commercial crew

nasa-is-about-to-make-its-most-important-safety-decision-in-nearly-a-generation

NASA is about to make its most important safety decision in nearly a generation

Boeing's Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

Enlarge / Boeing’s Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

As soon as this week, NASA officials will make perhaps the agency’s most consequential safety decision in human spaceflight in 21 years.

NASA astronauts Butch Wilmore and Suni Williams are nearly 10 weeks into a test flight that was originally set to last a little more than one week. The two retired US Navy test pilots were the first people to fly into orbit on Boeing’s Starliner spacecraft when it launched on June 5. Now, NASA officials aren’t sure Starliner is safe enough to bring the astronauts home.

Three of the managers at the center of the pending decision, Ken Bowersox and Steve Stich from NASA and Boeing’s LeRoy Cain, either had key roles in the ill-fated final flight of Space Shuttle Columbia in 2003 or felt the consequences of the accident.

At that time, officials misjudged the risk. Seven astronauts died, and the Space Shuttle Columbia was destroyed as it reentered the atmosphere over Texas. Bowersox, Stich, and Cain weren’t the people making the call on the health of Columbia‘s heat shield in 2003, but they had front-row seats to the consequences.

Bowersox was an astronaut on the International Space Station when NASA lost Columbia. He and his crewmates were waiting to hitch a ride home on the next Space Shuttle mission, which was delayed two-and-a-half years in the wake of the Columbia accident. Instead, Bowersox’s crew came back to Earth later that year on a Russian Soyuz capsule. After retiring from the astronaut corps, Bowersox worked at SpaceX and is now the head of NASA’s spaceflight operations directorate.

Stich and Cain were NASA flight directors in 2003, and they remain well-respected in human spaceflight circles. Stich is now the manager of NASA’s commercial crew program, and Cain is now a Boeing employee and chair of the company’s Starliner mission director. For the ongoing Starliner mission, Bowersox, Stich, and Cain are in the decision-making chain.

All three joined NASA in the late 1980s, soon after the Challenger accident. They have seen NASA attempt to reshape its safety culture after both of NASA’s fatal Space Shuttle tragedies. After Challenger, NASA’s astronaut office had a more central role in safety decisions, and the agency made efforts to listen to dissent from engineers. Still, human flaws are inescapable, and NASA’s culture was unable to alleviate them during Columbia‘s last flight in 2003.

NASA knew launching a Space Shuttle in cold weather reduced the safety margin on its solid rocket boosters, which led to the Challenger accident. And shuttle managers knew foam routinely fell off the external fuel tank. In a near-miss, one of these foam fragments hit a shuttle booster but didn’t damage it, just two flights prior to Columbia‘s STS-107 mission.

“I have wondered if some in management roles today that were here when we lost Challenger and Columbia remember that in both of those tragedies, there were those that were not comfortable proceeding,” Milt Heflin, a retired NASA flight director who spent 47 years at the agency, wrote in an email to Ars. “Today, those memories are still around.”

“I suspect Stich and Cain are paying attention to the right stuff,” Heflin wrote.

The question facing NASA’s leadership today? Should the two astronauts return to Earth from the International Space Station in Boeing’s Starliner spacecraft, with its history of thruster failures and helium leaks, or should they come home on a SpaceX Dragon capsule?

Under normal conditions, the first option is the choice everyone at NASA would like to make. It would be least disruptive to operations at the space station and would potentially maintain a clearer future for Boeing’s Starliner program, which NASA would like to become operational for regular crew rotation flights to the station.

But some people at NASA aren’t convinced this is the right call. Engineers still don’t fully understand why five of the Starliner spacecraft’s thrusters overheated and lost power as the capsule approached the space station for docking in June. Four of these five control jets are now back in action with near-normal performance, but managers would like to be sure the same thrusters—and maybe more—won’t fail again as Starliner departs the station and heads for reentry.

NASA is about to make its most important safety decision in nearly a generation Read More »

boeing’s-starliner-has-cost-at-least-twice-as-much-as-spacex’s-crew-dragon

Boeing’s Starliner has cost at least twice as much as SpaceX’s Crew Dragon

$$$ —

“Risk remains that we may record additional losses in future periods.”

A Starliner spacecraft departs Boeing's spacecraft processing facility before the program's first orbital test flight in 2019.

Enlarge / A Starliner spacecraft departs Boeing’s spacecraft processing facility before the program’s first orbital test flight in 2019.

Boeing announced another financial charge Wednesday for its troubled Starliner commercial crew program, bringing the company’s total losses on Starliner to $1.6 billion.

In its quarterly earnings report, Boeing registered a $125 million loss on the Starliner program, blaming delays on the spacecraft’s still-ongoing Crew Flight Test, the program’s first mission to carry astronauts into orbit. This is not the first time Boeing has reported a financial loss on Starliner. Including the new charge announced Wednesday, Boeing has now suffered an overall loss on the program of nearly $1.6 billion since 2016.

These losses have generally been caused by schedule delays and additional work to solve problems on Starliner. When NASA awarded Boeing a $4.2 billion contract to complete development of the Starliner spacecraft a decade ago, the aerospace contractor projected the capsule would be ready to fly astronauts by the end of 2017.

It turns out the Crew Flight Test didn’t launch until June 5, 2024.

In a separate announcement Wednesday, Boeing named Kelly Ortberg as the company’s CEO, effective August 8. He will replace Dave Calhoun, whose tenure as Boeing’s chief executive was marred by scandals with the 737 MAX passenger airplane. Ortberg was previously CEO of Rockwell Collins, now known as Collins Aerospace, a major supplier of avionics and other parts for the aerospace industry.

Boeing is on the hook

When NASA selected Boeing and SpaceX to develop the Starliner and Crew Dragon spacecraft for astronaut missions, the agency signed fixed-price agreements with each contractor. These fixed-price contracts mean the contractors, not the government, are responsible for paying for cost overruns.

So, with each Starliner delay since 2016, Boeing’s financial statements registered new losses. It will be Boeing’s burden to pay for solutions to problems discovered on Starliner’s ongoing crew test flight. That’s why Boeing warned investors Wednesday that it could lose more money on the Starliner program in the coming months and years.

“Risk remains that we may record additional losses in future periods,” Boeing wrote in an SEC filing.

Taking into account the financial loss revealed Wednesday, NASA and Boeing have committed at least $6.7 billion to the Starliner program since 2010, including expenses for spacecraft development, testing, and the government’s payment for six operational crew flights with Starliner.

