chatbots

the-first-gpt-4-class-ai-model-anyone-can-download-has-arrived:-llama-405b

The first GPT-4-class AI model anyone can download has arrived: Llama 405B

A new llama emerges —

“Open source AI is the path forward,” says Mark Zuckerberg, misusing the term.

A red llama in a blue desert illustration based on a photo.

In the AI world, there’s a buzz in the air about a new AI language model released Tuesday by Meta: Llama 3.1 405B. The reason? It’s potentially the first time anyone can download a GPT-4-class large language model (LLM) for free and run it on their own hardware. You’ll still need some beefy hardware: Meta says it can run on a “single server node,” which isn’t desktop PC-grade equipment. But it’s a provocative shot across the bow of “closed” AI model vendors such as OpenAI and Anthropic.

“Llama 3.1 405B is the first openly available model that rivals the top AI models when it comes to state-of-the-art capabilities in general knowledge, steerability, math, tool use, and multilingual translation,” says Meta. Company CEO Mark Zuckerberg calls 405B “the first frontier-level open source AI model.”

In the AI industry, “frontier model” is a term for an AI system designed to push the boundaries of current capabilities. In this case, Meta is positioning 405B among the likes of the industry’s top AI models, such as OpenAI’s GPT-4o, Claude’s 3.5 Sonnet, and Google Gemini 1.5 Pro.

A chart published by Meta suggests that 405B gets very close to matching the performance of GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

But as we’ve noted many times since March, these benchmarks aren’t necessarily scientifically sound or translate to the subjective experience of interacting with AI language models. In fact, this traditional slate of AI benchmarks is so generally useless to laypeople that even Meta’s PR department now just posts a few images of charts and doesn’t even try to explain them in any detail.

A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

Enlarge / A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

We’ve instead found that measuring the subjective experience of using a conversational AI model (through what might be called “vibemarking”) on A/B leaderboards like Chatbot Arena is a better way to judge new LLMs. In the absence of Chatbot Arena data, Meta has provided the results of its own human evaluations of 405B’s outputs that seem to show Meta’s new model holding its own against GPT-4 Turbo and Claude 3.5 Sonnet.

A Meta-provided chart that shows how humans rated Llama 3.1 405B's outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Enlarge / A Meta-provided chart that shows how humans rated Llama 3.1 405B’s outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Whatever the benchmarks, early word on the street (after the model leaked on 4chan yesterday) seems to match the claim that 405B is roughly equivalent to GPT-4. It took a lot of expensive computer training time to get there—and money, of which the social media giant has plenty to burn. Meta trained the 405B model on over 15 trillion tokens of training data scraped from the web (then parsed, filtered, and annotated by Llama 2), using more than 16,000 H100 GPUs.

So what’s with the 405B name? In this case, “405B” means 405 billion parameters, and parameters are numerical values that store trained information in a neural network. More parameters translate to a larger neural network powering the AI model, which generally (but not always) means more capability, such as better ability to make contextual connections between concepts. But larger-parameter models have a tradeoff in needing more computing power (AKA “compute”) to run.

We’ve been expecting the release of a 400 billion-plus parameter model of the Llama 3 family since Meta gave word that it was training one in April, and today’s announcement isn’t just about the biggest member of the Llama 3 family: There’s an entirely new iteration of improved Llama models with the designation “Llama 3.1.” That includes upgraded versions of its smaller 8B and 70B models, which now feature multilingual support and an extended context length of 128,000 tokens (the “context length” is roughly the working memory capacity of the model, and “tokens” are chunks of data used by LLMs to process information).

Meta says that 405B is useful for long-form text summarization, multilingual conversational agents, and coding assistants and for creating synthetic data used to train future AI language models. Notably, that last use-case—allowing developers to use outputs from Llama models to improve other AI models—is now officially supported by Meta’s Llama 3.1 license for the first time.

Abusing the term “open source”

Llama 3.1 405B is an open-weights model, which means anyone can download the trained neural network files and run them or fine-tune them. That directly challenges a business model where companies like OpenAI keep the weights to themselves and instead monetize the model through subscription wrappers like ChatGPT or charge for access by the token through an API.

