Biology

world-famous-primatologist-jane-goodall-dead-at-91

World-famous primatologist Jane Goodall dead at 91

A sculpture of Jane Goodall and David Greybeard outside the Field Museum of Natural History in Chicago

A sculpture of Jane Goodall and David Greybeard outside the Field Museum of Natural History in Chicago Credit: Geary/CC0

David Greybeard’s behavior also challenged the long-held assumption that chimpanzees were vegetarians. Goodall found that chimps would hunt and eat smaller primates like colobus monkeys as well, sometimes sharing the carcass with other troop members. She also recorded evidence of strong bonds between mothers and infants, altruism, compassion, and aggression and violence. For instance, dominant females would sometimes kill the infants of rival females, and from 1974 to 1978, there was a violent conflict between two communities of chimpanzees that became known as the Gombe Chimpanzee War.

Almost human

One of the more colorful chimps Goodall studied was named Frodo, who grew up to be an alpha male with a temperament very unlike his literary namesake. “As an infant, Frodo proved mischievous, disrupting Jane Goodall’s efforts to record data on mother-infant relationships by grabbing at her notebooks and binoculars,” anthropologist Michael Wilson of the University of Minnesota in Saint Paul recalled on his blog when Frodo died from renal failure in 2013. “As he grew older, Frodo developed a habit of throwing rocks, charging at, hitting, and knocking over human researchers and tourists.” Frodo attacked Wilson twice on Wilson’s first trip to Gombe, even beating Goodall herself in 1989, although he eventually lost his alpha status and “mellowed considerably” in his later years, per Wilson.

Goodall became so renowned around the world that she even featured in one of Gary Larson’s Far Side cartoons, in which two chimps are shown grooming when one finds a blonde hair on the other. “Conducting a little more ‘research’ with that Jane Goodall tramp?” the caption read. The JGI was not amused, sending Larson a letter (without Goodall’s knowledge) calling the cartoon an “atrocity,” but their objections were not shared by Goodall herself, who thought the cartoon was very funny when she heard of it. Goodall even wrote a preface to The Far Side Gallery 5. Larson, for his part, visited Goodall’s research facility in Tanzania in 1988, where he experienced Frodo’s alpha aggressiveness firsthand.

A young Jane Goodall in the field.

A young Jane Goodall in the field. Credit: YouTube/Jane Goodall Institute

Goodall founded the JGI in 1977 and authored more than 27 books, most notably My Friends, the Wild Chimpanzees (1967), In the Shadow of Man (1971), and Through a Window (1990). There was some initial controversy around her 2014 book Seeds of Hope, co-written with Gail Hudson, when portions were found to have been plagiarized from online sources; the publisher postponed publication so that Goodall could revise the book and add 57 pages of endnotes. (She blamed her “chaotic note-taking” for the issue.) National Geographic released a full-length documentary last year about her life’s work, drawing from over 100 hours of previously unseen archival footage.

World-famous primatologist Jane Goodall dead at 91 Read More »

150-million-year-old-pterosaur-cold-case-has-finally-been-solved

150 million-year-old pterosaur cold case has finally been solved

Smyth thinks that so few adults show up on the fossil record in this region not only because they were more likely to survive, but also because those that couldn’t were not buried as quickly. Carcasses would float on the water anywhere from days to weeks. As they decomposed, parts would fall to the lagoon bottom. Juveniles were small enough to be swept under and buried quickly by sediments that would preserve them.

Cause of death

The humerus fractures found in Lucky I and Lucky II were especially significant because forelimb injuries are the most common among existing flying vertebrates. The humerus attaches the wing to the body and bears most flight stress, which makes it more prone to trauma. Most humerus fractures happen in flight as opposed to being the result of a sudden impact with a tree or cliff. And these fractures were the only skeletal trauma seen in any of the juvenile pterosaur specimens from Solnhofen.

