusion trends where technology adoption has generally been concentrated in urban areas, among higher-income groups, and populations with higher levels of educational attainment.”

Researchers from Stanford, the University of Washington, and Emory University led the study, titled, “The Widespread Adoption of Large Language Model-Assisted Writing Across Society,” first listed on the arXiv preprint server in mid-February. Weixin Liang and Yaohui Zhang from Stanford served as lead authors, with collaborators Mihai Codreanu, Jiayu Wang, Hancheng Cao, and James Zou.

Detecting AI use in aggregate

We’ve previously covered that AI writing detection services aren’t reliable, and this study does not contradict that finding. On a document-by-document basis, AI detectors cannot be trusted. But when analyzing millions of documents in aggregate, telltale patterns emerge that suggest the influence of AI language models on text.

The researchers developed an approach based on a statistical framework in a previously released work that analyzed shifts in word frequencies and linguistic patterns before and after ChatGPT’s release. By comparing large sets of pre- and post-ChatGPT texts, they estimated the proportion of AI-assisted content at a population level. The presumption is that LLMs tend to favor certain word choices, sentence structures, and linguistic patterns that differ subtly from typical human writing.

To validate their approach, the researchers created test sets with known percentages of AI content (from zero percent to 25 percent) and found their method predicted these percentages with error rates below 3.3 percent. This statistical validation gave them confidence in their population-level estimates.

While the researchers specifically note their estimates likely represent a minimum level of AI usage, it’s important to understand that actual AI involvement might be significantly greater. Due to the difficulty in detecting heavily edited or increasingly sophisticated AI-generated content, the researchers say their reported adoption rates could substantially underestimate true levels of generative AI use.

Analysis suggests AI use as “equalizing tools”

While the overall adoption rates are revealing, perhaps more insightful are the patterns of who is using AI writing tools and how these patterns may challenge conventional assumptions about technology adoption.

In examining the CFPB complaints (a US public resource that collects complaints about consumer financial products and services), the researchers’ geographic analysis revealed substantial variation across US states.

Arkansas showed the highest adoption rate at 29.2 percent (based on 7,376 complaints), followed by Missouri at 26.9 percent (16,807 complaints) and North Dakota at 24.8 percent (1,025 complaints). In contrast, states like West Virginia (2.6 percent), Idaho (3.8 percent), and Vermont (4.8 percent) showed minimal AI writing adoption. Major population centers demonstrated moderate adoption, with California at 17.4 percent (157,056 complaints) and New York at 16.6 percent (104,862 complaints).

The urban-rural divide followed expected technology adoption patterns initially, but with an interesting twist. Using Rural Urban Commuting Area (RUCA) codes, the researchers found that urban and rural areas initially adopted AI writing tools at similar rates during early 2023. However, adoption trajectories diverged by mid-2023, with urban areas reaching 18.2 percent adoption compared to 10.9 percent in rural areas.

Contrary to typical technology diffusion patterns, areas with lower educational attainment showed higher AI writing tool usage. Comparing regions above and below state median levels of bachelor’s degree attainment, areas with fewer college graduates stabilized at 19.9 percent adoption rates compared to 17.4 percent in more educated regions. This pattern held even within urban areas, where less-educated communities showed 21.4 percent adoption versus 17.8 percent in more educated urban areas.

The researchers suggest that AI writing tools may serve as a leg-up for people who may not have as much educational experience. “While the urban-rural digital divide seems to persist,” the researchers write, “our finding that areas with lower educational attainment showed modestly higher LLM adoption rates in consumer complaints suggests these tools may serve as equalizing tools in consumer advocacy.”

Corporate and diplomatic trends in AI writing

According to the researchers, all sectors they analyzed (consumer complaints, corporate communications, job postings) showed similar adoption patterns: sharp increases beginning three to four months after ChatGPT’s November 2022 launch, followed by stabilization in late 2023.

Organization age emerged as the strongest predictor of AI writing usage in the job posting analysis. Companies founded after 2015 showed adoption rates up to three times higher than firms established before 1980, reaching 10–15 percent AI-modified text in certain roles compared to below 5 percent for older organizations. Small companies with fewer employees also incorporated AI more readily than larger organizations.

When examining corporate press releases by sector, science and technology companies integrated AI most extensively, with an adoption rate of 16.8 percent by late 2023. Business and financial news (14–15.6 percent) and people and culture topics (13.6–14.3 percent) showed slightly lower but still significant adoption.

In the international arena, Latin American and Caribbean UN country teams showed the highest adoption among international organizations at approximately 20 percent, while African states, Asia-Pacific states, and Eastern European states demonstrated more moderate increases to 11–14 percent by 2024.

Implications and limitations

In the study, the researchers acknowledge limitations in their analysis due to a focus on English-language content. Also, as we mentioned earlier, they found they could not reliably detect human-edited AI-generated text or text generated by newer models instructed to imitate human writing styles. As a result, the researchers suggest their findings represent a lower bound of actual AI writing tool adoption.

The researchers noted that the plateauing of AI writing adoption in 2024 might reflect either market saturation or increasingly sophisticated LLMs producing text that evades detection methods. They conclude we now live in a world where distinguishing between human and AI writing becomes progressively more difficult, with implications for communications across society.

“The growing reliance on AI-generated content may introduce challenges in communication,” the researchers write. “In sensitive categories, over-reliance on AI could result in messages that fail to address concerns or overall release less credible information externally. Over-reliance on AI could also introduce public mistrust in the authenticity of messages sent by firms.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Researchers surprised to find less-educated areas adopting AI writing tools faster Read More »