Fighting the “closed” AI model is a big deal to Mark Zuckerberg, who simultaneously released a 2,300-word manifesto today on why the company believes in open releases of AI models, titled, “Open Source AI Is the Path Forward.” More on the terminology in a minute. But briefly, he writes about the need for customizable AI models that offer user control and encourage better data security, higher cost-efficiency, and better future-proofing, as opposed to vendor-locked solutions.

All that sounds reasonable, but undermining your competitors using a model subsidized by a social media war chest is also an efficient way to play spoiler in a market where you might not always win with the most cutting-edge tech. That benefits Meta, Zuckerberg says, because he doesn’t want to get locked into a system where companies like his have to pay a toll to access AI capabilities, drawing comparisons to “taxes” Apple levies on developers through its App Store.

A screenshot of Mark Zuckerberg's essay,

Enlarge / A screenshot of Mark Zuckerberg’s essay, “Open Source AI Is the Path Forward,” published on July 23, 2024.

So, about that “open source” term. As we first wrote in an update to our Llama 2 launch article a year ago, “open source” has a very particular meaning that has traditionally been defined by the Open Source Initiative. The AI industry has not yet settled on terminology for AI model releases that ship either code or weights with restrictions (such as Llama 3.1) or that ship without providing training data. We’ve been calling these releases “open weights” instead.

Unfortunately for terminology sticklers, Zuckerberg has now baked the erroneous “open source” label into the title of his potentially historic aforementioned essay on open AI releases, so fighting for the correct term in AI may be a losing battle. Still, his usage annoys people like independent AI researcher Simon Willison, who likes Zuckerberg’s essay otherwise.

“I see Zuck’s prominent misuse of ‘open source’ as a small-scale act of cultural vandalism,” Willison told Ars Technica. “Open source should have an agreed meaning. Abusing the term weakens that meaning which makes the term less generally useful, because if someone says ‘it’s open source,’ that no longer tells me anything useful. I have to then dig in and figure out what they’re actually talking about.”

The Llama 3.1 models are available for download through Meta’s own website and on Hugging Face. They both require providing contact information and agreeing to a license and an acceptable use policy, which means that Meta can technically legally pull the rug out from under your use of Llama 3.1 or its outputs at any time.

The first GPT-4-class AI model anyone can download has arrived: Llama 405B Read More »

microsoft-cto-kevin-scott-thinks-llm-“scaling-laws”-will-hold-despite-criticism

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism

As the word turns —

Will LLMs keep improving if we throw more compute at them? OpenAI dealmaker thinks so.

Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media's 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

Enlarge / Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media’s 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

During an interview with Sequoia Capital’s Training Data podcast published last Tuesday, Microsoft CTO Kevin Scott doubled down on his belief that so-called large language model (LLM) “scaling laws” will continue to drive AI progress, despite some skepticism in the field that progress has leveled out. Scott played a key role in forging a $13 billion technology-sharing deal between Microsoft and OpenAI.

“Despite what other people think, we’re not at diminishing marginal returns on scale-up,” Scott said. “And I try to help people understand there is an exponential here, and the unfortunate thing is you only get to sample it every couple of years because it just takes a while to build supercomputers and then train models on top of them.”

LLM scaling laws refer to patterns explored by OpenAI researchers in 2020 showing that the performance of language models tends to improve predictably as the models get larger (more parameters), are trained on more data, and have access to more computational power (compute). The laws suggest that simply scaling up model size and training data can lead to significant improvements in AI capabilities without necessarily requiring fundamental algorithmic breakthroughs.

Since then, other researchers have challenged the idea of persisting scaling laws over time, but the concept is still a cornerstone of OpenAI’s AI development philosophy.

