artemis

as-preps-continue,-it’s-looking-more-likely-nasa-will-fly-the-artemis-ii-mission

As preps continue, it’s looking more likely NASA will fly the Artemis II mission

NASA’s existing architecture still has a limited shelf life, and the agency will probably have multiple options for transporting astronauts to and from the Moon in the 2030s. A decision on the long-term future of SLS and Orion isn’t expected until the Trump administration’s nominee for NASA administrator, Jared Isaacman, takes office after confirmation by the Senate.

So, what is the plan for SLS?

There are different degrees of cancellation options. The most draconian would be an immediate order to stop work on Artemis II preparations. This is looking less likely than it did a few months ago and would come with its own costs. It would cost untold millions of dollars to disassemble and dispose of parts of Artemis II’s SLS rocket and Orion spacecraft. Canceling multibillion-dollar contracts with Boeing, Northrop Grumman, and Lockheed Martin would put NASA on the hook for significant termination costs.

Of course, these liabilities would be less than the $4.1 billion NASA’s inspector general estimates each of the first four Artemis missions will cost. Most of that money has already been spent for Artemis II, but if NASA spends several billion dollars on each Artemis mission, there won’t be much money left over to do other cool things.

Other options for NASA might be to set a transition point when the Artemis program would move off of the Space Launch System rocket, and perhaps even the Orion spacecraft, and switch to new vehicles.

Looking down on the Space Launch System for Artemis II. Credit: NASA/Frank Michaux

Another possibility, which seems to be low-hanging fruit for Artemis decision-makers, could be to cancel the development of a larger Exploration Upper Stage for the SLS rocket. If there are a finite number of SLS flights on NASA’s schedule, it’s difficult to justify the projected $5.7 billion cost of developing the upgraded Block 1B version of the Space Launch System. There are commercial options available to replace the rocket’s Boeing-built Exploration Upper Stage, as my colleague Eric Berger aptly described in a feature story last year.

For now, it looks like NASA’s orange behemoth has a little life left in it. All the hardware for the Artemis II mission has arrived at the launch site in Florida.

The Trump administration will release its fiscal-year 2026 budget request in the coming weeks. Maybe then NASA will also have a permanent administrator, and the veil will lift over the White House’s plans for Artemis.

As preps continue, it’s looking more likely NASA will fly the Artemis II mission Read More »

trump-white-house-drops-diversity-plan-for-moon-landing-it-created-back-in-2019

Trump White House drops diversity plan for Moon landing it created back in 2019

That was then. NASA’s landing page for the First Woman comic series, where young readers could download or listen to the comic, no longer exists. Callie and her crew survived the airless, radiation-bathed surface of the Moon, only to be wiped out by President Trump’s Diversity, Equity, and Inclusion executive order, signed two months ago.

Another casualty is the “first woman” language within the Artemis Program. For years, NASA’s main Artemis page, an archived version of which is linked here, included the following language: “With the Artemis campaign, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before.”

Artemis website changes

The current landing page for the Artemis program has excised this paragraph. It is not clear how recently the change was made. It was first noticed by British science journalist Oliver Morton.

The removal is perhaps more striking than Callie’s downfall since it was the first Trump administration that both created Artemis and highlighted its differences from Apollo by stating that the Artemis III lunar landing would fly the first woman and person of color to the lunar surface.

How NASA’s Artemis website appeared before recent changes.

Credit: NASA

How NASA’s Artemis website appeared before recent changes. Credit: NASA

For its part, NASA says it is simply complying with the White House executive order by making the changes.

“In keeping with the President’s Executive Order, we’re updating our language regarding plans to send crew to the lunar surface as part of NASA’s Artemis campaign,” an agency spokesperson said. “We look forward to learning more from about the Trump Administration’s plans for our agency and expanding exploration at the Moon and Mars for the benefit of all.”

The nominal date for the Artemis III landing is 2027, but few in the industry expect NASA to be able to hold to that date. With further delays likely, the space agency will probably not name a crew anytime soon.

Trump White House drops diversity plan for Moon landing it created back in 2019 Read More »

here’s-the-secret-to-how-firefly-was-able-to-nail-its-first-lunar-landing

Here’s the secret to how Firefly was able to nail its first lunar landing


Darkness fell over Mare Crisium, ending a daily dose of dazzling images from the Moon.

Firefly’s X-band communications antenna (left) is marked with the logos of NASA, Firefly Aerospace, and the US flag. Credit: Firefly Aerospace

Firefly Aerospace’s Blue Ghost science station accomplished a lot on the Moon in the last two weeks. Among other things, its instruments drilled into the Moon’s surface, tested an extraterrestrial vacuum cleaner, and showed that future missions could use GPS navigation signals to navigate on the lunar surface.

These are all important achievements, gathering data that could shed light on the Moon’s formation and evolution, demonstrating new ways of collecting samples on other planets, and revealing the remarkable reach of the US military’s GPS satellite network.

But the pièce de résistance for Firefly’s first Moon mission might be the daily dose of imagery that streamed down from the Blue Ghost spacecraft. A suite of cameras recorded the cloud of dust created as the lander’s engine plume blew away the uppermost layer of lunar soil as it touched down March 2 in Mare Crisium, or the Sea of Crises. This location is in a flat basin situated on the upper right quadrant of the side of the Moon always facing the Earth.

Other images from Firefly’s lander showed the craft shooting tethered electrodes out onto the lunar surface, like a baseball outfielder trying to throw out a runner at home plate. Firefly’s cameras also showed the lander’s drill as it began to probe several meters into the Moon’s crust.

The first Blue Ghost mission is part of NASA’s Commercial Lunar Payload Services (CLPS) program established in 2018 to partner with US companies for cargo transportation to the Moon. Firefly is one of 13 companies eligible to compete for CLPS missions, precursors to future astronaut landings on the Moon under NASA’s Artemis program.