It’s instructive to compare these costs with those of SpaceX’s Crew Dragon program, which started flying astronauts in 2020. All of NASA’s contracts with SpaceX for a similar scope of work on the Crew Dragon program totaled more than $3.1 billion, but any expenses paid by SpaceX are unknown because it is a privately held company.

SpaceX has completed all six of its original crew flights for NASA, while Boeing is at least a year away from starting operational service with Starliner. In light of Boeing’s delays, NASA extended SpaceX’s commercial crew contract to cover eight additional round-trip flights to the space station through the end of the 2020s.

Boeing’s leaders blame the structure of fixed-price contracts for the losses on the Starliner program. The aerospace giant has similar fixed-price contracts with the Pentagon to develop new two new Air Force One presidential transport aircraft, Air Force refueling tankers, refueling drones, and trainer airplanes. Boeing has reported losses on those programs, too.

SpaceX, meanwhile, has excelled with fixed-price contracts, which NASA uses on several elements of the Artemis program aiming to land astronauts on the Moon. For example, NASA selected SpaceX and Blue Origin, Jeff Bezos’s space company, for fixed-price contracts to develop human-rated lunar landers. SpaceX also won a fixed-price contract to provide NASA with a vehicle to deorbit the International Space Station at the end of its life.

Decision time

The first crew mission aboard Boeing’s Starliner spacecraft is expected to end sometime in August with the return of NASA astronauts Butch Wilmore and Suni Williams from the International Space Station. A successful conclusion of the test flight would pave the way for Boeing to start launching its backlog of six operational crew missions to the space station.

But it hasn’t been that simple. The Starliner test flight was initially expected to stay at the space station for at least eight days. Before the launch in June, NASA and Boeing officials left open the possibility for a mission extension, but managers didn’t anticipate Starliner to still be docked at the space station more than 50 days later.

Mission managers ordered Starliner to stay at the station through the rest of June and July while engineers investigated problems in the spacecraft’s propulsion system. There are helium leaks in Starliner’s service module, and the craft’s small maneuvering thrusters overheated during the final approach for docking at the space station.

NASA, which oversees Boeing’s commercial crew contract, is getting close to clearing Starliner for return to Earth, perhaps as soon as next week. On Saturday, ground controllers commanded Starliner to test-fire its maneuvering thrusters, and 27 of the 28 jets appeared to function normally despite overheating earlier in the mission. Despite the leaks, the spacecraft also has ample helium to pressurize its propulsion system, NASA officials said.

Before giving final approval for Starliner to undock from the space station and return to Earth, senior NASA leaders will convene a readiness review to go over the results of the investigation into the propulsion issues.

Boeing has some work to do to find a long-term fix for the helium leaks and overheating thrusters on future Starliner missions. NASA officials hoped a flawless Starliner test flight would allow the agency to formally certify the capsule for regular six-month expeditions to the space station by the end of the year, allowing Boeing to launch the first operational Starliner flight, known as Starliner-1, in February 2025.

Last week, NASA announced a six-month delay for the Starliner-1 mission to allow more time to solve the problems the spacecraft experienced on the crew test flight.

Boeing’s Starliner has cost at least twice as much as SpaceX’s Crew Dragon Read More »

spacex-moving-dragon-splashdowns-to-pacific-to-solve-falling-debris-problem

SpaceX moving Dragon splashdowns to Pacific to solve falling debris problem

A Crew Dragon spacecraft is seen docked at the International Space Station in 2022. The section of the spacecraft on the left is the pressurized capsule, while the rear section, at right, is the trunk.

Enlarge / A Crew Dragon spacecraft is seen docked at the International Space Station in 2022. The section of the spacecraft on the left is the pressurized capsule, while the rear section, at right, is the trunk.

NASA

Sometime next year, SpaceX will begin returning its Dragon crew and cargo capsules to splashdowns in the Pacific Ocean and end recoveries of the spacecraft off the coast of Florida.

This will allow SpaceX to make changes to the way it brings Dragons back to Earth and eliminate the risk, however tiny, that a piece of debris from the ship’s trunk section might fall on someone and cause damage, injury, or death.

“After five years of splashing down off the coast of Florida, we’ve decided to shift Dragon recovery operations back to the West Coast,” said Sarah Walker, SpaceX’s director of Dragon mission management.

Public safety

In the past couple of years, landowners have discovered debris from several Dragon missions on their property, and the fragments all came from the spacecraft’s trunk, an unpressurized section mounted behind the capsule as it carries astronauts or cargo on flights to and from the International Space Station.

SpaceX returned its first 21 Dragon cargo missions to splashdowns in the Pacific Ocean southwest of Los Angeles. When an upgraded human-rated version of Dragon started flying in 2019, SpaceX moved splashdowns to the Atlantic Ocean and the Gulf of Mexico to be closer to the company’s refurbishment and launch facilities at Cape Canaveral, Florida. The benefits of landing near Florida included a faster handover of astronauts and time-sensitive cargo back to NASA and shorter turnaround times between missions.

The old version of Dragon, known as Dragon 1, separated its trunk after the deorbit burn, allowing the trunk to fall into the Pacific. With the new version of Dragon, called Dragon 2, SpaceX changed the reentry profile to jettison the trunk before the deorbit burn. This meant that the trunk remained in orbit after each Dragon mission, while the capsule reentered the atmosphere on a guided trajectory. The trunk, which is made of composite materials and lacks a propulsion system, usually takes a few weeks or a few months to fall back into the atmosphere and doesn’t have control of where or when it reenters.

Air resistance from the rarefied upper atmosphere gradually slows the trunk’s velocity enough to drop it out of orbit, and the amount of aerodynamic drag the trunk sees is largely determined by fluctuations in solar activity.

SpaceX and NASA, which funded a large portion of the Dragon spacecraft’s development, initially determined the trunk would entirely burn up when it reentered the atmosphere and would pose no threat of surviving reentry and causing injuries or damaging property. However, that turned out to not be the case.

In May, a 90-pound chunk of a SpaceX Dragon spacecraft that departed the International Space Station fell on the property of a “glamping” resort in North Carolina. At the same time, a homeowner in a nearby town found a smaller piece of material that also appeared to be from the same Dragon mission.

These events followed the discovery in April of another nearly 90-pound piece of debris from a Dragon capsule on a farm in the Canadian province of Saskatchewan. SpaceX and NASA later determined the debris fell from orbit in February, and earlier this month, SpaceX employees came to the farm to retrieve the wreckage, according to CBC.

Pieces of a Dragon spacecraft also fell over Colorado last year, and a farmer in Australia found debris from a Dragon capsule on his land in 2022.