You can see Scott’s comments in the video below beginning around 46: 05:

Microsoft CTO Kevin Scott on how far scaling laws will extend

Scott’s optimism contrasts with a narrative among some critics in the AI community that progress in LLMs has plateaued around GPT-4 class models. The perception has been fueled by largely informal observations—and some benchmark results—about recent models like Google’s Gemini 1.5 Pro, Anthropic’s Claude Opus, and even OpenAI’s GPT-4o, which some argue haven’t shown the dramatic leaps in capability seen in earlier generations, and that LLM development may be approaching diminishing returns.

“We all know that GPT-3 was vastly better than GPT-2. And we all know that GPT-4 (released thirteen months ago) was vastly better than GPT-3,” wrote AI critic Gary Marcus in April. “But what has happened since?”

The perception of plateau

Scott’s stance suggests that tech giants like Microsoft still feel justified in investing heavily in larger AI models, betting on continued breakthroughs rather than hitting a capability plateau. Given Microsoft’s investment in OpenAI and strong marketing of its own Microsoft Copilot AI features, the company has a strong interest in maintaining the perception of continued progress, even if the tech stalls.

Frequent AI critic Ed Zitron recently wrote in a post on his blog that one defense of continued investment into generative AI is that “OpenAI has something we don’t know about. A big, sexy, secret technology that will eternally break the bones of every hater,” he wrote. “Yet, I have a counterpoint: no it doesn’t.”

Some perceptions of slowing progress in LLM capabilities and benchmarking may be due to the rapid onset of AI in the public eye when, in fact, LLMs have been developing for years prior. OpenAI continued to develop LLMs during a roughly three-year gap between the release of GPT-3 in 2020 and GPT-4 in 2023. Many people likely perceived a rapid jump in capability with GPT-4’s launch in 2023 because they had only become recently aware of GPT-3-class models with the launch of ChatGPT in late November 2022, which used GPT-3.5.

In the podcast interview, the Microsoft CTO pushed back against the idea that AI progress has stalled, but he acknowledged the challenge of infrequent data points in this field, as new models often take years to develop. Despite this, Scott expressed confidence that future iterations will show improvements, particularly in areas where current models struggle.

“The next sample is coming, and I can’t tell you when, and I can’t predict exactly how good it’s going to be, but it will almost certainly be better at the things that are brittle right now, where you’re like, oh my god, this is a little too expensive, or a little too fragile, for me to use,” Scott said in the interview. “All of that gets better. It’ll get cheaper, and things will become less fragile. And then more complicated things will become possible. That is the story of each generation of these models as we’ve scaled up.”

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism Read More »

elon-musk’s-grok-keeps-making-up-fake-news-based-on-x-users’-jokes

Elon Musk’s Grok keeps making up fake news based on X users’ jokes

It’s all jokes until it isn’t —

X likely hopes to avoid liability with disclaimer that Grok “can make mistakes.”

Elon Musk’s Grok keeps making up fake news based on X users’ jokes

X’s chatbot Grok is supposed to be an AI engine crunching the platform’s posts to surface and summarize breaking news, but this week, Grok’s flaws were once again exposed when the chatbot got confused and falsely accused an NBA star of criminal vandalism.

“Klay Thompson Accused in Bizarre Brick-Vandalism Spree,” Grok’s headline read in an AI-powered trending-tab post that has remained on X (formerly Twitter) for days. Beneath the headline, Grok went into even more detail to support its fake reporting:

In a bizarre turn of events, NBA star Klay Thompson has been accused of vandalizing multiple houses with bricks in Sacramento. Authorities are investigating the claims after several individuals reported their houses being damaged, with windows shattered by bricks. Klay Thompson has not yet issued a statement regarding the accusations. The incidents have left the community shaken, but no injuries were reported. The motive behind the alleged vandalism remains unclear.

Grok appears to be confusing a common basketball term, where players are said to be throwing “bricks” when they take an airball shot that doesn’t hit the rim. According to SF Gate, which was one of the first outlets to report the Grok error, Thompson had an “all-time rough shooting” night, hitting none of his shots on what was his emotional last game with the Golden State Warriors before becoming an unrestricted free agent.

In small type under Grok’s report, X includes a disclaimer saying, “Grok is an early feature and can make mistakes. Verify its outputs.”