Now, Firefly finds itself at the top of the pack of firms seeking to gain a foothold at the Moon.

Blue Ghost landed just after sunrise at Mare Crisium, an event shown in the blow video captured with four cameras mounted on the lander to observe how its engine plume interacted with loose soil on the lunar surface. The information will be useful as NASA plans to land astronauts on the Moon in the coming years.

“Although the data is still preliminary, the 3,000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, project manager for NASA’s SCALPSS experiment.

One of the vehicle’s payloads, named Lunar PlanetVac, dropped from the bottom of the lander and released a blast of gas to blow fine-grained lunar soil into a collection chamber for sieving. Provided by a company named Honeybee Robotics, this device could be used as a cheaper alternative to other sample collection methods, such as robotic arms, on future planetary science missions.

Just over 4 days on the Moon’s surface and #BlueGhost is checking off several science milestones! 8 out of 10 @NASA payloads, including LPV, EDS, NGLR, RAC, RadPC, LuGRE, LISTER, and SCALPSS, have already met their mission objectives with more to come. Lunar PlanetVac for example… pic.twitter.com/i7pOg70qYi

— Firefly Aerospace (@Firefly_Space) March 6, 2025

After two weeks of pioneering work, the Blue Ghost lander fell into darkness Sunday when the Sun sank below the horizon, robbing it of solar power and plunging temperatures below minus 200° Fahrenheit (148°Celcius). The spacecraft’s internal electronics likely won’t survive the two-week-long lunar night.

A precoded message from Blue Ghost marked the moment Sunday afternoon, signaling a transition to “monument mode.”

“Goodnight friends,” Blue Ghost radioed Firefly’s mission control center in Central Texas. “After exchanging our final bits of data, I will hold vigil in this spot in Mare Crisium to watch humanity’s continued journey to the stars. Here, I will outlast your mightiest rivers, your tallest mountains, and perhaps even your species as we know it.”

Blue Ghost’s legacy is now secure as the first fully successful commercial lunar lander. Its two-week mission was perhaps just as remarkable for what didn’t happen as it was for what did. The spacecraft encountered no significant problems on its transit to the Moon, its final descent, or during surface operations.

One of the few surprises of the mission was that the lander got hotter a little sooner than engineers predicted. At lunar noon, when the Sun is highest in the sky, temperatures can soar to 250° F (121° C).

“We started noticing that the lander was getting hotter than we expected, and we couldn’t really figure out why, because it was a little early for lunar noon,” Ray Allensworth, Firefly’s spacecraft program director, told Ars. “So we went back and started evaluating and realized that the crater that we landed next to was actually reflecting a really significant amount of heat. So we went back and we updated our thermal models, incorporated that crater into it, and it matched the environment we were seeing.”

Early Friday morning, the Blue Ghost spacecraft captured the first high-definition views of a total solar eclipse from the Moon. At the same time that skywatchers on Earth were looking up to see the Moon turn an eerie blood red, Firefly’s cameras were looking back at us as the Sun, Earth, and Moon moved into alignment and darkness fell at Mare Crisium.

Diamond ring

The eclipse was a bonus for Firefly. It just happened to occur during the spacecraft’s two-week mission at the Moon, the timing of which was dependent on numerous factors, ranging from the readiness of the Blue Ghost lander to weather conditions at its launch site in Florida.

“We weren’t actually planning to have an eclipse until a few months prior to our launch, when we started evaluating and realizing that an eclipse was happening right before lunar sunset,” Allensworth said. “So luckily, that gave us some time to work some procedures and basically set up what we wanted to take images of, what cameras we wanted to run.”

The extra work paid off. Firefly released an image Friday showing a glint of sunlight reaching around the curvature of the Earth, some 250,000 miles (402,000 kilometers) away. This phenomenon is known as the “diamond ring” and is a subject of pursuit for many eclipse chasers, who travel to far-flung locations for a few minutes of totality.

A “diamond ring” appears around the edge of the Earth, a quarter-million miles from Firefly’s science station on the lunar surface. Credit: Firefly Aerospace

The Blue Ghost spacecraft, named for a species of firefly, took eclipse chasing to new heights. Not only did it see the Earth block the Sun from an unexplored location on the Moon, but the lander fell into shadow for 2 hours and 16 minutes, about 18 times longer than the longest possible total solar eclipse on the Earth.

The eclipse presented challenges for Firefly’s engineers monitoring the mission from Texas. Temperatures at the spacecraft’s airless landing site plummeted as darkness took hold, creating what Allensworth called a “pseudo lunar night.”

“We were seeing those temperatures rapidly start dropping,” Allensworth said Friday. “So it was kind of an interesting game of to play with the hardware to keep everything in its temperature bounds but also still powered on and capturing data.”

Shaping up

Using navigation cameras and autonomous guidance algorithms, the spacecraft detected potential hazards at its original landing site and diverted to a safer location more than 230 feet (70 meters) away, according to Allensworth.

Finally happy with the terrain below, Blue Ghost’s computer sent the command for landing, powered by eight thrusters pulsing in rapid succession to control the craft’s descent rate. The landing was gentler than engineers anticipated, coming down at less than 2.2 mph (1 meter per second).

According to preliminary data, Blue Ghost settled in a location just outside of its 330-foot (100-meter) target landing ellipse, probably due to the last-minute divert maneuvers ordered by the vehicle’s hazard avoidance system.

It looks like we’re slightly out of it, but it’s really OK,” Allensworth said. “NASA has told us, more than anything, that they want us to make sure we land softly… They seem comfortable where we’re at.”

Firefly originally intended to develop a spacecraft based on the design of Israel’s Beresheet lander, which was the first private mission to attempt a landing on the Moon in 2019. The spacecraft crashed, and Firefly opted to go with a new design more responsive to NASA’s requirements.