Evidence suggesting the injuries to the two fledgling pterosaurs happened before death includes the displacement of bones while they were still in flight (something recognizable from storm deaths of extant birds and bats) and the smooth edges of the break, which happens in life, as opposed to the jagged edges of postmortem breaks. There were also no visible signs of healing.

Storms disproportionately affected flying creatures at Solnhofen, which were often taken down by intense winds. Many of Solnhofen’s fossilized vertebrates were pterosaurs and other winged species such as bird ancestor Arachaeopteryx. Flying invertebrates were also doomed.

Even marine invertebrates and fish were threatened by storm conditions, which churned the lagoons and brought deep waters with higher salt levels and low oxygen to the surface. Anything that sank to the bottom was exceptionally preserved because of these same conditions, which were too harsh for scavengers and paused decomposition. Mud kicked up by the storms also helped with the fossilization process by quickly covering these organisms and providing further protection from the elements.

“The same storm events responsible for the burial of these individuals also transported the pterosaurs into the lagoonal basins and were likely the primary cause of their injury and death,” Smyth concluded.

Although Lucky I and Lucky II were decidedly unlucky, the exquisite preservation of their skeletons that shows how they died has finally allowed researchers to solve a case that went cold for over a hundred thousand years.

Current Biology, 2025. DOI: 10.1016/j.cub.2025.08.006

150 million-year-old pterosaur cold case has finally been solved Read More »

scientists-want-to-treat-complex-bone-fractures-with-a-bone-healing-gun

Scientists want to treat complex bone fractures with a bone-healing gun

After examining a few candidate formulations, the team found the right material. “We used a biocompatible thermoplastic called polycaprolactone and hydroxyapatite as base materials,” Lee said. Polycaprolactone was chosen because it is an FDA-approved material that degrades in the body within a few months after implantation. The hydroxyapatite, on the other hand, supports bone-tissue regeneration. Lee’s team experimented with various proportions of these two ingredients and finally nailed the formulation that checked all the boxes: It extruded at a relatively harmless 60° Celsius, the mix was mechanically sound, it adhered to the bone well, and it degraded over time.

Once the bone-healing bullets were ready, the team tested them on rabbits. Rabbits with broken femurs treated with Lee’s healing gun recovered faster than those treated with bone cement, which is the closest commercially available alternative. But there is still a lot to do before the healing gun can be tested on humans.

Skill issues

While the experiment on rabbits revealed new bone tissues forming around the implants created with the healing gun, their slow degradation of the implanted material prevented the full restoration of bone tissues. Another improvement Lee plans involves adding antibiotics to the formulation. The implant, he said, will release the drugs over time to prevent infections.

Then there’s the issue of load bearing. Rabbits are fine as test subjects, but they are rather light. “To evaluate the potential to use this technology on humans, we need to look into its long-term safety in large animal models,” Lee said.

Beyond the questions about the material, the level of skill required to operate this healing gun seems rather high.

Extrusion-based 3D printers, the ones that work more or less like very advanced hot glue guns, usually use guiding rods or rails for precise printing head positioning. If those rods or rails are warped, even slightly, the accuracy of your prints will most likely suffer. Achieving comparable precision with a handheld device might be a bit difficult, even for a skilled surgeon. “It is true that the system requires practice,” Lee said. “We may need to integrate it with a guiding mechanism that would position the head of the device precisely. This could be our next-gen bone printing device.”

Device, 2025.  DOI: 10.1016/j.device.2025.100873

Scientists want to treat complex bone fractures with a bone-healing gun Read More »

fiji’s-ants-might-be-the-canary-in-the-coal-mine-for-the-insect-apocalypse

Fiji’s ants might be the canary in the coal mine for the insect apocalypse


A new genetic technique lets museum samples track population dynamics.

In late 2017, a study by Krefeld Entomological Society looked at protected areas across Germany and discovered that two-thirds of the insect populations living in there had vanished over the last 25 years. The results spurred the media to declare we’re living through an “insect apocalypse,” but the reasons behind their absence were unclear. Now, a joint team of Japanese and Australian scientists have completed a new, multi-year study designed to get us some answers.

