catalysts

ai-used-to-design-a-multi-step-enzyme-that-can-digest-some-plastics

AI used to design a multi-step enzyme that can digest some plastics

And it worked. Repeating the same process with an added PLACER screening step boosted the number of enzymes with catalytic activity by over three-fold.

Unfortunately, all of these enzymes stalled after a single reaction. It turns out they were much better at cleaving the ester, but they left one part of it chemically bonded to the enzyme. In other words, the enzymes acted like part of the reaction, not a catalyst. So the researchers started using PLACER to screen for structures that could adopt a key intermediate state of the reaction. This produced a much higher rate of reactive enzymes (18 percent of them cleaved the ester bond), and two—named “super” and “win”—could actually cycle through multiple rounds of reactions. The team had finally made an enzyme.

By adding additional rounds alternating between structure suggestions using RFDiffusion and screening using PLACER, the team saw the frequency of functional enzymes increase and eventually designed one that had an activity similar to some produced by actual living things. They also showed they could use the same process to design an esterase capable of digesting the bonds in PET, a common plastic.

If that sounds like a lot of work, it clearly was—designing enzymes, especially ones where we know of similar enzymes in living things, will remain a serious challenge. But at least much of it can be done on computers rather than requiring someone to order up the DNA that encodes the enzyme, getting bacteria to make it, and screening for activity. And despite the process involving references to known enzymes, the designed ones didn’t share a lot of sequences in common with them. That suggests there should be added flexibility if we want to design one that will react with esters that living things have never come across.

I’m curious about what might happen if we design an enzyme that is essential for survival, put it in bacteria, and then allow it to evolve for a while. I suspect life could find ways of improving on even our best designs.

Science, 2024. DOI: 10.1126/science.adu2454  (About DOIs).

AI used to design a multi-step enzyme that can digest some plastics Read More »

researchers-optimize-simulations-of-molecules-on-quantum-computers

Researchers optimize simulations of molecules on quantum computers

The net result is a much faster operation involving far fewer gates. That’s important because errors in quantum hardware increase as a function of both time and the number of operations.

The researchers then used this approach to explore a chemical, Mn4O5Ca, that plays a key role in photosynthesis. Using this approach, they showed it’s possible to calculate what’s called the “spin ladder,” or the list of the lowest-energy states the electrons can occupy. The energy differences between these states correspond to the wavelengths of light they can absorb or emit, so this also defines the spectrum of the molecule.

Faster, but not quite fast enough

We’re not quite ready to run this system on today’s quantum computers, as the error rates are still a bit too high. But because the operations needed to run this sort of algorithm can be done so efficiently, the error rates don’t have to come down very much before the system will become viable. The primary determinant of whether it will run into an error is how far down the time dimension you run the simulation, plus the number of measurements of the system you take over that time.

“The algorithm is especially promising for near-term devices having favorable resource requirements quantified by the number of snapshots (sample complexity) and maximum evolution time (coherence) required for accurate spectral computation,” the researchers wrote.

But the work also makes a couple of larger points. The first is that quantum computers are fundamentally unlike other forms of computation we’ve developed. They’re capable of running things that look like traditional algorithms, where operations are performed and a result is determined. But they’re also quantum systems that are growing in complexity with each new generation of hardware, which makes them great at simulating other quantum systems. And there are a number of hard problems involving quantum systems we’d like to solve.

In some ways, we may only be starting to scratch the surface of quantum computers’ potential. Up until quite recently, there were a lot of hypotheticals; it now appears we’re on the cusp of using one for some potentially useful computations. And that means more people will start thinking about clever ways we can solve problems with them—including cases like this, where the hardware would be used in ways its designers might not have even considered.

Nature Physics, 2025. DOI: 10.1038/s41567-024-02738-z  (About DOIs).

Researchers optimize simulations of molecules on quantum computers Read More »