“Managing the center of gravity and the mass of the lander is most significant, and that informs a lot of how it physically takes shape,” Allensworth said. “So we did want to keep certain things in mind about that, and that really is what led to the lander being wider, shorter, broader. We have these bigger foot pads on there. All of those things were very intentional to help make the lander as stable and predictable as possible.”

Firefly’s Blue Ghost lander, seen here inside the company’s spacecraft manufacturing facility in Cedar Park, Texas. Credit: Stephen Clark/Ars Technica

These design choices must happen early in a spacecraft’s development. Landing on the Moon comes with numerous complications, including an often-uneven surface and the lack of an atmosphere, rendering parachutes useless. A lander targeting the Moon must navigate itself to a safe landing site without input from the ground.

The Odysseus, or Nova-C, lander built by Intuitive Machines snapped one of its legs and fell over on its side after arriving on the Moon last year. The altimeter on Odysseus failed, causing it to come down with too much horizontal velocity. The lander returned some scientific data from the Moon and qualified as a partial success. The spacecraft couldn’t recharge its batteries after landing on its side, and Odysseus shut down a few days after landing.

The second mission by Intuitive Machines reached the Moon on March 6, but it suffered the same fate. After tipping over, the Athena lander succumbed to low power within hours, preventing it from accomplishing its science mission for NASA.

The landers designed by Intuitive Machines are tall and skinny, towering more than 14 feet (4.3 meters) tall with a width of about 5.2 feet (1.6 meters). The Blue Ghost vehicle is short and squatty in shape—about 6.6 feet tall and 11.5 feet wide (2-by-3.5 meters). Firefly’s approach requires fewer landing legs than Intuitive Machines—four instead of six.

Steve Altemus, co-founder and CEO of Intuitive Machines, defended the design of his company’s lander in a press briefing after the second lunar landing tip-over earlier this month. The Nova-C lander isn’t too top-heavy for a safe landing because most of its cargo attaches to the bottom of the spacecraft, and for now, Altemus said Intuitive Machines is not considering a redesign.

Intuitive Machines stacked its two fuel and oxidizer tanks on top of each other, resulting in a taller vehicle. The Nova-C vehicle uses super-cold methane and liquid oxygen propellants, enabling a fast journey to the Moon over just a few days. The four propellant tanks on Blue Ghost are arranged in a diagonal configuration, with two containing hydrazine fuel and two holding an oxidizer called nitrogen tetroxide. Firefly’s Blue Ghost took about six weeks to travel from launch until landing.

The design trade-off means Firefly’s lander is heavier, with four tanks instead of two, according to Will Coogan, Blue Ghost’s chief engineer at Firefly. By going with a stockier lander design, Firefly needed to install four tanks because the spacecraft’s fuel and oxidizer have different densities. If Firefly went with just two tanks side-by-side, the spacecraft’s center of mass would change continually as it burns propellant during the final descent to the Moon, creating an unnecessary problem for the lander’s guidance, navigation, and control system to overcome.

“You want to avoid that,” Coogan told Ars before Blue Ghost’s launch. “What you can do is you can either get four tanks and have fuel and oxidizer at diagonal angles, and then you’re always centered, or you can stay with two tanks, and you can stack them.”

A camera on Firefly’s Blue Ghost lander captured a view of its shadow after touching down on the Moon just after sunrise on March 2. Earth looms over the horizon. Credit: Firefly Aerospace

The four landing legs on the Blue Ghost vehicle have shock-absorbing feet, with bowl-shaped pads able to bend if the lander comes down on a rock or a slope.

“If we did come in a little bit faster, we needed the legs to be able to take that, so we tested the legs really significantly on the ground,” Allensworth said. “We basically loaded them up on a makeshift weight bench at different angles and slammed it into the ground, slammed it into concrete, slammed it into regular simulant rocks, boulders, at different angles to really characterize what the legs could do.

“It’s actually really funny, because one of the edge cases that we didn’t test is if we came down very lightly, with almost no acceleration,” she said. “And that was the case that the lander landed in. I was joking with our structural engineer that he wasted all his time.”

Proof positive

Firefly delivered 10 NASA-sponsored science and technology demonstration experiments to the lunar surface, operating under contract with NASA’s CLPS program. CLPS builds on the commercial, service-based business model of NASA’s commercial cargo and crew program for transportation to the International Space Station.

NASA officials knew this approach was risky. The last landing on the Moon by a US spacecraft was the last Apollo mission in 1972, and most of the companies involved in CLPS are less than 20 years old, with little experience in deep space missions.

A Pittsburgh company named Astrobotic failed to reach the Moon on its first attempt in January 2024. The next month, Houston-based Intuitive Machines landed its Nova-C spacecraft on the lunar surface, but it tipped over after one of its legs snapped at the moment of touchdown.

Firefly, based in Cedar Park, Texas, was the third company to try a landing. Originally established as a rocket developer, Firefly signed up to be a CLPS provider and won a $101 million contract with NASA in 2021 to transport a government-funded science package to the Moon. NASA’s instruments aboard the Blue Ghost lander cost about $44 million.

The successful landing of Firefly’s Blue Ghost earlier this month buoyed NASA’s expectations for CLPS. “Overall, it’s been a fabulous, wonderful proof positive that the CLPS model does work,” said Brad Bailey, assistant deputy associate administrator for exploration in NASA’s Science Mission Directorate.

NASA has seven more CLPS missions on contract. The next could launch as soon as August when Blue Origin plans to send its first Blue Moon lander to the Moon. NASA has booked two more Blue Ghost missions with Firefly and two more landing attempts with Intuitive Machines, plus one more flight by Astrobotic and one lander from Draper Laboratory.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s the secret to how Firefly was able to nail its first lunar landing Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »

a-taller,-heavier,-smarter-version-of-spacex’s-starship-is-almost-ready-to-fly

A taller, heavier, smarter version of SpaceX’s Starship is almost ready to fly


Starship will test its payload deployment mechanism on its seventh test flight.

