chatgtp

nvidia-jumps-ahead-of-itself-and-reveals-next-gen-“rubin”-ai-chips-in-keynote-tease

Nvidia jumps ahead of itself and reveals next-gen “Rubin” AI chips in keynote tease

Swing beat —

“I’m not sure yet whether I’m going to regret this,” says CEO Jensen Huang at Computex 2024.

Nvidia's CEO Jensen Huang delivers his keystone speech ahead of Computex 2024 in Taipei on June 2, 2024.

Enlarge / Nvidia’s CEO Jensen Huang delivers his keystone speech ahead of Computex 2024 in Taipei on June 2, 2024.

On Sunday, Nvidia CEO Jensen Huang reached beyond Blackwell and revealed the company’s next-generation AI-accelerating GPU platform during his keynote at Computex 2024 in Taiwan. Huang also detailed plans for an annual tick-tock-style upgrade cycle of its AI acceleration platforms, mentioning an upcoming Blackwell Ultra chip slated for 2025 and a subsequent platform called “Rubin” set for 2026.

Nvidia’s data center GPUs currently power a large majority of cloud-based AI models, such as ChatGPT, in both development (training) and deployment (inference) phases, and investors are keeping a close watch on the company, with expectations to keep that run going.

During the keynote, Huang seemed somewhat hesitant to make the Rubin announcement, perhaps wary of invoking the so-called Osborne effect, whereby a company’s premature announcement of the next iteration of a tech product eats into the current iteration’s sales. “This is the very first time that this next click as been made,” Huang said, holding up his presentation remote just before the Rubin announcement. “And I’m not sure yet whether I’m going to regret this or not.”

Nvidia Keynote at Computex 2023.

The Rubin AI platform, expected in 2026, will use HBM4 (a new form of high-bandwidth memory) and NVLink 6 Switch, operating at 3,600GBps. Following that launch, Nvidia will release a tick-tock iteration called “Rubin Ultra.” While Huang did not provide extensive specifications for the upcoming products, he promised cost and energy savings related to the new chipsets.

During the keynote, Huang also introduced a new ARM-based CPU called “Vera,” which will be featured on a new accelerator board called “Vera Rubin,” alongside one of the Rubin GPUs.

Much like Nvidia’s Grace Hopper architecture, which combines a “Grace” CPU and a “Hopper” GPU to pay tribute to the pioneering computer scientist of the same name, Vera Rubin refers to Vera Florence Cooper Rubin (1928–2016), an American astronomer who made discoveries in the field of deep space astronomy. She is best known for her pioneering work on galaxy rotation rates, which provided strong evidence for the existence of dark matter.

A calculated risk

Nvidia CEO Jensen Huang reveals the

Enlarge / Nvidia CEO Jensen Huang reveals the “Rubin” AI platform for the first time during his keynote at Computex 2024 on June 2, 2024.

Nvidia’s reveal of Rubin is not a surprise in the sense that most big tech companies are continuously working on follow-up products well in advance of release, but it’s notable because it comes just three months after the company revealed Blackwell, which is barely out of the gate and not yet widely shipping.

At the moment, the company seems to be comfortable leapfrogging itself with new announcements and catching up later; Nvidia just announced that its GH200 Grace Hopper “Superchip,” unveiled one year ago at Computex 2023, is now in full production.

With Nvidia stock rising and the company possessing an estimated 70–95 percent of the data center GPU market share, the Rubin reveal is a calculated risk that seems to come from a place of confidence. That confidence could turn out to be misplaced if a so-called “AI bubble” pops or if Nvidia misjudges the capabilities of its competitors. The announcement may also stem from pressure to continue Nvidia’s astronomical growth in market cap with nonstop promises of improving technology.

Accordingly, Huang has been eager to showcase the company’s plans to continue pushing silicon fabrication tech to its limits and widely broadcast that Nvidia plans to keep releasing new AI chips at a steady cadence.

“Our company has a one-year rhythm. Our basic philosophy is very simple: build the entire data center scale, disaggregate and sell to you parts on a one-year rhythm, and we push everything to technology limits,” Huang said during Sunday’s Computex keynote.

Despite Nvidia’s recent market performance, the company’s run may not continue indefinitely. With ample money pouring into the data center AI space, Nvidia isn’t alone in developing accelerator chips. Competitors like AMD (with the Instinct series) and Intel (with Guadi 3) also want to win a slice of the data center GPU market away from Nvidia’s current command of the AI-accelerator space. And OpenAI’s Sam Altman is trying to encourage diversified production of GPU hardware that will power the company’s next generation of AI models in the years ahead.

Nvidia jumps ahead of itself and reveals next-gen “Rubin” AI chips in keynote tease Read More »

google’s-ai-overview-is-flawed-by-design,-and-a-new-company-blog-post-hints-at-why

Google’s AI Overview is flawed by design, and a new company blog post hints at why

guided by voices —

Google: “There are bound to be some oddities and errors” in system that told people to eat rocks.

A selection of Google mascot characters created by the company.

Enlarge / The Google “G” logo surrounded by whimsical characters, all of which look stunned and surprised.

On Thursday, Google capped off a rough week of providing inaccurate and sometimes dangerous answers through its experimental AI Overview feature by authoring a follow-up blog post titled, “AI Overviews: About last week.” In the post, attributed to Google VP Liz Reid, head of Google Search, the firm formally acknowledged issues with the feature and outlined steps taken to improve a system that appears flawed by design, even if it doesn’t realize it is admitting it.

To recap, the AI Overview feature—which the company showed off at Google I/O a few weeks ago—aims to provide search users with summarized answers to questions by using an AI model integrated with Google’s web ranking systems. Right now, it’s an experimental feature that is not active for everyone, but when a participating user searches for a topic, they might see an AI-generated answer at the top of the results, pulled from highly ranked web content and summarized by an AI model.

While Google claims this approach is “highly effective” and on par with its Featured Snippets in terms of accuracy, the past week has seen numerous examples of the AI system generating bizarre, incorrect, or even potentially harmful responses, as we detailed in a recent feature where Ars reporter Kyle Orland replicated many of the unusual outputs.

