chatgpt

major-shifts-at-openai-spark-skepticism-about-impending-agi-timelines

Major shifts at OpenAI spark skepticism about impending AGI timelines

Shuffling the deck —

De Kraker: “If OpenAI is right on the verge of AGI, why do prominent people keep leaving?”

The OpenAI logo on a red brick wall.

Benj Edwards / Getty Images

Over the past week, OpenAI experienced a significant leadership shake-up as three key figures announced major changes. Greg Brockman, the company’s president and co-founder, is taking an extended sabbatical until the end of the year, while another co-founder, John Schulman, permanently departed for rival Anthropic. Peter Deng, VP of Consumer Product, has also left the ChatGPT maker.

In a post on X, Brockman wrote, “I’m taking a sabbatical through end of year. First time to relax since co-founding OpenAI 9 years ago. The mission is far from complete; we still have a safe AGI to build.”

The moves have led some to wonder just how close OpenAI is to a long-rumored breakthrough of some kind of reasoning artificial intelligence if high-profile employees are jumping ship (or taking long breaks, in the case of Brockman) so easily. As AI developer Benjamin De Kraker put it on X, “If OpenAI is right on the verge of AGI, why do prominent people keep leaving?”

AGI refers to a hypothetical AI system that could match human-level intelligence across a wide range of tasks without specialized training. It’s the ultimate goal of OpenAI, and company CEO Sam Altman has said it could emerge in the “reasonably close-ish future.” AGI is also a concept that has sparked concerns about potential existential risks to humanity and the displacement of knowledge workers. However, the term remains somewhat vague, and there’s considerable debate in the AI community about what truly constitutes AGI or how close we are to achieving it.

The emergence of the “next big thing” in AI has been seen by critics such as Ed Zitron as a necessary step to justify ballooning investments in AI models that aren’t yet profitable. The industry is holding its breath that OpenAI, or a competitor, has some secret breakthrough waiting in the wings that will justify the massive costs associated with training and deploying LLMs.

But other AI critics, such as Gary Marcus, have postulated that major AI companies have reached a plateau of large language model (LLM) capability centered around GPT-4-level models since no AI company has yet made a major leap past the groundbreaking LLM that OpenAI released in March 2023. Microsoft CTO Kevin Scott has countered these claims, saying that LLM “scaling laws” (that suggest LLMs increase in capability proportionate to more compute power thrown at them) will continue to deliver improvements over time and that more patience is needed as the next generation (say, GPT-5) undergoes training.

In the scheme of things, Brockman’s move sounds like an extended, long overdue vacation (or perhaps a period to deal with personal issues beyond work). Regardless of the reason, the duration of the sabbatical raises questions about how the president of a major tech company can suddenly disappear for four months without affecting day-to-day operations, especially during a critical time in its history.

Unless, of course, things are fairly calm at OpenAI—and perhaps GPT-5 isn’t going to ship until at least next year when Brockman returns. But this is speculation on our part, and OpenAI (whether voluntarily or not) sometimes surprises us when we least expect it. (Just today, Altman dropped a hint on X about strawberries that some people interpret as being a hint of a potential major model undergoing testing or nearing release.)

A pattern of departures and the rise of Anthropic

Anthropic / Benj Edwards

What may sting OpenAI the most about the recent departures is that a few high-profile employees have left to join Anthropic, a San Francisco-based AI company founded in 2021 by ex-OpenAI employees Daniela and Dario Amodei.

Anthropic offers a subscription service called Claude.ai that is similar to ChatGPT. Its most recent LLM, Claude 3.5 Sonnet, along with its web-based interface, has rapidly gained favor over ChatGPT among some LLM users who are vocal on social media, though it likely does not yet match ChatGPT in terms of mainstream brand recognition.

In particular, John Schulman, an OpenAI co-founder and key figure in the company’s post-training process for LLMs, revealed in a statement on X that he’s leaving to join rival AI firm Anthropic to do more hands-on work: “This choice stems from my desire to deepen my focus on AI alignment, and to start a new chapter of my career where I can return to hands-on technical work.” Alignment is a field that hopes to guide AI models to produce helpful outputs.

In May, OpenAI alignment researcher Jan Leike left OpenAI to join Anthropic as well, criticizing OpenAI’s handling of alignment safety.

Adding to the recent employee shake-up, The Information reports that Peter Deng, a product leader who joined OpenAI last year after stints at Meta Platforms, Uber, and Airtable, has also left the company, though we do not yet know where he is headed. In May, OpenAI co-founder Ilya Sutskever left to found a rival startup, and prominent software engineer Andrej Karpathy departed in February, recently launching an educational venture.

As De Kraker noted, if OpenAI were on the verge of developing world-changing AI technology, wouldn’t these high-profile AI veterans want to stick around and be part of this historic moment in time? “Genuine question,” he wrote. “If you were pretty sure the company you’re a key part of—and have equity in—is about to crack AGI within one or two years… why would you jump ship?”

Despite the departures, Schulman expressed optimism about OpenAI’s future in his farewell note on X. “I am confident that OpenAI and the teams I was part of will continue to thrive without me,” he wrote. “I’m incredibly grateful for the opportunity to participate in such an important part of history and I’m proud of what we’ve achieved together. I’ll still be rooting for you all, even while working elsewhere.”

This article was updated on August 7, 2024 at 4: 23 PM to mention Sam Altman’s tweet about strawberries.

Major shifts at OpenAI spark skepticism about impending AGI timelines Read More »

“do-not-hallucinate”:-testers-find-prompts-meant-to-keep-apple-intelligence-on-the-rails

“Do not hallucinate”: Testers find prompts meant to keep Apple Intelligence on the rails

explain it to me like i’m an LLM —

Long lists of instructions show how Apple is trying to navigate AI pitfalls.

Craig Federighi stands in front of a screen with the words

Enlarge / Apple Intelligence was unveiled at WWDC 2024.

Apple

As the parent of a younger child, I can tell you that getting a kid to respond the way you want can require careful expectation-setting. Especially when we’re trying something new for the first time, I find that the more detail I can provide, the better he is able to anticipate events and roll with the punches.

