Biology

we-have-the-first-video-of-a-plant-cell-wall-being-built

We have the first video of a plant cell wall being built

Plant cells are surrounded by an intricately structured protective coat called the cell wall. It’s built of cellulose microfibrils intertwined with polysaccharides like hemicellulose or pectin. We have known what plant cells look like without their walls, and we know what they look like when the walls are fully assembled, but we’ve never seen the wall-building process in action. “We knew the starting point and the finishing point, but had no idea what happens in between,” says Eric Lam, a plant biologist at Rutgers University. He’s a co-author of the study that caught wall-building plant cells in action for the first time. And once we saw how the cell wall building worked, it looked nothing like how we drew that in biology handbooks.

Camera-shy builders

Plant cells without walls, known as protoplasts, are very fragile, and it has been difficult to keep them alive under a microscope for the several hours needed for them to build walls. Plant cells are also very light-sensitive, and most microscopy techniques require pointing a strong light source at them to get good imagery.

Then there was the issue of tracking their progress. “Cellulose is not fluorescent, so you can’t see it with traditional microscopy,” says Shishir Chundawat, a biologist at Rutgers. “That was one of the biggest issues in the past.” The only way you can see it is if you attach a fluorescent marker to it. Unfortunately, the markers typically used to label cellulose were either bound to other compounds or were toxic to the plant cells. Given their fragility and light sensitivity, the cells simply couldn’t survive very long with toxic markers as well.

We have the first video of a plant cell wall being built Read More »

newly-hatched-hummingbird-looks,-acts-like-a-toxic-caterpillar

Newly hatched hummingbird looks, acts like a toxic caterpillar

Further observation of the nest revealed that the female hummingbird had added to its hatchling’s caterpillar camouflage by lining the nest with hairy-looking material from the seeds of balsa trees. The researchers also noticed that, whenever they approached the nest to film, the chick would move its head upward and start shaking it sideways while its feathers stood on end. It was trying to make itself look threatening.

When the research team backed off, the hummingbird chick went back to laying low in its nest. They wondered whether it behaved this way with actual predators, but eventually saw a wasp known to prey on young hummingbirds creep close to the nest. The chick displayed the same behavior it had with humans, which succeeded in scaring the wasp off.

Falk determined that the feathers, color, and head-shaking were eerily similar to the larvae of moths in the Megalopygidae and Saturniidae families, which are also endemic to the region. They might not be the mirror image of a particular species, but they appear close enough that predators would consider themselves warned.

“The behavior of the white-necked jacobin, when approached by humans and a predatory wasp, resembles the sudden ‘thrashing’ or ‘jerking’ behavior exhibited by many caterpillars in response to disturbance, including in the habitat where this bird was found,” he said regarding the same study.

…now you don’t

Could there be an alternate explanation for this hummingbird cosplaying as a caterpillar? Maybe. The researchers think it’s possible that the long feathers that appear to mimic spines may have evolved as a form of crypsis, or camouflage that helps an organism blend in with its background. The balsa tree material that’s similar to the feathers obviously helped with this.

Newly hatched hummingbird looks, acts like a toxic caterpillar Read More »

editorial:-mammoth-de-extinction-is-bad-conservation

Editorial: Mammoth de-extinction is bad conservation


Anti-extinction vs. de-extinction

Ecosystems are inconveniently complex, and elephants won’t make good surrogates.

Are we ready for mammoths when we can’t handle existing human-pachyderm conflicts? Credit: chuchart duangdaw

The start-up Colossal Biosciences aims to use gene-editing technology to bring back the woolly mammoth and other extinct species. Recently, the company achieved major milestones: last year, they generated stem cells for the Asian elephant, the mammoth’s closest living relative, and this month they published photos of genetically modified mice with long, mammoth-like coats. According to the company’s founders, including Harvard and MIT professor George Church, these advances take Colossal a big step closer to their goal of using mammoths to combat climate change by restoring Arctic grassland ecosystems. Church also claims that Colossal’s woolly mammoth program will help protect endangered species like the Asian elephant, saying “we’re injecting money into conservation efforts.”

In other words, the scientific advances Colossal makes in their lab will result in positive changes from the tropics to the Arctic, from the soil to the atmosphere.

