animal behavior

chimps-consume-alcohol-equivalent-of-nearly-2-drinks-a-day

Chimps consume alcohol equivalent of nearly 2 drinks a day

Nearly two drinks a day

This latest study involved chimp populations at the Ngogo Chimpanzee Project (Uganda) and a second site at Tai (Ivory Coast), where scientists have estimated the animals consume between 5 to 10 percent of their body weight (about 40 kilos) in fruit each day—around 45 kilograms. The authors collected fallen fruit pulp samples from both sites, packed them in airtight containers, and froze them back at base camp to keep the fruit from ripening further.

Then they quantified the ethanol concentrations using a breathalyzer, a portable gas chromatograph, and chemical testing. The Uganda fruit contained 0.32 percent ethanol, while the Ivory Coast fruit contained 0.31 percent ethanol, which might not sound like much until you consider just how much fruit they eat. And the most frequently consumed fruit at both sites had the highest ethanol content.

If anything, this is a conservative estimate, per Dudley. “If the chimps are randomly sampling ripe fruit, then that’s going to be their average consumption rate, independent of any preference for ethanol,” he said. “But if they are preferring riper and/or more sugar-rich fruits, then this is a conservative lower limit for the likely rate of ethanol ingestion.” That’s in keeping with a 2016 report that captive aye-ayes and slow lorises prefer nectar with the highest alcohol content.

“Our findings imply that our ancestors were similarly chronically exposed to dietary alcohol,” co-author Aleksey Maro, a graduate student at UC Berkeley, told New Scientist. “The drunken monkey hypothesis suggests that this exposure caused our species to evolve an association between alcohol consumption and the reward of finding fruit sugars, and explains human attraction to alcohol today.” One caveat is that apes ingest ethanol accidentally, while humans drink it deliberately.

“What we’re realizing from this work is that our relationship with alcohol goes deep back into evolutionary time, probably about 30 million years,” University of St. Andrews primatologist Catherine Hobaiter, who was not involved with the study, told BBC News. “Maybe for chimpanzees, this is a great way to create social bonds, to hang out together on the forest floor, eating those fallen fruits.”

The next step is to sample the chimps’ urine to see if it contains any alcohol metabolites, as was found in a 2022 study on spider monkeys. This will further refine estimates for how much ethanol-laden fruit the chimps eat every day. Maro spent this summer in Ngogo, sleeping in trees—protected from the constant streams by an umbrella—to collect urine samples.

Science Advances, 2025. DOI: 10.1126/sciadv.adw1665 (About DOIs).

Chimps consume alcohol equivalent of nearly 2 drinks a day Read More »

meet-the-2025-ig-nobel-prize-winners

Meet the 2025 Ig Nobel Prize winners


The annual award ceremony features miniature operas, scientific demos, and the 24/7 lectures.

The Ig Nobel Prizes honor “achievements that first make people laugh and then make them think.” Credit: Aurich Lawson / Getty Images

Does alcohol enhance one’s foreign language fluency? Do West African lizards have a preferred pizza topping? And can painting cows with zebra stripes help repel biting flies? These and other unusual research questions were honored tonight in a virtual ceremony to announce the 2025 recipients of the annual Ig Nobel Prizes. Yes, it’s that time of year again, when the serious and the silly converge—for science.

Established in 1991, the Ig Nobels are a good-natured parody of the Nobel Prizes; they honor “achievements that first make people laugh and then make them think.” The unapologetically campy awards ceremony features miniature operas, scientific demos, and the 24/7 lectures whereby experts must explain their work twice: once in 24 seconds and the second in just seven words.

Acceptance speeches are limited to 60 seconds. And as the motto implies, the research being honored might seem ridiculous at first glance, but that doesn’t mean it’s devoid of scientific merit. In the weeks following the ceremony, the winners will also give free public talks, which will be posted on the Improbable Research website.

Without further ado, here are the winners of the 2025 Ig Nobel prizes.

Biology

Example of the area of legs and body used to count biting flies on cows.

Credit: Tomoki Kojima et al., 2019

Citation: Tomoki Kojima, Kazato Oishi, Yasushi Matsubara, Yuki Uchiyama, Yoshihiko Fukushima, Naoto Aoki, Say Sato, Tatsuaki Masuda, Junichi Ueda, Hiroyuki Hirooka, and Katsutoshi Kino, for their experiments to learn whether cows painted with zebra-like striping can avoid being bitten by flies.

Any dairy farmer can tell you that biting flies are a pestilent scourge for cattle herds, which is why one so often sees cows throwing their heads, stamping their feet, flicking their tails, and twitching their skin—desperately trying to shake off the nasty creatures. There’s an economic cost as well since it causes the cattle to graze and feed less, bed down for shorter times, and start bunching together, which increases heat stress and risks injury to the animals. That results in less milk yield for dairy cows and less beef yields from feedlot cattle.

You know who isn’t much bothered by biting flies? The zebra. Scientists have long debated the function of the zebra’s distinctive black-and-white striped pattern. Is it for camouflage? Confusing potential predators? Or is it to repel those pesky flies? Tomoki Kojima et al. decided to put the latter hypothesis to the test, painting zebra stripes on six pregnant Japanese black cows at the Aichi Agricultural Research Center in Japan. They used water-borne lacquers that washed away after a few days, so the cows could take turns being in three different groups: zebra stripes, just black stripes, or no stripes (as a control).