SpaceX’s first second-generation Starship, known as Version 2 or Block 2, could launch as soon as January 13. Credit: SpaceX

An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week.

The two-mile transfer moved the bullet-shaped spaceship one step closer to launch Monday from SpaceX’s Starbase test site in South Texas. The launch window opens at 5 pm EST (4 pm CST; 2200 UTC). This will be the seventh full-scale test flight of SpaceX’s Super Heavy booster and Starship spacecraft and the first of 2025.

In the coming days, SpaceX technicians will lift the ship on top of the Super Heavy booster already emplaced on the launch mount. Then, teams will complete the final tests and preparations for the countdown on Monday.

“The upcoming flight test will launch a new generation ship with significant upgrades, attempt Starship’s first payload deployment test, fly multiple reentry experiments geared towards ship catch and reuse, and launch and return the Super Heavy booster,” SpaceX officials wrote in a mission overview posted on the company’s website.

The mission Monday will repeat many of the maneuvers SpaceX demonstrated on the last two Starship test flights. The company will again attempt to return the Super Heavy booster to the launch site and attempt to catch it with two mechanical arms, or “chopsticks,” on the launch tower approximately seven minutes after liftoff.

SpaceX accomplished this feat on the fifth Starship test flight in October but aborted a catch attempt on a November flight because of damaged sensors on the tower chopsticks. The booster, which remained healthy, diverted to a controlled splashdown offshore in the Gulf of Mexico.

SpaceX’s next Starship prototype, Ship 33, emerges from its assembly building at Starbase, Texas, early Thursday morning. Credit: SpaceX/Elon Musk via X

For the next flight, SpaceX added protections to the sensors on the tower and will test radar instruments on the chopsticks to provide more accurate ranging measurements for returning vehicles. These modifications should improve the odds of a successful catch of the Super Heavy booster and of Starship on future missions.

In another first, one of the 33 Raptor engines that will fly on this Super Heavy booster—designated Booster 14 in SpaceX’s fleet—was recovered from the booster that launched and returned to Starbase in October. For SpaceX, this is a step toward eventually flying the entire rocket repeatedly. The Super Heavy booster and Starship spacecraft are designed for full reusability.

After separation of the booster stage, the Starship upper stage will ignite six engines to accelerate to nearly orbital velocity, attaining enough energy to fly halfway around the world before gravity pulls it back into the atmosphere. Like the past three test flights, SpaceX will guide Starship toward a controlled reentry and splashdown in the Indian Ocean northwest of Australia around one hour after liftoff.

New ship, new goals

The most significant changes engineers will test next week are on the ship, or upper stage, of SpaceX’s enormous rocket. The most obvious difference on Starship Version 2, or Block 2, is with the vehicle’s forward flaps. Engineers redesigned the flaps, reducing their size and repositioning them closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Cameras onboard Starship showed heat damage to the flaps during reentry on test flights last year.

SpaceX is also developing an upgraded Super Heavy booster that is slightly taller than the existing model. The next version of the booster will produce more thrust and will be slightly taller than the current Super Heavy, but for the upcoming test flight, SpaceX will still use the first-generation booster design.

Starship Block 2 has smaller flaps than previous ships. The flaps are located in a more leeward position to protect them from the heat of reentry. Credit: SpaceX

For next week’s flight, Super Heavy and Starship combined will hold more than 10.5 million pounds of fuel and oxidizer. The ship’s propellant tanks have 25 percent more volume than previous iterations of the vehicle, and the payload compartment, which contains 10 mock-ups of Starlink Internet satellites on this launch, is somewhat smaller. Put together, the changes add nearly 6 feet (1.8 meters) to the rocket’s height, bringing the full stack to approximately 404 feet (123.1 meters).

This means SpaceX will break its own record for launching the largest and most powerful rocket ever built. And the company will do it again with the even larger Starship Version 3, which SpaceX says will have nine upper stage engines, instead of six, and will deliver up to 440,000 pounds (200 metric tons) of cargo to low-Earth orbit.

Other changes debuting with Starship Version 2 next week include:

• Vacuum jacketing of propellant feedlines

• A new fuel feedline system for the ship’s Raptor vacuum engines

• An improved propulsion avionics module controlling vehicle valves and reading sensors

• Redesigned inertial navigation and star tracking sensors

• Integrated smart batteries and power units to distribute 2.7 megawatts of power across the ship

• An increase to more than 30 cameras onboard the vehicle.

Laying the foundation

The enhanced avionics system will support future missions to prove SpaceX’s ability to refuel Starships in orbit and return the ship to the launch site. For example, SpaceX will fly a more powerful flight computer and new antennas that integrate connectivity with the Starlink Internet constellation, GPS navigation satellites, and backup functions for traditional radio communication links. With Starlink, SpaceX said Starship can stream more than 120Mbps of real-time high-definition video and telemetry in every phase of flight.

These changes “all add additional vehicle performance and the ability to fly longer missions,” SpaceX said. “The ship’s heat shield will also use the latest generation tiles and includes a backup layer to protect from missing or damaged tiles.”

Somewhere over the Atlantic Ocean, a little more than 17 minutes into the flight, Starship will deploy 10 dummy payloads similar in size and weight to next-generation Starlink satellites. The mock-ups will soar around the world on a suborbital trajectory, just like Starship, and reenter over the unpopulated Indian Ocean. Future Starship flights will launch real next-gen Starlink satellites to add capacity to the Starlink broadband network, but they’re too big and too heavy to launch on SpaceX’s smaller Falcon 9 rocket.