Colossal’s Jurassic Park-like ambitions have captured the imagination of the public and investors, bringing its latest valuation to $10 billion. And the company’s research does seem to be resulting in some technical advances. But I’d argue that the broader effort to de-extinct the mammoth is—as far as conservation efforts go—incredibly misguided. Ultimately, Colossal’s efforts won’t end up being about helping wild elephants or saving the climate. They’ll be about creating creatures for human spectacle, with insufficient attention to the costs and opportunity costs to human and animal life.

Shaky evidence

The Colossal website explains how they believe resurrected mammoths could help fight climate change: “cold-tolerant elephant mammoth hybrids grazing the grasslands… [will] scrape away layers of snow, so that the cold air can reach the soil.” This will reportedly help prevent permafrost from melting, blocking the release of greenhouse gasses currently trapped in the soil. Furthermore, by knocking down trees and maintaining grasslands, Colossal says, mammoths will help slow snowmelt, ensuring Arctic ecosystems absorb less sunlight.

Conservationists often claim that the reason to save charismatic species is that they are necessary for the sound functioning of the ecosystems that support humankind. Perhaps the most well-known of these stories is about the ecological changes wolves drove when they were reintroduced to Yellowstone National Park. Through some 25 peer-reviewed papers, two ecologists claimed to demonstrate that the reappearance of wolves in Yellowstone changed the behavior of elk, causing them to spend less time browsing the saplings of trees near rivers. This led to a chain of cause and effect (a trophic cascade) that affected beavers, birds, and even the flow of the river. A YouTube video on the phenomenon called “How Wolves Change Rivers” has been viewed more than 45 million times.

But other scientists were unable to replicate these findings—they discovered that the original statistics were flawed, and that human hunters likely contributed to elk population declines in Yellowstone.Ultimately, a 2019 review of the evidence by a team of researchers concluded that “the most robust science suggests trophic cascades are not evident in Yellowstone.” Similar ecological claims about tigers and sharks as apex predators also fail to withstand scientific scrutiny.

Elephants—widely described as “keystone species”—are also stars of a host of similar ecological stories. Many are featured on the Colossal website, including one of the most common claims about the role elephants play in seed dispersal. “Across all environments,” reads the website, “elephant dung filled with seeds serve to spread plants […] boosting the overall health of the ecosystem.” But would the disappearance of elephants really result in major changes in plant life? After all, some of the world’s grandest forests (like the Amazon) have survived for millennia after the disappearance of mammoth-sized megafauna.

For my PhD research in northeast India, I tried to systematically measure how important Asian elephants were for seed dispersal compared to other animals in the ecosystem; our team’s work, published in five peer-reviewed ecological journals (reviewed here), does find that elephants are uniquely good at dispersing the seeds of a few large-fruited species. But we also found that domestic cattle and macaques disperse some species’ seeds quite well, and that 80 percent of seeds dispersed in elephant dung end up eaten by ants. After several years of study, I cannot say with confidence that the forests where I worked would be drastically different in the absence of elephants.

The evidence for how living elephants affect carbon sequestration is also quite mixed. On the one hand, one paper finds that African forest elephants knock down softwood trees, making way for hardwood trees that sequester more carbon. But on the other hand, many more researchers looking at African savannas have found that elephants knock down lots of trees, converting forests into savannas and reducing carbon sequestration.

Colossal’s website offers links to peer-reviewed research that support their suppositions on the ecological role of woolly mammoths. A key study offers intriguing evidence that keeping large herbivores—reindeer, Yakutian horses, moose, musk ox, European bison, yaks, and cold-adapted sheep—at artificially high levels in a tussock grassland helped achieve colder ground temperatures, ostensibly protecting permafrost. But the study raises lots of questions: is it possible to boost these herbivores’ populations across the whole northern latitudes? If so, why do we need mammoths at all—why not just use species that already exist, which would surely be cheaper?

Plus, as ecologist Michelle Mack noted, as the winters warm due to climate change, too much trampling or sweeping away of snow could have the opposite effect, helping warm the soils underneath more quickly—if so, mammoths could be worse for the climate, not better.

All this is to say that ecosystems are diverse and messy, and those of us working in functional ecology don’t always discover consistent patterns. Researchers in the field often struggle to find robust evidence for how a living species affects modern-day ecosystems—surely it is far harder to understand how a creature extinct for around 10,000 years shaped its environment? And harder still to predict how it would shape tomorrow’s ecosystems? In effect, Colossal’s ecological narrative relies on that difficulty. But just because claims about the distant past are harder to fact-check doesn’t mean they are more likely to be true.