SpaceX moving Dragon splashdowns to Pacific to solve falling debris problem Read More »

nasa-nears-decision-on-what-to-do-with-boeing’s-troubled-starliner-spacecraft

NASA nears decision on what to do with Boeing’s troubled Starliner spacecraft

Boeing's Strainer spacecraft is seen docked at the International Space Station in this picture taken July 3.

Enlarge / Boeing’s Strainer spacecraft is seen docked at the International Space Station in this picture taken July 3.

The astronauts who rode Boeing’s Starliner spacecraft to the International Space Station last month still don’t know when they will return to Earth.

Astronauts Butch Wilmore and Suni Williams have been in space for 51 days, six weeks longer than originally planned, as engineers on the groundwork through problems with Starliner’s propulsion system.

The problems are twofold. The spacecraft’s reaction control thrusters overheated, and some of them shut off as Starliner approached the space station June 6. A separate, although perhaps related, problem involves helium leaks in the craft’s propulsion system.

On Thursday, NASA and Boeing managers said they still plan to bring Wilmore and Williams home on the Starliner spacecraft. In the last few weeks, ground teams completed testing of a thruster on a test stand at White Sands, New Mexico. This weekend, Boeing and NASA plan to fire the spacecraft’s thrusters in orbit to check their performance while docked at the space station.

“I think we’re starting to close in on those final pieces of flight rationale to make sure that we can come home safely, and that’s our primary focus right now,” Stich said.

The problems have led to speculation that NASA might decide to return Wilmore and Williams to Earth in a SpaceX Crew Dragon spacecraft. There’s one Crew Dragon currently docked at the station, and another one is slated to launch with a fresh crew next month. Steve Stich, manager of NASA’s commercial crew program, said the agency has looked at backup plans to bring the Starliner crew home on a SpaceX capsule, but the main focus is still to have the astronauts fly home aboard Starliner.

“Our prime option is to complete the mission,” Stich said. “There are a lot of good reasons to complete this mission and bring Butch and Suni home on Starliner. Starliner was designed, as a spacecraft, to have the crew in the cockpit.”

Starliner launched from Cape Canaveral Space Force Station in Florida on June 5. Wilmore and Williams are the first astronauts to fly into space on Boeing’s commercial crew capsule, and this test flight is intended to pave the way for future operational flights to rotate crews of four to and from the International Space Station.

Once NASA fully certifies Starliner for operational missions, the agency will have two human-rated spaceships for flights to the station. SpaceX’s Crew Dragon has been flying astronauts since 2020.

Tests, tests, and more tests

NASA has extended the duration of the Starliner test flight to conduct tests and analyze data in an effort to gain confidence in the spacecraft’s ability to safely bring its crew home and to better understand the root causes of the overheating thrusters and helium leaks. These problems are inside Starliner’s service module, which is jettisoned to burn up in the atmosphere during reentry, while the reusable crew module, with the astronauts inside, parachutes to an airbag-cushioned landing.

The most important of these tests was a series of test-firings of a Starliner thruster on the ground. This thruster was taken from a set of hardware slated to fly on a future Starlink mission, and engineers put it through a stress test, firing it numerous times to replicate the sequence of pulses it would see in flight. The testing simulated two sequences of flying up to the space station, and five sequences the thruster would execute during undocking and a deorbit burn for return to Earth.

“This thruster has seen quite a bit of pulses, maybe even more than what we would anticipate we would see during a flight, and more aggressive in terms of two uphills and five downhills,” Stich said. “What we did see in the thruster is the same kind of thrust degradation that we’re seeing on orbit. In a number of the thrusters (on Starliner), we’re seeing reduced thrust, which is important.”

Starliner’s flight computer shut off five of the spacecraft’s 28 reaction control system thrusters, produced by Aerojet Rocketdyne, during the rendezvous with the space station last month. Four of the five thrusters were recovered after overheating and losing thrust, but officials have declared one of the thrusters unusable.

The thruster tested on the ground showed similar behavior. Inspections of the thruster at White Sands showed bulging in a Teflon seal in an oxidizer valve, which could restrict the flow of nitrogen tetroxide propellant. The thrusters, each generating about 85 pounds of thrust, consume the nitrogen tetroxide, or NTO, oxidizer and mix it with hydrazine fuel for combustion.

A poppet valve, similar to an inflation valve on a tire, is designed to open and close to allow nitrogen tetroxide to flow into the thruster.

“That poppet has a Teflon seal at the end of it,” Nappi said. “Through the heating and natural vacuum that occurs with the thruster firing, that poppet seal was deformed and actually bulged out a little bit.”

Stich said engineers are evaluating the integrity of the Teflon seal to determine if it could remain intact through the undocking and deorbit burn of the Starliner spacecraft. The thrusters aren’t needed while Starliner is attached to the space station.

“Could that particular seal survive the rest of the flight? That’s the important part,” Stich said.

NASA nears decision on what to do with Boeing’s troubled Starliner spacecraft Read More »

nasa-update-on-starliner-thruster-issues:-this-is-fine

NASA update on Starliner thruster issues: This is fine

Boeing's Starliner spacecraft on final approach to the International Space Station last month.

Enlarge / Boeing’s Starliner spacecraft on final approach to the International Space Station last month.

Before clearing Boeing’s Starliner crew capsule to depart the International Space Station and head for Earth, NASA managers want to ensure the spacecraft’s problematic control thrusters can help guide the ship’s two-person crew home.

The two astronauts who launched June 5 on the Starliner spacecraft’s first crew test flight agree with the managers, although they said Wednesday that they’re comfortable with flying the capsule back to Earth if there’s any emergency that might require evacuation of the space station.

NASA astronauts Butch Wilmore and Suni Williams were supposed to return to Earth weeks ago, but managers are keeping them at the station as engineers continue probing thruster problems and helium leaks that have plagued the mission since its launch.

“This is a tough business that we’re in,” Wilmore, Starliner’s commander, told reporters Wednesday in a news conference from the space station. “Human spaceflight is not easy in any regime, and there have been multiple issues with any spacecraft that’s ever been designed, and that’s the nature of what we do.”

Five of the 28 reaction control system thrusters on Starliner’s service module dropped offline as the spacecraft approached the space station last month. Starliner’s flight software disabled the five control jets when they started overheating and losing thrust. Four of the thrusters were later recovered, although some couldn’t reach their full power levels as Starliner came in for docking.