Insect microcosm

“In our work, we focused on ants because we have systematic ways for collecting them,” says Alexander Mikheyev, an evolutionary biologist at the Australian National University. “They are also a group with the right level of diversity, where you have enough species to do comparative studies.” Choosing the right location, he explained, was just as important. “We did it in Fiji, because Fiji had the right balance between isolation—which gave us a discrete group of animals to study—but at the same time was diverse enough to make comparisons,” Mikheyev adds.

Thus, the Fijian archipelago, with its 330 islands, became the model the team used to get some insights into insect population dynamics. A key difference from the earlier study was that Mikheyev and his colleagues could look at those populations across thousands of years, not just the last 25.

“Most of the previous studies looked at actual observational data—things we could come in and measure,” Mikheyev explains. The issue with those studies was that they could only account for the last hundred years or so, because that’s how long we have been systematically collecting insect samples. “We really wanted to understand what happened in the longer time frame,” Mikheyev says.

To do this, his team focused on community genomics—studying the collective genetic material of entire groups of organisms. The challenge is that this would normally require collecting thousands of ants belonging to hundreds of species across the entire Fijian archipelago. Given that only a little over 100 out of 330 islands in Fiji are permanently inhabited, this seemed like an insurmountable challenge.

To go around it, the team figured they could run its tests on ants already collected in Fijian museums. But that came with its own set of difficulties.

DNA pieces

Unfortunately, the quality of DNA that could be obtained from museum collections was really bad. From the perspective of DNA preservation, the ants were obtained and stored in horrific conditions, since the idea was to showcase them for visitors, not run genetic studies. “People were catching them in malaise traps,” Mikheyev says. “A malaise trap is basically a bottle of alcohol that sits somewhere in Fiji for a month. Those samples had horribly fragmented, degraded DNA.”

To work with this degraded genetic material, the team employed a technique they called high-throughput museumomics, a relatively new technique that looks at genetic differences across a genome without sequencing the whole thing. DNA sampled from multiple individuals was cut and marked with unique tags at the same repeated locations, a bit like using bookmarks to pinpoint the same page or passage in different issues of the same book. Then, the team sequenced short DNA fragments following the tag to look for differences between them, allowing them to evaluate the genetic diversity within a population.  “We developed a series of methods that actually allowed us to harness these museum-grade specimens for population genetics,” Mikheyev explains.

But the trouble didn’t end there. Differences among Fijian ant taxa are based on their appearance, not genetic analysis. For years, researchers were collecting various ants and determining their species by looking at them. This led to 144 species belonging to 40 genera. For Mikheyev’s team, the first step was to look at the genomes in the samples and see if these species divisions were right. It turned out that they were mostly correct, but some species had to be split, while others were lumped together. At the end, the team confirmed that 127 species were represented among their samples.

Overall, the team analyzed more than 4,000 specimens of ants collected over the past decade or so. And gradually, a turbulent history of Fijian ants started to emerge from the data.

The first colonists

The art of reconstructing the history of entire populations from individual genetic sequences relies on comparing them to each other thoroughly and running a whole lot of computer simulations. “We had multiple individuals per population,” Mikheyev explains. “Let’s say we look at this population and find it has essentially no diversity. It suggests that it very recently descended from a small number of individuals.” When the contrary was true and the diversity was high, the team assumed it indicated the population had been stable for a long time.

With the DNA data in hand, the team simulated how populations of ants would evolve over thousands of years under various conditions, and picked scenarios that best matched the genetic diversity results it obtained from real ants. “We identified multiple instances of colonization—broadscale evolutionary events that gave rise to the Fijian fauna that happened in different timeframes,” Mikheyev says. There was a total of at least 65 colonization events.