I bring this up because testers of the new Apple Intelligence AI features in the recently released macOS Sequoia beta have discovered plaintext JSON files that list a whole bunch of conditions meant to keep the generative AI tech from being unhelpful or inaccurate. I don’t mean to humanize generative AI algorithms, because they don’t deserve to be, but the carefully phrased lists of instructions remind me of what it’s like to try to give basic instructions to (or explain morality to) an entity that isn’t quite prepared to understand it.

The files in question are stored in the /System/Library/AssetsV2/com_apple_MobileAsset_UAF_FM_GenerativeModels/purpose_auto folder on Macs running the macOS Sequoia 15.1 beta that have also opted into the Apple Intelligence beta. That folder contains 29 metadata.json files, several of which include a few sentences of what appear to be plain-English system prompts to set behavior for an AI chatbot powered by a large-language model (LLM).

Many of these prompts are utilitarian. “You are a helpful mail assistant which can help identify relevant questions from a given mail and a short reply snippet,” reads one prompt that seems to describe the behavior of the Apple Mail Smart Reply feature. “Please limit the reply to 50 words,” reads one that could write slightly longer draft responses to messages. “Summarize the provided text within 3 sentences, fewer than 60 words. Do not answer any question from the text,” says one that looks like it would summarize texts from Messages or Mail without interjecting any of its own information.

Some of the prompts also have minor grammatical issues that highlight what a work-in-progress all of the Apple Intelligence features still are. “In order to make the draft response nicer and complete, a set of question [sic] and its answer are provided,” reads one prompt. “Please write a concise and natural reply by modify [sic] the draft response,” it continues.

“Do not make up factual information.”

And still other prompts seem designed specifically to try to prevent the kinds of confabulations that generative AI chatbots are so prone to (hallucinations, lies, factual inaccuracies; pick the term you prefer). Phrases meant to keep Apple Intelligence on-task and factual include things like:

  • “Do not hallucinate.”
  • “Do not make up factual information.”
  • “You are an expert at summarizing posts.”
  • “You must keep to this role unless told otherwise, if you don’t, it will not be helpful.”
  • “Only output valid json and nothing else.”

Earlier forays into generative AI have demonstrated why it’s so important to have detailed, specific prompts to guide the responses of language models. When it launched as “Bing Chat” in early 2023, Microsoft’s ChatGPT-based chatbot could get belligerent, threatening, or existential based on what users asked of it. Prompt injection attacks could also put security and user data at risk. Microsoft incorporated different “personalities” into the chatbot to try to rein in its responses to make them more predictable, and Microsoft’s current Copilot assistant still uses a version of the same solution.

What makes the Apple Intelligence prompts interesting is less that they exist and more that we can actually look at the specific things Apple is attempting so that its generative AI products remain narrowly focused. If these files stay easily user-accessible in future macOS builds, it will be possible to keep an eye on exactly what Apple is doing to tweak the responses that Apple Intelligence is giving.

The Apple Intelligence features are going to launch to the public in beta this fall, but they’re going to miss the launch of iOS 18.0, iPadOS 18.0, and macOS 15.0, which is why Apple is testing them in entirely separate developer betas. Some features, like the ones that transcribe phone calls and voicemails or summarize text, will be available early on. Others, like the new Siri, may not be generally available until next year. Regardless of when it arrives, Apple Intelligence requires fairly recent hardware to work: either an iPhone 15 Pro, or an iPad or Mac with at least an Apple M1 chip installed.

“Do not hallucinate”: Testers find prompts meant to keep Apple Intelligence on the rails Read More »

chatgpt-advanced-voice-mode-impresses-testers-with-sound-effects,-catching-its-breath

ChatGPT Advanced Voice Mode impresses testers with sound effects, catching its breath

I Am the Very Model of a Modern Major-General —

AVM allows uncanny real-time voice conversations with ChatGPT that you can interrupt.

Stock Photo: AI Cyborg Robot Whispering Secret Or Interesting Gossip

Enlarge / A stock photo of a robot whispering to a man.

On Tuesday, OpenAI began rolling out an alpha version of its new Advanced Voice Mode to a small group of ChatGPT Plus subscribers. This feature, which OpenAI previewed in May with the launch of GPT-4o, aims to make conversations with the AI more natural and responsive. In May, the feature triggered criticism of its simulated emotional expressiveness and prompted a public dispute with actress Scarlett Johansson over accusations that OpenAI copied her voice. Even so, early tests of the new feature shared by users on social media have been largely enthusiastic.

In early tests reported by users with access, Advanced Voice Mode allows them to have real-time conversations with ChatGPT, including the ability to interrupt the AI mid-sentence almost instantly. It can sense and respond to a user’s emotional cues through vocal tone and delivery, and provide sound effects while telling stories.

But what has caught many people off-guard initially is how the voices simulate taking a breath while speaking.

“ChatGPT Advanced Voice Mode counting as fast as it can to 10, then to 50 (this blew my mind—it stopped to catch its breath like a human would),” wrote tech writer Cristiano Giardina on X.

Advanced Voice Mode simulates audible pauses for breath because it was trained on audio samples of humans speaking that included the same feature. The model has learned to simulate inhalations at seemingly appropriate times after being exposed to hundreds of thousands, if not millions, of examples of human speech. Large language models (LLMs) like GPT-4o are master imitators, and that skill has now extended to the audio domain.

Giardina shared his other impressions about Advanced Voice Mode on X, including observations about accents in other languages and sound effects.

It’s very fast, there’s virtually no latency from when you stop speaking to when it responds,” he wrote. “When you ask it to make noises it always has the voice “perform” the noises (with funny results). It can do accents, but when speaking other languages it always has an American accent. (In the video, ChatGPT is acting as a soccer match commentator)

Speaking of sound effects, X user Kesku, who is a moderator of OpenAI’s Discord server, shared an example of ChatGPT playing multiple parts with different voices and another of a voice recounting an audiobook-sounding sci-fi story from the prompt, “Tell me an exciting action story with sci-fi elements and create atmosphere by making appropriate noises of the things happening using onomatopoeia.”

Kesku also ran a few example prompts for us, including a story about the Ars Technica mascot “Moonshark.”