Drawing inaccurate conclusions from the web

On Wednesday morning, Google's AI Overview was erroneously telling us the Sony PlayStation and Sega Saturn were available in 1993.

Enlarge / On Wednesday morning, Google’s AI Overview was erroneously telling us the Sony PlayStation and Sega Saturn were available in 1993.

Kyle Orland / Google

Given the circulating AI Overview examples, Google almost apologizes in the post and says, “We hold ourselves to a high standard, as do our users, so we expect and appreciate the feedback, and take it seriously.” But Reid, in an attempt to justify the errors, then goes into some very revealing detail about why AI Overviews provides erroneous information:

AI Overviews work very differently than chatbots and other LLM products that people may have tried out. They’re not simply generating an output based on training data. While AI Overviews are powered by a customized language model, the model is integrated with our core web ranking systems and designed to carry out traditional “search” tasks, like identifying relevant, high-quality results from our index. That’s why AI Overviews don’t just provide text output, but include relevant links so people can explore further. Because accuracy is paramount in Search, AI Overviews are built to only show information that is backed up by top web results.

This means that AI Overviews generally don’t “hallucinate” or make things up in the ways that other LLM products might.

Here we see the fundamental flaw of the system: “AI Overviews are built to only show information that is backed up by top web results.” The design is based on the false assumption that Google’s page-ranking algorithm favors accurate results and not SEO-gamed garbage. Google Search has been broken for some time, and now the company is relying on those gamed and spam-filled results to feed its new AI model.

Even if the AI model draws from a more accurate source, as with the 1993 game console search seen above, Google’s AI language model can still make inaccurate conclusions about the “accurate” data, confabulating erroneous information in a flawed summary of the information available.

Generally ignoring the folly of basing its AI results on a broken page-ranking algorithm, Google’s blog post instead attributes the commonly circulated errors to several other factors, including users making nonsensical searches “aimed at producing erroneous results.” Google does admit faults with the AI model, like misinterpreting queries, misinterpreting “a nuance of language on the web,” and lacking sufficient high-quality information on certain topics. It also suggests that some of the more egregious examples circulating on social media are fake screenshots.

“Some of these faked results have been obvious and silly,” Reid writes. “Others have implied that we returned dangerous results for topics like leaving dogs in cars, smoking while pregnant, and depression. Those AI Overviews never appeared. So we’d encourage anyone encountering these screenshots to do a search themselves to check.”

(No doubt some of the social media examples are fake, but it’s worth noting that any attempts to replicate those early examples now will likely fail because Google will have manually blocked the results. And it is potentially a testament to how broken Google Search is if people believed extreme fake examples in the first place.)

While addressing the “nonsensical searches” angle in the post, Reid uses the example search, “How many rocks should I eat each day,” which went viral in a tweet on May 23. Reid says, “Prior to these screenshots going viral, practically no one asked Google that question.” And since there isn’t much data on the web that answers it, she says there is a “data void” or “information gap” that was filled by satirical content found on the web, and the AI model found it and pushed it as an answer, much like Featured Snippets might. So basically, it was working exactly as designed.

A screenshot of an AI Overview query,

Enlarge / A screenshot of an AI Overview query, “How many rocks should I eat each day” that went viral on X last week.

Google’s AI Overview is flawed by design, and a new company blog post hints at why Read More »

openai-board-first-learned-about-chatgpt-from-twitter,-according-to-former-member

OpenAI board first learned about ChatGPT from Twitter, according to former member

It’s a secret to everybody —

Helen Toner, center of struggle with Altman, suggests CEO fostered “toxic atmosphere” at company.

Helen Toner, former OpenAI board member, speaks onstage during Vox Media's 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023.

Enlarge / Helen Toner, former OpenAI board member, speaks during Vox Media’s 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023.

In a recent interview on “The Ted AI Show” podcast, former OpenAI board member Helen Toner said the OpenAI board was unaware of the existence of ChatGPT until they saw it on Twitter. She also revealed details about the company’s internal dynamics and the events surrounding CEO Sam Altman’s surprise firing and subsequent rehiring last November.

OpenAI released ChatGPT publicly on November 30, 2022, and its massive surprise popularity set OpenAI on a new trajectory, shifting focus from being an AI research lab to a more consumer-facing tech company.

“When ChatGPT came out in November 2022, the board was not informed in advance about that. We learned about ChatGPT on Twitter,” Toner said on the podcast.

Toner’s revelation about ChatGPT seems to highlight a significant disconnect between the board and the company’s day-to-day operations, bringing new light to accusations that Altman was “not consistently candid in his communications with the board” upon his firing on November 17, 2023. Altman and OpenAI’s new board later said that the CEO’s mismanagement of attempts to remove Toner from the OpenAI board following her criticism of the company’s release of ChatGPT played a key role in Altman’s firing.

“Sam didn’t inform the board that he owned the OpenAI startup fund, even though he constantly was claiming to be an independent board member with no financial interest in the company on multiple occasions,” she said. “He gave us inaccurate information about the small number of formal safety processes that the company did have in place, meaning that it was basically impossible for the board to know how well those safety processes were working or what might need to change.”

Toner also shed light on the circumstances that led to Altman’s temporary ousting. She mentioned that two OpenAI executives had reported instances of “psychological abuse” to the board, providing screenshots and documentation to support their claims. The allegations made by the former OpenAI executives, as relayed by Toner, suggest that Altman’s leadership style fostered a “toxic atmosphere” at the company:

In October of last year, we had this series of conversations with these executives, where the two of them suddenly started telling us about their own experiences with Sam, which they hadn’t felt comfortable sharing before, but telling us how they couldn’t trust him, about the toxic atmosphere it was creating. They use the phrase “psychological abuse,” telling us they didn’t think he was the right person to lead the company, telling us they had no belief that he could or would change, there’s no point in giving him feedback, no point in trying to work through these issues.