The first ants, according to Mikheyev, arrived at Fiji millions of years ago and gave rise to 88 endemic Fijian ant species we have today. These ants most likely evolved from a single ancestor and then diverged from their mainland relatives. Then, a further 23 colonization events introduced ants that were native to a broader Pacific region. These ants, the team found, were a mixture of species that colonized Fiji naturally and ones that were brought by the first human settlers, the Lapita people, who arrived around 3,000 years ago.

The arrival of humans also matched the first declines in endemic Fijian ant species.

Slash and burn

“In retrospect, these declines are not really surprising,” Mikheyev says. The first Fijian human colonists didn’t have the same population density as we have now, but they did practice things like slash-and-burn agriculture, where forests were cut down, left to dry, and burned to make space for farms and fertilize the soil. “And you know, not every ant likes to live in a field, especially the ones that evolved to live in a forest,” Mikheyev adds. But the declines in Fijian endemic ant species really accelerated after the first contact with the Europeans.

The first explorers in the 17th and 18th centuries, like Abel Tasman and James Cook, charted some of the Fijian islands but did not land there. The real apocalypse for Fijian ants began in the 19th century, when European sandalwood traders started visiting the archipelago on a regular basis and ultimately connected it to the global trade networks.

Besides the firearms they often traded for sandalwood with local chiefs, the traders also brought fire ants. “Fire ants are native to Latin America, and it’s a common invasive species extremely well adapted to habitats we create: lawns or clear-cut fields,” Mikheyev says. Over the past couple of centuries, his team saw a massive increase in fire ant populations, combined with accelerating declines in 79 percent of endemic Fijian ant species.

Signs of apocalypse

To Mikheyev, Fiji was just a proving ground to test the methods of working with museum-grade samples. “Now we know this approach works and we can start leveraging collections found in museums around the world—all of them can tell us stories about places where they were collected,” Mikheyev says. His ultimate goal is to look for the signs of the insect apocalypse, or any other apocalypse of a similar kind, worldwide.

But the question is whether what’s happening is really that bad? After all, not all ants seem to be in decline. Perhaps what we see is just a case of a better-adapted species taking over—natural selection happening before our eyes?

“Sure, we can just live with fire ants all along without worrying about the kind of beautiful biodiversity that evolution has created on Fiji,” Mikheyev says. “But I feel like if we just go with that philosophy, we’re really going to be irreparably losing important and interesting parts of our ecology.” If the current trends persist, he argues, we might lose endemic Fijian ants forever. “And this would make our world worse, in many ways,” Mikheyev says.

Science, 2025. DOI: 10.1126/science.ads3004

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Fiji’s ants might be the canary in the coal mine for the insect apocalypse Read More »

chimps-consume-alcohol-equivalent-of-nearly-2-drinks-a-day

Chimps consume alcohol equivalent of nearly 2 drinks a day

Nearly two drinks a day

This latest study involved chimp populations at the Ngogo Chimpanzee Project (Uganda) and a second site at Tai (Ivory Coast), where scientists have estimated the animals consume between 5 to 10 percent of their body weight (about 40 kilos) in fruit each day—around 45 kilograms. The authors collected fallen fruit pulp samples from both sites, packed them in airtight containers, and froze them back at base camp to keep the fruit from ripening further.

Then they quantified the ethanol concentrations using a breathalyzer, a portable gas chromatograph, and chemical testing. The Uganda fruit contained 0.32 percent ethanol, while the Ivory Coast fruit contained 0.31 percent ethanol, which might not sound like much until you consider just how much fruit they eat. And the most frequently consumed fruit at both sites had the highest ethanol content.

If anything, this is a conservative estimate, per Dudley. “If the chimps are randomly sampling ripe fruit, then that’s going to be their average consumption rate, independent of any preference for ethanol,” he said. “But if they are preferring riper and/or more sugar-rich fruits, then this is a conservative lower limit for the likely rate of ethanol ingestion.” That’s in keeping with a 2016 report that captive aye-ayes and slow lorises prefer nectar with the highest alcohol content.