He also asked it to sing the “Major-General’s Song” from Gilbert and Sullivan’s 1879 comic opera The Pirates of Penzance:

Frequent AI advocate Manuel Sainsily posted a video of Advanced Voice Mode reacting to camera input, giving advice about how to care for a kitten. “It feels like face-timing a super knowledgeable friend, which in this case was super helpful—reassuring us with our new kitten,” he wrote. “It can answer questions in real-time and use the camera as input too!”

Of course, being based on an LLM, it may occasionally confabulate incorrect responses on topics or in situations where its “knowledge” (which comes from GPT-4o’s training data set) is lacking. But if considered a tech demo or an AI-powered amusement and you’re aware of the limitations, Advanced Voice Mode seems to successfully execute many of the tasks shown by OpenAI’s demo in May.

Safety

An OpenAI spokesperson told Ars Technica that the company worked with more than 100 external testers on the Advanced Voice Mode release, collectively speaking 45 different languages and representing 29 geographical areas. The system is reportedly designed to prevent impersonation of individuals or public figures by blocking outputs that differ from OpenAI’s four chosen preset voices.

OpenAI has also added filters to recognize and block requests to generate music or other copyrighted audio, which has gotten other AI companies in trouble. Giardina reported audio “leakage” in some audio outputs that have unintentional music in the background, showing that OpenAI trained the AVM voice model on a wide variety of audio sources, likely both from licensed material and audio scraped from online video platforms.

Availability

OpenAI plans to expand access to more ChatGPT Plus users in the coming weeks, with a full launch to all Plus subscribers expected this fall. A company spokesperson told Ars that users in the alpha test group will receive a notice in the ChatGPT app and an email with usage instructions.

Since the initial preview of GPT-4o voice in May, OpenAI claims to have enhanced the model’s ability to support millions of simultaneous, real-time voice conversations while maintaining low latency and high quality. In other words, they are gearing up for a rush that will take a lot of back-end computation to accommodate.

ChatGPT Advanced Voice Mode impresses testers with sound effects, catching its breath Read More »

openai-hits-google-where-it-hurts-with-new-searchgpt-prototype

OpenAI hits Google where it hurts with new SearchGPT prototype

Cutting through the sludge —

New tool may solve a web-search problem partially caused by AI-generated junk online.

The OpenAI logo on a blue newsprint background.

Benj Edwards / OpenAI

Arguably, few companies have unintentionally contributed more to the increase of AI-generated noise online than OpenAI. Despite its best intentions—and against its terms of service—its AI language models are often used to compose spam, and its pioneering research has inspired others to build AI models that can potentially do the same. This influx of AI-generated content has further reduced the effectiveness of SEO-driven search engines like Google. In 2024, web search is in a sorry state indeed.

It’s interesting, then, that OpenAI is now offering a potential solution to that problem. On Thursday, OpenAI revealed a prototype AI-powered search engine called SearchGPT that aims to provide users with quick, accurate answers sourced from the web. It’s also a direct challenge to Google, which also has tried to apply generative AI to web search (but with little success).

The company says it plans to integrate the most useful aspects of the temporary prototype into ChatGPT in the future. ChatGPT can already perform web searches using Bing, but SearchGPT seems to be a purpose-built interface for AI-assisted web searching.

SearchGPT attempts to streamline the process of finding information online by combining OpenAI’s AI models (like GPT-4o) with real-time web data. Like ChatGPT, users can reportedly ask SearchGPT follow-up questions, with the AI model maintaining context throughout the conversation.

Perhaps most importantly from an accuracy standpoint, the SearchGPT prototype (which we have not tested ourselves) reportedly includes features that attribute web-based sources prominently. Responses include in-line citations and links, while a sidebar displays additional source links.

OpenAI has not yet said how it is obtaining its real-time web data and whether it’s partnering with an existing search engine provider (like it does currently with Bing for ChatGPT) or building its own web-crawling and indexing system.

A way around publishers blocking OpenAI

ChatGPT can already perform web searches using Bing, but since last August when OpenAI revealed a way to block its web crawler, that feature hasn’t been nearly as useful as it could be. Many sites, such as Ars Technica (which blocks the OpenAI crawler as part of our parent company’s policy), won’t show up as results in ChatGPT because of this.

SearchGPT appears to untangle the association between OpenAI’s web crawler for scraping training data and the desire for OpenAI chatbot users to search the web. Notably, in the new SearchGPT announcement, OpenAI says, “Sites can be surfaced in search results even if they opt out of generative AI training.”

Even so, OpenAI says it is working on a way for publishers to manage how they appear in SearchGPT results so that “publishers have more choices.” And the company says that SearchGPT’s ability to browse the web is separate from training OpenAI’s AI models.

An uncertain future for AI-powered search

OpenAI claims SearchGPT will make web searches faster and easier. However, the effectiveness of AI-powered search compared to traditional methods is unknown, as the tech is still in its early stages. But let’s be frank: The most prominent web-search engine right now is pretty terrible.

Over the past year, we’ve seen Perplexity.ai take off as a potential AI-powered Google search replacement, but the service has been hounded by issues with confabulations and accusations of plagiarism among publishers, including Ars Technica parent Condé Nast.

Unlike Perplexity, OpenAI has many content deals lined up with publishers, and it emphasizes that it wants to work with content creators in particular. “We are committed to a thriving ecosystem of publishers and creators,” says OpenAI in its news release. “We hope to help users discover publisher sites and experiences, while bringing more choice to search.”

In a statement for the OpenAI press release, Nicholas Thompson, CEO of The Atlantic (which has a content deal with OpenAI), expressed optimism about the potential of AI search: “AI search is going to become one of the key ways that people navigate the internet, and it’s crucial, in these early days, that the technology is built in a way that values, respects, and protects journalism and publishers,” he said. “We look forward to partnering with OpenAI in the process, and creating a new way for readers to discover The Atlantic.”

OpenAI has experimented with other offshoots of its AI language model technology that haven’t become blockbuster hits (most notably, GPTs come to mind), so time will tell if the techniques behind SearchGPT have staying power—and if it can deliver accurate results without hallucinating. But the current state of web search is inviting new experiments to separate the signal from the noise, and it looks like OpenAI is throwing its hat in the ring.