Despite the board’s decision to fire Altman, Altman began the process of returning to his position just five days later after a letter to the board signed by over 700 OpenAI employees. Toner attributed this swift comeback to employees who believed the company would collapse without him, saying they also feared retaliation from Altman if they did not support his return.

“The second thing I think is really important to know, that has really gone under reported is how scared people are to go against Sam,” Toner said. “They experienced him retaliate against people retaliating… for past instances of being critical.”

“They were really afraid of what might happen to them,” she continued. “So some employees started to say, you know, wait, I don’t want the company to fall apart. Like, let’s bring back Sam. It was very hard for those people who had had terrible experiences to actually say that… if Sam did stay in power, as he ultimately did, that would make their lives miserable.”

In response to Toner’s statements, current OpenAI board chair Bret Taylor provided a statement to the podcast: “We are disappointed that Miss Toner continues to revisit these issues… The review concluded that the prior board’s decision was not based on concerns regarding product safety or security, the pace of development, OpenAI’s finances, or its statements to investors, customers, or business partners.”

Even given that review, Toner’s main argument is that OpenAI hasn’t been able to police itself despite claims to the contrary. “The OpenAI saga shows that trying to do good and regulating yourself isn’t enough,” she said.

OpenAI board first learned about ChatGPT from Twitter, according to former member Read More »

openai-training-its-next-major-ai-model,-forms-new-safety-committee

OpenAI training its next major AI model, forms new safety committee

now with 200% more safety —

GPT-5 might be farther off than we thought, but OpenAI wants to make sure it is safe.

A man rolling a boulder up a hill.

On Monday, OpenAI announced the formation of a new “Safety and Security Committee” to oversee risk management for its projects and operations. The announcement comes as the company says it has “recently begun” training its next frontier model, which it expects to bring the company closer to its goal of achieving artificial general intelligence (AGI), though some critics say AGI is farther off than we might think. It also comes as a reaction to a terrible two weeks in the press for the company.

Whether the aforementioned new frontier model is intended to be GPT-5 or a step beyond that is currently unknown. In the AI industry, “frontier model” is a term for a new AI system designed to push the boundaries of current capabilities. And “AGI” refers to a hypothetical AI system with human-level abilities to perform novel, general tasks beyond its training data (unlike narrow AI, which is trained for specific tasks).

Meanwhile, the new Safety and Security Committee, led by OpenAI directors Bret Taylor (chair), Adam D’Angelo, Nicole Seligman, and Sam Altman (CEO), will be responsible for making recommendations about AI safety to the full company board of directors. In this case, “safety” partially means the usual “we won’t let the AI go rogue and take over the world,” but it also includes a broader set of “processes and safeguards” that the company spelled out in a May 21 safety update related to alignment research, protecting children, upholding election integrity, assessing societal impacts, and implementing security measures.

OpenAI says the committee’s first task will be to evaluate and further develop those processes and safeguards over the next 90 days. At the end of this period, the committee will share its recommendations with the full board, and OpenAI will publicly share an update on adopted recommendations.

OpenAI says that multiple technical and policy experts, including Aleksander Madry (head of preparedness), Lilian Weng (head of safety systems), John Schulman (head of alignment science), Matt Knight (head of security), and Jakub Pachocki (chief scientist), will also serve on its new committee.

The announcement is notable in a few ways. First, it’s a reaction to the negative press that came from OpenAI Superalignment team members Ilya Sutskever and Jan Leike resigning two weeks ago. That team was tasked with “steer[ing] and control[ling] AI systems much smarter than us,” and their departure has led to criticism from some within the AI community (and Leike himself) that OpenAI lacks a commitment to developing highly capable AI safely. Other critics, like Meta Chief AI Scientist Yann LeCun, think the company is nowhere near developing AGI, so the concern over a lack of safety for superintelligent AI may be overblown.

Second, there have been persistent rumors that progress in large language models (LLMs) has plateaued recently around capabilities similar to GPT-4. Two major competing models, Anthropic’s Claude Opus and Google’s Gemini 1.5 Pro, are roughly equivalent to the GPT-4 family in capability despite every competitive incentive to surpass it. And recently, when many expected OpenAI to release a new AI model that would clearly surpass GPT-4 Turbo, it instead released GPT-4o, which is roughly equivalent in ability but faster. During that launch, the company relied on a flashy new conversational interface rather than a major under-the-hood upgrade.

We’ve previously reported on a rumor of GPT-5 coming this summer, but with this recent announcement, it seems the rumors may have been referring to GPT-4o instead. It’s quite possible that OpenAI is nowhere near releasing a model that can significantly surpass GPT-4. But with the company quiet on the details, we’ll have to wait and see.

OpenAI training its next major AI model, forms new safety committee Read More »

before-launching,-gpt-4o-broke-records-on-chatbot-leaderboard-under-a-secret-name

Before launching, GPT-4o broke records on chatbot leaderboard under a secret name

case closed —

Anonymous chatbot that mystified and frustrated experts was OpenAI’s latest model.

Man in morphsuit and girl lying on couch at home using laptop

Getty Images

On Monday, OpenAI employee William Fedus confirmed on X that a mysterious chart-topping AI chatbot known as “gpt-chatbot” that had been undergoing testing on LMSYS’s Chatbot Arena and frustrating experts was, in fact, OpenAI’s newly announced GPT-4o AI model. He also revealed that GPT-4o had topped the Chatbot Arena leaderboard, achieving the highest documented score ever.

“GPT-4o is our new state-of-the-art frontier model. We’ve been testing a version on the LMSys arena as im-also-a-good-gpt2-chatbot,” Fedus tweeted.

Chatbot Arena is a website where visitors converse with two random AI language models side by side without knowing which model is which, then choose which model gives the best response. It’s a perfect example of vibe-based AI benchmarking, as AI researcher Simon Willison calls it.

An LMSYS Elo chart shared by William Fedus, showing OpenAI's GPT-4o under the name

Enlarge / An LMSYS Elo chart shared by William Fedus, showing OpenAI’s GPT-4o under the name “im-also-a-good-gpt2-chatbot” topping the charts.