The results: the zebra stripes significantly decreased both the number of biting flies on the cattle and the animals’ fly-repelling behaviors compared to those with black stripes or no stripes. The one exception was for skin twitching—perhaps because it is the least energy intensive of those behaviors. Why does it work? The authors suggest it might have something to do with modulation brightness or polarized light that confuses the insects’ motion detection system, used to control their approach when landing on a surface. But that’s a topic for further study.

Chemistry

Freshly cooked frozen w:blintzes in a non-stick frying pan coated with Teflon

Credit: Andrevan/CC BY-SA 2.5

Citation: Rotem Naftalovich, Daniel Naftalovich, and Frank Greenway, for experiments to test whether eating Teflon [a form of plastic more formally called “polytetrafluoroethylene”] is a good way to increase food volume and hence satiety without increasing calorie content.

Diet sodas and other zero-calorie drinks are a mainstay of the modern diet, thanks to the development of artificial sweeteners whose molecules can’t be metabolized by the human body. The authors of this paper are intrigued by the notion of zero-calorie foods, which they believe could be achieved by increasing the satisfying volume and mass of food without increasing the calories. And they have just the additive for that purpose: polytetrafluoroethylene (PTFE), more commonly known as Teflon.

Yes, the stuff they use on nonstick cookware. They insist that Teflon is inert, heat-resistant, impervious to stomach acid, tasteless, cost-effective, and available in handy powder form for easy mixing into food. They recommend a ratio of three parts food to one part Teflon powder.

The authors understand that to the average layperson, this is going to sound like a phenomenally bad idea—no thank you, I would prefer not to have powdered Teflon added to my food. So they spend many paragraphs citing all the scientific studies on the safety of Teflon—it didn’t hurt rats in feeding trials!—as well as the many applications for which it is already being used. These include Teflon-coated stirring rods used in labs and coatings on medical devices like bladder catheters and gynecological implants, as well as the catheters used for in vitro fertilization. And guys, you’ll be happy to know that Teflon doesn’t seem to affect sperm motility or viability. I suspect this will still be a hard sell in the consumer marketplace.

Physics

Cacio e pepe is an iconic pasta dish that is also frustratingly difficult to make

Credit: Simone Frau

Citation: Giacomo Bartolucci, Daniel Maria Busiello, Matteo Ciarchi, Alberto Corticelli, Ivan Di Terlizzi, Fabrizio Olmeda, Davide Revignas, and Vincenzo Maria Schimmenti, for discoveries about the physics of pasta sauce, especially the phase transition that can lead to clumping, which can be a cause of unpleasantness.

“Pasta alla cacio e pepe” is a simple dish: just tonnarelli pasta, pecorino cheese, and pepper. But its simplicity is deceptive. The dish is notoriously challenging to make because it’s so easy for the sauce to form unappetizing clumps with a texture more akin to stringy mozzarella rather than being smooth and creamy. As we reported in April, Italian physicists came to the rescue with a foolproof recipe based on their many scientific experiments, according to a new paper published in the journal Physics of Fluids. The trick: using corn starch for the cheese and pepper sauce instead of relying on however much starch leaches into the boiling water as the pasta is cooked.

Traditionally, the chef will extract part of the water and starch solution—which is cooled to a suitable temperature to avoid clumping as the cheese proteins “denaturate”—and mix it with the cheese to make the sauce, adding the pepper last, right before serving. But the authors note that temperature is not the only factor that can lead to this dreaded “mozzarella phase.” If one tries to mix cheese and water without any starch, the clumping is more pronounced. There is less clumping with water containing a little starch, like water in which pasta has been cooked. And when one mixes the cheese with pasta water “risottata”—i.e., collected and heated in a pan so enough water evaporates that there is a higher concentration of starch—there is almost no clumping.

The authors found that the correct starch ratio is between 2 to 3 percent of the cheese weight. Below that, you get the clumping phase separation; above that, and the sauce becomes stiff and unappetizing as it cools. Pasta water alone contains too little starch. Using pasta water “risottata” may concentrate the starch, but the chef has less control over the precise amount of starch. So the authors recommend simply dissolving 4 grams of powdered potato or corn starch in 40 grams of water, heating it gently until it thickens and combining that gel with the cheese. They also recommend toasting the black pepper briefly before adding it to the mixture to enhance its flavors and aromas.

Engineering Design

Experimental set-up (a) cardboard enclosure (b) UV-C tube light (c) SMPS

Credit: Vikash Kumar and Sarthak Mittal

Citation: Vikash Kumar and Sarthak Mittal, for analyzing, from an engineering design perspective, “how foul-smelling shoes affects the good experience of using a shoe-rack.”

Shoe odor is a universal problem, even in India, according to the authors of this paper, who hail from Shiv Nadar University (SNU) in Uttar Pradesh. All that heat and humidity means people perspire profusely when engaging even in moderate physical activity. Add in a lack of proper ventilation and washing, and shoes become a breeding ground for odor-causing bacteria called Kytococcus sedentarius. Most Indians make use of shoe racks to store their footwear, and the odors can become quite intense in that closed environment.

Yet nobody has really studied the “smelly shoe” problem when it comes to shoe racks. Enter Kumar and Mittal, who conducted a pilot study with the help of 149 first-year SNU students. More than half reported feeling uncomfortable about their own or someone else’s smelly shoes, and 90 percent kept their shoes in a shoe rack. Common methods to combat the odor included washing the shoes and drying them in the sun; using spray deodorant; or sprinkling the shoes with an antibacterial powder. They were unaware of many current odor-combatting products on the market, such as tea tree and coconut oil solutions, thyme oil, or isopropyl alcohol.

