bambu lab a1

ars-staffers-share-some-of-their-favorite-unexpected-3d-prints

Ars staffers share some of their favorite unexpected 3D prints


Once you solve one problem with a 3D printer, you’ll go looking for others.

Coffee bean dosing cups and espresso tamper handle Credit: Aurich Lawson

Coffee bean dosing cups and espresso tamper handle Credit: Aurich Lawson

Part of the fun of 3D printing is discovering just how many possibilities there are for different things to print. Obviously, they’re fun for printing toys or decorations that you couldn’t or wouldn’t buy yourself, but they’re also powerful problem-solving tools. Once you’ve solved a few problems with 3D printed parts, you start looking around for other minor inconveniences or quality-of-life upgrades that you could solve—and the breadth and depth of the 3D printing community means that you can almost always find someone else who has already thought up and posted a solution for you.

As a coda to our series about breaking into 3D printing for the first time, the 3D printer-pilled among the Ars staff is sharing a few of their favorite unexpected prints, from fun all-purpose gifts to containers and organizers to parts that will help you with your other, non-3D-printing-related hobbies. This is just a fraction of what’s out there, but if you’re still on the fence, maybe some of these will open your mind to the possibilities.

Coffee gear

Every morning, I make either a pour-over coffee or some form of espresso. For measuring my beans, I printed two dosing cups. The black one is matte black PLA with a fuzzy surface texture (an option in most slicers that adds random noise to the outside wall paths), and the white one is ABS that I sanded to a smooth surface. For sanding, I prefer ABS, as it’s easier to get something that has no real signs of layer lines. To tamp my espresso grounds, I printed a handle in black ABS and sanded it smooth to feel good in the hand. The rounded knob helps me get pressure more comfortably than the raw metal of the original tamper, and the radial fins fit perfectly into the dosing cup, keeping the tamp straight up and down so I don’t end up with a sloped surface.

These were all files I downloaded from MakerWorld, and I didn’t really do anything to them except minor scaling or adding the fuzzy skin.

—Aurich Lawson, Creative Director

Even more organizational tools

3D printers are good for imposing order on chaos. Credit: Andrew Cunningham

My very first 3D prints were new organizational tools to try and impose some order on the chaos of my home and office, and my favorite prints still tend to be of that genre.

Cleaning out and fully organizing my desk with 3D-printed baskets and containers is still on my long to-do list, but I did manage to tame the loose pile of USB sticks and memory cards in my desk with one of the many available organizer designs. This Gridfinity-compatible design is the one I went for, but there are truly dozens of examples on MakerWorld alone; I like this one because it can hold a lot of USB-A drives and because each individual slot is versatile enough to hold USB drives or SD or microSD cards. But there are examples with more USB-C ports and some with different dimensions and spacing, so you can find the one that works best for the space you’re trying to fit it into.

Who doesn’t need to be able to store multiple pairs of Bluey sunglasses? Credit: Andrew Cunningham

Having a third sunglasses-wearer in the house (and one with multiple Bluey sunglasses) also made it necessary to find some kind of way to easily put them away and keep them from floating around the living room or car and getting lost forever. I really like the versatile and modular SnapStack Modular Glasses Holder design, which gives you designs for a base and a top, and then you print as many sunglasses holders as you need; if you need to expand later on, just print another one or pop the top off and add to the one you’ve already made.

We had enough things to store that I went right for this three-sided version of the stand, which I printed to be able to hold nine pairs (and which is large enough that you can rest a sunglasses case or something else on the top). I stuck a few small adhesive furniture pads to the bottom to prevent damage to the table. But if you have fewer, you can print free-standing or wall-mounted versions, too.

Andrew Cunningham, Senior Technology Reporter

Aerogarden baskets and Mario mushrooms

Screenshot of Bambu Studio showing aerogarden baskets being set up for printing

So, so many Aerogarden baskets.

Credit: Lee Hutchinson

So, so many Aerogarden baskets. Credit: Lee Hutchinson

I have two fun 3D printer things to share—one is a life/money hack kind of thing, and the other is just neat.