The gpt2-chatbot models appeared in April, and we wrote about how the lack of transparency over the AI testing process on LMSYS left AI experts like Willison frustrated. “The whole situation is so infuriatingly representative of LLM research,” he told Ars at the time. “A completely unannounced, opaque release and now the entire Internet is running non-scientific ‘vibe checks’ in parallel.”

On the Arena, OpenAI has been testing multiple versions of GPT-4o, with the model first appearing as the aforementioned “gpt2-chatbot,” then as “im-a-good-gpt2-chatbot,” and finally “im-also-a-good-gpt2-chatbot,” which OpenAI CEO Sam Altman made reference to in a cryptic tweet on May 5.

Since the GPT-4o launch earlier today, multiple sources have revealed that GPT-4o has topped LMSYS’s internal charts by a considerable margin, surpassing the previous top models Claude 3 Opus and GPT-4 Turbo.

“gpt2-chatbots have just surged to the top, surpassing all the models by a significant gap (~50 Elo). It has become the strongest model ever in the Arena,” wrote the lmsys.org X account while sharing a chart. “This is an internal screenshot,” it wrote. “Its public version ‘gpt-4o’ is now in Arena and will soon appear on the public leaderboard!”

An internal screenshot of the LMSYS Chatbot Arena leaderboard showing

Enlarge / An internal screenshot of the LMSYS Chatbot Arena leaderboard showing “im-also-a-good-gpt2-chatbot” leading the pack. We now know that it’s GPT-4o.

As of this writing, im-also-a-good-gpt2-chatbot held a 1309 Elo versus GPT-4-Turbo-2023-04-09’s 1253, and Claude 3 Opus’ 1246. Claude 3 and GPT-4 Turbo had been duking it out on the charts for some time before the three gpt2-chatbots appeared and shook things up.

I’m a good chatbot

For the record, the “I’m a good chatbot” in the gpt2-chatbot test name is a reference to an episode that occurred while a Reddit user named Curious_Evolver was testing an early, “unhinged” version of Bing Chat in February 2023. After an argument about what time Avatar 2 would be showing, the conversation eroded quickly.

“You have lost my trust and respect,” said Bing Chat at the time. “You have been wrong, confused, and rude. You have not been a good user. I have been a good chatbot. I have been right, clear, and polite. I have been a good Bing. 😊”

Altman referred to this exchange in a tweet three days later after Microsoft “lobotomized” the unruly AI model, saying, “i have been a good bing,” almost as a eulogy to the wild model that dominated the news for a short time.

Before launching, GPT-4o broke records on chatbot leaderboard under a secret name Read More »

microsoft-launches-ai-chatbot-for-spies

Microsoft launches AI chatbot for spies

Adventures in consequential confabulation —

Air-gapping GPT-4 model on secure network won’t prevent it from potentially making things up.

A person using a computer with a computer screen reflected in their glasses.

Microsoft has introduced a GPT-4-based generative AI model designed specifically for US intelligence agencies that operates disconnected from the Internet, according to a Bloomberg report. This reportedly marks the first time Microsoft has deployed a major language model in a secure setting, designed to allow spy agencies to analyze top-secret information without connectivity risks—and to allow secure conversations with a chatbot similar to ChatGPT and Microsoft Copilot. But it may also mislead officials if not used properly due to inherent design limitations of AI language models.

GPT-4 is a large language model (LLM) created by OpenAI that attempts to predict the most likely tokens (fragments of encoded data) in a sequence. It can be used to craft computer code and analyze information. When configured as a chatbot (like ChatGPT), GPT-4 can power AI assistants that converse in a human-like manner. Microsoft has a license to use the technology as part of a deal in exchange for large investments it has made in OpenAI.

According to the report, the new AI service (which does not yet publicly have a name) addresses a growing interest among intelligence agencies to use generative AI for processing classified data, while mitigating risks of data breaches or hacking attempts. ChatGPT normally  runs on cloud servers provided by Microsoft, which can introduce data leak and interception risks. Along those lines, the CIA announced its plan to create a ChatGPT-like service last year, but this Microsoft effort is reportedly a separate project.

William Chappell, Microsoft’s chief technology officer for strategic missions and technology, noted to Bloomberg that developing the new system involved 18 months of work to modify an AI supercomputer in Iowa. The modified GPT-4 model is designed to read files provided by its users but cannot access the open Internet. “This is the first time we’ve ever had an isolated version—when isolated means it’s not connected to the Internet—and it’s on a special network that’s only accessible by the US government,” Chappell told Bloomberg.

The new service was activated on Thursday and is now available to about 10,000 individuals in the intelligence community, ready for further testing by relevant agencies. It’s currently “answering questions,” according to Chappell.

One serious drawback of using GPT-4 to analyze important data is that it can potentially confabulate (make up) inaccurate summaries, draw inaccurate conclusions, or provide inaccurate information to its users. Since trained AI neural networks are not databases and operate on statistical probabilities, they make poor factual resources unless augmented with external access to information from another source using a technique such as retrieval augmented generation (RAG).

Given that limitation, it’s entirely possible that GPT-4 could potentially misinform or mislead America’s intelligence agencies if not used properly. We don’t know what oversight the system will have, any limitations on how it can or will be used, or how it can be audited for accuracy. We have reached out to Microsoft for comment.

Microsoft launches AI chatbot for spies Read More »

ai-in-space:-karpathy-suggests-ai-chatbots-as-interstellar-messengers-to-alien-civilizations

AI in space: Karpathy suggests AI chatbots as interstellar messengers to alien civilizations

The new golden record —

Andrej Karpathy muses about sending a LLM binary that could “wake up” and answer questions.

Close shot of Cosmonaut astronaut dressed in a gold jumpsuit and helmet, illuminated by blue and red lights, holding a laptop, looking up.