Clearly, there is an opportunity to make a killing in the odor-resistant shoe rack market. So naturally Kumar and Mittal decided to design their own version. They opted to use bacteria-killing UV rays (via a UV-C tube light) as their built-in “odor eater,” testing their device on the shoes of several SNU athletes, “which had a very strong noticeable odor.” They concluded that an exposure time of two to three minutes was sufficient to kill the bacteria and get rid of the odor.

Aviation

Wing membranes (patagia) of Townsend's big-eared bat, Corynorhinus townsendii

Credit: Public domain

Citation: Francisco Sánchez, Mariana Melcón, Carmi Korine, and Berry Pinshow, for studying whether ingesting alcohol can impair bats’ ability to fly and also their ability to echolocate.

Nature is rife with naturally occurring ethanol, particularly from ripening fruit, and that fruit in turn is consumed by various microorganisms and animal species. There are occasional rare instances of some mammals, birds, and even insects consuming fruit rich in ethanol and becoming intoxicated, making those creatures more vulnerable to potential predators or more accident-prone due to lessened motor coordination. Sánchez et al. decided to look specifically at the effects of ethanol on Egyptian fruit bats, which have been shown to avoid high-ethanol fruit. The authors wondered if this might be because the bats wanted to avoid becoming inebriated.

They conducted their experiments on adult male fruit bats kept in an outdoor cage that served as a long flight corridor. The bats were given liquid food with varying amounts of ethanol and then released in the corridor, with the authors timing how long it took each bat to fly from one end to the other. A second experiment followed the same basic protocol, but this time the authors recorded the bats’ echolocation calls with an ultrasonic microphone. The results: The bats that received liquid food with the highest ethanol content took longer to fly the length of the corridor, evidence of impaired flight ability. The quality of those bats’ echolocation was also adversely affected, putting them at a higher risk of colliding with obstacles mid-flight.

Psychology

Narcissus (1597–99) by Caravaggio; the man in love with his own reflection

Credit: Public domain

Citation: Marcin Zajenkowski and Gilles Gignac, for investigating what happens when you tell narcissists—or anyone else—that they are intelligent.

Not all narcissists are created equal. There are vulnerable narcissists who tend to be socially withdrawn, have low self-esteem, and are prone to negative emotions. And then there are grandiose narcissists, who exhibit social boldness, high self-esteem, and are more likely to overestimate their own intelligence. The prevailing view is that this overconfidence stems from narcissism. The authors wanted to explore whether this effect might also work in reverse, i.e., that believing one has superior intelligence due to positive external feedback can lead to at least a temporary state of narcissism.

Zajenkowski et al. recruited 361 participants from Poland who were asked to rate their level of intelligence compared to other people; complete the Polish version of the Narcissistic Personality Inventory; and take an IQ test to compare their perceptions of their own intelligence with an objective measurement. The participants were then randomly assigned to one of two groups. One group received positive feedback—telling them they did indeed have a higher IQ than most people—while the other received negative feedback.

The results confirmed most of the researchers’ hypotheses. In general, participants gave lower estimates of their relative intelligence after completing the IQ test, which provided an objective check of sorts. But the type of feedback they received had a measurable impact. Positive feedback enhanced their feelings of uniqueness (a key aspect of grandiose narcissism). Those who received negative feedback rated their own intelligence as being lower, and that negative feedback had a larger effect than positive feedback. The authors concluded that external feedback helped shape the subjects’ perception of their own intelligence, regardless of the accuracy of that feedback.

Nutrition

Rainbow lizards eating ‘four cheese’ pizza at a seaside touristic resort in Togo.

Credit: Daniele Dendi et al, 2022

Citation: Daniele Dendi, Gabriel H. Segniagbeto, Roger Meek, and Luca Luiselli, for studying the extent to which a certain kind of lizard chooses to eat certain kinds of pizza.

Move over, Pizza Rat, here come the Pizza Lizards—rainbow lizards, to be precise. This is a species common to urban and suburban West Africa. The lizards primarily live off insects and arthropods, but their proximity to humans has led to some developing a more omnivorous approach to their foraging. Bread is a particular favorite. Case in point: One fine sunny day at a Togo seaside resort, the authors noticed a rainbow lizard stealing a tourist’s slice of four-cheese pizza and happily chowing down.

Naturally, they wanted to know if this was an isolated incident or whether the local rainbow lizards routinely feasted on pizza slices. And did the lizards have a preferred topping? Inquiring minds need to know. So they monitored the behavior of nine particular lizards, giving them the choice between a plate of four-cheese pizza and a plate of “four seasons” pizza, spaced about 10 meters apart.

It only took 15 minutes for the lizards to find the pizza and eat it, sometimes fighting over the remaining slices. But they only ate the four-cheese pizza. For the authors, this suggests there might be some form of chemical cues that attract them to the cheesy pizzas, or perhaps it’s easier for them to digest. I’d love to see how the lizards react to the widely derided Canadian bacon and pineapple pizza.

Pediatrics

Pumped breast milk in bottles

Citation: Julie Mennella and Gary Beauchamp, for studying what a nursing baby experiences when the baby’s mother eats garlic.