Ethical blind spots

Colossal’s website spells out 10 steps for mammoth resurrection. Steps nine and 10 are: “implant the early embryo into the healthy Asian or African elephant surrogates,” and “care for the surrogates in a world-class conservation facility for the duration of the gestation and afterward.”

Colossal’s cavalier plans to use captive elephants as surrogates for mammoth calves illustrate an old problem in modern wildlife conservation: indifference towards individual animal suffering. Leading international conservation NGOs lack animal welfare policies that would push conservationists to ask whether the costs of interventions in terms of animal welfare outweigh the biodiversity benefits. Over the years, that absence has resulted in a range of questionable decisions.

Colossal’s efforts take this apathy towards individual animals into hyperdrive. Despite society’s thousands of years of experience with Asian elephants, conservationists struggle to breed them in captivity. Asian elephants in modern zoo facilities suffer from infertility and lose their calves to stillbirth and infanticides almost twice as often as elephants in semi-wild conditions. Such problems will almost certainly be compounded when scientists try to have elephants deliver babies created in the lab, with a hodge podge of features from Asian elephants and mammoths.

Even in the best-case scenario, there would likely be many, many failed efforts to produce a viable organism before Colossal gets to a herd that can survive. This necessarily trial-and-error process could lead to incredible suffering for both elephant mothers and mammoth calves along the way. Elephants in the wild have been observed experiencing heartbreaking grief when their calves die, sometimes carrying their babies’ corpses for days—a grief the mother elephants might very well be subjected to as they are separated from their calves or find themselves unable to keep their chimeric offspring alive.

For the calves that do survive, their edited genomes could lead to chronic conditions, and the ancient mammoth gut microbiome might be impossible to resurrect, leading to digestive dysfunction. Then there will likely be social problems. Research finds that Asian elephants in Western zoos don’t live as long as wild elephants, and elephant researchers often bemoan the limited space, stimulation, and companionship available to elephants in captivity. These problems will surely also plague surviving animals.

Introduction to the wild will probably result in even more suffering: elephant experts recommend against introducing captive animals “that have had no natural foraging experience at all” to the wild as they are likely to experience “significant hardship.” Modern elephants survive not just through instinct, but through culture—matriarch-led herds teach calves what to eat and how to survive, providing a nurturing environment. We have good reason to believe mammoths also needed cultural instruction to survive. How many elephant/mammoth chimeras will suffer false starts and tragic deaths in the punishing Arctic without the social conditions that allowed them to thrive millennia ago?

Opportunity costs

If Colossal (or Colossal’s investors) really wish to foster Asian elephant conservation or combat climate change, they have many better options. The opportunity costs are especially striking for Asian elephant conservation: while over a trillion dollars is spent combatting climate change annually, the funds available to address the myriad of problems facing wild Asian elephants are far smaller. Take the example of India, the country with the largest population of wild Asian elephants in the world (estimated at 27,000) in a sea of 1.4 billion human beings.

Indians generally revere elephants and tolerate a great deal of hardship to enable coexistence—about 500 humans are killed due to human-elephant conflict annually there. But as a middle-income country continuing to struggle with widespread poverty, the federal government typically budgets less than $4M for Project Elephant, its flagship elephant conservation program. That’s less than $200 per wild elephant and 1/2000th as much as Colossal has raised so far. India’s conservation NGOs generally have even smaller budgets for their elephant work. The result is that conservationists are a decade behindwhere they expected to be in mapping where elephants range.

With Colossal’s budget, Asian elephant conservation NGOs could tackle the real threats to the survival of elephants: human-elephant conflict, loss of habitat and connectivity, poaching, and the spread of invasive plants unpalatable to elephants. Some conservationists are exploring creative schemes to help keep people and elephants safe from each other. There are also community-based efforts toremove invasive species like Lantana camara and restore native vegetation. Funds could enable development of an AI-powered system that allows the automated identification and monitoring of individual elephants. There is also a need for improved compensation schemes to ensure those who lose crops or property to wild elephants are made whole again.

As a US-based synthetic biology company, Colossal could also use its employees’ skills much more effectively to fight climate change. Perhaps they could genetically engineer trees and shrubs to sequester more carbon. Or Colossal could help us learn to produce meat from modified microbes or cultivated lines of cow, pig, and chicken cells, developing alternative proteins that could more efficiently feed the planet, protecting wildlife habitat and reducing greenhouse gas emissions.