Wilmore, who took over manual control for part of Starliner’s approach to the space station, said he could sense the spacecraft’s handling qualities diminish as thrusters temporarily failed. “You could tell it was degraded, but still, it was impressive,” he said. Starliner ultimately docked to the station in autopilot mode.

In mid-June, the Starliner astronauts hot-fired the thrusters again, and their thrust levels were closer to normal.

“What we want to know is that the thrusters can perform; if whatever their percentage of thrust is, we can put it into a package that will get us a deorbit burn,” said Williams, a NASA astronaut serving as Starliner’s pilot. “That’s the main purpose that we need [for] the service module: to get us a good deorbit burn so that we can come back.”

These small thrusters aren’t necessary for the deorbit burn itself, which will use a different set of engines to slow Starliner’s velocity enough for it to drop out of orbit and head for landing. But Starliner needs enough of the control jets working to maneuver into the proper orientation for the deorbit firing.

This test flight is the first time astronauts have flown in space on Boeing’s Starliner spacecraft, following years of delays and setbacks. Starliner is NASA’s second human-rated commercial crew capsule, and it’s poised to join SpaceX’s Crew Dragon in a rotation of missions ferrying astronauts to and from the space station through the rest of the decade.

But first, Boeing and NASA need to safely complete the Starliner test flight and resolve the thruster problems and helium leaks plaguing the spacecraft before moving forward with operational crew rotation missions. There’s a Crew Dragon spacecraft currently docked to the station, but Steve Stich, NASA’s commercial crew program manager, told reporters Wednesday that, right now, Wilmore and Williams still plan to come home on Starliner.

“The beautiful thing about the commercial crew program is that we have two vehicles, two different systems, that we could use to return crew,” Stich said. “So we have a little bit more time to go through the data and then make a decision as to whether we need to do anything different. But the prime option today is to return Butch and Suni on Starliner. Right now, we don’t see any reason that wouldn’t be the case.”

Mark Nappi, Boeing’s Starliner program manager, said officials identified more than 30 actions to investigate five “small” helium leaks and the thruster problems on Starliner’s service module. “All these items are scheduled to be completed by the end of next week,” Nappi said.

“It’s a test flight, and the first with crew, and we’re just taking a little extra time to make sure that we understand everything before we commit to deorbit,” Stich said.

NASA update on Starliner thruster issues: This is fine Read More »

nasa-orders-more-tests-on-starliner,-but-says-crew-isn’t-stranded-in-space

NASA orders more tests on Starliner, but says crew isn’t stranded in space

Boeing's Starliner spacecraft is seen docked at the International Space Station on June 13.

Enlarge / Boeing’s Starliner spacecraft is seen docked at the International Space Station on June 13.

NASA and Boeing officials pushed back Friday on headlines that the commercial Starliner crew capsule is stranded at the International Space Station but said they need more time to analyze data before formally clearing the spacecraft for undocking and reentry.

Two NASA astronauts, commander Butch Wilmore and pilot Suni Williams, will spend at least a few more weeks on the space station as engineers on the ground conduct thruster tests to better understand issues with the Starliner propulsion system in orbit. Wilmore and Williams launched June 5 aboard an Atlas V rocket and docked at the station the next day, completing the first segment of Starliner’s first test flight with astronauts.

NASA managers originally planned for the Starliner spacecraft to remain docked at the space station for at least eight days, although they left open the possibility of a mission extension. The test flight is now likely to last at least a month and a half, and perhaps longer, as engineers wrestle with helium leaks and thruster glitches on Starliner’s service module.

Batteries on this Starliner spacecraft were initially only certified for a 45-day mission duration, but NASA officials said they are looking at extending the limit after confirming the batteries are functioning well.

“We have the luxury of time,” said Ken Bowersox, associate administrator for NASA’s space operations mission directorate. “We’re still in the middle of a test mission. We’re still pressing forward.”

Previously, NASA and Boeing officials delayed Starliner’s reentry and landing from mid-June, then from June 26, and now they have bypassed a potential landing opportunity in early July. Last week, NASA said in a statement that the agency’s top leadership will meet to formally review the readiness of Starliner for reentry, something that wasn’t part of the original plan.

“We’re not stuck on ISS”

Steve Stich, manager of NASA’s commercial crew program, said Friday that he wanted to clear up “misunderstandings” that led to headlines claiming the Starliner spacecraft was stuck or stranded at the space station.

“I want to make it very clear that Butch and Suni are not stranded in space,” Stich said. “Our plan is to continue to return them on Starliner and return them home at the right time. We have a little bit more work to do to get there for the final return, but they’re safe on (the) space station.”

With Starliner docked, the space station currently hosts three different crew spacecraft, including SpaceX’s Crew Dragon and Russia’s Soyuz. There are no serious plans under consideration to bring Wilmore and Williams home on a different spacecraft.

“Obviously, we have the luxury of having multiple vehicles, and we work contingency plans for lots of different cases, but right now, we’re really focused on returning Butch and Suni on Starliner,” Stich said.

“We’re not stuck on the ISS,” said Mark Nappi, Boeing’s vice president in charge of the Starliner program. “It’s pretty painful to read the things that are out there. We’ve gotten a really good test flight that’s been accomplished so far, and it’s being viewed rather negatively.”

Stich said NASA officials should have “more frequent interaction” with reporters to fill in gaps of information on the Starliner test flight. NASA’s written updates are not always timely, and often lack details and context.

NASA officials have cleared the Starliner spacecraft for an emergency return to Earth if astronauts need to evacuate the space station for safety or medical reasons. But NASA hasn’t yet approved Starliner for reentry and landing under “nominal” conditions.

“When it is a contingency situation, we’re ready to put the crew on the spacecraft and bring them home as a lifeboat,” Bowersox said. “For the nominal entry, we want to look at the data more before we make the final call to put the crew aboard the vehicle, and it’s a serious enough call that we’ll bring the senior management team together (for approval).”

NASA orders more tests on Starliner, but says crew isn’t stranded in space Read More »

countdown-begins-for-third-try-launching-boeing’s-starliner-crew-capsule

Countdown begins for third try launching Boeing’s Starliner crew capsule

Going today? —

Astronauts Butch Wilmore and Suni Williams have been in prelaunch quarantine for six weeks.

Astronauts Suni Williams and Butch Wilmore, wearing their Boeing spacesuits, leave NASA's crew quarters during a launch attempt May 6.

Enlarge / Astronauts Suni Williams and Butch Wilmore, wearing their Boeing spacesuits, leave NASA’s crew quarters during a launch attempt May 6.