Mennella and Beauchamp designed their experiment to investigate two questions: whether the consumption of garlic altered the odor of a mother’s breast milk, and if so, whether those changes affected the behavior of nursing infants. (Garlic was chosen because it is known to produce off flavors in dairy cow milk and affect human body odor.) They recruited eight women who were exclusively breastfeeding their infants, taking samples of their breast milk over a period when the participants abstained from eating sulfurous foods (garlic, onion, asparagus), and more samples after the mothers consumed either a garlic capsule or a placebo.

The results: Mothers who ingested the garlic capsules produced milk with a perceptibly more intense odor, as evaluated by several adult panelists brought in to sniff the breast milk samples. The strong odor peaked at two hours after ingestion and decreased fats, which is consistent with prior research on cows that ingested highly odorous feeds. As for the infants, those whose mothers ingested garlic attached to the breast for longer periods and sucked more when the milk smelled like garlic. This could be relevant to ongoing efforts to determine whether sensory experiences during breastfeeding can influence how readily infants accept new foods upon weaning, and perhaps even their later food preferences.

Literature

closeup of a hand with clubbed fingernails

Credit: William B. Bean

Citation: The late Dr. William B. Bean, for persistently recording and analyzing the rate of growth of one of his fingernails over a period of 35 years.

If you’re surprised to see a study on fingernail growth rates under the Literature category, it will all make sense once you read the flowery prose stylings of Dr. Bean. He really did keep detailed records of how fast his fingernails grew for 35 years, claiming in his final report that “the nail provides a slowly moving keratin kymograph that measures age on the inexorable abscissa of time.” He sprinkles his observations with ponderous references to medieval astrology, James Boswell, and Moby Dick, with a dash of curmudgeonly asides bemoaning the sterile modern medical teaching methods that permeate “the teeming mass of hope and pain, technical virtuosity, and depersonalization called a ‘health center.'”

So what did our pedantic doctor discover in those 35 years, not just studying his own nails, but meticulously reviewing all the available scientific literature? Well, for starters, the rate of fingernail growth diminishes as one ages; Bean noted that his growth rates remained steady early on, but “slowed down a trifle” over the last five years of his project. Nails grow faster in children than adults. A warm environment can also accelerate growth, as does biting one’s fingernails—perhaps, he suggests, because the biting stimulates blood flow to the area. And he debunks the folklore of hair and nails growing even after death: it’s just the retraction and contraction of the skin post-mortem that makes it seem like the nails are growing.

Peace

Citation: Fritz Renner, Inge Kersbergen, Matt Field, and Jessica Werthmann, for showing that drinking alcohol sometimes improves a person’s ability to speak in a foreign language.

Alcohol is well-known to have detrimental effects on what’s known in psychological circles as “executive functioning,” impacting things like working memory and inhibitory control. But there’s a widespread belief among bilingual people that a little bit of alcohol actually improves one’s fluency in a foreign language, which also relies on executive functioning. So wouldn’t being intoxicated actually have an adverse effect on foreign language fluency? Renner et al. decided to investigate further.

They recruited 50 native German-speaking undergrad psychology students at Maastricht University in the Netherlands who were also fluent in Dutch. They were randomly divided into two groups. One group received an alcoholic drink (vodka with bitter lemon), and the other received water. Each participant consumed enough to be slightly intoxicated after 15 minutes, and then engaged in a discussion in Dutch with a native Dutch speaker. Afterward, they were asked to rate their self-perception of their skill at Dutch, with the Dutch speakers offering independent observer ratings.

The researchers were surprised to find that intoxication improved the participants’ Dutch fluency, based on the independent observer reports. (Self-evaluations were largely unaffected by intoxication levels.) One can’t simply attribute this to so-called “Dutch courage,” i.e., increased confidence associated with intoxication. Rather, the authors suggest that intoxication lowers language anxiety, thereby increasing one’s foreign language proficiency, although further research would be needed to support that hypothesis.

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Meet the 2025 Ig Nobel Prize winners Read More »

some-dogs-can-classify-their-toys-by-function

Some dogs can classify their toys by function

Certain dogs can not only memorize the names of objects like their favorite toys, but they can also extend those labels to entirely new objects with a similar function, regardless of whether or not they are similar in appearance, according to a new paper published in the journal Current Biology. It’s a cognitively advanced ability known as “label extension,” and for animals to acquire it usually involves years of intensive training in captivity. But the dogs in this new study developed the ability to classify their toys by function with no formal training, merely by playing naturally with their owners.

Co-author Claudia Fugazza of Eötvös Loránd University in Budapest, Hungary, likens this ability to a person calling a hammer and a rock by the same name, or a child understanding that “cup” can describe a mug, a glass, or a tumbler, because they serve the same function. “The rock and the hammer look physically different, but they can be used for the same function,” she said. “So now it turns out that these dogs can do the same.”

Fugazza and her Hungarian colleagues have been studying canine behavior and cognition for several years. For instance, in 2023, we reported on the group’s experiments on how dogs interpret gestures, such as pointing at a specific object. A dog will interpret the gesture as a directional cue, unlike a human toddler, who will more likely focus on the object itself. It’s called spatial bias, and the team concluded that the phenomenon arises from a combination of how dogs see (visual acuity) and how they think, with “smarter” dog breeds prioritizing an object’s appearance as much as its location. This suggests the smarter dogs’ information processing is more similar to that of humans.