The question is whether Colossal’s leaders and supporters are willing to pivot from a project that grabs news headlines to ones that would likely make positive differences. By tempting us with the resurrection of a long-dead creature, Colossal forces us to ask: do we want conservation to be primarily about feeding an unreflective imagination? Or do we want evidence, logic, and ethics to be central to our relationships with other species? For anyone who really cares about the climate, elephants, or animals in general, de-extincting the mammoth represents a huge waste and a colossal mistake.

Nitin Sekar served as the national lead for elephant conservation at WWF India for five years and is now a member of the Asian Elephant Specialist Group of the International Union for the Conservation of Nature’s Species Survival Commission The views presented here are his own.

Editorial: Mammoth de-extinction is bad conservation Read More »

bonobos’-calls-may-be-the-closest-thing-to-animal-language-we’ve-seen

Bonobos’ calls may be the closest thing to animal language we’ve seen

Bonobos, great apes related to us and chimpanzees that live in the Republic of Congo, communicate with vocal calls including peeps, hoots, yelps, grunts, and whistles. Now, a team of Swiss scientists led by Melissa Berthet, an evolutionary anthropologist at the University of Zurich, discovered bonobos can combine these basic sounds into larger semantic structures. In these communications, meaning is something more than just a sum of individual calls—a trait known as non-trivial compositionality, which we once thought was uniquely human.

To do this, Berthet and her colleagues built a database of 700 bonobo calls and deciphered them using methods drawn from distributional semantics, the methodology we’ve relied on in reconstructing long-lost languages like Etruscan or Rongorongo. For the first time, we have a glimpse into what bonobos mean when they call to each other in the wild.

Context is everything

The key idea behind distributional semantics is that when words appear in similar contexts, they tend to have similar meanings. To decipher an unknown language, you need to collect a large corpus of words and turn those words into vectors—mathematical representations that let you place them in a multidimensional semantic space. The second thing you need is context data, which tells you the circumstances in which these words were used (that gets vectorized, too). When you map your word vectors onto context vectors in this multidimensional space, what usually happens is that words with similar meaning end up close to each other. Berthet and her colleagues wanted to apply the same trick to bonobos’ calls. That seemed straightforward at first glance, but proved painfully hard to execute.

“We worked at a camp in the forest, got up super early at 3: 30 in the morning, walked one or two hours to get to the bonobos’ nest. At [the] time they would wake up, I would switch my microphone on for the whole day to collect as many vocalizations as I could,” Berthet says. Each recorded call then had to be annotated with a horribly long list of contextual parameters. Berthet had a questionnaire filled with queries like: is there a neighboring group around; are there predators around; is the caller feeding, resting, or grooming; is another individual approaching the caller, etc. There were 300 questions that had to be answered for each of the 700 recorded calls.

Bonobos’ calls may be the closest thing to animal language we’ve seen Read More »

monkeys-are-better-yodelers-than-humans,-study-finds

Monkeys are better yodelers than humans, study finds

Monkey see, monkey yodel?

That’s how it works for humans, but when it comes to the question of yodeling animals, it depends on how you define yodeling, according to bioacoustician Tecumseh Fitch of the University of Vienna in Austria, who co-authored this latest paper. Plenty of animal vocalizations use repeated sudden changes in pitch (including birds), and a 2023 study found that toothed whales can produce vocal registers through their noses for echolocation and communication.

There haven’t been as many studies of vocal registers in non-human primates, but researchers have found, for example, that the “coo” call of the Japanese macaque is similar to a human falsetto; the squeal of a Syke monkey is similar to the human “modal” register; and the Diana monkey produces alarm calls that are similar to “vocal fry” in humans.

It’s known that non-human primates have something humans have lost over the course of evolution: very thin, light vocal membranes just above the vocal folds. Scientists have pondered the purpose of those membranes, and a 2022 study concluded that this membrane was crucial for producing sounds. The co-authors of this latest paper wanted to test their hypothesis that the membranes serve as an additional oscillator to enable such non-human primates to achieve the equivalent of human voice registers. That, in turn, would render them capable in principle of producing a wider range of calls—perhaps even a yodel.