On the life/money hack thing, my wife is a big Aerogarden kind of person—we have probably two dozen or more of the hydroponic plant doodads all over the house in various sizes, from tiny to “one wall of the kitchen.” She raises small plants in the Aerogarden(s) and then transfers them outside to the real garden; doing this means she was buying lots of special little Aerogarden baskets for the baby plants to take root in.

That sounded like a job for a 3d printer! And sure enough, Thingiverse came to the rescue! In the two years we’ve had our Bambu Lab X1 Carbon, I’ve printed probably a thousand or more of these things, in 27-lot batches because that’s how many will fit on a single build plate.

Photograph of Lee's 3d printer and a bunch of printed 1-up mushrooms all over it.

I got mushrooms and companion cubes for days!

Credit: Lee Hutchinson

I got mushrooms and companion cubes for days! Credit: Lee Hutchinson

The other thing that has brought delight, honestly, is this little screw-top Mario 1-Up mushroom (at least, I think that’s the same one as the one I’ve been printing—it’s hard to tell, but it looks the same). It’s a little silly, but these things are not only really fun to fidget with—the top comes off and you can hide stuff in them!—but they also make fantastic little gifts for folks, especially anyone with kids and/or Gen-X sensibilities. Everyone needs more screw-top 1-Up mushrooms in their lives, and they work great in tons of different colors!

Lee Hutchinson, Senior Technology Editor

Festool track hangers

I have three different tracks for my Festool tracksaw that I like to hang on my garage wall. It keeps them from getting dinged up, and they are easily accessible when I’m ready to cut with them. For these, I modeled my own designs in Fusion 360, with the main body printed in matte black PLA and the knob printed in a green HTPLA called Lootsef by Protopasta. That’s “Festool” spelled backward, of course, and it’s designed to pretty much perfectly match Festool’s signature green.

I used nuts embedded in the main body and bolts through the knobs to allow them to be turned to lock or release the track in place. I modeled the Festool logo into the top of the knob and used the ironing option in Bambu Studio to use the printer’s hotend to smooth the top surface around the logo.

The protective end caps were printed in the same HTPLA from a file someone uploaded to Printables.

—Aurich Lawson, Creative Director

Gridfinity all the things!

Gridfinity is a modular, grid-based storage and organization system that’s optimized for 3D printing and rapid customization. Created by Zack Freedman, Gridfinity uses a standardized 42×42 mm base grid upon which you can place highly adaptable tool trays, organizers, and workspace layouts.

The upshot is that you can print anything from a little 1x1x1 cube (42 mm3) to a massive storage bin the size of your print bed. If your desk, kitchen, or bathroom drawers scream out for organization, this is a good solution because you can print exactly what you want.

The Gridfinity Generator has you covered when it comes to printing a custom base grid. This parametric gridfinity tool is a great place to start printing bins, particularly if you’re in a situation where you can shave a few grams of filament off your design (desk bins, for instance, can typically use very thin walls).

—Ken Fisher, Editor-In-Chief

Green PETG for your green thumb

New hobby meets ancient practice when you combine 3D printing and agriculture! Credit: Andrew Cunningham

After several years of dashed hopes and false starts, I was finally able to get a single raised garden bed going in our backyard this year (among other things, a raised bed is a bit easier to protect from the wildlife in our backyard and simpler to use with the Square Foot Gardening system). The 3D printer contributed a few odds and ends, including parts that helped add strength to the enclosure I built around it and tools that helped me keep the cage’s corners (mostly) square.

But now that some of the plants are actually going, the 3D printer’s main contribution to the cause has been 3D-printed cages, which I’ve been using to get my vining plants to grow upward instead of outward (necessary for the close quarters of square-foot gardening) and to keep things from flopping over onto the ground.

As with the desk organizers, there are many options for plant cages and trellises, depending on the size of your plants, what you’re trying to grow, and your aesthetic and functional preferences. I’m giving these circular stackable ones a try since I like that they can easily be printed continuously based on how high your plants want to get, though for big ol’ tomato plants, you’ll still want a stake in the ground to help bear the weight once the plants are more than a few feet high.

