banks

in-search-of-riches,-hackers-plant-4g-enabled-raspberry-pi-in-bank-network

In search of riches, hackers plant 4G-enabled Raspberry Pi in bank network

“One of the most unusual elements of this case was the attacker’s use of physical access to install a Raspberry Pi device,” Group-IB Senior Digital Forensics and Incident Response Specialist Nam Le Phuong wrote. “This device was connected directly to the same network switch as the ATM, effectively placing it inside the bank’s internal network. The Raspberry Pi was equipped with a 4G modem, allowing remote access over mobile data.”

To maintain persistence, UNC2891 also compromised a mail server because it had constant Internet connectivity. The Raspberry Pi and the mail server backdoor would then communicate by using the bank’s monitoring server as an intermediary. The monitoring server was chosen because it had access to almost every server within the data center.

The Network Monitoring Server as an intermediary between the Raspberry Pi and the Mail Server.

Credit: Group-IB

The Network Monitoring Server as an intermediary between the Raspberry Pi and the Mail Server. Credit: Group-IB

As Group-IB was initially investigating the bank’s network, researchers noticed some unusual behaviors on the monitoring server, including an outbound beaconing signal every 10 minutes and repeated connection attempts to an unknown device. The researchers then used a forensic tool to analyze the communications. The tool identified the endpoints as a Raspberry Pi and the mail server but was unable to identify the process names responsible for the beaconing.

The forensic triage tool is unable to collect the relevant process name or ID associated with the socket.

Credit: Group-IB

The forensic triage tool is unable to collect the relevant process name or ID associated with the socket. Credit: Group-IB

The researchers then captured the system memory as the beacons were sent. The review identified the process as lightdm, a process associated with an open source LightDM display manager. The process appeared to be legitimate, but the researchers found it suspicious because the LightDM binary was installed in an unusual location. After further investigation, the researchers discovered that the processes of the custom backdoor had been deliberately disguised in an attempt to throw researchers off the scent.

Phuong explained:

The backdoor process is deliberately obfuscated by the threat actor through the use of process masquerading. Specifically, the binary is named “lightdm”, mimicking the legitimate LightDM display manager commonly found on Linux systems. To enhance the deception, the process is executed with command-line arguments resembling legitimate parameters – for example,

lightdm –session child 11 19 — in an effort to evade detection and mislead forensic analysts during post-compromise investigations.

These backdoors were actively establishing connections to both the Raspberry Pi and the internal Mail Server.

As noted earlier, the processes were disguised using the Linux bind mount. Following that discovery, Group-IB added the technique to the MITRE ATT&CK framework as “T1564.013 – Hide Artifacts: Bind Mounts.”

Group-IB didn’t say where the compromised switching equipment was located or how attackers managed to plant the Raspberry Pi. The attack was detected and shut down before UNC2891 was able to achieve its final goal of infecting the ATM switching network with the CakeTap backdoor.

In search of riches, hackers plant 4G-enabled Raspberry Pi in bank network Read More »

north-korean-hackers-use-newly-discovered-linux-malware-to-raid-atms

North Korean hackers use newly discovered Linux malware to raid ATMs

Credit: haxrob

Credit: haxrob

The malware resides in the userspace portion of the interbank switch connecting the issuing domain and the acquiring domain. When a compromised card is used to make a fraudulent translation, FASTCash tampers with the messages the switch receives from issuers before relaying it back to the merchant bank. As a result, issuer messages denying the transaction are changed to approvals.

The following diagram illustrates how FASTCash works:

Credit: haxrob

Credit: haxrob

The switches chosen for targeting run misconfigured implementations of ISO 8583, a messaging standard for financial transactions. The misconfigurations prevent message authentication mechanisms, such as those used by field 64 as defined in the specification, from working. As a result, the tampered messages created by FASTCash aren’t detected as fraudulent.

“FASTCash malware targets systems that ISO8583 messages at a specific intermediate host where security mechanisms that ensure the integrity of the messages are missing, and hence can be tampered,” haxrob wrote. “If the messages were integrity protected, a field such as DE64 would likely include a MAC (message authentication code). As the standard does not define the algorithm, the MAC algorithm is implementation specific.”

The researcher went on to explain:

FASTCash malware modifies transaction messages in a point in the network where tampering will not cause upstream or downstream systems to reject the message. A feasible position of interception would be where the ATM/PoS messages are converted from one format to another (For example, the interface between a proprietary protocol and some other form of an ISO8583 message) or when some other modification to the message is done by a process running in the switch.

CISA said that BeagleBoyz—one of the names the North Korean hackers are tracked under—is a subset of HiddenCobra, an umbrella group backed by the government of that country. Since 2015, BeagleBoyz has attempted to steal nearly $2 billion. The malicious group, CISA said, has also “manipulated and, at times, rendered inoperable, critical computer systems at banks and other financial institutions.”

The haxrob report provides cryptographic hashes for tracking the two samples of the newly discovered Linux version and hashes for several newly discovered samples of FASTCash for Windows.

North Korean hackers use newly discovered Linux malware to raid ATMs Read More »