The team studied many species, including black and gold howler monkeys, tufted capuchins, black-capped squirrel monkeys, and Peruvian spider monkeys. They took CT scans of excised monkey larynxes housed at the Japan Monkey Center, as well as two excised larynxes from tufted capuchin monkeys at Kyoto University. They also made live recordings of monkey calls at the La Senda Verde animal refuge in the Bolivian Andes, using non-invasive EGG to monitor vocal fold vibrations.

Monkeys are better yodelers than humans, study finds Read More »

male-fruit-flies-drink-more-alcohol-to-get-females-to-like-them

Male fruit flies drink more alcohol to get females to like them

Fruit flies (Drosophila melanogaster) are tremendously fond of fermented foodstuffs. Technically, it’s the yeast they crave, produced by yummy rotting fruit, but they can consume quite a lot of ethanol as a result of that fruity diet. Yes, fruit flies have ultra-fast metabolisms, the better to burn off the booze, but they can still get falling-down drunk—so much so, that randy inebriated male fruit flies have been known to court other males by mistake and fail to mate successfully.

Then again, apparently adding alcohol to their food increases the production of sex pheromones in male fruit flies, according to a new paper published in the journal Science Advances. That, in turn, makes them more attractive to the females of the species.

“We show a direct and positive effect of alcohol consumption on the mating success of male flies,” said co-author Ian Keesey of the University of Nebraska, Lincoln. “The effect is caused by the fact that alcohol, especially methanol, increases the production of sex pheromones. This in turn makes alcoholic males more attractive to females and ensures a higher mating success rate, whereas the success of drunken male humans with females is likely to be questionable.”

Fruit flies are the workhorses of modern genetics research, used to study everything from cancer to sleep disorders. They make excellent model systems because they share so many genes with humans, plus they are cheap, easy to breed, and can be genetically altered easily. Many years ago, I had the privilege of visiting the University of California, San Francisco laboratory of behavior geneticist Ulrike Heberlein, who spent years getting fruit flies drunk in an “Inebriometer” to learn about the various genes that influence alcohol tolerance. (Heberlein is now scientific program director and laboratory head at the Howard Hughes Medical Institute’s Janelia Farm Research Campus.)

Male fruit flies drink more alcohol to get females to like them Read More »

we-probably-inherited-our-joints-from…-a-fish

We probably inherited our joints from… a fish

What do we have in common with fish, besides being vertebrates? The types of joints we (and most vertebrates) share most likely originated from the same common ancestor. But it’s not a feature that we share with all vertebrates.

Humans, other land vertebrates, and jawed fish have synovial joints. The lubricated cavity within these joints makes them more mobile and stable because it allows for bones or cartilage to slide against each other without friction, which facilitates movement.

The origin of these joints was uncertain. Now, biologist Neelima Sharma of the University of Chicago and her colleagues have taken a look at which fish form this type of joint. Synovial joints are known to be present in jawed but not jawless fish. This left the question of whether they are just a feature of bony skeletons in general or if they are also found in fish with cartilaginous skeletons, such as sharks and skates (there are no land animals with cartilaginous skeletons).

As Sharma and her team found, cartilaginous fish with jaws, such as the skate embryos they studied, do develop these joints, while jawless fish, such as lampreys and hagfish, lack them.

So what could this mean? If jawed fish have synovial joints in common with all jawed vertebrates, including us, it must have evolved in our shared ancestor.

Something fishy in our past

While the common ancestor of vertebrates with synovial joints is still a mystery, the oldest specimen with evidence of these joints is Bothriolepis canadensis, a fish that lived about 387 to 360 million years ago during the Middle to Late Devonian period.

When using CT scanning to study a Bothriolepis fossil, Sharma observed a joint cavity between the shoulder and pectoral fin. Whether the cavity was filled with synovial fluid or cartilage is impossible to tell, but either way, she thinks it appears to have functioned like a synovial joint would. Fossils of early jawless fish, in contrast, lack any signs of synovial joints.

We probably inherited our joints from… a fish Read More »

“infantile-amnesia”-occurs-despite-babies-showing-memory-activity

“Infantile amnesia” occurs despite babies showing memory activity

For many of us, memories of our childhood have become a bit hazy, if not vanishing entirely. But nobody really remembers much before the age of 4, because nearly all humans experience what’s termed “infantile amnesia,” in which memories that might have formed before that age seemingly vanish as we move through adolescence. And it’s not just us; the phenomenon appears to occur in a number of our fellow mammals.

