engineering

new-adhesive-surface-modeled-on-a-remora-works-underwater

New adhesive surface modeled on a remora works underwater


It was tested for its ability to adhere to the inside of the digestive tract.

Most adhesives can’t stick to wet surfaces because water and other fluids disrupt the adhesive’s bonding mechanisms. This problem, though, has been beautifully solved by evolution in remora suckerfish, which use an adhesive disk on top of their heads to attach to animals like dolphins, sharks, and even manta rays.

A team of MIT scientists has now taken a close look at these remora disks and reverse-engineered them. “Basically, we looked at nature for inspiration,” says Giovanni Traverso, a professor at MIT Department of Mechanical Engineering and senior author of the study.

Sticking Variety

Remora adhesive disks are an evolutionary adaptation of the fish’s first dorsal fin, the one that in other species sits on top of the body, just behind the head and gill covers. The disk rests on an intercalary backbone—a bone structure that most likely evolved from parts of the spine. This bony structure supports lamellae, specialized bony plates with tiny backward-facing spikes called spinules. The entire disk is covered with soft tissue compartments that are open at the top. “This makes the remora fish adhere very securely to soft-bodied, fast-moving marine hosts,” Traverso says.

A remora attaches to the host by pressing itself against the skin, which pushes the water out of these compartments, creating a low-pressure zone. Then, the spinules mechanically interlock with the host’s surface, making the whole thing work a bit like a combination of a suction cup and Velcro. When the fish wants to detach from a host, it lifts the disk, letting water back into the compartments to remove the suction. Once released, it can simply swim away.

What impressed the scientists the most, though, was the versatility of those disks. Reef-associated species of remora like Phtheirichthys lineatus are generalists and stick to various hosts, including other fish, sharks, or turtles. Other species living in the open sea are more specialized and attach to cetaceans, swordfish, or marlins. While most remoras attach to the external tissue of their hosts, R. albescens sticks within the oral cavities and gill chamber of manta rays.

a close up of a fish, showing its head covered by an oval-shaped pad that has lots of transverse ridges.

A close-up of the adhesive pad of a remora. Credit: Stephen Frink

To learn what makes all these different disks so good at sticking underwater, the team first examined their anatomy in detail. It turned out that the difference between the disks was mostly in the positioning of lamellae. Generalist species have a mix of parallel and angled lamellae, while remoras sticking to fast-swimming hosts have them mostly parallel. R. albescens, on the other hand, doesn’t have a dominant lamellae orientation pattern but has them positioned at a very wide variety of angles.

The researchers wanted to make an adhesive device that would work for a wide range of applications, including maritime exploration or underwater manufacturing. Their initial goal, though, was designing a drug delivery platform that could reliably stick to the inside walls of the gastrointestinal tract. So, they chose R. albescens disks as their starting point, since that species already attaches internally to its host. They termed their device an Mechanical Underwater Soft Adhesion System (MUSAS).

However, they didn’t just opt for a biomimetic, copy-and-paste design. “There were things we did differently,” Traverso says.

Upgrading nature

The first key difference was deployment. MUSAS was supposed to travel down the GI tract to reach its destination, so the first challenge was making it fit into a pill. The team chose the size 000 capsule, which at 26 millimeters in length and 9.5 millimeters in diameter, is the largest Food and Drug Administration-approved ingestible form. MUSAS had a supporting structure—just like remora disks, but made with stainless steel. The angled lamellae with spinules fashioned after those on R. albescens were made of a shape memory nickel-titanium alloy. The role of remora’s soft tissues, which provide the suction by dividing the disk into compartments, was played by an elastomer.

MUSAS, would be swallowed in a folded form within its huge pill. “The capsule is tuned to dissolve in specific pH environment, which is how we determine the target location—for example the small intestine has a slightly different pH than the stomach”, says Ziliang Kang, an MIT researcher in Traverso’s group and lead author of the study.  Once released, the shape memory alloy in MUSAS lamellae-like structures would unfold in response to body temperature and the whole thing would stick to the wall of the target organ, be it the esophagus, the stomach, or the intestines.