But instead of verifying Grok’s outputs, it appeared that X users—in the service’s famously joke-y spirit—decided to fuel Grok’s misinformation. Under the post, X users, some NBA fans, commented with fake victim reports, using the same joke format to seemingly convince Grok that “several individuals reported their houses being damaged.” Some of these joking comments were viewed by millions.

First off… I am ok.

My house was vandalized by bricks 🧱

After my hands stopped shaking, I managed to call the Sheriff…They were quick to respond🚨

My window was gone and the police asked if I knew who did it👮‍♂️

I said yes, it was Klay Thompson

— LakeShowYo (@LakeShowYo) April 17, 2024

First off…I am ok.

My house was vandalized by bricks in Sacramento.

After my hands stopped shaking, I managed to call the Sheriff, they were quick to respond.

My window is gone, the police asked me if I knew who did it.

I said yes, it was Klay Thompson. pic.twitter.com/smrDs6Yi5M

— KeeganMuse (@KeegMuse) April 17, 2024

First off… I am ok.

My house was vandalized by bricks 🧱

After my hands stopped shaking, I managed to call the Sheriff…They were quick to respond🚨

My window was gone and the police asked if I knew who did it👮‍♂️

I said yes, it was Klay Thompson pic.twitter.com/JaWtdJhFli

— JJJ Muse (@JarenJJMuse) April 17, 2024

X did not immediately respond to Ars’ request for comment or confirm if the post will be corrected or taken down.

In the past, both Microsoft and chatbot maker OpenAI have faced defamation lawsuits over similar fabrications in which ChatGPT falsely accused a politician and a radio host of completely made-up criminal histories. Microsoft was also sued by an aerospace professor who Bing Chat falsely labeled a terrorist.

Experts told Ars that it remains unclear if disclaimers like X’s will spare companies from liability should more people decide to sue over fake AI outputs. Defamation claims might depend on proving that platforms “knowingly” publish false statements, which disclaimers suggest they do. Last July, the Federal Trade Commission launched an investigation into OpenAI, demanding that the company address the FTC’s fears of “false, misleading, or disparaging” AI outputs.

Because the FTC doesn’t comment on its investigations, it’s impossible to know if its probe will impact how OpenAI conducts business.

For people suing AI companies, the urgency of protecting against false outputs seems obvious. Last year, the radio host suing OpenAI, Mark Walters, accused the company of “sticking its head in the sand” and “recklessly disregarding whether the statements were false under circumstances when they knew that ChatGPT’s hallucinations were pervasive and severe.”

X just released Grok to all premium users this month, TechCrunch reported, right around the time that X began giving away premium access to the platform’s top users. During that wider rollout, X touted Grok’s new ability to summarize all trending news and topics, perhaps stoking interest in this feature and peaking Grok usage just before Grok spat out the potentially defamatory post about the NBA star.

Thompson has not issued any statements on Grok’s fake reporting.

Grok’s false post about Thompson may be the first widely publicized example of potential defamation from Grok, but it wasn’t the first time that Grok promoted fake news in response to X users joking around on the platform. During the solar eclipse, a Grok-generated headline read, “Sun’s Odd Behavior: Experts Baffled,” Gizmodo reported.

While it’s amusing to some X users to manipulate Grok, the pattern suggests that Grok may also be vulnerable to being manipulated by bad actors into summarizing and spreading more serious misinformation or propaganda. That’s apparently already happening, too. In early April, Grok made up a headline about Iran attacking Israel with heavy missiles, Mashable reported.

Elon Musk’s Grok keeps making up fake news based on X users’ jokes Read More »

nvidia-sued-over-ai-training-data-as-copyright-clashes-continue

Nvidia sued over AI training data as copyright clashes continue

In authors’ bad books —

Copyright suits over AI training data reportedly decreasing AI transparency.

Nvidia sued over AI training data as copyright clashes continue

Book authors are suing Nvidia, alleging that the chipmaker’s AI platform NeMo—used to power customized chatbots—was trained on a controversial dataset that illegally copied and distributed their books without their consent.