The simplest explanation for this would be that the systems that form long-term memories are simply immature and don’t start working effectively until children hit the age of 4. But a recent animal experiment suggests that the situation in mice is more complex: the memories are there, they’re just not normally accessible, although they can be re-activated. Now, a study that put human infants in an MRI tube suggests that memory activity starts by the age of 1, suggesting that the results in mice may apply to us.

Less than total recall

Mice are one of the species that we know experience infantile amnesia. And, thanks to over a century of research on mice, we have some sophisticated genetic tools that allow us to explore what’s actually involved in the apparent absence of the animals’ earliest memories.

A paper that came out last year describes a series of experiments that start by having very young mice learn to associate seeing a light come on with receiving a mild shock. If nothing else is done with those mice, that association will apparently be forgotten later in life due to infantile amnesia.

But in this case, the researchers could do something. Neural activity normally results in the activation of a set of genes. In these mice, the researchers engineered it so one of the genes that gets activated encodes a protein that can modify DNA. When this protein is made, it results in permanent changes to a second gene that was inserted in the animal’s DNA. Once activated through this process, the gene leads to the production of a light-activated ion channel.

“Infantile amnesia” occurs despite babies showing memory activity Read More »

brains-of-parrots,-unlike-songbirds,-use-human-like-vocal-control

Brains of parrots, unlike songbirds, use human-like vocal control

Due to past work, we’ve already identified the brain structure that controls the activity of the key vocal organ, the syrinx, located in the bird’s throat. The new study, done by Zetian Yang and Michael Long of New York University, managed to place fine electrodes into this area of the brain in both species and track the activity of neurons there while the birds were awake and going about normal activities. This allowed them to associate neural activity with any vocalizations made by the birds. For the budgerigars, they had an average of over 1,000 calls from each of the four birds carrying the implanted electrodes.

For the zebra finch, neural activity during song production showed a pattern that was based on timing; the same neurons tended to be most active at the same point in the song. You can think of this as a bit like a player piano central organizing principle, timing when different notes should be played. “Different configurations [of neurons] are active at different moments, representing an evolving population ‘barcode,’” as Yang and Long describe this pattern.

That is not at all what was seen with the budgerigars. Here, instead, they saw patterns where the same populations of neurons tended to be active when the bird was producing a similar sound. They broke the warbles down into parts that they characterized on a scale that ranged from harmonic to noisy. They found that the groups of neurons tended to be more active whenever the warble was harmonic, and different groups tended to spike when it got noisy. Those observations led them to identify a third population, which was active whenever the budgerigars produced a low-frequency sound.

In addition, Yang and Long analyzed the pitch of the vocalizations. Only about half of the neurons in the relevant region of the brain were linked to pitch. However, the half that was linked had small groups of neurons that fired during the production of a relatively narrow range of pitches. They could use the activity of as few as five individual neurons and accurately predict the pitch of the vocalizations at the time.

Brains of parrots, unlike songbirds, use human-like vocal control Read More »

even-the-worst-mass-extinction-had-its-oases

Even the worst mass extinction had its oases

Some earlier plants might not have made it through the extinction since rock layers from the onset of the End-Permian Mass Extinction showed a decrease in pollen and spores, as well as fewer plant species. Other species were scarce because they had not been as well-preserved as others; the team did not automatically assume the scarcity of a plant that did not fossilize meant it had gone extinct.

While there were plant species that ended up being victims of the Great Dying, analysis of species through spore and pollen told the team that only about 21 percent of them succumbed to extinction.

Life will not be contained

The fossils also revealed the presence of plant species known to grow near lakes, which meant an environment that most likely provided drinking water for land-dwelling animals. Fossilized spores farther from what were once the banks of an ancient lake or the edge of a lakeplain suggest it was surrounded by a forest of gymnospermous trees, such as conifers or ginkgo, and ferns.

Because the researchers found so many spores from plant species known to grow in humid climates, they think the regional climate before the extinction was either humid or sub-humid, with plenty of rain. It was a lush environment that would see dry periods during the mass extinction event, but not be completely devastated.

Despite some species of plants vanishing, those that were found to have survived during and after the extinction mostly belonged to conifers and pteridosperms (now-extinct plants similar to ferns), which showed “a remarkable ability to adapt to drought,” as Liu and his team said in the same study.

The drought turned out to be only temporary. Younger rock layers were found to contain a greater abundance of pollen and spores from species that grew during the extinction event. The types of plants represented suggest a climate that had returned to subhumid and was more habitable.