Fresh off repairs at the launch pad in Florida, United Launch Alliance engineers restarted the countdown overnight for the third attempt to send an Atlas V rocket and Boeing’s Starliner spacecraft on a test flight to the International Space Station.

NASA astronauts Butch Wilmore and Suni Williams were expected to awake early Wednesday, put on their blue pressure suits, and head to the launch pad at Cape Canaveral Space Force Station to board the Starliner capsule on top of the 172-foot-tall Atlas V rocket.

Once more through the door

Wilmore and Williams have done this twice before in hopes of launching into space on the first crew flight of Boeing’s Starliner spacecraft. A faulty valve on the Atlas V rocket prevented liftoff May 6, then engineers discovered a helium leak on the Starliner capsule itself. After several weeks of troubleshooting, NASA and Boeing officials decided to proceed with another launch attempt Saturday.

Everything seemed to be coming together for Boeing’s long-delayed crew test flight until a computer problem triggered an automatic hold in the countdown less than four minutes before liftoff. Technicians from United Launch Alliance (ULA), the Atlas V rocket’s builder and operator, traced the problem to a failed power distribution source connected to a ground computer responsible for controlling the final phase of the countdown.

The instantaneous launch opportunity Wednesday is set for 10: 52 am EDT (14: 52 UTC), when the launch site at Cape Canaveral passes underneath the space station’s orbital plane. Forecasters predict a 90 percent chance of good weather for launch. You can watch NASA’s live coverage in the video embedded below.

The countdown began late Tuesday night with the power-up of the Atlas V rocket, which was set to be filled with cryogenic liquid hydrogen and liquid oxygen propellants around 5 am EDT (09: 00 UTC). Kerosene fuel was loaded into the Atlas V’s first-stage booster prior to the mission’s first launch attempt in early May.

The two Starliner astronauts departed crew quarters at NASA’s Kennedy Space Center for the 20-minute drive to the launch pad, where they arrived shortly before 8 am EDT (12: 00 UTC) to climb into their seats inside the Starliner capsule. After pressure checks of the astronauts’ suits and Starliner’s crew cabin, ground teams will evacuate the pad about an hour before launch.

Assuming all systems are “go” for launch, the Atlas V will ignite its Russian-made RD-180 main engine and two solid-fueled boosters to vault away from Cape Canaveral and head northeast over the Atlantic Ocean. Wilmore and Williams will be not only the first people to fly in space on Boeing’s Starliner, but also the first astronauts to ride on an Atlas V rocket, which has flown 99 times before with satellites for the US military, NASA, and commercial customers.

The rocket’s Centaur upper stage will deploy Starliner into space around 15 minutes after liftoff. A critical burn by Starliner’s engines will happen around 31 minutes into the flight to finish the task of placing it into low-Earth orbit, setting it up for an automated docking at the International Space Station at 12: 15 pm EDT (16: 15 UTC) Thursday.

The two-person crew will stay on the station for at least a week, although a mission extension is likely if the mission is going well. Officials may decide to extend the mission to complete more tests or to wait for optimal weather conditions at Starliner’s primary and backup landing sites in New Mexico and Arizona. When weather conditions look favorable, Starliner will undock from the space station and head for landing under parachutes.

The crew test flight is a prerequisite to Boeing’s crew capsule becoming operational for NASA, which awarded multibillion-dollar commercial crew contracts to Boeing and SpaceX in 2014. SpaceX’s Crew Dragon started flying astronauts in 2020, while Boeing’s project has been stricken by years of delays.

Wilmore and Williams, both former US Navy test pilots, will take over manual control of Starliner at several points during the test flight. They will evaluate the spacecraft’s flying characteristics and accommodations for future flights, which will carry four astronauts at a time rather than two.

“The expectation from the media should not be perfection,” Wilmore told Ars earlier this year. “This is a test flight. Flying and operating in space is hard. It’s really hard, and we’re going to find some stuff. That’s expected. It’s the first flight where we are integrating the full capabilities of this spacecraft.”

Countdown begins for third try launching Boeing’s Starliner crew capsule Read More »

boeing’s-starliner-test-flight-scrubbed-again-after-hold-in-final-countdown

Boeing’s Starliner test flight scrubbed again after hold in final countdown

Hold Hold Hold —

The ground launch sequencer computer called a hold at T-minus 3 minutes, 50 seconds.

NASA commander Butch Wilmore exits the Starliner spacecraft Saturday following the scrubbed launch attempt.

Enlarge / NASA commander Butch Wilmore exits the Starliner spacecraft Saturday following the scrubbed launch attempt.

A computer controlling the Atlas V rocket’s countdown triggered an automatic hold less than four minutes prior to liftoff of Boeing’s commercial Starliner spacecraft Saturday, keeping the crew test flight on the ground at least a few more days.

NASA astronauts Butch Wilmore and Suni Williams were already aboard the spacecraft when the countdown stopped due to a problem with a ground computer. “Hold. Hold. Hold,” a member of Atlas V launch team called out on an audio feed.

With the hold, the mission missed an instantaneous launch opportunity at 12: 25 pm EDT (16: 25 UTC), and later Saturday, NASA announced teams will forego a launch opportunity Sunday. The next chance to send Starliner into orbit will be 10: 52 am EDT (14: 52 UTC) Wednesday. The mission has one launch opportunity every one-to-two days, when the International Space Station’s orbital track moves back into proper alignment with the Atlas V rocket’s launch pad in Florida.

Wilmore and Williams will take the Starliner spacecraft on its first crew flight into low-Earth orbit. The capsule will dock with the International Space Station around a day after launch, spend at least a week there, then return to a parachute-assisted landing at one of two landing zones in New Mexico or Arizona. Once operational, Boeing’s Starliner will join SpaceX’s Crew Dragon capsule to give NASA two independent human-rated spacecraft for transporting astronauts to and from the space station.

It’s been a long road to get here with the Starliner spacecraft, and there’s more work to do before the capsule’s long-delayed first flight with astronauts.

Technicians from United Launch Alliance, builder of the Atlas V rocket, will begin troubleshooting the computer glitch at the launch pad Saturday evening, after draining propellant from the launch vehicle. Early indications suggest that a card in one of three computers governing the final minutes of the Atlas V’s countdown didn’t boot up as quickly as anticipated.

“You can imagine a large rack that is a big computer where the functions of the computer as a controller are broken up separately into individual cards or printed wire circuit boards with their logic devices,” said Tory Bruno, ULA’s president and CEO. “They’re all standalone, but together it’s an integrated controller.”