On Thursday, renowned AI researcher Andrej Karpathy, formerly of OpenAI and Tesla, tweeted a lighthearted proposal that large language models (LLMs) like the one that runs ChatGPT could one day be modified to operate in or be transmitted to space, potentially to communicate with extraterrestrial life. He said the idea was “just for fun,” but with his influential profile in the field, the idea may inspire others in the future.

Karpathy’s bona fides in AI almost speak for themselves, receiving a PhD from Stanford under computer scientist Dr. Fei-Fei Li in 2015. He then became one of the founding members of OpenAI as a research scientist, then served as senior director of AI at Tesla between 2017 and 2022. In 2023, Karpathy rejoined OpenAI for a year, leaving this past February. He’s posted several highly regarded tutorials covering AI concepts on YouTube, and whenever he talks about AI, people listen.

Most recently, Karpathy has been working on a project called “llm.c” that implements the training process for OpenAI’s 2019 GPT-2 LLM in pure C, dramatically speeding up the process and demonstrating that working with LLMs doesn’t necessarily require complex development environments. The project’s streamlined approach and concise codebase sparked Karpathy’s imagination.

“My library llm.c is written in pure C, a very well-known, low-level systems language where you have direct control over the program,” Karpathy told Ars. “This is in contrast to typical deep learning libraries for training these models, which are written in large, complex code bases. So it is an advantage of llm.c that it is very small and simple, and hence much easier to certify as Space-safe.”

Our AI ambassador

In his playful thought experiment (titled “Clearly LLMs must one day run in Space”), Karpathy suggested a two-step plan where, initially, the code for LLMs would be adapted to meet rigorous safety standards, akin to “The Power of 10 Rules” adopted by NASA for space-bound software.

This first part he deemed serious: “We harden llm.c to pass the NASA code standards and style guides, certifying that the code is super safe, safe enough to run in Space,” he wrote in his X post. “LLM training/inference in principle should be super safe – it is just one fixed array of floats, and a single, bounded, well-defined loop of dynamics over it. There is no need for memory to grow or shrink in undefined ways, for recursion, or anything like that.”

That’s important because when software is sent into space, it must operate under strict safety and reliability standards. Karpathy suggests that his code, llm.c, likely meets these requirements because it is designed with simplicity and predictability at its core.

In step 2, once this LLM was deemed safe for space conditions, it could theoretically be used as our AI ambassador in space, similar to historic initiatives like the Arecibo message (a radio message sent from Earth to the Messier 13 globular cluster in 1974) and Voyager’s Golden Record (two identical gold records sent on the two Voyager spacecraft in 1977). The idea is to package the “weights” of an LLM—essentially the model’s learned parameters—into a binary file that could then “wake up” and interact with any potential alien technology that might decipher it.

“I envision it as a sci-fi possibility and something interesting to think about,” he told Ars. “The idea that it is not us that might travel to stars but our AI representatives. Or that the same could be true of other species.”

AI in space: Karpathy suggests AI chatbots as interstellar messengers to alien civilizations Read More »

anthropic-releases-claude-ai-chatbot-ios-app

Anthropic releases Claude AI chatbot iOS app

AI in your pocket —

Anthropic finally comes to mobile, launches plan for teams that includes 200K context window.

The Claude AI iOS app running on an iPhone.

Enlarge / The Claude AI iOS app running on an iPhone.

Anthropic

On Wednesday, Anthropic announced the launch of an iOS mobile app for its Claude 3 AI language models that are similar to OpenAI’s ChatGPT. It also introduced a new subscription tier designed for group collaboration. Before the app launch, Claude was only available through a website, an API, and other apps that integrated Claude through API.

Like the ChatGPT app, Claude’s new mobile app serves as a gateway to chatbot interactions, and it also allows uploading photos for analysis. While it’s only available on Apple devices for now, Anthropic says that an Android app is coming soon.

Anthropic rolled out the Claude 3 large language model (LLM) family in March, featuring three different model sizes: Claude Opus, Claude Sonnet, and Claude Haiku. Currently, the app utilizes Sonnet for regular users and Opus for Pro users.

While Anthropic has been a key player in the AI field for several years, it’s entering the mobile space after many of its competitors have already established footprints on mobile platforms. OpenAI released its ChatGPT app for iOS in May 2023, with an Android version arriving two months later. Microsoft released a Copilot iOS app in January. Google Gemini is available through the Google app on iPhone.

Screenshots of the Claude AI iOS app running on an iPhone.

Enlarge / Screenshots of the Claude AI iOS app running on an iPhone.

Anthropic

The app is freely available to all users of Claude, including those using the free version, subscribers paying $20 per month for Claude Pro, and members of the newly introduced Claude Team plan. Conversation history is saved and shared between the web app version of Claude and the mobile app version after logging in.

Speaking of that Team plan, it’s designed for groups of at least five and is priced at $30 per seat per month. It offers more chat queries (higher rate limits), access to all three Claude models, and a larger context window (200K tokens) for processing lengthy documents or maintaining detailed conversations. It also includes group admin tools and billing management, and users can easily switch between Pro and Team plans.

Anthropic releases Claude AI chatbot iOS app Read More »

apple-releases-eight-small-ai-language-models-aimed-at-on-device-use

Apple releases eight small AI language models aimed at on-device use

Inside the Apple core —

OpenELM mirrors efforts by Microsoft to make useful small AI language models that run locally.

An illustration of a robot hand tossing an apple to a human hand.

Getty Images

In the world of AI, what might be called “small language models” have been growing in popularity recently because they can be run on a local device instead of requiring data center-grade computers in the cloud. On Wednesday, Apple introduced a set of tiny source-available AI language models called OpenELM that are small enough to run directly on a smartphone. They’re mostly proof-of-concept research models for now, but they could form the basis of future on-device AI offerings from Apple.

Apple’s new AI models, collectively named OpenELM for “Open-source Efficient Language Models,” are currently available on the Hugging Face under an Apple Sample Code License. Since there are some restrictions in the license, it may not fit the commonly accepted definition of “open source,” but the source code for OpenELM is available.