Another aspect of the study involved measuring the length of a dog’s head, which prior research has shown is correlated with visual acuity. The shorter a dog’s head, the more similar their visual acuity is to human vision. That’s because there is a higher concentration of retinal ganglion cells in the center of their field of vision, making vision sharper and giving such dogs binocular depth vision. The testing showed that dogs with better visual acuity, and who also scored higher on the series of cognitive tests, also exhibited less spatial bias. This suggests that canine spatial bias is not simply a sensory matter but is also influenced by how they think. “Smarter” dogs have less spatial bias.

Some dogs can classify their toys by function Read More »

are-these-chimps-having-a-fruity-booze-up-in-the-wild?

Are these chimps having a fruity booze-up in the wild?

Is there anything more human than gathering in groups to share food and partake in a fermented beverage or two (or three, or….)? Researchers have caught wild chimpanzees on camera engaging in what appears to be similar activity: sharing fermented African breadfruit with measurable alcoholic content. According to a new paper published in the journal Current Biology, the observational data is the first evidence of the sharing of alcoholic foods among nonhuman great apes in the wild.

The fruit in question is seasonal and comes from Treculia africana trees common across the home environment of the wild chimps in Cantanhez National Park in Guinea-Bissau. Once mature, the fruits drop from the tree to the ground and slowly ripen from a hard, deep green exterior to a yellow, spongier texture. Because the chimps are unhabituated, the authors deployed camera traps at three separate locations to record their feeding and sharing behavior.

They recorded 10 instances of selective fruit sharing among 17 chimps, with the animals exhibiting a marked preference for riper fruit. Between April and July 2022, the authors measured the alcohol content of the fruit with a handy portable breathalyzer and found almost all of the fallen fruit (90 percent) contained some ethanol, with the ripest containing the highest levels—the equivalent of 0.61 percent ABV (alcohol by volume).

That’s comparatively low to alcoholic drinks typically consumed by humans, but then again, fruit accounts for as much as 60 to 80 percent of the chimps’ diet, so the amount of ethanol consumed could add up quickly. It’s highly unlikely the chimps would get drunk, however. It wouldn’t confer any evolutionary advantage, and per the authors, there is evidence in the common ancestor of African apes of a molecular mechanism that increases the ability to metabolize alcohol.

Are these chimps having a fruity booze-up in the wild? Read More »

monkeys-are-better-yodelers-than-humans,-study-finds

Monkeys are better yodelers than humans, study finds

Monkey see, monkey yodel?

That’s how it works for humans, but when it comes to the question of yodeling animals, it depends on how you define yodeling, according to bioacoustician Tecumseh Fitch of the University of Vienna in Austria, who co-authored this latest paper. Plenty of animal vocalizations use repeated sudden changes in pitch (including birds), and a 2023 study found that toothed whales can produce vocal registers through their noses for echolocation and communication.

There haven’t been as many studies of vocal registers in non-human primates, but researchers have found, for example, that the “coo” call of the Japanese macaque is similar to a human falsetto; the squeal of a Syke monkey is similar to the human “modal” register; and the Diana monkey produces alarm calls that are similar to “vocal fry” in humans.

It’s known that non-human primates have something humans have lost over the course of evolution: very thin, light vocal membranes just above the vocal folds. Scientists have pondered the purpose of those membranes, and a 2022 study concluded that this membrane was crucial for producing sounds. The co-authors of this latest paper wanted to test their hypothesis that the membranes serve as an additional oscillator to enable such non-human primates to achieve the equivalent of human voice registers. That, in turn, would render them capable in principle of producing a wider range of calls—perhaps even a yodel.

The team studied many species, including black and gold howler monkeys, tufted capuchins, black-capped squirrel monkeys, and Peruvian spider monkeys. They took CT scans of excised monkey larynxes housed at the Japan Monkey Center, as well as two excised larynxes from tufted capuchin monkeys at Kyoto University. They also made live recordings of monkey calls at the La Senda Verde animal refuge in the Bolivian Andes, using non-invasive EGG to monitor vocal fold vibrations.

Monkeys are better yodelers than humans, study finds Read More »

study:-cuttlefish-adapt-camouflage-displays-when-hunting-prey

Study: Cuttlefish adapt camouflage displays when hunting prey

Crafty cuttlefish employ several different camouflaging displays while hunting their prey, according to a new paper published in the journal Ecology, including mimicking benign ocean objects like a leaf or coral, or flashing dark stripes down their bodies. And individual cuttlefish seem to choose different preferred hunting displays for different environments.

It’s well-known that cuttlefish and several other cephalopods can rapidly shift the colors in their skin thanks to that skin’s unique structure. As previously reported, squid skin is translucent and features an outer layer of pigment cells called chromatophores that control light absorption. Each chromatophore is attached to muscle fibers that line the skin’s surface, and those fibers, in turn, are connected to a nerve fiber. It’s a simple matter to stimulate those nerves with electrical pulses, causing the muscles to contract. And because the muscles are pulling in different directions, the cell expands, along with the pigmented areas, changing the color. When the cell shrinks, so do the pigmented areas.

Underneath the chromatophores, there is a separate layer of iridophores. Unlike the chromatophores, the iridophores aren’t pigment-based but are an example of structural color, similar to the crystals in the wings of a butterfly, except a squid’s iridophores are dynamic rather than static. They can be tuned to reflect different wavelengths of light. A 2012 paper suggested that this dynamically tunable structural color of the iridophores is linked to a neurotransmitter called acetylcholine. The two layers work together to generate the unique optical properties of squid skin.