SpaceX will again reignite one of the ship’s Raptor engines in the vacuum of space, repeating a successful test achieved on Flight 6 in November. The engine restart capability is important for several reasons. It gives the ship the ability to maneuver itself out of low-Earth orbit for reentry (not a concern for Starship’s suborbital tests), and will allow the vehicle to propel itself to higher orbits, the Moon, or Mars once SpaceX masters the technology for orbital refueling.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

NASA has contracts with SpaceX to build a derivative of Starship to ferry astronauts to and from the surface of the Moon for the agency’s Artemis program. The NASA program manager overseeing SpaceX’s lunar lander contract, Lisa Watson-Morgan, said she was pleased with the results of the in-space engine restart demo last year.

“The whole path to the Moon, as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold,” Morgan told Ars in a recent interview. “To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that.

“In addition, after we land, clearly, the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to launch the crews off the lunar surface),” she said. “So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.”

“The biggest technology challenge remaining”

SpaceX continues to experiment with Starship’s heat shield, which the company’s founder and CEO, Elon Musk, has described as “the biggest technology challenge remaining with Starship.” In order for SpaceX to achieve its lofty goal of launching Starships multiple times per day, the heat shield needs to be fully and immediately reusable.

While the last three ships have softly splashed down in the Indian Ocean, some of their heat-absorbing tiles stripped away from the vehicle during reentry, when it’s exposed to temperatures up to 2,600° Fahrenheit (1,430° Celsius).

Engineers removed tiles from some areas of the ship for next week’s test flight in order to “stress-test” vulnerable parts of the vehicle. They also smoothed and tapered the edge of the tile line, where the ceramic heat shield gives way to the ship’s stainless steel skin, to address “hot spots” observed during reentry on the most recent test flight.

“Multiple metallic tile options, including one with active cooling, will test alternative materials for protecting Starship during reentry,” SpaceX said.

SpaceX is also flying rudimentary catch fittings on Starship to test their thermal performance on reentry. The ship will fly a more demanding trajectory during descent to probe the structural limits of the redesigned flaps at the point of maximum entry dynamic pressure, according to SpaceX.

All told, SpaceX’s inclusion of a satellite deployment demo and ship upgrades on next week’s test flight will lay the foundation for future missions, perhaps in the next few months, to take the next great leap in Starship development.

In comments following the last Starship test flight in November, SpaceX founder and CEO Elon Musk posted on X that the company could try to return the ship to a catch back at the launch site—something that would require the vehicle to complete at least one full orbit of Earth—as soon as the next flight following Monday’s mission.

“We will do one more ocean landing of the ship,” Musk posted. “If that goes well, then SpaceX will attempt to catch the ship with the tower.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

A taller, heavier, smarter version of SpaceX’s Starship is almost ready to fly Read More »

nasa-says-orion’s-heat-shield-is-good-to-go-for-artemis-ii—but-does-it-matter?

NASA says Orion’s heat shield is good to go for Artemis II—but does it matter?

“We have since determined that while the capsule was dipping in and out of the atmosphere, as part of that planned skip entry, heat accumulated inside the heat shield outer layer, leading to gases forming and becoming trapped inside the heat shield,” said Pam Melroy, NASA’s deputy administrator. “This caused internal pressure to build up and led to cracking and uneven shedding of that outer layer.”

An independent team of experts concurred with NASA’s determination of the root cause, Melroy said.

NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Jim Free, and Artemis II Commander Reid Wiseman speak with reporters Thursday in Washington, DC. Credit: NASA/Bill Ingalls

Counterintuitively, this means NASA engineers are comfortable with the safety of the heat shield if the Orion spacecraft reenters the atmosphere at a slightly steeper angle than it did on Artemis I and spends more time subjected to higher temperatures.

When the Orion spacecraft climbed back out of the atmosphere during the Artemis I skip reentry, a period known as the skip dwell, NASA said heating rates decreased and thermal energy accumulated inside the heat shield’s Avcoat material. This generated gases inside the heat shield through a process known as pyrolysis. 

“Pyrolysis is just burning without oxygen,” said Amit Kshatriya, deputy associate administrator of NASA’s Moon to Mars program. “We learned that as part of that reaction, the permeability of the Avcoat material is essential.”

During the skip dwell, “the production of those gases was higher than the permeability could tolerate, so as a result, pressure differential was created. That pressure led to cracks in plane with the outer mold line of the vehicle,” Kshatriya said.

NASA didn’t know this could happen because engineers tested the heat shield on the ground at higher temperatures than the Orion spacecraft encountered in flight to prove the thermal barrier could withstand the most extreme possible heating during reentry.

“What we missed was this critical region in the middle, and we missed that region because we didn’t have the test facilities to produce the low-level energies that occur during skip and dwell,” Kshatriya said Thursday.

During the investigation, NASA replicated the charring and cracking after engineers devised a test procedure to expose Avcoat heat shield material to the actual conditions of the Artemis I reentry.

So, for Artemis II, NASA plans to modify the reentry trajectory to reduce the skip reentry’s dwell time. Let’s include some numbers to help illustrate the difference.

The distance traveled by Artemis I during the reentry phase of the mission was more than 3,000 nautical miles (3,452 miles; 5,556 kilometers), according to Kshatriya. This downrange distance will be limited to no more than 1,775 nautical miles (2,042 miles; 3,287 kilometers) on Artemis II, effectively reducing the dwell time the Orion spacecraft spends in the lower heating regime that led to the cracking on Artemis I.

NASA’s inspector general report in May included new images of Orion’s heat shield that the agency did not initially release after the Artemis I mission. Credit: NASA Inspector General

With this change, Kshatriya said NASA engineers don’t expect to see the heat shield erosion they saw on Artemis I. “The gas generation that occurs during that skip dwell is sufficiently low that the environment for crack generation is not going to overwhelm the structural integrity of the char layer.”