“Our findings imply that our ancestors were similarly chronically exposed to dietary alcohol,” co-author Aleksey Maro, a graduate student at UC Berkeley, told New Scientist. “The drunken monkey hypothesis suggests that this exposure caused our species to evolve an association between alcohol consumption and the reward of finding fruit sugars, and explains human attraction to alcohol today.” One caveat is that apes ingest ethanol accidentally, while humans drink it deliberately.

“What we’re realizing from this work is that our relationship with alcohol goes deep back into evolutionary time, probably about 30 million years,” University of St. Andrews primatologist Catherine Hobaiter, who was not involved with the study, told BBC News. “Maybe for chimpanzees, this is a great way to create social bonds, to hang out together on the forest floor, eating those fallen fruits.”

The next step is to sample the chimps’ urine to see if it contains any alcohol metabolites, as was found in a 2022 study on spider monkeys. This will further refine estimates for how much ethanol-laden fruit the chimps eat every day. Maro spent this summer in Ngogo, sleeping in trees—protected from the constant streams by an umbrella—to collect urine samples.

Science Advances, 2025. DOI: 10.1126/sciadv.adw1665 (About DOIs).

Chimps consume alcohol equivalent of nearly 2 drinks a day Read More »

some-dogs-can-classify-their-toys-by-function

Some dogs can classify their toys by function

Certain dogs can not only memorize the names of objects like their favorite toys, but they can also extend those labels to entirely new objects with a similar function, regardless of whether or not they are similar in appearance, according to a new paper published in the journal Current Biology. It’s a cognitively advanced ability known as “label extension,” and for animals to acquire it usually involves years of intensive training in captivity. But the dogs in this new study developed the ability to classify their toys by function with no formal training, merely by playing naturally with their owners.

Co-author Claudia Fugazza of Eötvös Loránd University in Budapest, Hungary, likens this ability to a person calling a hammer and a rock by the same name, or a child understanding that “cup” can describe a mug, a glass, or a tumbler, because they serve the same function. “The rock and the hammer look physically different, but they can be used for the same function,” she said. “So now it turns out that these dogs can do the same.”

Fugazza and her Hungarian colleagues have been studying canine behavior and cognition for several years. For instance, in 2023, we reported on the group’s experiments on how dogs interpret gestures, such as pointing at a specific object. A dog will interpret the gesture as a directional cue, unlike a human toddler, who will more likely focus on the object itself. It’s called spatial bias, and the team concluded that the phenomenon arises from a combination of how dogs see (visual acuity) and how they think, with “smarter” dog breeds prioritizing an object’s appearance as much as its location. This suggests the smarter dogs’ information processing is more similar to that of humans.

Another aspect of the study involved measuring the length of a dog’s head, which prior research has shown is correlated with visual acuity. The shorter a dog’s head, the more similar their visual acuity is to human vision. That’s because there is a higher concentration of retinal ganglion cells in the center of their field of vision, making vision sharper and giving such dogs binocular depth vision. The testing showed that dogs with better visual acuity, and who also scored higher on the series of cognitive tests, also exhibited less spatial bias. This suggests that canine spatial bias is not simply a sensory matter but is also influenced by how they think. “Smarter” dogs have less spatial bias.

Some dogs can classify their toys by function Read More »

you-can-hold-on-to-your-butts-thanks-to-dna-that-evolved-in-fish

You can hold on to your butts thanks to DNA that evolved in fish

There were some indications that the same thing is true in fish, where the elimination of equivalent hox genes also interfered with the formation of the rays at the ends of fins. This would suggest that digits formed by elaborating on a genetic system that already existed in order to produce fins.

However, when a US-French team started looking at the regulation of one set of hox genes in the limbs, things turned out to be a bit more complicated. The hox gene clusters have two chunks of regulatory DNA that help set the activity of the genes within the cluster, one upstream of the genes, one downstream. (For the molecular biologists among us, that’s on the 5′ and 3′ sides of the gene cluster.) And we know that in vertebrates, some of the key regulatory DNA for one of the clusters is on the upstream side, since deleting it left all the genes in the cluster inactive in the region of the limb where digits form.