And then there are leucophores, which are similar to the iridophores, except they scatter the full spectrum of light, so they appear white. They contain reflectin proteins that typically clump together into nanoparticles so that light scatters instead of being absorbed or directly transmitted. Leucophores are mostly found in cuttlefish and octopuses, but there are some female squid of the genus Sepioteuthis that have leucophores that they can “tune” to only scatter certain wavelengths of light. If the cells allow light through with little scattering, they’ll seem more transparent, while the cells become opaque and more apparent by scattering a lot more light.

Scientists learned in 2023 that the process by which cuttlefish generate their camouflage patterns is significantly more complex than scientists previously thought. Specifically, cuttlefish readily adapted their skin patterns to match different backgrounds, whether natural or artificial. And the creatures didn’t follow the same transitional pathway every time, often pausing in between. That means that contrary to prior assumptions, feedback seems to be critical to the process, and the cuttlefish were correcting their patterns to match the backgrounds better.

Study: Cuttlefish adapt camouflage displays when hunting prey Read More »

parrots-struggle-when-told-to-do-something-other-than-mimic-their-peers

Parrots struggle when told to do something other than mimic their peers

There have been many studies on the capability of non-human animals to mimic transitive actions—actions that have a purpose. Hardly any studies have shown that animals are also capable of intransitive actions. Even though intransitive actions have no particular purpose, imitating these non-conscious movements is still thought to help with socialization and strengthen bonds for both animals and humans.

Zoologist Esha Haldar and colleagues from the Comparative Cognition Research group worked with blue-throated macaws, which are critically endangered, at the Loro Parque Fundación in Tenerife. They trained the macaws to perform two intransitive actions, then set up a conflict: Two neighboring macaws were asked to do different actions.

What Haldar and her team found was that individual birds were more likely to perform the same intransitive action as a bird next to them, no matter what they’d been asked to do. This could mean that macaws possess mirror neurons, the same neurons that, in humans, fire when we are watching intransitive movements and cause us to imitate them (at least if these neurons function the way some think they do).

But it wasn’t on purpose

Parrots are already known for their mimicry of transitive actions, such as grabbing an object. Because they are highly social creatures with brains that are large relative to the size of their bodies, they made excellent subjects for a study that gauged how susceptible they were to copying intransitive actions.

Mirroring of intransitive actions, also called automatic imitation, can be measured with what’s called a stimulus-response-compatibility (SRC) test. These tests measure the response time between seeing an intransitive movement (the visual stimulus) and mimicking it (the action). A faster response time indicates a stronger reaction to the stimulus. They also measure the accuracy with which they reproduce the stimulus.

Until now, there have only been three studies that showed non-human animals are capable of copying intransitive actions, but the intransitive actions in these studies were all by-products of transitive actions. Only one of these focused on a parrot species. Haldar and her team would be the first to test directly for animal mimicry of intransitive actions.

Parrots struggle when told to do something other than mimic their peers Read More »

let-us-spray:-river-dolphins-launch-pee-streams-into-air

Let us spray: River dolphins launch pee streams into air

According to Amazonian folklore, the area’s male river dolphins are shapeshifters (encantade), transforming at night into handsome young men who seduce and impregnate human women. The legend’s origins may lie in the fact that dolphins have rather human-like genitalia. A group of Canadian biologists didn’t spot any suspicious shapeshifting behavior over the four years they spent monitoring a dolphin population in central Brazil, but they did document 36 cases of another human-like behavior: what appears to be some sort of cetacean pissing contest.

Specifically, the male dolphins rolled over onto their backs, displayed their male members, and launched a stream of urine as high as 3 feet into the air. This usually occurred when other males were around, who seemed fascinated in turn by the arching streams of pee, even chasing after them with their snouts. It’s possibly a form of chemical sensory communication and not merely a need to relieve themselves, according to the biologists, who described their findings in a paper published in the journal Behavioral Processes. As co-author Claryana Araújo-Wang of CetAsia Research Group in Ontario, Canada, told New Scientist, “We were really shocked, as it was something we had never seen before.”

Spraying urine is a common behavior in many animal species, used to mark territory, defend against predators, communicate with other members of one’s species, or as a means of mate selection since it has been suggested that the chemicals in the urine carry useful information about physical health or social dominance.

Let us spray: River dolphins launch pee streams into air Read More »

peeing-is-contagious-among-chimps

Peeing is contagious among chimps

Those results supported the initial hypothesis that chimps tended to urinate in sync rather than randomly. Further analysis showed that the closer a chimp was to another peeing chimp, the more likely the probability of that chimp peeing as well—evidence of social contagion. Finally, Onishi et al. wanted to explore whether social relationships (like socially close pairs, evidenced by mutual grooming and similar behaviors) influenced contagious urination. The only social factor that proved relevant was dominance, with less-dominant chimps being more prone to contagious urination.

There may still be other factors influencing the behavior, and more experimental research is needed on potential sensory cues and social triggers in order to identify possible underlying mechanisms for the phenomenon. Furthermore, this study was conducted with a captive chimp population; to better understand potential evolutionary roots, there should be research on wild chimp populations, looking at possible links between contagious urination and factors like ranging patterns, territory use, and so forth.

“This was an unexpected and fascinating result, as it opens up multiple possibilities for interpretation,” said coauthor Shinya Yamamoto, also of Kyoto University. “For instance, it could reflect hidden leadership in synchronizing group activities, the reinforcement of social bonds, or attention bias among lower-ranking individuals. These findings raise intriguing questions about the social functions of this behavior.”