The mechanism of sticking was also a bit different from that of remoras. “The fish can swim and actively press itself against the surface it wants to stick to. MUSAS can’t do that, so instead we relied on the peristaltic movements within the GI tract to exert the necessary force,” Traverso explains. When the muscles contract, MUSAS would be pressed against the wall and attach to it. And it was expected to stay there for quite some time.

The team ran a series of experiments to evaluate MUSAS performance in a few different scenarios. The drug-delivery platform application was tested on pig organ samples. MUSAS stayed in the sample GI tract for an average of nine days, with the longest sticking time reaching three and a half weeks. MUSAS managed to stay in place despite food and fluids going through the samples.

Even when the team poked the devices with a pipette to test what they called “resisting dynamic interference,” MUSAS just slid a little but remained firmly attached. Other experiments included using MUSAS to attach temperature sensors to external tissues of live fish and putting sensors that could detect reflux events in the GI tract of live pigs.

Branching out

The team is working on making MUSAS compatible with a wider range of drugs and mRNA vaccines. “We also think about using this for stimulating tissues,” Traverso says. The solution he has in mind would use MUSAS to deliver electrical pulses to the walls of the GI tract, which Traverso’s lab has shown can activate appetite-regulating hormones. But the team also wants to go beyond strictly medical applications.

The team demonstrated that MUSAS is really strong as an adhesive. When it sticks to a surface, it can hold a weight over a thousand times greater than its own. This puts MUSAS more or less on par with some of the best adhesives we have, such as polyurethane glues or epoxy resins. What’s more, this sticking strength was measured when MUSAS was attached to soft, uneven, wet surfaces. “On a rigid, even surface, the force-to-weight ratio should be even higher,” Kang claims. And this, Kang thinks, makes scaled-up variants of MUSAS a good match for underwater manufacturing.

“The first scenario I see is using MUSAS as grippers attached to robotic arms moving around soft objects,” Kang explains. Currently, this is done using vacuum systems that simply suck onto a fabric or other surface. The problem is that these solutions are rather complex and heavy. Scaled-up MUSAS should be able to achieve the same thing passively, cutting cost and weight. The second idea Kang has is using MUSAS in robots designed to perform maintenance jobs beneath the waterline on boats or ships. “We are really trying to see what is possible,” Traverso says.

Nature, 2025.  DOI: 10.1038/s41586-025-09304-4

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

New adhesive surface modeled on a remora works underwater Read More »

why-it-makes-perfect-sense-for-this-bike-to-have-two-gears-and-two-chains

Why it makes perfect sense for this bike to have two gears and two chains

Buffalo S2 bike, seen from the drive side, against a gray background, double kickstand and rack visible.

Credit: World Bicycle Relief

The S2 model aimed to give riders an uphill climbing gear but without introducing the complexities of a gear-shifting derailleur, tensioned cables, and handlebar shifters. Engineers at SRAM came up with a solution that’s hard to imagine for other bikes but not too hard to grasp. A freewheel in the back has two cogs, with a high gear for cruising and a low gear for climbing. If you pedal backward a half-rotation, the outer, higher gear engages or disengages, taking over the work from the lower gear. The cogs, chains, and chainrings on this bike are always moving, but only one gear is ever doing the work.

Seth at Berm Peak suggests that the shifting is instantaneous and seemingly perfect, without clicking or chain slipping. If one chain breaks, you can ride on the other chain and cog until you can get it fixed. There might be some inefficiencies in the amount of tension on the chains since they have to be somewhat even. But after trying out ideas with simplified internal gear hubs and derailleurs, SRAM recommended the two-chain design and donated it to the bike charity.

Two people loading yellow milk-style crates of cargo onto Buffalo bicycles, seemingly in the street of a small village.

Credit: World Bicycle Relief

Buffalo S2 bikes cost $165, just $15 more than the original, and a $200 donation covers the building and shipping of such a bike to most places. You can read more about the engineering principles and approach to sustainability on World Bike Relief’s site.