The computers are located at the launch pad inside a shelter near the base of the Atlas V rocket at Cape Canaveral Space Force Station. All three computers must be fully functioning in the final phase of the countdown to ensure triple redundancy. At the moment of liftoff, these computers control things like retracting umbilical lines and releasing bolts holding the rocket to its mobile launch platform.

Two of the computers activated as the final countdown sequence began at T-minus 4 minutes. A single card in the third computer took about six more seconds to come online, although it did boot up eventually, Bruno said.

“Two came up normally and the third one came up, but it was slow to come up, and that tripped a red line,” he said.

A disappointment

Wilmore and Williams, both veteran astronauts and former US Navy test pilots, exited the Starliner spacecraft with the help of Boeing’s ground team. They returned to NASA crew quarters at the nearby Kennedy Space Center to wait for the next launch attempt.

The schedule for the next try will depend on what ULA workers find when they access the computers at the launch pad. Officials initially said they could start another launch countdown early Sunday if they found a simple solution to the computer problem, such as swapping out a faulty card. The computers are networked together, but the architecture is designed with replaceable cards, each responsible for different functions during the countdown, to allow for a quick fix without having to replace the entire unit, Bruno said.

United Launch Alliance's Atlas V rocket and Boeing's Starliner spacecraft at Cape Canaveral Space Force Station, Florida.

Enlarge / United Launch Alliance’s Atlas V rocket and Boeing’s Starliner spacecraft at Cape Canaveral Space Force Station, Florida.

Later Saturday, NASA announced the launch won’t happen Sunday, giving teams additional time to assess the computer issue. The next launch opportunities are Wednesday and Thursday.

Bruno said ULA’s engineers suspect a hardware problem or a network communication glitch caused the computer issue during Saturday’s countdown. That is what ULA’s troubleshooting team will try to determine overnight. NASA said officials will share another update Sunday.

If it doesn’t get off the ground by Thursday, the Starliner test flight could face a longer delay to allow time for ULA to change out limited-life batteries on the Atlas V rocket. Bruno said the battery swap would take about 10 days.

Saturday’s aborted countdown was the latest in a string of delays for Boeing’s Starliner program. The spacecraft’s first crew test flight is running seven years behind the schedule Boeing announced when NASA awarded the company a $4.2 billion contract for the crew capsule in 2014. Put another way, Boeing has arrived at this moment nine years after the company originally said the spacecraft could be operational, when the program was first announced in 2010.

“Of course, this is emotionally disappointing,” said Mike Fincke, a NASA astronaut and a backup to Wilmore and Williams on the crew test flight. “I know Butch and Suni didn’t sound disappointed when we heard them on the loops, and it’s because it comes back to professionalism.”

NASA and Boeing were on the cusp of launching the Starliner test flight May 6, but officials called off the launch attempt due to a valve problem on the Atlas V rocket. Engineers later discovered a helium leak on the Starliner spacecraft’s service module, but managers agreed to proceed with the launch Saturday if the leak did not worsen during the countdown.

A check of the helium system Saturday morning showed the leak rate had decreased from a prior measurement, and it was no longer a constraint to launch. Instead, a different problem emerged to keep Starliner on Earth.

“Everybody is a little disappointed, but you kind of roll your sleeves up and get right back to work,” said Steve Stich, manager of NASA’s commercial crew program.

Boeing’s Starliner test flight scrubbed again after hold in final countdown Read More »

boeing’s-starliner-capsule-poised-for-second-try-at-first-astronaut-flight

Boeing’s Starliner capsule poised for second try at first astronaut flight

Boeing's Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

Enlarge / Boeing’s Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

NASA and Boeing officials are ready for a second attempt to launch the first crew test flight on the Starliner spacecraft Saturday from Cape Canaveral Space Force Station, Florida.

Liftoff of Boeing’s Starliner capsuled atop a United Launch Alliance Atlas V rocket is set for 12: 25 pm EDT (16: 25 UTC). NASA commander Butch Wilmore and pilot Suni Williams, both veteran astronauts, will take the Starliner spacecraft on its first trip into low-Earth orbit with a crew on board.

You can watch NASA TV’s live coverage of the countdown and launch below.

The first crew flight on a new spacecraft is not an everyday event. Starliner is the sixth orbital-class crew spacecraft in the history of the US space program, following Mercury, Gemini, Apollo, the space shuttle, and SpaceX’s Crew Dragon. NASA signed a $4.2 billion contract with Boeing in 2014 to develop Starliner, but the project is running years behind schedule and has cost Boeing nearly $1.5 billion in cost overruns. SpaceX, meanwhile, won a contract at the same time as Boeing and started launching astronauts on the Crew Dragon four years ago this week.

Now, it is finally Starliner’s turn. A successful crew test flight would set the stage for six operational Starliner flights to ferry astronauts to and from the International Space Station (ISS).

Assuming the test flight gets off the ground Saturday, the spacecraft is due for docking at the ISS at 1: 50 pm EDT (17: 50 UTC) Sunday to begin a stay of at least eight days. Once managers are satisfied the mission has achieved all its planned test objectives, and pending good weather conditions in Starliner’s landing zone in the western United States, the spacecraft will depart the station and return to Earth for a parachute-assisted touchdown. If the mission takes off on Saturday, the earliest nominal landing date would be Monday, June 10.

Wilmore and Williams have been here before. On May 6, the astronauts were strapped into their seats inside Starliner’s cockpit awaiting takeoff on a flight to the International Space Station. A valve malfunction on the Atlas V rocket prevented launch that day, and officials subsequently discovered a helium leak on Starliner’s service module that delayed the mission until this weekend.

Flying as-is

After weeks of reviews and analysis, managers determined Starliner is safe to fly as-is with the leak. The spacecraft uses helium gas to pressurize its propulsion system and push hydrazine and nitrogen tetroxide propellants from internal tanks to the capsule’s maneuvering thrusters.

“When we looked at this problem, it didn’t come down to trades,” said Mark Nappi, Boeing’s vice president and program manager for Starliner. “It came down to: Is it safe or not? And it is safe, and that is why we determined that we can fly with what we have.”

Ground teams traced the leak to a flange on one of four doghouse-shaped propulsion pods around the perimeter of the Starliner spacecraft’s service module. In a worst-case scenario, if the condition grew worse during the flight, ground controllers could isolate it by closing the manifold feeding the leak. If the leak doesn’t worsen, engineers are confident they can manage it with no major impacts to the mission.