For future Orion spaceships, NASA and its Orion prime contractor, Lockheed Martin, will incorporate changes to address the heat shield’s permeability problem.

Waiting for what?

NASA officials discussed the heat shield issue, and broader plans for the Artemis program, in a press conference in Washington on Thursday. But the event’s timing added a coat of incredulity to much of what they said. President-elect Donald Trump, with SpaceX founder Elon Musk in his ear, has vowed to cut wasteful government spending.

NASA says Orion’s heat shield is good to go for Artemis II—but does it matter? Read More »

trump-nominates-jared-isaacman-to-become-the-next-nasa-administrator

Trump nominates Jared Isaacman to become the next NASA administrator

President-elect Donald Trump announced Wednesday he has selected Jared Isaacman, a billionaire businessman and space enthusiast who twice flew to orbit with SpaceX, to become the next NASA administrator.

“I am delighted to nominate Jared Isaacman, an accomplished business leader, philanthropist, pilot, and astronaut, as Administrator of the National Aeronautics and Space Administration (NASA),” Trump posted on his social media platform, Truth Social. “Jared will drive NASA’s mission of discovery and inspiration, paving the way for groundbreaking achievements in space science, technology, and exploration.”

In a post on X, Isaacman said he was “honored” to receive Trump’s nomination.

“Having been fortunate to see our amazing planet from space, I am passionate about America leading the most incredible adventure in human history,” Isaacman wrote. “On my last mission to space, my crew and I traveled farther from Earth than anyone in over half a century. I can confidently say this second space age has only just begun.”

Top officials who served at NASA under President Trump and President Obama endorsed Isaacman as the next NASA boss.

“Jared Isaacman will be an outstanding NASA Administrator and leader of the NASA family,” said Jim Bridenstine, who led NASA as administrator during Trump’s first term in the White House. “Jared’s vision for pushing boundaries, paired with his proven track record of success in private industry, positions him as an ideal candidate to lead NASA into a bold new era of exploration and discovery. I urge the Senate to swiftly confirm him.”

Lori Garver, NASA’s deputy administrator during the Obama administration, wrote on X that Isaacman’s nomination was “terrific news,” adding that “he has the opportunity to build on NASA’s amazing accomplishments to pave our way to an even brighter future.”

Isaacman, 41, is the founder and CEO of Shift4, a mobile payment processing platform, and co-founded Draken International, which owns a fleet of retired fighter jets to pose as adversaries for military air combat training. If the Senate confirms his nomination, Isaacman would become the 15th NASA administrator, and the fourth who has flown in space.

Trump nominates Jared Isaacman to become the next NASA administrator Read More »

nasa-is-stacking-the-artemis-ii-rocket,-implying-a-simple-heat-shield-fix

NASA is stacking the Artemis II rocket, implying a simple heat shield fix

A good sign

The readiness of the Orion crew capsule, where the four Artemis II astronauts will live during their voyage around the Moon, is driving NASA’s schedule for the mission. Officially, Artemis II is projected to launch in September of next year, but there’s little chance of meeting that schedule.

At the beginning of this year, NASA officials ruled out any opportunity to launch Artemis II in 2024 due to several technical issues with the Orion spacecraft. Several of these issues are now resolved, but NASA has not released any meaningful updates on the most significant problem.

This problem involves the Orion spacecraft’s heat shield. During atmospheric reentry at the end of the uncrewed Artemis I test flight in 2022, the Orion capsule’s heat shield eroded and cracked in unexpected ways, prompting investigations by NASA engineers and an independent panel.

NASA’s Orion heat shield inquiry ran for nearly two years. The investigation has wrapped up, two NASA officials said last month, but they declined to discuss any details of the root cause of the heat shield issue or the actions required to resolve the problem on Artemis II.

These corrective options ranged from doing nothing to changing the Orion spacecraft’s reentry angle to mitigate heating or physically modifying the Artemis II heat shield. In the latter scenario, NASA would have to disassemble the Orion spacecraft, which is already put together and is undergoing environmental testing at Kennedy Space Center. This would likely delay the Artemis II launch by a couple of years.

In August, NASA’s top human exploration official told Ars that the agency would hold off on stacking the SLS rocket until engineers had a good handle on the heat shield problem. There are limits to how long the solid rocket boosters can remain stacked vertically. The joints connecting each segment of the rocket motors are certified for one year. This clock doesn’t actually start ticking until NASA stacks the next booster segments on top of the lowermost segments.

However, NASA waived this rule on Artemis I when the boosters were stacked nearly two years before the successful launch.

A NASA spokesperson told Ars on Wednesday that the agency had nothing new to share on the Orion heat shield or what changes, if any, are required for the Artemis II mission. This information should be released before the end of the year, she said. At the same time, NASA could announce a new target launch date for Artemis II at the end of 2025, or more likely in 2026.

But because NASA gave the “go” for SLS stacking now, it seems safe to rule out any major hardware changes on the Orion heat shield for Artemis II.

NASA is stacking the Artemis II rocket, implying a simple heat shield fix Read More »

one-company-appears-to-be-thriving-as-part-of-nasa’s-return-to-the-moon

One company appears to be thriving as part of NASA’s return to the Moon

Talking to the Moon —

“This has really been a transformational year for us.”

The second Intuitive Machines lander is prepared for hot-fire testing this week.

Enlarge / The second Intuitive Machines lander is prepared for hot-fire testing this week.

Intuitive Machines

One of the miracles of the Apollo Moon landings is that they were televised, live, for all the world to see. This transparency diffused doubts about whether the lunar landings really happened and were watched by billions of people.

However, as remarkable a technical achievement as it was to broadcast from the Moon in 1969, the video was grainy and black and white. As NASA contemplates a return to the Moon as part of the Artemis program, it wants much higher resolution video and communications with its astronauts on the lunar surface.