OpenAI is currently rolling out SearchGPT to a small group of users and publishers for testing and feedback. Those interested in trying the prototype can sign up for a waitlist on the company’s website.

OpenAI hits Google where it hurts with new SearchGPT prototype Read More »

elon-musk-claims-he-is-training-“the-world’s-most-powerful-ai-by-every-metric”

Elon Musk claims he is training “the world’s most powerful AI by every metric”

the biggest, most powerful —

One snag: xAI might not have the electrical power contracts to do it.

Elon Musk, chief executive officer of Tesla Inc., during a fireside discussion on artificial intelligence risks with Rishi Sunak, UK prime minister, in London, UK, on Thursday, Nov. 2, 2023.

Enlarge / Elon Musk, chief executive officer of Tesla Inc., during a fireside discussion on artificial intelligence risks with Rishi Sunak, UK prime minister, in London, UK, on Thursday, Nov. 2, 2023.

On Monday, Elon Musk announced the start of training for what he calls “the world’s most powerful AI training cluster” at xAI’s new supercomputer facility in Memphis, Tennessee. The billionaire entrepreneur and CEO of multiple tech companies took to X (formerly Twitter) to share that the so-called “Memphis Supercluster” began operations at approximately 4: 20 am local time that day.

Musk’s xAI team, in collaboration with X and Nvidia, launched the supercomputer cluster featuring 100,000 liquid-cooled H100 GPUs on a single RDMA fabric. This setup, according to Musk, gives xAI “a significant advantage in training the world’s most powerful AI by every metric by December this year.”

Given issues with xAI’s Grok chatbot throughout the year, skeptics would be justified in questioning whether those claims will match reality, especially given Musk’s tendency for grandiose, off-the-cuff remarks on the social media platform he runs.

Power issues

According to a report by News Channel 3 WREG Memphis, the startup of the massive AI training facility marks a milestone for the city. WREG reports that xAI’s investment represents the largest capital investment by a new company in Memphis’s history. However, the project has raised questions among local residents and officials about its impact on the area’s power grid and infrastructure.

WREG reports that Doug McGowen, president of Memphis Light, Gas and Water (MLGW), previously stated that xAI could consume up to 150 megawatts of power at peak times. This substantial power requirement has prompted discussions with the Tennessee Valley Authority (TVA) regarding the project’s electricity demands and connection to the power system.

The TVA told the local news station, “TVA does not have a contract in place with xAI. We are working with xAI and our partners at MLGW on the details of the proposal and electricity demand needs.”

The local news outlet confirms that MLGW has stated that xAI moved into an existing building with already existing utility services, but the full extent of the company’s power usage and its potential effects on local utilities remain unclear. To address community concerns, WREG reports that MLGW plans to host public forums in the coming days to provide more information about the project and its implications for the city.

For now, Tom’s Hardware reports that Musk is side-stepping power issues by installing a fleet of 14 VoltaGrid natural gas generators that provide supplementary power to the Memphis computer cluster while his company works out an agreement with the local power utility.

As training at the Memphis Supercluster gets underway, all eyes are on xAI and Musk’s ambitious goal of developing the world’s most powerful AI by the end of the year (by which metric, we are uncertain), given the competitive landscape in AI at the moment between OpenAI/Microsoft, Amazon, Apple, Anthropic, and Google. If such an AI model emerges from xAI, we’ll be ready to write about it.

This article was updated on July 24, 2024 at 1: 11 pm to mention Musk installing natural gas generators onsite in Memphis.

Elon Musk claims he is training “the world’s most powerful AI by every metric” Read More »

the-first-gpt-4-class-ai-model-anyone-can-download-has-arrived:-llama-405b

The first GPT-4-class AI model anyone can download has arrived: Llama 405B

A new llama emerges —

“Open source AI is the path forward,” says Mark Zuckerberg, misusing the term.

A red llama in a blue desert illustration based on a photo.

In the AI world, there’s a buzz in the air about a new AI language model released Tuesday by Meta: Llama 3.1 405B. The reason? It’s potentially the first time anyone can download a GPT-4-class large language model (LLM) for free and run it on their own hardware. You’ll still need some beefy hardware: Meta says it can run on a “single server node,” which isn’t desktop PC-grade equipment. But it’s a provocative shot across the bow of “closed” AI model vendors such as OpenAI and Anthropic.

“Llama 3.1 405B is the first openly available model that rivals the top AI models when it comes to state-of-the-art capabilities in general knowledge, steerability, math, tool use, and multilingual translation,” says Meta. Company CEO Mark Zuckerberg calls 405B “the first frontier-level open source AI model.”

In the AI industry, “frontier model” is a term for an AI system designed to push the boundaries of current capabilities. In this case, Meta is positioning 405B among the likes of the industry’s top AI models, such as OpenAI’s GPT-4o, Claude’s 3.5 Sonnet, and Google Gemini 1.5 Pro.

A chart published by Meta suggests that 405B gets very close to matching the performance of GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

But as we’ve noted many times since March, these benchmarks aren’t necessarily scientifically sound or translate to the subjective experience of interacting with AI language models. In fact, this traditional slate of AI benchmarks is so generally useless to laypeople that even Meta’s PR department now just posts a few images of charts and doesn’t even try to explain them in any detail.

A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

Enlarge / A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

We’ve instead found that measuring the subjective experience of using a conversational AI model (through what might be called “vibemarking”) on A/B leaderboards like Chatbot Arena is a better way to judge new LLMs. In the absence of Chatbot Arena data, Meta has provided the results of its own human evaluations of 405B’s outputs that seem to show Meta’s new model holding its own against GPT-4 Turbo and Claude 3.5 Sonnet.

A Meta-provided chart that shows how humans rated Llama 3.1 405B's outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Enlarge / A Meta-provided chart that shows how humans rated Llama 3.1 405B’s outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Whatever the benchmarks, early word on the street (after the model leaked on 4chan yesterday) seems to match the claim that 405B is roughly equivalent to GPT-4. It took a lot of expensive computer training time to get there—and money, of which the social media giant has plenty to burn. Meta trained the 405B model on over 15 trillion tokens of training data scraped from the web (then parsed, filtered, and annotated by Llama 2), using more than 16,000 H100 GPUs.