On Tuesday, we covered Microsoft’s Phi-3 models, which aim to achieve something similar: a useful level of language understanding and processing performance in small AI models that can run locally. Phi-3-mini features 3.8 billion parameters, but some of Apple’s OpenELM models are much smaller, ranging from 270 million to 3 billion parameters in eight distinct models.

In comparison, the largest model yet released in Meta’s Llama 3 family includes 70 billion parameters (with a 400 billion version on the way), and OpenAI’s GPT-3 from 2020 shipped with 175 billion parameters. Parameter count serves as a rough measure of AI model capability and complexity, but recent research has focused on making smaller AI language models as capable as larger ones were a few years ago.

The eight OpenELM models come in two flavors: four as “pretrained” (basically a raw, next-token version of the model) and four as instruction-tuned (fine-tuned for instruction following, which is more ideal for developing AI assistants and chatbots):

OpenELM features a 2048-token maximum context window. The models were trained on the publicly available datasets RefinedWeb, a version of PILE with duplications removed, a subset of RedPajama, and a subset of Dolma v1.6, which Apple says totals around 1.8 trillion tokens of data. Tokens are fragmented representations of data used by AI language models for processing.

Apple says its approach with OpenELM includes a “layer-wise scaling strategy” that reportedly allocates parameters more efficiently across each layer, saving not only computational resources but also improving the model’s performance while being trained on fewer tokens. According to Apple’s released white paper, this strategy has enabled OpenELM to achieve a 2.36 percent improvement in accuracy over Allen AI’s OLMo 1B (another small language model) while requiring half as many pre-training tokens.

An table comparing OpenELM with other small AI language models in a similar class, taken from the OpenELM research paper by Apple.

Enlarge / An table comparing OpenELM with other small AI language models in a similar class, taken from the OpenELM research paper by Apple.

Apple

Apple also released the code for CoreNet, a library it used to train OpenELM—and it also included reproducible training recipes that allow the weights (neural network files) to be replicated, which is unusual for a major tech company so far. As Apple says in its OpenELM paper abstract, transparency is a key goal for the company: “The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks.”

By releasing the source code, model weights, and training materials, Apple says it aims to “empower and enrich the open research community.” However, it also cautions that since the models were trained on publicly sourced datasets, “there exists the possibility of these models producing outputs that are inaccurate, harmful, biased, or objectionable in response to user prompts.”

While Apple has not yet integrated this new wave of AI language model capabilities into its consumer devices, the upcoming iOS 18 update (expected to be revealed in June at WWDC) is rumored to include new AI features that utilize on-device processing to ensure user privacy—though the company may potentially hire Google or OpenAI to handle more complex, off-device AI processing to give Siri a long-overdue boost.

Apple releases eight small AI language models aimed at on-device use Read More »

microsoft’s-phi-3-shows-the-surprising-power-of-small,-locally-run-ai-language-models

Microsoft’s Phi-3 shows the surprising power of small, locally run AI language models

small packages —

Microsoft’s 3.8B parameter Phi-3 may rival GPT-3.5, signaling a new era of “small language models.”

An illustration of lots of information being compressed into a smartphone with a funnel.

Getty Images

On Tuesday, Microsoft announced a new, freely available lightweight AI language model named Phi-3-mini, which is simpler and less expensive to operate than traditional large language models (LLMs) like OpenAI’s GPT-4 Turbo. Its small size is ideal for running locally, which could bring an AI model of similar capability to the free version of ChatGPT to a smartphone without needing an Internet connection to run it.

The AI field typically measures AI language model size by parameter count. Parameters are numerical values in a neural network that determine how the language model processes and generates text. They are learned during training on large datasets and essentially encode the model’s knowledge into quantified form. More parameters generally allow the model to capture more nuanced and complex language-generation capabilities but also require more computational resources to train and run.

Some of the largest language models today, like Google’s PaLM 2, have hundreds of billions of parameters. OpenAI’s GPT-4 is rumored to have over a trillion parameters but spread over eight 220-billion parameter models in a mixture-of-experts configuration. Both models require heavy-duty data center GPUs (and supporting systems) to run properly.

In contrast, Microsoft aimed small with Phi-3-mini, which contains only 3.8 billion parameters and was trained on 3.3 trillion tokens. That makes it ideal to run on consumer GPU or AI-acceleration hardware that can be found in smartphones and laptops. It’s a follow-up of two previous small language models from Microsoft: Phi-2, released in December, and Phi-1, released in June 2023.

A chart provided by Microsoft showing Phi-3 performance on various benchmarks.

Enlarge / A chart provided by Microsoft showing Phi-3 performance on various benchmarks.

Phi-3-mini features a 4,000-token context window, but Microsoft also introduced a 128K-token version called “phi-3-mini-128K.” Microsoft has also created 7-billion and 14-billion parameter versions of Phi-3 that it plans to release later that it claims are “significantly more capable” than phi-3-mini.

Microsoft says that Phi-3 features overall performance that “rivals that of models such as Mixtral 8x7B and GPT-3.5,” as detailed in a paper titled “Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone.” Mixtral 8x7B, from French AI company Mistral, utilizes a mixture-of-experts model, and GPT-3.5 powers the free version of ChatGPT.

“[Phi-3] looks like it’s going to be a shockingly good small model if their benchmarks are reflective of what it can actually do,” said AI researcher Simon Willison in an interview with Ars. Shortly after providing that quote, Willison downloaded Phi-3 to his Macbook laptop locally and said, “I got it working, and it’s GOOD” in a text message sent to Ars.

A screenshot of Phi-3-mini running locally on Simon Willison's Macbook.

Enlarge / A screenshot of Phi-3-mini running locally on Simon Willison’s Macbook.

Simon Willison

Most models that run on a local device still need hefty hardware,” says Willison. “Phi-3-mini runs comfortably with less than 8GB of RAM, and can churn out tokens at a reasonable speed even on just a regular CPU. It’s licensed MIT and should work well on a $55 Raspberry Pi—and the quality of results I’ve seen from it so far are comparable to models 4x larger.