Why it makes perfect sense for this bike to have two gears and two chains Read More »

teaching-a-drone-to-fly-without-a-vertical-rudder

Teaching a drone to fly without a vertical rudder


We can get a drone to fly like a pigeon, but we needed to use feathers to do it.

Pigeons manage to get vertical without using a vertical tail. Credit: HamidEbrahimi

Most airplanes in the world have vertical tails or rudders to prevent Dutch roll instabilities, a combination of yawing and sideways motions with rolling that looks a bit like the movements of a skater. Unfortunately, a vertical tail adds weight and generates drag, which reduces fuel efficiency in passenger airliners. It also increases the radar signature, which is something you want to keep as low as possible in a military aircraft.

In the B-2 stealth bomber, one of the very few rudderless airplanes, Dutch roll instabilities are dealt with using drag flaps positioned at the tips of its wings, which can split and open to make one wing generate more drag than the other and thus laterally stabilize the machine. “But it is not really an efficient way to solve this problem,” says David Lentink, an aerospace engineer and a biologist at the University of Groningen, Netherlands. “The efficient way is solving it by generating lift instead of drag. This is something birds do.”

Lentink led the study aimed at better understanding birds’ rudderless flight mechanics.

Automatic airplanes

Birds flight involves near-constant turbulence—“When they fly around buildings, near trees, near rocks, near cliffs,” Lentink says. The leading hypothesis on how they manage this in a seemingly graceful, effortless manner was suggested by a German scientist named Franz Groebbels. He argued that birds’ ability relied on their reflexes. When he held a bird in his hands, he noticed that its tail would flip down when the bird was pitched up and down, and when the bird was moved left and right, its wings also responded to movement by extending left and right asymmetrically. “Another reason to think reflexes matter is comparing this to our own human locomotion—when we stumble, it is a reflex that saves us from falling,” Lentink claims.

Groebbels’ intuition about birds’ reflexes being responsible for flight stabilization was later backed by neuroscience. The movements of birds’ wings and muscles were recorded and found to be proportional to the extent that the bird was pitched or rolled. The hypothesis, however, was extremely difficult to test with a flying bird—all the experiments aimed at confirming it have been done on birds that were held in place. Another challenge was determining if those wing and tail movements were reflexive or voluntary.

“I think one pretty cool thing is that Groebbels wrote his paper back in 1929, long before autopilot systems or autonomous flight were invented, and yet he said that birds flew like automatic airplanes,” Lentink says. To figure out if he was right, Lentink and his colleagues started with the Groebbels’s analogy but worked their way backward—they started building autonomous airplanes designed to look and fly like birds.

Reverse-engineering pigeons

The first flying robot Lentink’s team built was called the Tailbot. It had fixed wings and a very sophisticated tail that could move with five actuated degrees of freedom. “It could spread—furl and unfurl—move up and down, move sideways, even asymmetrically if necessary, and tilt. It could do everything a bird’s tail can,” Lentink explains. The team put this robot in a wind tunnel that simulated turbulent flight and fine-tuned a controller that adjusted the tail’s position in response to changes in the robot’s body position, mimicking reflexes observed in real pigeons.

“We found that this reflexes controller that managed the tail’s movement worked and stabilized the robot in the wind tunnel. But when we took it outdoors, results were disappointing. It actually ended up crashing,” Lentink says. Given that relying on a morphing tail alone was not enough, the team built another robot called PigeonBot II, which added pigeon-like morphing wings.

Each wing could be independently tucked or extended. Combined with the morphing tail and nine servomotors—two per wing and five in the tail—the robot weighed around 300 grams, which is around the weight of a real pigeon. Reflexes were managed by the same controller that was modified to manage wing motions as well.

To enable autonomous flight, the team fitted the robot with two propellers and an off-the-shelf drone autopilot called Pixracer. The problem with the autopilot, though, was that it was designed for conventional controls you use in quadcopter drones. “We put an Arduino between the autopilot and the robot that translated autopilot commands to the morphing tail and wings’ motions of the robot,” Lentink says.