If you do this—and especially if you’re using an open-bed printer like my Bambu Labs A1, which doesn’t handle filament like the UV-resistant ASA well—you’ll want to make sure to print using PETG plastic instead of the typical PLA. PETG can be fussier than PLA (it’s more prone to stringing, especially if you’re not drying your filament rolls), but it’s also less prone to warping after extended sunlight exposure, it’s modestly UV-resistant, and it has a bit more flexibility and resiliency than the more brittle PLA plastic.

Andrew Cunningham, Senior Technology Reporter

Tool drawer organization

I also liked the idea of Gridfinity, but I found the 42 mm size a little awkward—and yes, it’s a Hitchhiker’s Guide reference, not a spec built around the size of human fingers. I modeled my own system in Fusion 360 based loosely on the idea, but with a 50 mm grid that I laser-cut out of cardboard to avoid having to print it. The containers are printed in matte black and white PLA, with a color switch using my X1C’s AMS multi-spool system to get the white tops. There’s no function to the white; I just thought it looked nice with the labels.

Custom holders for Wera screwdrivers and hex wrenches. Credit: Aurich Lawson

I modeled custom holders for another drawer to hold my screwdrivers and hex wrenches. Having the perfect shape to fit the screwdrivers is slightly overkill, but it’s super satisfying to drop them into place and watch them settle exactly into place. There’s a metric and imperial holder for the hex wrenches, each removable, so I can take them with me to find the right fit when I’m working on something. All the holders lock into the same 50 mm grid as the bins.

—Aurich Lawson, Creative Director

My main squeeze

Sometimes you stumble across things you didn’t know you needed. For me, that’s this Toothpaste Squeezer. You can print one or a dozen of them in no time. They’re simple yet effective.

Will it change your life? No. But it will give you that satisfying feeling of dealing with a beautifully primed tube of toothpaste every time. Even my in-laws use these now (or so they say). If you want something a little more hefty with a built-in ratchet, check this one out.

—Ken Fisher, Editor-In-Chief

Corral your remote controls

Even if you have a decent universal remote, chances are good that you still need your other remotes nearby. This remote control stand is easy to print, looks great, and offers a few customization choices. It also prints in multicolor without an AMS, so you can match your decor quite easily. And I’m pleased to note that it holds the fat TiVo remote with no problems.

—Ken Fisher, Editor-In-Chief

The Armorer helmet

In addition to practical prints, I like to make display props, especially Star Wars helmets. I don’t wear them for cosplay or anything; I just like having them around to look at and enjoy. I have several shelves full now, and I like to use a combination of ABS and resin to print them for the various advantages in post-processing and detail. This Armorer helmet from The Mandalorian is the first helmet I did, before I had my Bambu X1C, and it was printed in PLA on my Prusa. I later printed the horns in resin, but they could have been done in PLA and sanded smooth easily enough.

I’m including this helmet instead of any of my others because I wanted to show that you can make something like this with any bed slinger printer. You don’t need an enclosure or a large-format printer—this was printed in sections and glued together—and you don’t need fancy or toxic materials like ABS and resin.

There was a lot of sanding, filler primer, bondo, and several different passes of automotive paints, plus a two-part catalyst clear coat to finish it off. But you could get a lot of this look with rattle cans, without the need for a compressor and spray gun.

—Aurich Lawson, Creative Director

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

Ars staffers share some of their favorite unexpected 3D prints Read More »

what-i-learned-from-my-first-few-months-with-a-bambu-lab-a1-3d-printer,-part-1

What I learned from my first few months with a Bambu Lab A1 3D printer, part 1


One neophyte’s first steps into the wide world of 3D printing.

The hotend on my Bambu Lab A1 3D printer. Credit: Andrew Cunningham

The hotend on my Bambu Lab A1 3D printer. Credit: Andrew Cunningham

For a couple of years now, I’ve been trying to find an excuse to buy a decent 3D printer.

Friends and fellow Ars staffers who had them would gush about them at every opportunity, talking about how useful they can be and how much can be printed once you get used to the idea of being able to create real, tangible objects with a little time and a few bucks’ worth of plastic filament.

But I could never quite imagine myself using one consistently enough to buy one. Then, this past Christmas, my wife forced the issue by getting me a Bambu Lab A1 as a present.