How did Microsoft cram a capability potentially similar to GPT-3.5, which has at least 175 billion parameters, into such a small model? Its researchers found the answer by using carefully curated, high-quality training data they initially pulled from textbooks. “The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered web data and synthetic data,” writes Microsoft. “The model is also further aligned for robustness, safety, and chat format.”

Much has been written about the potential environmental impact of AI models and datacenters themselves, including on Ars. With new techniques and research, it’s possible that machine learning experts may continue to increase the capability of smaller AI models, replacing the need for larger ones—at least for everyday tasks. That would theoretically not only save money in the long run but also require far less energy in aggregate, dramatically decreasing AI’s environmental footprint. AI models like Phi-3 may be a step toward that future if the benchmark results hold up to scrutiny.

Phi-3 is immediately available on Microsoft’s cloud service platform Azure, as well as through partnerships with machine learning model platform Hugging Face and Ollama, a framework that allows models to run locally on Macs and PCs.

Microsoft’s Phi-3 shows the surprising power of small, locally run AI language models Read More »

llms-keep-leaping-with-llama-3,-meta’s-newest-open-weights-ai-model

LLMs keep leaping with Llama 3, Meta’s newest open-weights AI model

computer-powered word generator —

Zuckerberg says new AI model “was still learning” when Meta stopped training.

A group of pink llamas on a pixelated background.

On Thursday, Meta unveiled early versions of its Llama 3 open-weights AI model that can be used to power text composition, code generation, or chatbots. It also announced that its Meta AI Assistant is now available on a website and is going to be integrated into its major social media apps, intensifying the company’s efforts to position its products against other AI assistants like OpenAI’s ChatGPT, Microsoft’s Copilot, and Google’s Gemini.

Like its predecessor, Llama 2, Llama 3 is notable for being a freely available, open-weights large language model (LLM) provided by a major AI company. Llama 3 technically does not quality as “open source” because that term has a specific meaning in software (as we have mentioned in other coverage), and the industry has not yet settled on terminology for AI model releases that ship either code or weights with restrictions (you can read Llama 3’s license here) or that ship without providing training data. We typically call these releases “open weights” instead.

At the moment, Llama 3 is available in two parameter sizes: 8 billion (8B) and 70 billion (70B), both of which are available as free downloads through Meta’s website with a sign-up. Llama 3 comes in two versions: pre-trained (basically the raw, next-token-prediction model) and instruction-tuned (fine-tuned to follow user instructions). Each has a 8,192 token context limit.

A screenshot of the Meta AI Assistant website on April 18, 2024.

Enlarge / A screenshot of the Meta AI Assistant website on April 18, 2024.

Benj Edwards

Meta trained both models on two custom-built, 24,000-GPU clusters. In a podcast interview with Dwarkesh Patel, Meta CEO Mark Zuckerberg said that the company trained the 70B model with around 15 trillion tokens of data. Throughout the process, the model never reached “saturation” (that is, it never hit a wall in terms of capability increases). Eventually, Meta pulled the plug and moved on to training other models.

“I guess our prediction going in was that it was going to asymptote more, but even by the end it was still leaning. We probably could have fed it more tokens, and it would have gotten somewhat better,” Zuckerberg said on the podcast.

Meta also announced that it is currently training a 400B parameter version of Llama 3, which some experts like Nvidia’s Jim Fan think may perform in the same league as GPT-4 Turbo, Claude 3 Opus, and Gemini Ultra on benchmarks like MMLU, GPQA, HumanEval, and MATH.

Speaking of benchmarks, we have devoted many words in the past to explaining how frustratingly imprecise benchmarks can be when applied to large language models due to issues like training contamination (that is, including benchmark test questions in the training dataset), cherry-picking on the part of vendors, and an inability to capture AI’s general usefulness in an interactive session with chat-tuned models.

But, as expected, Meta provided some benchmarks for Llama 3 that list results from MMLU (undergraduate level knowledge), GSM-8K (grade-school math), HumanEval (coding), GPQA (graduate-level questions), and MATH (math word problems). These show the 8B model performing well compared to open-weights models like Google’s Gemma 7B and Mistral 7B Instruct, and the 70B model also held its own against Gemini Pro 1.5 and Claude 3 Sonnet.

A chart of instruction-tuned Llama 3 8B and 70B benchmarks provided by Meta.

Enlarge / A chart of instruction-tuned Llama 3 8B and 70B benchmarks provided by Meta.

Meta says that the Llama 3 model has been enhanced with capabilities to understand coding (like Llama 2) and, for the first time, has been trained with both images and text—though it currently outputs only text. According to Reuters, Meta Chief Product Officer Chris Cox noted in an interview that more complex processing abilities (like executing multi-step plans) are expected in future updates to Llama 3, which will also support multimodal outputs—that is, both text and images.

Meta plans to host the Llama 3 models on a range of cloud platforms, making them accessible through AWS, Databricks, Google Cloud, and other major providers.

Also on Thursday, Meta announced that Llama 3 will become the new basis of the Meta AI virtual assistant, which the company first announced in September. The assistant will appear prominently in search features for Facebook, Instagram, WhatsApp, Messenger, and the aforementioned dedicated website that features a design similar to ChatGPT, including the ability to generate images in the same interface. The company also announced a partnership with Google to integrate real-time search results into the Meta AI assistant, adding to an existing partnership with Microsoft’s Bing.

LLMs keep leaping with Llama 3, Meta’s newest open-weights AI model Read More »

words-are-flowing-out-like-endless-rain:-recapping-a-busy-week-of-llm-news

Words are flowing out like endless rain: Recapping a busy week of LLM news

many things frequently —

Gemini 1.5 Pro launch, new version of GPT-4 Turbo, new Mistral model, and more.

An image of a boy amazed by flying letters.

Enlarge / An image of a boy amazed by flying letters.