To that end, NASA announced this week that it had awarded a contract to Houston-based Intuitive Machines for “lunar relay services.” Essentially this means Intuitive Machines will be responsible for building a small constellation of satellites around the Moon that will beam data back to Earth from the lunar surface.

“One of the requirements is a 4K data link,” said Steve Altemus, co-founder and chief executive of Intuitive Machines, in an interview. “That kind of high fidelity data only comes from a data relay with a larger antenna than can be delivered to the surface of the Moon.”

About the plan

This is part of NASA’s plan to build a more robust “Near Space Network” for communications within 1 million miles of Earth (the Moon is about 240,000 miles from Earth). Intuitive Machines’ contract is worth as much as $4.82 billion over the next decade, depending on the level of communication services that NASA chooses to purchase.

The space agency is also expected to award a ground-based component of this network for large dishes to receive signals from near space, taking some of this burden off the Deep Space Network. Altemus said Intuitive Machines has also bid on this ground component contract.

The Houston company, with its IM-1 mission, made a largely successful landing on the Moon in February. A second lunar landing mission, IM-2, is scheduled to take place in late December or January, a few months from now. Funded largely by NASA, the IM-2 mission will carry a small drill to the South Pole of the Moon to search for water ice in Shackleton Crater.

Then, approximately 15 months from now, the company is planning to launch another lander, IM-3. This mission is likely to carry the first data-relay satellite—each is intended to be about 500 kg, Altemus said, but the final design of the vehicles is still being finalized—to lunar orbit. Assuming this first satellite works well, the two following IM missions will each carry two relay satellites, making for a constellation of five spacecraft orbiting the Moon.

Two of the satellites will go into polar orbits and serve NASA’s Artemis needs at the South Pole, Altemus said. Two more are likely to go into halo orbits, and a fifth satellite will be placed into an equatorial orbit. This will provide full coverage of the Moon not just for communications, but also for position, navigation, and timing.

Intuitive Machines rising

A former deputy director of Johnson Space Center, Altemus founded Intuitive Machines in 2013 along with an investor, Kam Ghaffarian, and an aerospace engineer named Tim Crain. It hasn’t always been easy. Development of Intuitive Machines’ Nova C lander took years longer than anticipated; there were setbacks such as a propellant tank failure, and money was at times tight.

In part to address these financial difficulties, the company went public in 2023, at the tail end of the mania in which space companies were becoming publicly traded via special purpose acquisition companies, or SPACs. Many space companies that went public this way have struggled mightily, and Intuitive Machines has also faced similar pressures.

“It’s been a challenge,” Altemus said. “We went public in 2023, and navigating that was the story of last year, as well as getting to the launch pad.”

But then good things started happening. Despite some technical troubles, including the failure of its altimeter, the company’s first lander managed a soft touchdown on the Moon on its side. Even with this untinended orientation, the Intuitive Machines-1 mission still managed to complete the vast majority of its science objectives. In August, the company won its fourth task order from NASA—essentially a lunar delivery mission—under the Commercial Lunar Payload Services program.

And then the company won the massive data relay contract this week.

“This has really been a transformational year for us,” Altemus said. “The vision for the company is finally coming together.”

One company appears to be thriving as part of NASA’s return to the Moon Read More »

a-key-nasa-commercial-partner-faces-severe-financial-challenges

A key NASA commercial partner faces severe financial challenges

Station struggles —

“The business model had to change.”

Spacious zero-g quarters with a big TV.

Enlarge / Rendering of an individual crew quarter within the Axiom habitat module.

Axiom Space

Axiom Space is facing significant financial headwinds as the company attempts to deliver on two key commercial programs for NASA—the development of a private space station in low-Earth orbit and spacesuits that could one day be worn by astronauts on the Moon.

Forbes reports that Axiom Space, which was founded by billionaire Kam Ghaffarian and NASA executive Mike Suffredini in 2016, has been struggling to raise money to keep its doors open and has had difficulties meeting its payroll dating back to at least early 2023. In addition, the Houston-based company has fallen behind on payments to key suppliers, including Thales Alenia Space for its space station and SpaceX for crewed launches.

“The lack of fresh capital has exacerbated long-standing financial challenges that have grown alongside Axiom’s payroll, which earlier this year was nearly 1,000 employees,” the publication reports. “Sources familiar with the company’s operations told Forbes that co-founder and CEO Michael Suffredini, who spent 30 years at NASA, ran Axiom like a big government program instead of the resource-constrained startup it really was. His mandate to staff up to 800 workers by the end of 2022 led to mass hiring so detached from product development needs that new engineers often found themselves with nothing to do.”

The report underscores a lot of what Ars has been hearing about the financial struggles of Axiom in recent months. Dozens of employees have been laid off, and Thales officials have made no secret of their discontent at not being paid in full for the production of pressure modules for the Axiom space station. Although the departure of Suffredini as chief executive was framed as being his decision for personal reasons, it seems probable that he moved out of the company for performance reasons.

Space station troubles

All of this raises significant questions about Axiom’s ability to deliver on the primary reason the company was created—to build a successor to the International Space Station. Suffredini joined Ghaffarian in the venture after serving as manager of NASA’s space station program for more than a decade. When they founded the company in 2016, the plan was to launch an initial space station module in 2020.

The timeline for station development has since been delayed multiple times. Presently, Axiom plans to launch its first module to the International Space Station no earlier than late 2026. And the company’s ambitions have been downsized, according to the report. Instead of a four-module station that would be separated from the government-operated space station by 2030, Axiom is likely to go forward with a smaller station consisting of just two elements. This station would have lower power and reduced commercial potential, according to the article.

“The business model had always counted on having significant power for microgravity research, semiconductor production, and pharmaceutical production, plus supporting life in space,” a source told the publication. “The business model had to change… and that has continued to make it challenging for the company to get around its cash flow issues.”