So what’s with the 405B name? In this case, “405B” means 405 billion parameters, and parameters are numerical values that store trained information in a neural network. More parameters translate to a larger neural network powering the AI model, which generally (but not always) means more capability, such as better ability to make contextual connections between concepts. But larger-parameter models have a tradeoff in needing more computing power (AKA “compute”) to run.

We’ve been expecting the release of a 400 billion-plus parameter model of the Llama 3 family since Meta gave word that it was training one in April, and today’s announcement isn’t just about the biggest member of the Llama 3 family: There’s an entirely new iteration of improved Llama models with the designation “Llama 3.1.” That includes upgraded versions of its smaller 8B and 70B models, which now feature multilingual support and an extended context length of 128,000 tokens (the “context length” is roughly the working memory capacity of the model, and “tokens” are chunks of data used by LLMs to process information).

Meta says that 405B is useful for long-form text summarization, multilingual conversational agents, and coding assistants and for creating synthetic data used to train future AI language models. Notably, that last use-case—allowing developers to use outputs from Llama models to improve other AI models—is now officially supported by Meta’s Llama 3.1 license for the first time.

Abusing the term “open source”

Llama 3.1 405B is an open-weights model, which means anyone can download the trained neural network files and run them or fine-tune them. That directly challenges a business model where companies like OpenAI keep the weights to themselves and instead monetize the model through subscription wrappers like ChatGPT or charge for access by the token through an API.

Fighting the “closed” AI model is a big deal to Mark Zuckerberg, who simultaneously released a 2,300-word manifesto today on why the company believes in open releases of AI models, titled, “Open Source AI Is the Path Forward.” More on the terminology in a minute. But briefly, he writes about the need for customizable AI models that offer user control and encourage better data security, higher cost-efficiency, and better future-proofing, as opposed to vendor-locked solutions.

All that sounds reasonable, but undermining your competitors using a model subsidized by a social media war chest is also an efficient way to play spoiler in a market where you might not always win with the most cutting-edge tech. That benefits Meta, Zuckerberg says, because he doesn’t want to get locked into a system where companies like his have to pay a toll to access AI capabilities, drawing comparisons to “taxes” Apple levies on developers through its App Store.

A screenshot of Mark Zuckerberg's essay,

Enlarge / A screenshot of Mark Zuckerberg’s essay, “Open Source AI Is the Path Forward,” published on July 23, 2024.

So, about that “open source” term. As we first wrote in an update to our Llama 2 launch article a year ago, “open source” has a very particular meaning that has traditionally been defined by the Open Source Initiative. The AI industry has not yet settled on terminology for AI model releases that ship either code or weights with restrictions (such as Llama 3.1) or that ship without providing training data. We’ve been calling these releases “open weights” instead.

Unfortunately for terminology sticklers, Zuckerberg has now baked the erroneous “open source” label into the title of his potentially historic aforementioned essay on open AI releases, so fighting for the correct term in AI may be a losing battle. Still, his usage annoys people like independent AI researcher Simon Willison, who likes Zuckerberg’s essay otherwise.

“I see Zuck’s prominent misuse of ‘open source’ as a small-scale act of cultural vandalism,” Willison told Ars Technica. “Open source should have an agreed meaning. Abusing the term weakens that meaning which makes the term less generally useful, because if someone says ‘it’s open source,’ that no longer tells me anything useful. I have to then dig in and figure out what they’re actually talking about.”

The Llama 3.1 models are available for download through Meta’s own website and on Hugging Face. They both require providing contact information and agreeing to a license and an acceptable use policy, which means that Meta can technically legally pull the rug out from under your use of Llama 3.1 or its outputs at any time.

The first GPT-4-class AI model anyone can download has arrived: Llama 405B Read More »

openai-reportedly-nears-breakthrough-with-“reasoning”-ai,-reveals-progress-framework

OpenAI reportedly nears breakthrough with “reasoning” AI, reveals progress framework

studies in hype-otheticals —

Five-level AI classification system probably best seen as a marketing exercise.

Illustration of a robot with many arms.

OpenAI recently unveiled a five-tier system to gauge its advancement toward developing artificial general intelligence (AGI), according to an OpenAI spokesperson who spoke with Bloomberg. The company shared this new classification system on Tuesday with employees during an all-hands meeting, aiming to provide a clear framework for understanding AI advancement. However, the system describes hypothetical technology that does not yet exist and is possibly best interpreted as a marketing move to garner investment dollars.

OpenAI has previously stated that AGI—a nebulous term for a hypothetical concept that means an AI system that can perform novel tasks like a human without specialized training—is currently the primary goal of the company. The pursuit of technology that can replace humans at most intellectual work drives most of the enduring hype over the firm, even though such a technology would likely be wildly disruptive to society.

OpenAI CEO Sam Altman has previously stated his belief that AGI could be achieved within this decade, and a large part of the CEO’s public messaging has been related to how the company (and society in general) might handle the disruption that AGI may bring. Along those lines, a ranking system to communicate AI milestones achieved internally on the path to AGI makes sense.

OpenAI’s five levels—which it plans to share with investors—range from current AI capabilities to systems that could potentially manage entire organizations. The company believes its technology (such as GPT-4o that powers ChatGPT) currently sits at Level 1, which encompasses AI that can engage in conversational interactions. However, OpenAI executives reportedly told staff they’re on the verge of reaching Level 2, dubbed “Reasoners.”

Bloomberg lists OpenAI’s five “Stages of Artificial Intelligence” as follows:

  • Level 1: Chatbots, AI with conversational language
  • Level 2: Reasoners, human-level problem solving
  • Level 3: Agents, systems that can take actions
  • Level 4: Innovators, AI that can aid in invention
  • Level 5: Organizations, AI that can do the work of an organization

A Level 2 AI system would reportedly be capable of basic problem-solving on par with a human who holds a doctorate degree but lacks access to external tools. During the all-hands meeting, OpenAI leadership reportedly demonstrated a research project using their GPT-4 model that the researchers believe shows signs of approaching this human-like reasoning ability, according to someone familiar with the discussion who spoke with Bloomberg.