“We looked really hard at what our options were with this particular flange,” said Steve Stich, manager of NASA’s commercial crew program, which oversees the agency’s contract with Boeing. The flange has a helium conduit and lines for the spacecraft’s toxic fuel and oxidizer, which makes a repair “problematic,” Stich said.

Starliner commander Butch Wilmore and pilot Suni Williams arrived back at NASA's Kennedy Space Center earlier this week to prepare for launch.

Enlarge / Starliner commander Butch Wilmore and pilot Suni Williams arrived back at NASA’s Kennedy Space Center earlier this week to prepare for launch.

In order to safely fix the leak, which officials believe is likely caused by a defective seal, ground teams would have to disconnect the capsule from the Atlas V rocket, take it back to a hangar, drain its propellant tanks. This would probably push back the long-delayed Starliner test flight until late this year.

But the leak is relatively small and stable. “It’s about a half-pound per day out of 50 pounds of total capability in the tank,” Stich said.

“In our case, we have margin in the helium tank, and we’ve looked really hard to understand that margin and to understand the worst cases, and we took the time to go through that data,” Stich said. “We really think we can manage this leak, both by looking at it before the launch, and then if it got bigger in flight, we could manage it.”

Boeing’s Starliner capsule poised for second try at first astronaut flight Read More »

nasa-finds-more-issues-with-boeing’s-starliner,-but-crew-launch-set-for-june-1

NASA finds more issues with Boeing’s Starliner, but crew launch set for June 1

Boeing's Starliner spacecraft atop its Atlas V rocket on the launch pad earlier this month.

Enlarge / Boeing’s Starliner spacecraft atop its Atlas V rocket on the launch pad earlier this month.

Senior managers from NASA and Boeing told reporters on Friday that they plan to launch the first crew test flight of the Starliner spacecraft as soon as June 1, following several weeks of detailed analysis of a helium leak and a “design vulnerability” with the ship’s propulsion system.

Extensive data reviews over the last two-and-a-half weeks settled on a likely cause of the leak, which officials described as small and stable. During these reviews, engineers also built confidence that even if the leak worsened, it would not add any unacceptable risk for the Starliner test flight to the International Space Station, officials said.

But engineers also found that an unlikely mix of technical failures in Starliner’s propulsion system—representing 0.77 percent of all possible failure modes, according to Boeing’s program manager—could prevent the spacecraft from conducting a deorbit burn at the end of the mission.

“As we studied the helium leak, we also looked across the rest of the propulsion system, just to make sure we didn’t have any other things that we should be concerned about,” said Steve Stich, manager of NASA’s commercial crew program, which awarded a $4.2 billion contract to Boeing in 2014 for development of the Starliner spacecraft.

“We found a design vulnerability… in the prop [propulsion] system as we analyzed this particular helium leak, where for certain failure cases that are very remote, we didn’t have the capability to execute the deorbit burn with redundancy,” Stich said in a press conference Friday.

These two problems, uncovered one after the other, have kept the Starliner test flight grounded to allow time for engineers to find workarounds. This is the first time astronauts will fly into orbit on a Starliner spacecraft, following two unpiloted demonstration missions in 2019 and 2022.

The Starliner program is running years behind schedule, primarily due to problems with the spacecraft’s software, parachutes, and propulsion system, supplied by Aerojet Rocketdyne. Software woes cut short Starliner’s first test flight in 2019 before it could dock at the International Space Station, and they forced Boeing to fly an unplanned second test flight to gain confidence that the spacecraft is safe enough for astronauts. NASA and Boeing delayed the second unpiloted test flight nearly a year to overcome an issue with corroded valves in the ship’s propulsion system.

Last year, just a couple of months before it was supposed to launch on the crew test flight, officials discovered a design problem with Starliner’s parachutes and found that Boeing installed flammable tape inside the capsule’s cockpit. Boeing’s star-crossed Starliner finally appeared ready to fly on the long-delayed crew test flight from Cape Canaveral Space Force Station, Florida.

NASA commander Butch Wilmore and pilot Suni Williams were strapped into their seats inside Starliner on May 6 when officials halted the countdown due to a faulty valve on the spacecraft’s United Launch Alliance Atlas V rocket. ULA rolled the rocket back to its hangar to replace the valve, with an eye toward another launch attempt in mid-May.

But ground teams detected the helium leak in Starliner’s service module in the aftermath of the scrubbed countdown. After some initial troubleshooting, the leak rate grew to approximately 70 psi per minute. Since then, the leak rate has stabilized.

“That gave us pause as the leak rate grew, and we wanted to understand what was causing that leak,” Stich said.

NASA finds more issues with Boeing’s Starliner, but crew launch set for June 1 Read More »

the-first-crew-launch-of-boeing’s-starliner-capsule-is-on-hold-indefinitely

The first crew launch of Boeing’s Starliner capsule is on hold indefinitely

Pursuing rationale —

“NASA will share more details once we have a clearer path forward.”

Boeing's Starliner spacecraft on the eve of the first crew launch attempt earlier this month.

Enlarge / Boeing’s Starliner spacecraft on the eve of the first crew launch attempt earlier this month.

Miguel J. Rodriguez Carrillo/AFP via Getty Images

The first crewed test flight of Boeing’s long-delayed Starliner spacecraft won’t take off as planned Saturday and could face a longer postponement as engineers evaluate a stubborn leak of helium from the capsule’s propulsion system.

NASA announced the latest delay of the Starliner test flight late Tuesday. Officials will take more time to consider their options for how to proceed with the mission after discovering the small helium leak on the spacecraft’s service module.

The space agency did not describe what options are on the table, but sources said they range from flying the spacecraft “as is” with a thorough understanding of the leak and confidence it won’t become more significant in flight, to removing the capsule from its Atlas V rocket and taking it back to a hangar for repairs.

Theoretically, the former option could permit a launch attempt as soon as next week. The latter alternative could delay the launch until at least late summer.

“The team has been in meetings for two consecutive days, assessing flight rationale, system performance, and redundancy,” NASA said in a statement Tuesday night. “There is still forward work in these areas, and the next possible launch opportunity is still being discussed. NASA will share more details once we have a clearer path forward.”

Delays are nothing new for the Starliner program, but it’s not yet clear how this delay will compare to the spacecraft’s previous setbacks.

Software problems cut short an unpiloted test flight in 2019, forcing Boeing to fly a second demonstration mission. Starliner was on the launch pad when pre-flight checkouts revealed stuck valves in the spacecraft’s propulsion system in 2021. Boeing finally flew Starliner on a round-trip mission to the space station in May 2022. Concerns about Starliner’s parachutes and flammable tape inside the spacecraft’s crew cabin delayed the crewed test flight from last summer until this year.