DOI: Current Biology, 2025. 10.1016/j.cub.2024.11.052 (About DOIs).

Peeing is contagious among chimps Read More »

the-amorous-adventures-of-earwigs

The amorous adventures of earwigs


She ain’t scary, she’s my mother

Elaborate courtship, devoted parenthood, gregarious nature (and occasional cannibalism)—earwigs have a lot going for them.

Few people are fond of earwigs, with their menacing abdominal pincers—whether they’re skittering across your floor, getting comfy in the folds of your camping tent, or minding their own business.

Scientists, too, have given them short shrift compared with the seemingly endless attention they have lavished on social insects like ants and bees.

Yet, there are a handful of exceptions. Some researchers have made conscious career decisions to dig into the hidden, underground world where earwigs reside, and have found the creatures to be surprisingly interesting and social, if still not exactly endearing.

Work in the 1990s and early 2000s focused on earwig courtship. These often intricate performances of attraction and repulsion—in which pincers and antennae play prominent roles—can last hours, and the mating itself as long as 20 hours, at least in one Papua New Guinea species, Tagalina papua. The females usually decide when they’ve had enough, though males of some species use their pincers to restrain the object of their desire.

Males of the bone-house earwig Marava arachidis (often found in bone meal plants and slaughterhouses) are particularly coercive, says entomologist Yoshitaka Kamimura of Keio University in Japan, who has studied earwig mating for 25 years. “They bite the female’s antennae and use a little hook on their genitalia to lock them inside her reproductive tract.”

Size matters

Female earwigs collect sperm in one or more internal pouches and can use it to fertilize multiple broods, so they don’t need to mate again. The only thing most males can do is add their own sperm, but Kamimura has seen males of the pale-legged earwig Euborellia pallipes remove the sperm of other males using an elongated part of their peculiar penis.

It’s better if females can prevent this from happening, because they can be particular about the males they mate with. This may explain why, in some species, male and  female genitalia have increased in size as part of a kind of evolutionary arms race in which males benefit from access to the pouch and females benefit from keeping them out. In the bristly earwig Echinosoma horridum, the male’s genitalia are nearly as long as the rest of his body, and the female’s genitalia almost four times as long as the rest of hers.

Fascinating though they are, the amorous adventures of earwigs weren’t what first caught Kamimura’s attention. Rather, he was intrigued by the female’s dedication to her offspring. “When I was a student, I accidentally disturbed an earwig caring for her eggs in our backyard,” he recalls. “She ran away but returned the next day. I was very interested, and I started to rear them.”

Grow your own earwigs

The care that female earwigs provide to their eggs has also become the focus of study in Europe, where a surge of lab research on European earwigs—Forficula auricularia—was kick-started almost 20 years ago by entomologist Mathias Kölliker at the University of Basel, Switzerland. “Getting them to breed continuously over multiple generations was a big challenge,” he recalls. “The females did lay eggs, but they didn’t develop, and never hatched.”

It turned out that the eggs, which are laid in late fall and hatch in January, need the winter cold to start their development. So the scientists figured out a lab regimen that would chill but not kill the eggs. “That took us about two years,” says Kölliker.

In 2009, Kölliker hired entomologist Joël Meunier, who continues to study earwigs at the University of Tours in France and wrote an overview of the biology and social life of earwigs for the Annual Review of Entomology. Earwigs are high maintenance, he says. “If you work with fruit flies, you can breed 10 generations in a few months, but earwigs take much longer.… And they’re all kept in separate petri dishes—thousands of them—that we have to open twice a week to replace the food.

“I think this is one of the reasons few people work on them. But they’re very fascinating.”

Fending off males

The female’s careful egg grooming has at least two important functions. First, she uses a small brush on her mouthparts to remove the spores of fungi that can kill the eggs. Secondly, as Kölliker, Meunier, and colleagues found, she applies water-repellent hydrocarbons to keep them from drying out.

Males that attempt to approach the nest are aggressively chased away, and with good reason, says Meunier. “Once, when we were in the field in Italy to collect earwigs, we found a male and a female together with a clutch of eggs. We were quite excited: ‘Wow, biparental care, cool!’ So we brought them to the lab. But what we actually observed was that the female was very stressed out, showing a lot of aggression towards the male, while the clutch size was continuously decreasing.”

Males, it turns out, love to snack on eggs, even ones that they fathered. To chase them off, females raise their abdomens to show off their pincers. If that’s not enough, they can use the pincers to hurt the male—even to cut him in half. (Scary as they look, the pincers can’t harm people at all, Meunier says.)

Earwigs can also spray each other with defensive secretions that may have antimicrobial properties, too. “They often use those secretions when meeting others,” says Meunier. “Maybe it also prevents the spread of disease.”

As far as scientists know, these secretions are harmless to humans. But because they contain quinone derivatives, which are also found in substances like henna, they have some quirky side effects. “When you get a lot of it on your hands,” Meunier says, “they’ll turn blue, like a bruise, and these marks can last all week.”

The secretions smell quite pleasant, says Kölliker. “When I had a visitor in the lab, I would sometimes pick up an earwig and hold it under their nose. It’s a very nice odor, actually, kind of an earthy smell.” Kölliker’s cat was less appreciative when he tried it on her: “She immediately backed off,” he says.

A female earwig with her young.