Axiom is one of several companies—alongside Blue Origin, Voyager Space, Vast Space, and potentially SpaceX—working with NASA to devise commercial replacements for the International Space Station after that facility retires in 2030.

NASA plans to issue a “request for proposals” for the second round of commercial space station contracts in 2025 and make an award the following year. Multiple sources have indicated that the space agency would like to award at least two companies in this second phase. However, Ghaffarian told Forbes that he would prefer NASA to decide next year and award a single competitor.

“Today there’s not enough market for more than one,” he said.

This may be true, although some of Axiom’s competitors may dispute it. Nevertheless, Ghaffarian’s desire for an award next year, and for a sole winner, underscores the evident urgency of Axiom’s fundraising needs.

Dragons and spacesuits

The report also notes that Axiom has lost significant amounts of funding on three private astronaut missions it has flown to the International Space Station to date. Ghaffarian said these missions were conducted at a loss to build relationships with global space agencies. This does make some sense, as space agencies in Europe, the Middle East, and elsewhere are likely to be customers of commercial space stations in the next decade. However, Axiom is ill-positioned to absorb such launches financially.

The publication reveals that Axiom is due to pay $670 million to SpaceX for four Crew Dragon missions, each of which includes a launch and ride for four astronauts to and from the station encompassing a one- to two-week period. This equates to $167.5 million per launch, or $41.9 million per seat.

Axiom’s other major line of business is a $228 million development contract with NASA to develop spacesuits for the Artemis Program, which will allow astronauts to venture outside the Starship lunar lander on the Moon’s surface. According to the Forbes report, this initiative has pulled resources away from the space station program.

Multiple sources have told Ars that, from a financial and technical standpoint, this spacesuit program is on better footing than the station program. And at this point, the spacesuit program is probably the one element of Axiom’s business that NASA views as essential going forward.

A key NASA commercial partner faces severe financial challenges Read More »

rocket-delivered-to-launch-site-for-first-human-flight-to-the-moon-since-1972

Rocket delivered to launch site for first human flight to the Moon since 1972

Rocket delivered to launch site for first human flight to the Moon since 1972

The central piece of NASA’s second Space Launch System rocket arrived at Kennedy Space Center in Florida this week. Agency officials intend to start stacking the towering launcher in the next couple of months for a mission late next year carrying a team of four astronauts around the Moon.

The Artemis II mission, officially scheduled for September 2025, will be the first voyage by humans to the vicinity of the Moon since the last Apollo lunar landing mission in 1972. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian mission specialist Jeremy Hansen will ride the SLS rocket away from Earth, then fly around the far side of the Moon and return home inside NASA’s Orion spacecraft.

“The core is the backbone of SLS, and it’s the backbone of the Artemis mission,” said Matthew Ramsey, NASA’s mission manager for Artemis II. “We’ve been waiting for the core to get here because all the integrated tests and checkouts that we do have to have the core stage. It has the flight avionics that drive the whole system. The boosters are also important, but the core is really the backbone for Artemis. So it’s a big day.”

The core stage rolled off of NASA’s Pegasus barge at Kennedy early Wednesday, following a weeklong ocean voyage from New Orleans, where Boeing builds the rocket under contract to NASA.

Ramsey told Ars that ground teams hope to begin stacking the rocket’s two powerful solid rocket boosters on NASA’s mobile launcher platform in September. Each booster, supplied by Northrop Grumman, is made of five segments with pre-packed solid propellant and a nose cone. All the pieces for the SLS boosters are at Kennedy and ready for stacking, Ramsey said.

The SLS upper stage, built by United Launch Alliance, is also at the Florida launch site. Now, the core stage is at Kennedy. In August or September, NASA plans to deliver the two remaining elements of the SLS rocket to Florida. These are the adapter structures that will connect the core stage to the upper stage, and the upper stage to the Orion spacecraft.

A heavy-duty crane inside the cavernous Vehicle Assembly Building (VAB) will hoist each segment of the SLS boosters into place on the launch platform. Once the boosters are fully stacked, ground teams will lift the 212-foot (65-meter) core stage vertical in the transfer aisle running through the center of the VAB. A crane will then lower the core stage between the boosters. That could happen as soon as December, according to Ramsey.

Then comes the launch vehicle stage adapter, the upper stage, the Orion stage adapter, and finally, the Orion spacecraft itself.

Moving toward operations

NASA’s inspector general reported in 2022 that NASA’s first four Artemis missions will each cost $4.1 billion. Subsequent documents, including a Government Accountability Office report last year, suggest the expendable SLS core stage is responsible for at least a quarter of the cost for each Artemis flight.

The core stage for Artemis II is powered by four hydrogen-fueled RS-25 engines produced by Aerojet Rocketdyne. Two of the reusable engines for Artemis II have flown on the space shuttle, and the other two RS-25s were built in the shuttle era but never flew. Each SLS launch will put the core stage and its engines in the Atlantic Ocean.

Steve Wofford, who manages the stages office for the SLS program at NASA’s Marshall Space Flight Center, told Ars there are “no major configuration differences” between the core stages for Artemis I and Artemis II. The only minor differences involve instrumentation that NASA wanted on Artemis I to measure pressures, accelerations, vibrations, temperatures, and other parameters on the first flight of the Space Launch System.

“We are still working off some flight observations that we made on Artemis I, but no showstoppers,” Wofford said. “On the first article, the test flight, Artemis I, we really loaded it up. That’s a golden opportunity to learn as much as you can about the vehicle and the flight regime, and anchor all your models… As you progress, you need less and less of that. So Core Stage 2 will have less development flight instrumentation than Core Stage 1, and then Core Stage 3 will have less still.”

Rocket delivered to launch site for first human flight to the Moon since 1972 Read More »