Same place, different reasons

So, the research team behind the new work deleted the equivalent region in a fish (the zebrafish) using the gene editing tool CRISPR. And, deleting the same area that wipes out hox gene activity in the digits in mice did… not very much. The hox gene activity was slightly reduced, but these genes were still active in the right place at the right time to make digits. So, while the activity looked the same, the reasons for the activity seem to be different in fish and mice. Which means that hox activity in the digits isn’t the ancestral state; instead, it seems to have evolved separately in the ray-finned fish and vertebrate lineages.

So, the researchers asked a simple question: If the regulatory DNA they deleted didn’t activate these genes in the limb, where was it needed? So, the researchers looked at where these hox genes were active in fish with and without the deletion. They found one region where it seems to matter: the developing cloaca. In fish, the cloaca is a single orifice that handles excretion (both urine and fecal material) as well as reproduction. So, it’s basically the fish equivalent of our rear ends.

You can hold on to your butts thanks to DNA that evolved in fish Read More »

new-pathway-engineered-into-plants-lets-them-suck-up-more-co₂

New pathway engineered into plants lets them suck up more CO₂

And, well, it worked remarkably well. The plants carrying all the genes for the McG cycle weighed two to three times as much as control plants that only had some of the genes. They had more leaves, the leaves themselves were larger, and the plants produced more seeds. In a variety of growing conditions, the plants with an intact McG cycle incorporated more carbon, and they did so without increasing their water uptake.

Having a two-carbon output also worked as expected. By feeding the plants radioactive bicarbonate, they were able to trace the carbon showing up in the expected molecules. And imaging confirmed that the plants were making so many lipids that their cells formed internal pockets containing nothing but fatty materials. Triglyceride levels increased by factors of 100 or more.

So, by a variety of measures, the plants actually did better with an extra pathway for fixing carbon. There are a number of cautions, though. For starters, it’s not clear whether what we’re learning using a small weed will also apply to larger plants or crops, or really anything much beyond Arabidopsis at the moment. It could be that having excess globs of fat floating around the cell has consequences for something like a tree. Plants grown in a lab also tend to be provided with a nutrient-rich soil, and it’s not clear whether all of this would apply to a range of real-world conditions.

Finally, we can’t say whether all the excess carbon these plants are sucking in from the atmosphere would end up being sequestered in any useful sense. It could be that all the fat would just get oxidized as soon as the plant dies. That said, there are a lot of approaches to making biofuel that rely on modifying the fats found in plants or algae. It’s possible that this can eventually help make biofuels efficient so they actually have a net positive effect on the climate.

Regardless of practical impacts, however, it’s pretty amazing that we’ve now reached the point where we can fundamentally rewire a bit of metabolism that has been in operation for billions of years without completely messing up plants.

Science, 2025. DOI: 10.1126/science.adp3528  (About DOIs).

New pathway engineered into plants lets them suck up more CO₂ Read More »

nobel-laureate-david-baltimore-dead-at-87

Nobel laureate David Baltimore dead at 87

Nobel Prize-winning molecular biologist and former Caltech president David Baltimore—who found himself at the center of controversial allegations of fraud against a co-author—has died at 87 from cancer complications. He shared the 1975 Nobel Prize in Physiology for his work upending the then-consensus that cellular information flowed only in one direction. Baltimore is survived by his wife of 57 years, biologist Alice Huang, as well as a daughter and granddaughter.

“David Baltimore’s contributions as a virologist, discerning fundamental mechanisms and applying those insights to immunology, to cancer, to AIDS, have transformed biology and medicine,” current Caltech President Thomas F. Rosenbaum said in a statement. “David’s profound influence as a mentor to generations of students and postdocs, his generosity as a colleague, his leadership of great scientific institutions, and his deep involvement in international efforts to define ethical boundaries for biological advances fill out an extraordinary intellectual life.”