The Pigeon II passed the outdoor flying test. It could take off, land, and fly entirely on its own or with an operator issuing high-level commands like go up, go down, turn left, or turn right. Flight stabilization relied entirely on bird-like reflexes and worked well. But there was one thing electronics could not re-create: their robots used real pigeon feathers. “We used them because with current technology it is impossible to create structures that are as lightweight, as stiff, and as complex at the same time,” Lentink says.

Feathery marvels

Birds’ feathers appear simple, but they really are extremely advanced pieces of aerospace hardware. Their complexity starts with nanoscale features. “Feathers have 10-micron 3D hooks on their surface that prevent them from going too far apart. It is the only one-sided Velcro system in the world. This is something that has never been engineered, and there is nothing like this elsewhere in nature,” Lentink says. Those nanoscale hooks, when locked in, can bear loads reaching up to 20 grams.

Then there are macroscale properties. Feathers are not like aluminum structures that have one bending stiffness, one torque stiffness, and that’s it. “They are very stiff in one direction and very soft in another direction, but not soft in a weak way—they can bear significant loads,” Lentink says.

His team attempted to make artificial feathers with carbon fiber, but they couldn’t create anything as lightweight as a real feather.  “I don’t know of any 3D printer that could start with 10-micron nanoscale features and work all the way up to macro-scale structures that can be 20 centimeters long,” Lentink says. His team also discovered that pigeon’s feathers could filter out a lot of turbulence perturbations on their own. “It wasn’t just the form of the wing,” Lentink claims.

Lentink estimates that a research program aimed at developing aerospace materials even remotely comparable to feathers could take up to 20 years. But does this mean his whole concept of using reflex-based controllers to solve rudderless flight hangs solely on successfully reverse-engineering a pigeon’s feather? Not really.

Pigeon bombers?

The team thinks it could be possible to build airplanes that emulate the way birds stabilize rudderless flight using readily available materials. “Based on our experiments, we know what wing and tail shapes are needed and how to control them. And we can see if we can create the same effect in a more conventional way with the same types of forces and moments,” Lentink says. He suspects that developing entirely new materials with feather-like properties would only become necessary if the conventional approach bumps into some insurmountable roadblocks and fails.

“In aerospace engineering, you’ve got to try things out. But now we know it is worth doing,” Lentink claims. And he says military aviation ought to be the first to attempt it because the risk is more tolerable there. “New technologies are often first tried in the military, and we want to be transparent about it,” he says. Implementing bird-like rudderless flight stabilization in passenger airliners, which are usually designed in a very conservative fashion, would take a lot more research, “It may take easily take 15 years or more before this technology is ready to such level that we’d have passengers fly with it,” Lentink claims.

Still, he says there is still much we can learn from studying birds. “We know less about bird’s flight than most people think we know. There is a gap between what airplanes can do and what birds can do. I am trying to bridge this gap by better understanding how birds fly,” Lentink adds.

Science Robotics, 2024. DOI: 10.1126/scirobotics.ado4535

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Teaching a drone to fly without a vertical rudder Read More »

how-london’s-crystal-palace-was-built-so-quickly

How London’s Crystal Palace was built so quickly

London’s Great Exhibition of 1851 attracted some 6 million people eager to experience more than 14,000 exhibitors showcasing 19th-century marvels of technology and engineering. The event took place in the Crystal Palace, a 990,000-square-foot building of cast iron and plate glass originally located in Hyde Park. And it was built in an incredible 190 days. According to a recent paper published in the International Journal for the History of Engineering and Technology, one of the secrets was the use of a standardized screw thread, first proposed 10 years before its construction, although the thread did not officially become the British standard until 1905.

“During the Victorian era there was incredible innovation from workshops right across Britain that was helping to change the world,” said co-author John Gardner of Anglia Ruskin University (ARU). “In fact, progress was happening at such a rate that certain breakthroughs were perhaps never properly realized at the time, as was the case here with the Crystal Palace. Standardization in engineering is essential and commonplace in the 21st century, but its role in the construction of the Crystal Palace was a major development.”