Since then, I’ve been tinkering with the thing nearly daily, learning more about what I’ve gotten myself into and continuing to find fun and useful things to print. I’ve gathered a bunch of thoughts about my learning process here, not because I think I’m breaking new ground but to serve as a blueprint for anyone who has been on the fence about Getting Into 3D Printing. “Hyperfixating on new hobbies” is one of my go-to coping mechanisms during times of stress and anxiety, and 3D printing has turned out to be the perfect combination of fun, practical, and time-consuming.

Getting to know my printer

My wife settled on the Bambu A1 because it’s a larger version of the A1 Mini, Wirecutter’s main 3D printer pick at the time (she also noted it was “hella on sale”). Other reviews she read noted that it’s beginner-friendly, easy to use, and fun to tinker with, and it has a pretty active community for answering questions, all assessments I agree with so far.

Note that this research was done some months before Bambu earned bad headlines because of firmware updates that some users believe will lead to a more locked-down ecosystem. This is a controversy I understand—3D printers are still primarily the realm of DIYers and tinkerers, people who are especially sensitive to the closing of open ecosystems. But as a beginner, I’m already leaning mostly on the first-party tools and built-in functionality to get everything going, so I’m not really experiencing the sense of having “lost” features I was relying on, and any concerns I did have are mostly addressed by Bambu’s update about its update.

I hadn’t really updated my preconceived notions of what home 3D printing was since its primordial days, something Ars has been around long enough to have covered in some depth. I was wary of getting into yet another hobby where, like building your own gaming PC, fiddling with and maintaining the equipment is part of the hobby. Bambu’s printers (and those like them) are capable of turning out fairly high-quality prints with minimal fuss, and nothing will draw you into the hobby faster than a few successful prints.

Basic terminology

Extrusion-based 3D printers (also sometimes called “FDM,” for “fused deposition modeling”) work by depositing multiple thin layers of melted plastic filament on a heated bed. Credit: Andrew Cunningham

First things first: The A1 is what’s called an “extrusion” printer, meaning that it functions by melting a long, slim thread of plastic (filament) and then depositing this plastic onto a build plate seated on top of a heated bed in tens, hundreds, or even thousands of thin layers. In the manufacturing world, this is also called “fused deposition modeling,” or FDM. This layer-based extrusion gives 3D-printed objects their distinct ridged look and feel and is also why a 3D printed piece of plastic is less detailed-looking and weaker than an injection-molded piece of plastic like a Lego brick.

The other readily available home 3D printing technology takes liquid resin and uses UV light to harden it into a plastic structure, using a process called “stereolithography” (SLA). You can get inexpensive resin printers in the same price range as the best cheap extrusion printers, and the SLA process can create much more detailed, smooth-looking, and watertight 3D prints (it’s popular for making figurines for tabletop games). Some downsides are that the print beds in these printers are smaller, resin is a bit fussier than filament, and multi-color printing isn’t possible.

There are two main types of home extrusion printers. The Bambu A1 is a Cartesian printer, or in more evocative and colloquial terms, a “bed slinger.” In these, the head of the printer can move up and down on one or two rails and from side to side on another rail. But the print bed itself has to move forward and backward to “move” the print head on the Y axis.

More expensive home 3D printers, including higher-end Bambu models in the P- and X-series, are “CoreXY” printers, which include a third rail or set of rails (and more Z-axis rails) that allow the print head to travel in all three directions.

The A1 is also an “open-bed” printer, which means that it ships without an enclosure. Closed-bed printers are more expensive, but they can maintain a more consistent temperature inside and help contain the fumes from the melted plastic. They can also reduce the amount of noise coming from your printer.

Together, the downsides of a bed-slinger (introducing more wobble for tall prints, more opportunities for parts of your print to come loose from the plate) and an open-bed printer (worse temperature, fume, and dust control) mainly just mean that the A1 isn’t well-suited for printing certain types of plastic and has more potential points of failure for large or delicate prints. My experience with the A1 has been mostly positive now that I know about those limitations, but the printer you buy could easily change based on what kinds of things you want to print with it.