Baltimore was born in New York City in 1938. His father worked in the garment industry, and his mother later became a psychologist at the New School and Sarah Lawrence. Young David was academically precocious and decided he wanted to be a scientist after spending a high school summer learning about mouse genetics at the Jackson Laboratory in Maine. He graduated from Swarthmore College and earned his PhD in biology from Rockefeller University in 1964 with a thesis on the study of viruses in animal cells. He joined the Salk Institute in San Diego, married Huang, and moved to MIT in 1982, founding the Whitehead Institute.

Baltimore initially studied viruses like polio and mengovirus that make RNA copies of the RNA genomes to replicate, but later turned his attention to retroviruses, which have enzymes that make DNA copies of viral RNA. He made a major breakthrough when he proved the existence of that viral enzyme, now known as reverse transcriptase. Previously scientists had thought that the flow of information went from DNA to RNA to protein synthesis. Baltimore showed that process could be reversed, ultimately enabling researchers to use disabled retroviruses to insert genes into human DNA to correct genetic diseases.

Nobel laureate David Baltimore dead at 87 Read More »

a-robot-walks-on-water-thanks-to-evolution’s-solution

A robot walks on water thanks to evolution’s solution

Robots can serve pizza, crawl over alien planets, swim like octopuses and jellyfish, cosplay as humans, and even perform surgery. But can they walk on water?

Rhagobot isn’t exactly the first thing that comes to mind at the mention of a robot. Inspired by Rhagovelia water striders, semiaquatic insects also known as ripple bugs, these tiny bots can glide across rushing streams because of the robotization of an evolutionary adaptation.

Rhagovelia (as opposed to other species of water striders) have fan-like appendages toward the ends of their middle legs that passively open and close depending on how the water beneath them is moving. This is why they appear to glide effortlessly across the water’s surface. Biologist Victor Ortega-Jimenez of the University of California, Berkeley, was intrigued by how such tiny insects can accelerate and pull off rapid turns and other maneuvers, almost as if they are flying across a liquid surface.

“Rhagovelia’s fan serves as an inspiring template for developing self-morphing artificial propellers, providing insights into their biological form and function,” he said in a study recently published in Science. “Such configurations are largely unexplored in semi-aquatic robots.”

Mighty morphin’

It took Ortega-Jimenez five years to figure out how the bugs get around. While Rhagovelia leg fans were thought to morph because they were powered by muscle, he found that the appendages automatically adjusted to the surface tension and elastic forces beneath them, passively opening and closing ten times faster than it takes to blink. They expand immediately when making contact with water and change shape depending on the flow.

By covering an extensive surface area for their size and maintaining their shape when the insects move their legs, Rhagovelia fans generate a tremendous amount of propulsion. They also do double duty. Despite being rigid enough to resist deformation when extended, the fans are still flexible enough to easily collapse, adhering to the claw above to keep from getting in the animal’s way when it’s out of water. It also helps that the insects have hydrophobic legs that repel water that could otherwise weigh them down.

Ortega-Jimenez and his research team observed the leg fans using a scanning electron microscope. If they were going to create a robot based on ripple bugs, they needed to know the exact structure they were going for. After experimenting with cylindrical fans, the researchers found that Rhagovellia fans are actually structures made of many flat barbs with barbules, something which was previously unknown.

A robot walks on water thanks to evolution’s solution Read More »

research-roundup:-6-cool-science-stories-we-almost-missed

Research roundup: 6 cool science stories we almost missed

DOI: Archaeometry, 2025. 10.1111/arcm.70030  (About DOIs).

DOI: Journal of Medieval History, 2025. 10.1080/03044181.2025.2546884  (About DOIs).

Snails with eyes that grow back

The golden apple snail has camera-type eyes that are fundamentally similar to the human eye. Unlike humans, the snail can regenerate a missing or damaged eye.