In a proposed class action, novelists Abdi Nazemian (Like a Love Story), Brian Keene (Ghost Walk), and Stewart O’Nan (Last Night at the Lobster) argued that Nvidia should pay damages and destroy all copies of the Books3 dataset used to power NeMo large language models (LLMs).

The Books3 dataset, novelists argued, copied “all of Bibliotek,” a shadow library of approximately 196,640 pirated books. Initially shared through the AI community Hugging Face, the Books3 dataset today “is defunct and no longer accessible due to reported copyright infringement,” the Hugging Face website says.

According to the authors, Hugging Face removed the dataset last October, but not before AI companies like Nvidia grabbed it and “made multiple copies.” By training NeMo models on this dataset, the authors alleged that Nvidia “violated their exclusive rights under the Copyright Act.” The authors argued that the US district court in San Francisco must intervene and stop Nvidia because the company “has continued to make copies of the Infringed Works for training other models.”

A Hugging Face spokesperson clarified to Ars that “Hugging Face never removed this dataset, and we did not host the Books3 dataset on the Hub.” Instead, “Hugging Face hosted a script that downloads the data from The Eye, which is the place where ELeuther hosted the data,” until “Eleuther removed the data from The Eye” over copyright concerns, causing the dataset script on Hugging Face to break.

Nvidia did not immediately respond to Ars’ request to comment.

Demanding a jury trial, authors are hoping the court will rule that Nvidia has no possible defense for both allegedly violating copyrights and intending “to cause further infringement” by distributing NeMo models “as a base from which to build further models.”

AI models decreasing transparency amid suits

The class action was filed by the same legal team representing authors suing OpenAI, whose lawsuit recently saw many claims dismissed, but crucially not their claim of direct copyright infringement. Lawyers told Ars last month that authors would be amending their complaints against OpenAI and were “eager to move forward and litigate” their direct copyright infringement claim.

In that lawsuit, the authors alleged copyright infringement both when OpenAI trained LLMs and when chatbots referenced books in outputs. But authors seemed more concerned about alleged damages from chatbot outputs, warning that AI tools had an “uncanny ability to generate text similar to that found in copyrighted textual materials, including thousands of books.”

Uniquely, in the Nvidia suit, authors are focused exclusively on Nvidia’s training data, seemingly concerned that Nvidia could empower businesses to create any number of AI models on the controversial dataset, which could affect thousands of authors whose works could allegedly be broadly infringed just by training these models.

There’s no telling yet how courts will rule on the direct copyright claims in either lawsuit—or in the New York Times’ lawsuit against OpenAI—but so far, OpenAI has failed to convince courts to toss claims aside.

However, OpenAI doesn’t appear very shaken by the lawsuits. In February, OpenAI said that it expected to beat book authors’ direct copyright infringement claim at a “later stage” of the case and, most recently in the New York Times case, tried to convince the court that NYT “hacked” ChatGPT to “set up” the lawsuit.

And Microsoft, a co-defendant in the NYT lawsuit, even more recently introduced a new argument that could help tech companies defeat copyright suits over LLMs. Last month, Microsoft argued that The New York Times was attempting to stop a “groundbreaking new technology” and would fail, just like movie producers attempting to kill off the VCR in the 1980s.

“Despite The Times’s contentions, copyright law is no more an obstacle to the LLM than it was to the VCR (or the player piano, copy machine, personal computer, Internet, or search engine),” Microsoft wrote.

In December, Hugging Face’s machine learning and society lead, Yacine Jernite, noted that developers appeared to be growing less transparent about training data after copyright lawsuits raised red flags about companies using the Books3 dataset, “especially for commercial models.”

Meta, for example, “limited the amount of information [it] disclosed about” its LLM, Llama-2, “to a single paragraph description and one additional page of safety and bias analysis—after [its] use of the Books3 dataset when training the first Llama model was brought up in a copyright lawsuit,” Jernite wrote.