A female earwig with her young. Credit: Patrick Lorne / Getty Images

Overbearing moms

Surprisingly, Meunier’s recent work suggests that earwig offspring may pay a price for their mom’s protectiveness. In European earwigs and several other species, although the nymphs that emerge from eggs can feed on their own after a couple of days, mothers usually stay with them for a few weeks after they hatch. Yet, at least in the lab, that does not seem to enhance the nymphs’ chances of survival.

“In the best case, the mother’s presence doesn’t change a thing,” says Meunier. “At worst, nymphs that grow up with their mother are less likely to reach adulthood and will become smaller adults.” It’s unclear why. But things may be different in the wild, where male earwigs or predators like spiders pose threats, making it safer to stay with mom.

The mother herself seems to benefit. Meunier has observed that as soon as the nymphs emerge, they eat the parasitic mites that often bother breeding females. And once they start foraging on their own, the feces they leave all over the nest may be food for their mother and help her to produce a second brood. The nymphs also feast on each other’s feces, sometimes straight from the source.

The voracious nymphs don’t stop there: They regularly eat each other, and nymphs of the hump earwig Anechura harmandi will almost always eat their mother. “It occurs in every family,” Meunier says, “and it helps the nymphs grow.”

Let’s get together

With all this aggression and cannibalism, you’d expect adult earwigs not actively seeking mates to avoid each other, and in many species, they do. Yet European earwigs regularly group together by the hundreds, sometimes mixing things up with other earwig species.

Recent work from Meunier’s lab showed that European earwigs that grew up in groups are more likely to look for company as adults than those reared in isolation, and females removed from these groups can get so stressed they are more likely to succumb to fungal infections.

“We have no idea why,” says Meunier. “Maybe it’s healthier to live together. Or maybe they just like company.”

This article originally appeared in Knowable Magazine, a nonprofit publication dedicated to making scientific knowledge accessible to all. Sign up for Knowable Magazine’s newsletter.

Photo of Knowable Magazine

Knowable Magazine explores the real-world significance of scholarly work through a journalistic lens.

The amorous adventures of earwigs Read More »

this-elephant-figured-out-how-to-use-a-hose-to-shower

This elephant figured out how to use a hose to shower

And the hose-showering behavior was “lateralized,” that is, Mary preferred targeting her left body side more than her right. (Yes, Mary is a “left-trunker.”) Mary even adapted her showering behavior depending on the diameter of the hose: she preferred showering with a 24-mm hose over a 13-mm hose and preferred to use her trunk to shower rather than a 32-mm hose.

It’s not known where Mary learned to use a hose, but the authors suggest that elephants might have an intuitive understanding of how hoses work because of the similarity to their trunks. “Bathing and spraying themselves with water, mud, or dust are very common behaviors in elephants and important for body temperature regulation as well as skin care,” they wrote. “Mary’s behavior fits with other instances of tool use in elephants related to body care.”

Perhaps even more intriguing was Anchali’s behavior. While Anchali did not use the hose to shower, she nonetheless exhibited complex behavior in manipulating the hose: lifting it, kinking the hose, regrasping the kink, and compressing the kink. The latter, in particular, often resulted in reduced water flow while Mary was showering. Anchali eventually figured out how to further disrupt the water flow by placing her trunk on the hose and lowering her body onto it. Control experiments were inconclusive about whether Anchali was deliberately sabotaging Mary’s shower; the two elephants had been at odds and behaved aggressively toward each other at shower times. But similar cognitively complex behavior has been observed in elephants.

“When Anchali came up with a second behavior that disrupted water flow to Mary, I became pretty convinced that she is trying to sabotage Mary,” Brecht said. “Do elephants play tricks on each other in the wild? When I saw Anchali’s kink and clamp for the first time, I broke out in laughter. So, I wonder, does Anchali also think this is funny, or is she just being mean?

Current Biology, 2024. DOI: 10.1016/j.cub.2024.10.017  (About DOIs).

This elephant figured out how to use a hose to shower Read More »

dna-confirms-these-19th-century-lions-ate-humans

DNA confirms these 19th century lions ate humans

For several months in 1898, a pair of male lions turned the Tsavo region of Kenya into their own human hunting grounds, killing many construction workers who were building the Kenya-Uganda railway.  A team of scientists has now identified exactly what kinds of prey the so-called “Tsavo Man-Eaters” fed upon, based on DNA analysis of hairs collected from the lions’ teeth, according to a recent paper published in the journal Current Biology. They found evidence of various species the lions had consumed, including humans.

The British began construction of a railway bridge over the Tsavo River in March 1898, with Lieutenant-Colonel John Henry Patterson leading the project. But mere days after Patterson arrived on site, workers started disappearing or being killed. The culprits: two maneless male lions, so emboldened that they often dragged workers from their tents at night to eat them. At their peak, they were killing workers almost daily—including an attack on the district officer, who narrowly escaped with claw lacerations on his back. (His assistant, however, was killed.)

Patterson finally managed to shoot and kill one of the lions on December 9 and the second 20 days later. The lion pelts decorated Patterson’s home as rugs for 25 years before being sold to Chicago’s Field Museum of Natural History in 1924. The skins were restored and used to reconstruct the lions, which are now on permanent display at the museum, along with their skulls.

Tale of the teeth

The Tsavo Man-Eaters naturally fascinated scientists, although the exact number of people they killed and/or consumed remains a matter of debate. Estimates run anywhere from 28–31 victims to 100 or more, with a 2009 study that analyzed isotopic signatures of the lions’ bone collagen and hair keratin favoring the lower range.

DNA confirms these 19th century lions ate humans Read More »