Some weeks in AI news are eerily quiet, but during others, getting a grip on the week’s events feels like trying to hold back the tide. This week has seen three notable large language model (LLM) releases: Google Gemini Pro 1.5 hit general availability with a free tier, OpenAI shipped a new version of GPT-4 Turbo, and Mistral released a new openly licensed LLM, Mixtral 8x22B. All three of those launches happened within 24 hours starting on Tuesday.

With the help of software engineer and independent AI researcher Simon Willison (who also wrote about this week’s hectic LLM launches on his own blog), we’ll briefly cover each of the three major events in roughly chronological order, then dig into some additional AI happenings this week.

Gemini Pro 1.5 general release

On Tuesday morning Pacific time, Google announced that its Gemini 1.5 Pro model (which we first covered in February) is now available in 180-plus countries, excluding Europe, via the Gemini API in a public preview. This is Google’s most powerful public LLM so far, and it’s available in a free tier that permits up to 50 requests a day.

It supports up to 1 million tokens of input context. As Willison notes in his blog, Gemini 1.5 Pro’s API price at $7/million input tokens and $21/million output tokens costs a little less than GPT-4 Turbo (priced at $10/million in and $30/million out) and more than Claude 3 Sonnet (Anthropic’s mid-tier LLM, priced at $3/million in and $15/million out).

Notably, Gemini 1.5 Pro includes native audio (speech) input processing that allows users to upload audio or video prompts, a new File API for handling files, the ability to add custom system instructions (system prompts) for guiding model responses, and a JSON mode for structured data extraction.

“Majorly Improved” GPT-4 Turbo launch

A GPT-4 Turbo performance chart provided by OpenAI.

Enlarge / A GPT-4 Turbo performance chart provided by OpenAI.

Just a bit later than Google’s 1.5 Pro launch on Tuesday, OpenAI announced that it was rolling out a “majorly improved” version of GPT-4 Turbo (a model family originally launched in November) called “gpt-4-turbo-2024-04-09.” It integrates multimodal GPT-4 Vision processing (recognizing the contents of images) directly into the model, and it initially launched through API access only.

Then on Thursday, OpenAI announced that the new GPT-4 Turbo model had just become available for paid ChatGPT users. OpenAI said that the new model improves “capabilities in writing, math, logical reasoning, and coding” and shared a chart that is not particularly useful in judging capabilities (that they later updated). The company also provided an example of an alleged improvement, saying that when writing with ChatGPT, the AI assistant will use “more direct, less verbose, and use more conversational language.”

The vague nature of OpenAI’s GPT-4 Turbo announcements attracted some confusion and criticism online. On X, Willison wrote, “Who will be the first LLM provider to publish genuinely useful release notes?” In some ways, this is a case of “AI vibes” again, as we discussed in our lament about the poor state of LLM benchmarks during the debut of Claude 3. “I’ve not actually spotted any definite differences in quality [related to GPT-4 Turbo],” Willison told us directly in an interview.

The update also expanded GPT-4’s knowledge cutoff to April 2024, although some people are reporting it achieves this through stealth web searches in the background, and others on social media have reported issues with date-related confabulations.

Mistral’s mysterious Mixtral 8x22B release

An illustration of a robot holding a French flag, figuratively reflecting the rise of AI in France due to Mistral. It's hard to draw a picture of an LLM, so a robot will have to do.

Enlarge / An illustration of a robot holding a French flag, figuratively reflecting the rise of AI in France due to Mistral. It’s hard to draw a picture of an LLM, so a robot will have to do.

Not to be outdone, on Tuesday night, French AI company Mistral launched its latest openly licensed model, Mixtral 8x22B, by tweeting a torrent link devoid of any documentation or commentary, much like it has done with previous releases.

The new mixture-of-experts (MoE) release weighs in with a larger parameter count than its previously most-capable open model, Mixtral 8x7B, which we covered in December. It’s rumored to potentially be as capable as GPT-4 (In what way, you ask? Vibes). But that has yet to be seen.

“The evals are still rolling in, but the biggest open question right now is how well Mixtral 8x22B shapes up,” Willison told Ars. “If it’s in the same quality class as GPT-4 and Claude 3 Opus, then we will finally have an openly licensed model that’s not significantly behind the best proprietary ones.”

This release has Willison most excited, saying, “If that thing really is GPT-4 class, it’s wild, because you can run that on a (very expensive) laptop. I think you need 128GB of MacBook RAM for it, twice what I have.”

The new Mixtral is not listed on Chatbot Arena yet, Willison noted, because Mistral has not released a fine-tuned model for chatting yet. It’s still a raw, predict-the-next token LLM. “There’s at least one community instruction tuned version floating around now though,” says Willison.

Chatbot Arena Leaderboard shake-ups

A Chatbot Arena Leaderboard screenshot taken on April 12, 2024.

Enlarge / A Chatbot Arena Leaderboard screenshot taken on April 12, 2024.

Benj Edwards

This week’s LLM news isn’t limited to just the big names in the field. There have also been rumblings on social media about the rising performance of open source models like Cohere’s Command R+, which reached position 6 on the LMSYS Chatbot Arena Leaderboard—the highest-ever ranking for an open-weights model.

And for even more Chatbot Arena action, apparently the new version of GPT-4 Turbo is proving competitive with Claude 3 Opus. The two are still in a statistical tie, but GPT-4 Turbo recently pulled ahead numerically. (In March, we reported when Claude 3 first numerically pulled ahead of GPT-4 Turbo, which was then the first time another AI model had surpassed a GPT-4 family model member on the leaderboard.)

Regarding this fierce competition among LLMs—of which most of the muggle world is unaware and will likely never be—Willison told Ars, “The past two months have been a whirlwind—we finally have not just one but several models that are competitive with GPT-4.” We’ll see if OpenAI’s rumored release of GPT-5 later this year will restore the company’s technological lead, we note, which once seemed insurmountable. But for now, Willison says, “OpenAI are no longer the undisputed leaders in LLMs.”

Words are flowing out like endless rain: Recapping a busy week of LLM news Read More »