Setting up

Overall, the setup process was reasonably simple, at least for someone who has been building PCs and repairing small electronics for years now. It’s not quite the same as the “take it out of the box, remove all the plastic film, and plug it in” process of setting up a 2D printer, but the directions in the start guide are well-illustrated and clearly written; if you can put together prefab IKEA furniture, that’s roughly the level of complexity we’re talking about here. The fact that delicate electronics are involved might still make it more intimidating for the non-technical, but figuring out what goes where is fairly simple.

The only mistake I made while setting the printer up involved the surface I initially tried to put it on. I used a spare end table, but as I discovered during the printer’s calibration process, the herky-jerky movement of the bed and print head was way too much for a little table to handle. “Stable enough to put a lamp on” is not the same as “stable enough to put a constantly wobbling contraption” on—obvious in retrospect, but my being new to this is why this article exists.

After some office rearrangement, I was able to move the printer to my sturdy L-desk full of cables and other doodads to serve as ballast. This surface was more than sturdy enough to let the printer complete its calibration process—and sturdy enough not to transfer the printer’s every motion to our kid’s room below, a boon for when I’m trying to print something after he has gone to bed.

The first-party Bambu apps for sending files to the printer are Bambu Handy (for iOS/Android, with no native iPad version) and Bambu Studio (for Windows, macOS, and Linux). Handy works OK for sending ready-made models from MakerWorld (a mostly community-driven but Bambu-developer repository for 3D printable files) and for monitoring prints once they’ve started. But I’ll mostly be relaying my experience with Bambu Studio, a much more fully featured app. Neither app requires sign-in, at least not yet, but the path of least resistance is to sign into your printer and apps with the same account to enable easy communication and syncing.

Bambu Studio: A primer

Bambu Studio is what’s known in the hobby as a “slicer,” software that takes existing 3D models output by common CAD programs (Tinkercad, FreeCAD, SolidWorks, Autodesk Fusion, others) and converts them into a set of specific movement instructions that the printer can follow. Bambu Studio allows you to do some basic modification of existing models—cloning parts, resizing them, adding supports for overhanging bits that would otherwise droop down, and a few other functions—but it’s primarily there for opening files, choosing a few settings, and sending them off to the printer to become tangible objects.

Bambu Studio isn’t the most approachable application, but if you’ve made it this far, it shouldn’t be totally beyond your comprehension. For first-time setup, you’ll choose your model of printer (all Bambu models and a healthy selection of third-party printers are officially supported), leave the filament settings as they are, and sign in if you want to use Bambu’s cloud services. These sync printer settings and keep track of the models you save and download from MakerWorld, but a non-cloud LAN mode is available for the Bambu skeptics and privacy-conscious.

For any newbie, pretty much all you need to do is connect your printer, open a .3MF or .STL file you’ve downloaded from MakerWorld or elsewhere, select your filament from the drop-down menu, click “slice plate,” and then click “print.” Things like the default 0.4 mm nozzle size and Bambu’s included Textured PEI Build Plate are generally already factored in, though you may need to double-check these selections when you open a file for the first time.

When you slice your build plate for the first time, the app will spit a pile of numbers back at you. There are two important ones for 3D printing neophytes to track. One is the “total filament” figure, which tells you how many grams of filament the printer will use to make your model (filament typically comes in 1 kg spools, and the printer generally won’t track usage for you, so if you want to avoid running out in the middle of the job, you may want to keep track of what you’re using). The second is the “total time” figure, which tells you how long the entire print will take from the first calibration steps to the end of the job.

Selecting your filament and/or temperature presets. If you have the Automatic Material System (AMS), this is also where you’ll manage multicolor printing. Andrew Cunningham

When selecting filament, people who stick to Bambu’s first-party spools will have the easiest time, since optimal settings are already programmed into the app. But I’ve had almost zero trouble with the “generic” presets and the spools of generic Inland-branded filament I’ve bought from our local Micro Center, at least when sticking to PLA (polylactic acid, the most common and generally the easiest-to-print of the different kinds of filament you can buy). But we’ll dive deeper into plastics in part 2 of this series.