Credit: Alice Accorsi, UC Davis

It’s been known since at least the 18th century that some snails possess regenerative abilities, such as garden snails regrowing their heads after being decapitated. Golden apple snails can completely regrow their eyes—and those eyes share many anatomical and genetic features with human eyes, according to a paper published in the journal Nature Communications. That makes them an excellent candidate for further research in hopes of unlocking the secret to that regeneration, with the ultimate goal of restoring vision in human eyes.

Snails are often slow to breed in the lab, but golden apple snails are an invasive species and thrive in that environment, per co-author Alice Accorsi, a molecular biologist at the University of California, Davis. The snails have “camera type eyes”: a cornea, a lens to focus light, and a retina comprised of millions of photoreceptor cells. There are as many as 9000 genes that seem to be involved in regenerating an amputated eye in the snails, reducing down to 1,175 genes by the 28th day of the process, so complete maturation of the new eyes might take longer. It’s not clear whether the new eyes can still process light so the snails can actually “see,” which is a topic for further research.

Accorsi also used CRISPR/Cas9 to mutate one gene in particular (pax6) in snail embryos because it is known to control brain and eye development in humans, mice, and fruit flies. She found that apple snails with two non-functioning pax6 genes end up developing without eyes, suggesting it is also responsible for eye development in the snails. The next step is to figure out whether this gene also plays a role in the snails’ ability to regenerate their eyes, as well as other potentially involved genes.

DOI: Nature Communications, 2025. 10.1038/s41467-025-61681-6  (About DOIs).

Gorgeous glowing succulents

Succulents glow in hues of red, green, blue, and more after being infused with afterglow phosphor particles that absorb and slowly release light.

Credit: Liu et al., 2025

Perhaps you caught the launch last year of the first genetically modified glowing plant: Light Bio’s  green-hued “Firefly Petunia.” It’s not a particularly bright glow and genetic engineering is expensive, but it was nonetheless a solid step toward the long-term goal of creating glow-in-the-dark plants for sustainable lighting. Scientists at South China Agricultural University came up with a novel, cheaper approach: injecting succulents with phosphorescent chemicals akin to those used in commercial glow-in-the-dark products, aka “afterglow luminescence.” They described the work in a paper published in the journal Matter.

Research roundup: 6 cool science stories we almost missed Read More »

genetically,-central-american-mammoths-were-weird

Genetically, Central American mammoths were weird

This led a Mexican-European research collaboration to get interested in finding DNA from elsewhere in the Columbian mammoth’s range, which extended down into Central America. The researchers focused on the Basin of Mexico, which is well south of where any woolly mammoths were likely to be found. While the warmer terrain generally tends to degrade DNA more quickly, the team had a couple of things working in its favor. To begin with, there were a lot of bones. The Basin of Mexico has been heavily built up over the centuries, and a lot of mammoth remains have been discovered, including over 100 individuals during the construction of Mexico City’s international airport.

In addition, the team focused entirely on the mitochondrial genome. In contrast to the two sets of chromosomes in each cell, a typical cell might have hundreds of mitochondria, each of which could have dozens of copies of its genome. So, while the much smaller mitochondria don’t provide as much detail about ancestry, they’re at least likely to survive at high enough levels to provide something to work with.

And indeed they did. Altogether, the researchers obtained 61 new mitochondrial genomes from the mammoths of Mexico from the 83 samples they tested. Of these, 28 were considered high enough quality to perform an analysis.

Off on their own

By building a family tree using this genetic data, along with that from other Columbian and woolly mammoth samples, the researchers could potentially determine how different populations were related. And one thing became very clear almost immediately: They were in a very weird location on that tree.

To begin with, all of them clustered together in a single block, although there were three distinct groupings within that block. But the placement of that block within the larger family tree was notably strange. To begin with, there were woolly mammoths on either side of it, suggesting the lineage was an offshoot of woolly mammoths. That would make sense if all Columbian mammoths clustered together with the Mexican ones. But they don’t. Some Columbian mammoths from much farther north are actually more closely related to woolly mammoths than they are to the Mexican mammoths.

Genetically, Central American mammoths were weird Read More »