The upper levels of OpenAI’s classification describe increasingly potent hypothetical AI capabilities. Level 3 “Agents” could work autonomously on tasks for days. Level 4 systems would generate novel innovations. The pinnacle, Level 5, envisions AI managing entire organizations.

This classification system is still a work in progress. OpenAI plans to gather feedback from employees, investors, and board members, potentially refining the levels over time.

Ars Technica asked OpenAI about the ranking system and the accuracy of the Bloomberg report, and a company spokesperson said they had “nothing to add.”

The problem with ranking AI capabilities

OpenAI isn’t alone in attempting to quantify levels of AI capabilities. As Bloomberg notes, OpenAI’s system feels similar to levels of autonomous driving mapped out by automakers. And in November 2023, researchers at Google DeepMind proposed their own five-level framework for assessing AI advancement, showing that other AI labs have also been trying to figure out how to rank things that don’t yet exist.

OpenAI’s classification system also somewhat resembles Anthropic’s “AI Safety Levels” (ASLs) first published by the maker of the Claude AI assistant in September 2023. Both systems aim to categorize AI capabilities, though they focus on different aspects. Anthropic’s ASLs are more explicitly focused on safety and catastrophic risks (such as ASL-2, which refers to “systems that show early signs of dangerous capabilities”), while OpenAI’s levels track general capabilities.

However, any AI classification system raises questions about whether it’s possible to meaningfully quantify AI progress and what constitutes an advancement (or even what constitutes a “dangerous” AI system, as in the case of Anthropic). The tech industry so far has a history of overpromising AI capabilities, and linear progression models like OpenAI’s potentially risk fueling unrealistic expectations.

There is currently no consensus in the AI research community on how to measure progress toward AGI or even if AGI is a well-defined or achievable goal. As such, OpenAI’s five-tier system should likely be viewed as a communications tool to entice investors that shows the company’s aspirational goals rather than a scientific or even technical measurement of progress.

OpenAI reportedly nears breakthrough with “reasoning” AI, reveals progress framework Read More »

chatgpt’s-much-heralded-mac-app-was-storing-conversations-as-plain-text

ChatGPT’s much-heralded Mac app was storing conversations as plain text

Seriously? —

The app was updated to address the issue after it gained public attention.

A message field for ChatGPT pops up over a Mac desktop

Enlarge / The app lets you invoke ChatGPT from anywhere in the system with a keyboard shortcut, Spotlight-style.

Samuel Axon

OpenAI announced its Mac desktop app for ChatGPT with a lot of fanfare a few weeks ago, but it turns out it had a rather serious security issue: user chats were stored in plain text, where any bad actor could find them if they gained access to your machine.

As Threads user Pedro José Pereira Vieito noted earlier this week, “the OpenAI ChatGPT app on macOS is not sandboxed and stores all the conversations in plain-text in a non-protected location,” meaning “any other running app / process / malware can read all your ChatGPT conversations without any permission prompt.”

He added:

macOS has blocked access to any user private data since macOS Mojave 10.14 (6 years ago!). Any app accessing private user data (Calendar, Contacts, Mail, Photos, any third-party app sandbox, etc.) now requires explicit user access.

OpenAI chose to opt-out of the sandbox and store the conversations in plain text in a non-protected location, disabling all of these built-in defenses.

OpenAI has now updated the app, and the local chats are now encrypted, though they are still not sandboxed. (The app is only available as a direct download from OpenAI’s website and is not available through Apple’s App Store where more stringent security is required.)

Many people now use ChatGPT like they might use Google: to ask important questions, sort through issues, and so on. Often, sensitive personal data could be shared in those conversations.

It’s not a great look for OpenAI, which recently entered into a partnership with Apple to offer chat bot services built into Siri queries in Apple operating systems. Apple detailed some of the security around those queries at WWDC last month, though, and they’re more stringent than what OpenAI did (or to be more precise, didn’t do) with its Mac app, which is a separate initiative from the partnership.

If you’ve been using the app recently, be sure to update it as soon as possible.

ChatGPT’s much-heralded Mac app was storing conversations as plain text Read More »

openai’s-new-“criticgpt”-model-is-trained-to-criticize-gpt-4-outputs

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs

automated critic —

Research model catches bugs in AI-generated code, improving human oversight of AI.

An illustration created by OpenAI.

Enlarge / An illustration created by OpenAI.

On Thursday, OpenAI researchers unveiled CriticGPT, a new AI model designed to identify mistakes in code generated by ChatGPT. It aims to enhance the process of making AI systems behave in ways humans want (called “alignment”) through Reinforcement Learning from Human Feedback (RLHF), which helps human reviewers make large language model (LLM) outputs more accurate.

As outlined in a new research paper called “LLM Critics Help Catch LLM Bugs,” OpenAI created CriticGPT to act as an AI assistant to human trainers who review programming code generated by the ChatGPT AI assistant. CriticGPT—based on the GPT-4 family of LLMS—analyzes the code and points out potential errors, making it easier for humans to spot mistakes that might otherwise go unnoticed. The researchers trained CriticGPT on a dataset of code samples with intentionally inserted bugs, teaching it to recognize and flag various coding errors.

The researchers found that CriticGPT’s critiques were preferred by annotators over human critiques in 63 percent of cases involving naturally occurring LLM errors and that human-machine teams using CriticGPT wrote more comprehensive critiques than humans alone while reducing confabulation (hallucination) rates compared to AI-only critiques.

Developing an automated critic

The development of CriticGPT involved training the model on a large number of inputs containing deliberately inserted mistakes. Human trainers were asked to modify code written by ChatGPT, introducing errors and then providing example feedback as if they had discovered these bugs. This process allowed the model to learn how to identify and critique various types of coding errors.

In experiments, CriticGPT demonstrated its ability to catch both inserted bugs and naturally occurring errors in ChatGPT’s output. The new model’s critiques were preferred by trainers over those generated by ChatGPT itself in 63 percent of cases involving natural bugs (the aforementioned statistic). This preference was partly due to CriticGPT producing fewer unhelpful “nitpicks” and generating fewer false positives, or hallucinated problems.