Jernite warned that AI models lacking transparency could hinder “the ability of regulatory safeguards to remain relevant as training methods evolve, of individuals to ensure that their rights are respected, and of open science and development to play their role in enabling democratic governance of new technologies.” To support “more accountability,” Jernite recommended “minimum meaningful public transparency standards to support effective AI regulation,” as well as companies providing options for anyone to opt out of their data being included in training data.

“More data transparency supports better governance and fosters technology development that more reliably respects peoples’ rights,” Jernite wrote.

Nvidia sued over AI training data as copyright clashes continue Read More »

openai-experiments-with-giving-chatgpt-a-long-term-conversation-memory

OpenAI experiments with giving ChatGPT a long-term conversation memory

“I remember…the Alamo” —

AI chatbot “memory” will recall facts from previous conversations when enabled.

A pixelated green illustration of a pair of hands looking through file records.

Enlarge / When ChatGPT looks things up, a pair of green pixelated hands look through paper records, much like this. Just kidding.

Benj Edwards / Getty Images

On Tuesday, OpenAI announced that it is experimenting with adding a form of long-term memory to ChatGPT that will allow it to remember details between conversations. You can ask ChatGPT to remember something, see what it remembers, and ask it to forget. Currently, it’s only available to a small number of ChatGPT users for testing.

So far, large language models have typically used two types of memory: one baked into the AI model during the training process (before deployment) and an in-context memory (the conversation history) that persists for the duration of your session. Usually, ChatGPT forgets what you have told it during a conversation once you start a new session.

Various projects have experimented with giving LLMs a memory that persists beyond a context window. (The context window is the hard limit on the number of tokens the LLM can process at once.) The techniques include dynamically managing context history, compressing previous history through summarization, links to vector databases that store information externally, or simply periodically injecting information into a system prompt (the instructions ChatGPT receives at the beginning of every chat).

A screenshot of ChatGPT memory controls provided by OpenAI.

Enlarge / A screenshot of ChatGPT memory controls provided by OpenAI.

OpenAI

OpenAI hasn’t explained which technique it uses here, but the implementation reminds us of Custom Instructions, a feature OpenAI introduced in July 2023 that lets users add custom additions to the ChatGPT system prompt to change its behavior.

Possible applications for the memory feature provided by OpenAI include explaining how you prefer your meeting notes to be formatted, telling it you run a coffee shop and having ChatGPT assume that’s what you’re talking about, keeping information about your toddler that loves jellyfish so it can generate relevant graphics, and remembering preferences for kindergarten lesson plan designs.

Also, OpenAI says that memories may help ChatGPT Enterprise and Team subscribers work together better since shared team memories could remember specific document formatting preferences or which programming frameworks your team uses. And OpenAI plans to bring memories to GPTs soon, with each GPT having its own siloed memory capabilities.

Memory control

Obviously, any tendency to remember information brings privacy implications. You should already know that sending information to OpenAI for processing on remote servers introduces the possibility of privacy leaks and that OpenAI trains AI models on user-provided information by default unless conversation history is disabled or you’re using an Enterprise or Team account.

Along those lines, OpenAI says that your saved memories are also subject to OpenAI training use unless you meet the criteria listed above. Still, the memory feature can be turned off completely. Additionally, the company says, “We’re taking steps to assess and mitigate biases, and steer ChatGPT away from proactively remembering sensitive information, like your health details—unless you explicitly ask it to.”

Users will also be able to control what ChatGPT remembers using a “Manage Memory” interface that lists memory items. “ChatGPT’s memories evolve with your interactions and aren’t linked to specific conversations,” OpenAI says. “Deleting a chat doesn’t erase its memories; you must delete the memory itself.”

ChatGPT’s memory features are not currently available to every ChatGPT account, so we have not experimented with it yet. Access during this testing period appears to be random among ChatGPT (free and paid) accounts for now. “We are rolling out to a small portion of ChatGPT free and Plus users this week to learn how useful it is,” OpenAI writes. “We will share plans for broader roll out soon.”

OpenAI experiments with giving ChatGPT a long-term conversation memory Read More »