I won’t pretend I’m skilled enough to do a deep dive on every single setting that Bambu Studio gives you access to, but here are a few of the odds and ends I’ve found most useful:

  • The “clone” function, accessed by right-clicking an object and clicking “clone.” Useful if you’d like to fit several copies of an object on the build plate at once, especially if you’re using a filament with a color gradient and you’d like to make the gradient effect more pronounced by spreading it out over a bunch of prints.
  • The “arrange all objects” function, the fourth button from the left under the “prepare” tab. Did you just clone a bunch of objects? Did you delete an individual object from a model because you didn’t need to print that part? Bambu Studio will arrange everything on your build plate to optimize the use of space.
  • Layer height, located in the sidebar directly beneath “Process” (which is directly underneath the area where you select your filament. For many functional parts, the standard 0.2 mm layer height is fine. Going with thinner layer heights adds to the printing time but can preserve more detail on prints that have a lot of it and slightly reduce the visible layer lines that give 3D-printed objects their distinct look (for better or worse). Thicker layer heights do the opposite, slightly reducing the amount of time a model takes to print but preserving less detail.
  • Infill percentage and wall loops, located in the Strength tab beneath the “Process” sidebar item. For most everyday prints, you don’t need to worry about messing with these settings much; the infill percentage determines the amount of your print’s interior that’s plastic and the part that’s empty space (15 percent is a good happy medium most of the time between maintaining rigidity and overusing plastic). The number of wall loops determines how many layers the printer uses for the outside surface of the print, with more walls using more plastic but also adding a bit of extra strength and rigidity to functional prints that need it (think hooks, hangers, shelves and brackets, and other things that will be asked to bear some weight).

My first prints

A humble start: My very first print was a wall bracket for the remote for my office’s ceiling fan. Credit: Andrew Cunningham

When given the opportunity to use a 3D printer, my mind went first to aggressively practical stuff—prints for organizing the odds and ends that eternally float around my office or desk.

When we moved into our current house, only one of the bedrooms had a ceiling fan installed. I put up remote-controlled ceiling fans in all the other bedrooms myself. And all those fans, except one, came with a wall-mounted caddy to hold the remote control. The first thing I decided to print was a wall-mounted holder for that remote control.

MakerWorld is just one of several resources for ready-made 3D-printable files, but the ease with which I found a Hampton Bay Ceiling Fan Remote Wall Mount is pretty representative of my experience so far. At this point in the life cycle of home 3D printing, if you can think about it and it’s not a terrible idea, you can usually find someone out there who has made something close to what you’re looking for.

I loaded up my black roll of PLA plastic—generally the cheapest, easiest-to-buy, easiest-to-work-with kind of 3D printer filament, though not always the best for prints that need more structural integrity—into the basic roll-holder that comes with the A1, downloaded that 3MF file, opened it in Bambu Studio, sliced the file, and hit print. It felt like there should have been extra steps in there somewhere. But that’s all it took to kick the printer into action.

After a few minutes of warmup—by default, the A1 has a thorough pre-print setup process where it checks the levelness of the bed and tests the flow rate of your filament for a few minutes before it begins printing anything—the nozzle started laying plastic down on my build plate, and inside of an hour or so, I had my first 3D-printed object.

Print No. 2 was another wall bracket, this time for my gaming PC’s gamepad and headset. Credit: Andrew Cunningham

It wears off a bit after you successfully execute a print, but I still haven’t quite lost the feeling of magic of printing out a fully 3D object that comes off the plate and then just exists in space along with me and all the store-bought objects in my office.

The remote holder was, as I’d learn, a fairly simple print made under near-ideal conditions. But it was an easy success to start off with, and that success can help embolden you and draw you in, inviting more printing and more experimentation. And the more you experiment, the more you inevitably learn.

This time, I talked about what I learned about basic terminology and the different kinds of plastics most commonly used by home 3D printers. Next time, I’ll talk about some of the pitfalls I ran into after my initial successes, what I learned about using Bambu Studio, what I’ve learned about fine-tuning settings to get good results, and a whole bunch of 3D-printable upgrades and mods available for the A1.

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

What I learned from my first few months with a Bambu Lab A1 3D printer, part 1 Read More »