Boeing aims to become the second company to fly astronauts to the space station under contract with NASA’s commercial crew program, following the start of SpaceX’s crew transportation service in 2020. Assuming a smooth crewed test flight, NASA hopes to clear the Starliner spacecraft for six-month crew rotation flights to the space station beginning next year.

In the doghouse

Engineers first noticed the helium leak during the first launch attempt for Starliner’s crewed test flight May 6, but managers did not consider it significant enough to stop the launch. Ultimately, a separate problem with a pressure regulation valve on the spacecraft’s United Launch Alliance (ULA) Atlas V rocket prompted officials to scrub the launch attempt.

NASA astronauts Butch Wilmore and Suni Williams were already strapped into their seats inside the Starliner spacecraft on the launch pad at Cape Canaveral Space Force Station, Florida, when officials ordered a halt to the May 6 countdown. Wilmore and Williams returned to their homes in Houston to await the next Starliner launch opportunity.

ULA returned the Atlas V rocket to its hangar, where technicians swapped out the faulty valve in time for another launch attempt May 17. NASA and Boeing pushed the launch date back to May 21, then to May 25, as engineers assessed the helium leak. The Atlas V rocket and Starliner spacecraft remain inside ULA’s Vertical Integration Facility to wait for the next launch opportunity.

Boeing engineers traced the leak to a flange on a single reaction control system thruster in one of four doghouse-shaped propulsion pods on the Starliner service module.

There are 28 reaction control system thrusters—essentially small rocket engines—on the Starliner service module. In orbit, these thrusters are used for minor course corrections and pointing the spacecraft in the proper direction. The service module has two sets of more powerful engines for larger orbital adjustments and launch-abort maneuvers.

The spacecraft’s propulsion system is pressurized using helium, an inert gas. The thrusters burn a mixture of toxic hydrazine and nitrogen tetroxide propellants. Helium is not combustible, so a small leak is not likely to be a major safety issue on the ground. However, the system needs sufficient helium gas to force propellants from their internal storage tanks to Starliner’s thrusters.

In a statement last week, NASA described the helium leak as “stable” and said it would not pose a risk to the Starliner mission if it didn’t worsen. A Boeing spokesperson declined to provide Ars with any details about the helium leak rate.

If NASA and Boeing resolve their concerns about the helium leak without requiring lengthy repairs, the International Space Station could accommodate the docking of Starliner through part of July. After docking at the station, Wilmore and Williams will spend at least eight days at the complex before undocking to head for a parachute-assisted, airbag-cushioned landing in the Southwestern United States.

After July, the schedule gets messy.

The space station has a busy slate of multiple visiting crew and cargo vehicles in August, including the arrival of a fresh team of astronauts on a SpaceX Dragon spacecraft and the departure of an outgoing crew on another Dragon. There may be an additional window for Starliner to dock with the space station in late August or early September before the launch of SpaceX’s next cargo mission, which will occupy the docking port Starliner needs to use. The docking port opens up again in the fall.

ULA also has other high-priority missions it would like to launch from the same pad needed for the Starliner test flight. Later this summer, ULA plans to launch a US Space Force mission; it will be the last mission to use an Atlas V rocket. Then, ULA aims to launch the second demonstration flight of its new Vulcan Centaur rocket—the Atlas V’s replacement—as soon as September.

The first crew launch of Boeing’s Starliner capsule is on hold indefinitely Read More »

faulty-valve-scuttles-starliner’s-first-crew-launch

Faulty valve scuttles Starliner’s first crew launch

The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Enlarge / The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Astronauts Butch Wilmore and Suni Williams climbed into their seats inside Boeing’s Starliner spacecraft Monday night in Florida, but trouble with the capsule’s Atlas V rocket kept the commercial ship’s long-delayed crew test flight on the ground.

Around two hours before launch time, shortly after 8: 30 pm EDT (00: 30 UTC), United Launch Alliance’s launch team stopped the countdown. “The engineering team has evaluated, the vehicle is not in a configuration where we can proceed with flight today,” said Doug Lebo, ULA’s launch conductor.

The culprit was a misbehaving valve on the rocket’s Centaur upper stage, which has two RL10 engines fed by super-cold liquid hydrogen and liquid oxygen propellants.

“We saw a self-regulating valve on the LOX (liquid oxygen) side had a bit of a buzz; it was moving in a strange behavior,” said Steve Stich, NASA’s commercial crew program manager. “The flight rules had been laid out for this flight ahead of time. With the crew at the launch pad, the proper action was to scrub.”

The next opportunity to launch Starliner on its first crew test flight will be Friday night at 9 pm EDT (01: 00 UTC Saturday). NASA announced overnight that officials decided to skip a launch opportunity Tuesday night to allow engineers more time to study the valve problem and decide whether they need to replace it.

Work ahead

Everything else was going smoothly in the countdown Monday night. This mission will also be the first time astronauts have flown on ULA’s Atlas V rocket, which has logged 99 successful flights since 2002. It is the culmination of nearly a decade-and-a-half of development by Boeing, which has a $4.2 billion contract with NASA to ready Starliner for crew missions, then carry out six long-duration crew ferry flights to and from the International Space Station.

This crew test flight will last at least eight days, taking Wilmore and Williams to the space station to verify Starliner’s readiness for operational missions. Once Starliner flies, NASA will have two human-rated spacecraft on contract. SpaceX’s Crew Dragon has been in service since 2020.

When officials scrubbed Monday night’s launch attempt, Wilmore and Williams were already aboard the Starliner spacecraft on top of the Atlas V rocket at Cape Canaveral Space Force Station, Florida. The Boeing and ULA support team helped them out of the capsule and drove them back to crew quarters at the nearby Kennedy Space Center to wait for the next launch attempt.

“I promised Butch and Suni a boring evening,” said Tory Bruno, ULA’s CEO. “I didn’t mean for it to be quite this boring, but we’re going to follow our rules, and we’re going to make sure that the crew is safe.”

When the next launch attempt actually occurs depends on whether ULA engineers determine they can resolve the problem without rolling the Atlas V rocket back to its hangar for repairs.

The valve in question vents gas from the liquid oxygen tank on the Centaur upper stage to maintain the tank at proper pressures. This is important for two reasons. The tank needs to be at the correct pressure for the RL10 engines to receive propellant during the flight, and the Centaur upper stage itself has ultra-thin walls to reduce weight, and requires pressure to maintain structural integrity.

Faulty valve scuttles Starliner’s first crew launch Read More »