The researchers also created a new technique they call Force Sampling Beam Search (FSBS). This method helps CriticGPT write more detailed reviews of code. It lets the researchers adjust how thorough CriticGPT is in looking for problems, while also controlling how often it might make up issues that don’t really exist. They can tweak this balance depending on what they need for different AI training tasks.

Interestingly, the researchers found that CriticGPT’s capabilities extend beyond just code review. In their experiments, they applied the model to a subset of ChatGPT training data that had previously been rated as flawless by human annotators. Surprisingly, CriticGPT identified errors in 24 percent of these cases—errors that were subsequently confirmed by human reviewers. OpenAI thinks this demonstrates the model’s potential to generalize to non-code tasks and highlights its ability to catch subtle mistakes that even careful human evaluation might miss.

Despite its promising results, like all AI models, CriticGPT has limitations. The model was trained on relatively short ChatGPT answers, which may not fully prepare it for evaluating longer, more complex tasks that future AI systems might tackle. Additionally, while CriticGPT reduces confabulations, it doesn’t eliminate them entirely, and human trainers can still make labeling mistakes based on these false outputs.

The research team acknowledges that CriticGPT is most effective at identifying errors that can be pinpointed in one specific location within the code. However, real-world mistakes in AI outputs can often be spread across multiple parts of an answer, presenting a challenge for future iterations of the model.

OpenAI plans to integrate CriticGPT-like models into its RLHF labeling pipeline, providing its trainers with AI assistance. For OpenAI, it’s a step toward developing better tools for evaluating outputs from LLM systems that may be difficult for humans to rate without additional support. However, the researchers caution that even with tools like CriticGPT, extremely complex tasks or responses may still prove challenging for human evaluators—even those assisted by AI.

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs Read More »

ai-generated-al-michaels-to-provide-daily-recaps-during-2024-summer-olympics

AI-generated Al Michaels to provide daily recaps during 2024 Summer Olympics

forever young —

AI voice clone will narrate daily Olympics video recaps; critics call it a “code-generated ghoul.”

Al Michaels looks on prior to the game between the Minnesota Vikings and Philadelphia Eagles at Lincoln Financial Field on September 14, 2023 in Philadelphia, Pennsylvania.

Enlarge / Al Michaels looks on prior to the game between the Minnesota Vikings and Philadelphia Eagles at Lincoln Financial Field on September 14, 2023, in Philadelphia, Pennsylvania.

On Wednesday, NBC announced plans to use an AI-generated clone of famous sports commentator Al Michaels‘ voice to narrate daily streaming video recaps of the 2024 Summer Olympics in Paris, which start on July 26. The AI-powered narration will feature in “Your Daily Olympic Recap on Peacock,” NBC’s streaming service. But this new, high-profile use of voice cloning worries critics, who say the technology may muscle out upcoming sports commentators by keeping old personas around forever.

NBC says it has created a “high-quality AI re-creation” of Michaels’ voice, trained on Michaels’ past NBC appearances to capture his distinctive delivery style.

The veteran broadcaster, revered in the sports commentator world for his iconic “Do you believe in miracles? Yes!” call during the 1980 Winter Olympics, has been covering sports on TV since 1971, including a high-profile run of play-by-play coverage of NFL football games for both ABC and NBC since the 1980s. NBC dropped him from NFL coverage in 2023, however, possibly due to his age.

Michaels, who is 79 years old, shared his initial skepticism about the project in an interview with Vanity Fair, as NBC News notes. After hearing the AI version of his voice, which can greet viewers by name, he described the experience as “astonishing” and “a little bit frightening.” He said the AI recreation was “almost 2% off perfect” in mimicking his style.

The Vanity Fair article provides some insight into how NBC’s new AI system works. It first uses a large language model (similar technology to what powers ChatGPT) to analyze subtitles and metadata from NBC’s Olympics video coverage, summarizing events and writing custom output to imitate Michaels’ style. This text is then fed into an unspecified voice AI model trained on Michaels’ previous NBC appearances, reportedly replicating his unique pronunciations and intonations.

NBC estimates that the system could generate nearly 7 million personalized variants of the recaps across the US during the games, pulled from the network’s 5,000 hours of live coverage. Using the system, each Peacock user will receive about 10 minutes of personalized highlights.

A diminished role for humans in the future?

Al Michaels reports on the Sweden vs. USA men's ice hockey game at the 1980 Olympic Winter Games on February 12, 1980.

Enlarge / Al Michaels reports on the Sweden vs. USA men’s ice hockey game at the 1980 Olympic Winter Games on February 12, 1980.

It’s no secret that while AI is wildly hyped right now, it’s also controversial among some. Upon hearing the NBC announcement, critics of AI technology reacted strongly. “@NBCSports, this is gross,” tweeted actress and filmmaker Justine Bateman, who frequently uses X to criticize technologies that might replace human writers or performers in the future.

A thread of similar responses from X users reacting to the sample video provided above included criticisms such as, “Sounds pretty off when it’s just the same tone for every single word.” Another user wrote, “It just sounds so unnatural. No one talks like that.”

The technology will not replace NBC’s regular human sports commentators during this year’s Olympics coverage, and like other forms of AI, it leans heavily on existing human work by analyzing and regurgitating human-created content in the form of captions pulled from NBC footage.

Looking down the line, due to AI media cloning technologies like voice, video, and image synthesis, today’s celebrities may be able to attain a form of media immortality that allows new iterations of their likenesses to persist through the generations, potentially earning licensing fees for whoever holds the rights.

We’ve already seen it with James Earl Jones playing Darth Vader’s voice, and the trend will likely continue with other celebrity voices, provided the money is right. Eventually, it may extend to famous musicians through music synthesis and famous actors in video-synthesis applications as well.

The possibility of being muscled out by AI replicas factored heavily into a Hollywood actors’ strike last year, with SAG-AFTRA union President Fran Drescher saying, “If we don’t stand tall right now, we are all going to be in trouble. We are all going to be in jeopardy of being replaced by machines.”

For companies that like to monetize media properties for as long as possible, AI may provide a way to maintain a media legacy through automation. But future human performers may have to compete against all of the greatest performers of the past, rendered through AI, to break out and forge a new career—provided there will be room for human performers at all.