Fossils of animals found at the site support its role as a haven for life. From the herbivorous Lystrosaurus (not a dinosaur), which looked something like a walrus with legs and a shovel face, to the carnivorous chroniosuchians that resembled giant lizards and fed on insects and small amphibians, the refugium in what is now Xinjiang kept life going.

Both flora and fauna would soon spread across terrestrial environments once again. Life on land flourished only 75,000 years after the End-Permian Mass Extinction, so life really does find a way.

Science Advances, 2025. DOI: 10.1126/sciadv.ads5614

Even the worst mass extinction had its oases Read More »

researchers-engineer-bacteria-to-produce-plastics

Researchers engineer bacteria to produce plastics

Image of a series of chemical reactions, with enzymes driving each step forward.

One of the enzymes used in this system takes an amino acid (left) and links it to Coenzyme A. The second takes these items and links them into a polymer. Credit: Chae et. al.

Normally, PHA synthase forms links between molecules that run through an oxygen atom. But it’s also possible to form a related chemical link that instead runs through a nitrogen atom, like those found on amino acids. There were no known enzymes, however, that catalyze these reactions. So, the researchers decided to test whether any existing enzymes could be induced to do something they don’t normally do.

The researchers started with an enzyme from Clostridium that links chemicals to Coenzyme A that has a reputation for not being picky about the chemicals it interacts with. This worked reasonably well at linking amino acids to Coenzyme A. For linking the amino acids together, they used an enzyme from Pseudomonas that had four different mutations that expanded the range of molecules it would use as reaction materials. Used in a test tube, the system worked: Amino acids were linked together in a polymer.

The question was whether it would work in cells. Unfortunately, one of the two enzymes turns out to be mildly toxic to E. coli, slowing its growth. So, the researchers evolved a strain of E. coli that could tolerate the protein. With both of these two proteins, the cells produced small amounts of an amino acid polymer. If they added an excess of an amino acid to the media the cells were growing in, the polymer would be biased toward incorporating that amino acid.

Boosting polymer production

However, the yield of the polymer by weight of bacteria was fairly low. “It was reasoned that these [amino acids] might be more efficiently incorporated into the polymer if generated within the cells from a suitable carbon source,” the researchers write. So, the researchers put in extra copies of the genes needed to produce one specific amino acid (lysine). That worked, producing more polymer, with a higher percentage of the polymer being lysine.

Researchers engineer bacteria to produce plastics Read More »

small-charges-in-water-spray-can-trigger-the-formation-of-key-biochemicals

Small charges in water spray can trigger the formation of key biochemicals

Once his team nailed how droplets become electrically charged and how the micro-lightning phenomenon works, they recreated the Miller-Urey experiment. Only without the spark plugs.

Ingredients of life

After micro-lightnings started jumping between droplets in a mixture of gases similar to that used by Miller and Urey, the team examined their chemical composition with a mass spectrometer. They confirmed glycine, uracil, urea, cyanoethylene, and lots of other chemical compounds were made. “Micro-lightnings made all organic molecules observed previously in the Miller-Urey experiment without any external voltage applied,” Zare claims.

But does it really bring us any closer to explaining the beginnings of life? After all, Miller and Urey already demonstrated those molecules could be produced by electrical discharges in a primordial Earth’s atmosphere—does it matter all that much where those discharges came from?  Zare argues that it does.

“Lightning is intermittent, so it would be hard for these molecules to concentrate. But if you look at waves crashing into rocks, you can think the spray would easily go into the crevices in these rocks,” Zare suggests. He suggests that the water in these crevices would evaporate, new spray would enter and evaporate again and again. The cyclic drying would allow the chemical precursors to build into more complex molecules. “When you go through such a dry cycle, it causes polymerization, which is how you make DNA,” Zare argues. Since sources of spray were likely common on the early Earth, Zare thinks this process could produce far more organic chemicals than potential alternatives like lightning strikes, hydrothermal vents, or impacting comets.

But even if micro-lightning really produced the basic building blocks of life on Earth, we’re still not sure how those combined into living organisms. “We did not make life. We just demonstrated a possible mechanism that gives us some chemical compounds you find in life,” Zare says. “It’s very important to have a lot of humility with this stuff.”

Science Advances, 2025.  DOI: 10.1126/sciadv.adt8979

Small charges in water spray can trigger the formation of key biochemicals Read More »