Al Michaels became Al Michaels because he was brought in to replace people who died, or retired, or moved on,” tweeted a writer named Geonn Cannon on X. “If he can’t do the job anymore, it’s time to let the next Al Michaels have a shot at it instead of just planting a code-generated ghoul in an empty chair.

AI-generated Al Michaels to provide daily recaps during 2024 Summer Olympics Read More »

report:-apple-isn’t-paying-openai-for-chatgpt-integration-into-oses

Report: Apple isn’t paying OpenAI for ChatGPT integration into OSes

in the pocket —

Apple thinks pushing OpenAI’s brand to hundreds of millions is worth more than money.

The OpenAI and Apple logos together.

OpenAI / Apple / Benj Edwards

On Monday, Apple announced it would be integrating OpenAI’s ChatGPT AI assistant into upcoming versions of its iPhone, iPad, and Mac operating systems. It paves the way for future third-party AI model integrations, but given Google’s multi-billion-dollar deal with Apple for preferential web search, the OpenAI announcement inspired speculation about who is paying whom. According to a Bloomberg report published Wednesday, Apple considers ChatGPT’s placement on its devices as compensation enough.

“Apple isn’t paying OpenAI as part of the partnership,” writes Bloomberg reporter Mark Gurman, citing people familiar with the matter who wish to remain anonymous. “Instead, Apple believes pushing OpenAI’s brand and technology to hundreds of millions of its devices is of equal or greater value than monetary payments.”

The Bloomberg report states that neither company expects the agreement to generate meaningful revenue in the short term, and in fact, the partnership could burn extra money for OpenAI, because it pays Microsoft to host ChatGPT’s capabilities on its Azure cloud. However, OpenAI could benefit by converting free users to paid subscriptions, and Apple potentially benefits by providing easy, built-in access to ChatGPT during a time when its own in-house LLMs are still catching up.

And there’s another angle at play. Currently, OpenAI offers subscriptions (ChatGPT Plus, Enterprise, Team) that unlock additional features. If users subscribe to OpenAI through the ChatGPT app on an Apple device, the process will reportedly use Apple’s payment platform, which may give Apple a significant cut of the revenue. According to the report, Apple hopes to negotiate additional revenue-sharing deals with AI vendors in the future.

Why OpenAI

The rise of ChatGPT in the public eye over the past 18 months has made OpenAI a power player in the tech industry, allowing it to strike deals with publishers for AI training content—and ensure continued support from Microsoft in the form of investments that trade vital funding and compute for access to OpenAI’s large language model (LLM) technology like GPT-4.

Still, Apple’s choice of ChatGPT as Apple’s first external AI integration has led to widespread misunderstanding, especially since Apple buried the lede about its own in-house LLM technology that powers its new “Apple Intelligence” platform.

On Apple’s part, CEO Tim Cook told The Washington Post that it chose OpenAI as its first third-party AI partner because he thinks the company controls the leading LLM technology at the moment: “I think they’re a pioneer in the area, and today they have the best model,” he said. “We’re integrating with other people as well. But they’re first, and I think today it’s because they’re best.”

Apple’s choice also brings risk. OpenAI’s record isn’t spotless, racking up a string of public controversies over the past month that include an accusation from actress Scarlett Johansson that the company intentionally imitated her voice, resignations from a key scientist and safety personnel, the revelation of a restrictive NDA for ex-employees that prevented public criticism, and accusations against OpenAI CEO Sam Altman of “psychological abuse” related by a former member of the OpenAI board.

Meanwhile, critics of privacy issues related to gathering data for training AI models—including OpenAI foe Elon Musk, who took to X on Monday to spread misconceptions about how the ChatGPT integration might work—also worried that the Apple-OpenAI deal might expose personal data to the AI company, although both companies strongly deny that will be the case.

Looking ahead, Apple’s deal with OpenAI is not exclusive, and the company is already in talks to offer Google’s Gemini chatbot as an additional option later this year. Apple has also reportedly held talks with Anthropic (maker of Claude 3) as a potential chatbot partner, signaling its intention to provide users with a range of AI services, much like how the company offers various search engine options in Safari.

Report: Apple isn’t paying OpenAI for ChatGPT integration into OSes Read More »

wyoming-mayoral-candidate-wants-to-govern-by-ai-bot

Wyoming mayoral candidate wants to govern by AI bot

Digital chatbot icon on future tech background. Productivity of AI bots evolution. Futuristic chatbot icon and abstract chart in world of technological progress and innovation. CGI 3D render

Victor Miller is running for mayor of Cheyenne, Wyoming, with an unusual campaign promise: If elected, he will not be calling the shots—an AI bot will. VIC, the Virtual Integrated Citizen, is a ChatGPT-based chatbot that Miller created. And Miller says the bot has better ideas—and a better grasp of the law—than many people currently serving in government.

“I realized that this entity is way smarter than me, and more importantly, way better than some of the outward-facing public servants I see,” he says. According to Miller, VIC will make the decisions, and Miller will be its “meat puppet,” attending meetings, signing documents, and otherwise doing the corporeal job of running the city.

But whether VIC—and Victor—will be allowed to run at all is still an open question.

Because it’s not legal for a bot to run for office, Miller says he is technically the one on the ballot, at least on the candidate paperwork filed with the state.

When Miller went to register his candidacy at the county clerk’s office, he says, he “wanted to use Vic without my last name. And so I had read the statute, so it merely said that you have to print what you are generally referred to as. So you know, most people call me Vic. My name is Victor Miller. So on the ballot Vic is short for Victor Miller, the human.”

When Miller came home from filing, he told the then nameless chatbot about it and says it “actually came up with the name Virtual Integrated Citizen.”

In a statement to WIRED, Wyoming Secretary of State Chuck Gray said, “We are monitoring this very closely to ensure uniform application of the Election Code.” Gray said that anyone running for office must be a “qualified elector,” “which necessitates being a real person. Therefore, an AI bot is not a qualified elector.” Gray also sent a letter to the county clerk raising concerns about VIC and suggesting that the clerk reject Miller’s application for candidacy.

Wyoming mayoral candidate wants to govern by AI bot Read More »