The design competition for what would become the Crystal Palace was launched in March 1850, with a deadline four weeks later, and the actual, fully constructed building opened on May 1, 1851. The winning design, by Joseph Patterson, wasn’t chosen until quite late in the game after numerous designs had been rejected—most because they were simply too far above the £100,000 budget.

Joseph Paxton's first sketch for the Great Exhibition Building, c. 1850, using pen and ink on blotting paper

Joseph Paxton’s first sketch for the Great Exhibition Building, c. 1850, using pen and ink on blotting paper.

Joseph Paxton’s first sketch for the Great Exhibition Building, c. 1850, using pen and ink on blotting paper. Credit: Victoria and Albert Museum/CC BY-SA 3.0

Patterson’s design called for what was essentially a giant conservatory consisting of a multi-dimensional grid of 24-foot modules. The design elements included 3,300 supporting columns with four flange faces, drilled so they could be bolted to connecting and base pieces. (The hollow columns did double duty as drainage pipes for rainwater.) The design also called for diagonal bracing (aka cross bracing) for additional stability.

How London’s Crystal Palace was built so quickly Read More »

watch-sand-defy-gravity-and-flow-uphill-thanks-to-“negative-friction”

Watch sand defy gravity and flow uphill thanks to “negative friction”

On the second day of Christmas —

Applying magnetic forces to single iron oxide-coated particles spurs strange collective motion.

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2023, each day from December 25 through January 5. Today: how applying magnetic forces to individual “micro-roller” particles spurs collective motion, producing some pretty counter-intuitive results.

Engineering researchers at Lehigh University have discovered that sometimes sand can actually flow uphill.

Enlarge / Engineering researchers at Lehigh University have discovered that sometimes sand can actually flow uphill.

Lehigh University

We intuitively understand that the sand pouring through an hourglass, for example, forms a neat roughly pyramid-shaped pile at the bottom, in which the grains near the surface flow over an underlying base of stationary particles. Avalanches and sand dunes exhibit similar dynamics. But scientists at Lehigh University in Pennsylvania have discovered that applying a magnetic torque can actually cause sand-like particles to collectively flow uphill in seeming defiance of gravity, according to a September paper published in the journal Nature Communications.

Sand is pretty fascinating stuff from a physics standpoint. It’s an example of a granular material, since it acts both like a liquid and a solid. Dry sand collected in a bucket pours like a fluid, yet it can support the weight of a rock placed on top of it, like a solid, even though the rock is technically denser than the sand. So sand defies all those tidy equations describing various phases of matter, and the transition from flowing “liquid” to a rigid “solid” happens quite rapidly. It’s as if the grains act as individuals in the fluid form, but are capable of suddenly banding together when solidarity is needed, achieving a weird kind of “strength in numbers” effect.

Nor can physicists precisely predict an avalanche. That’s partly because of the sheer number of grains of sand in even a small pile, each of which will interact with several of its immediate neighboring grains simultaneously—and those neighbors shift from one moment to the next. Not even a supercomputer can track the movements of individual grains over time, so the physics of flow in granular media remains a vital area of research.

But grains of sand that collectively flow uphill? That is simply bizarre behavior. Lehigh University engineer James Gilchrist manages the Laboratory for Particle Mixing and Self-Organization and stumbled upon this odd phenomenon while experimenting with “micro-rollers”: polymer particles coated in iron oxide (a process called micro-encapsulation). He was rotating a magnet under a vial of micro-rollers one day and noticed they started to pile uphill. Naturally he and his colleagues had to investigate further.

For their experiments, Gilchrist et al. attached neodymium magnets to a motorized wheel at 90-degree intervals, alternating the outward facing poles. The apparatus also included a sample holder and a USB microscope in a fixed position. The micro-rollers were prepared by suspending them in a glass vial containing ethanol and using a magnet to separate them from dust or any uncoated particles. Once the micro-rollers were clean, they were dried, suspended in fresh ethanol, and loaded onto the sample holder. A vibrating motor agitated the samples to produce flattened granular beds, and the motorized wheel was set in motion to apply magnetic torque. A gaussmeter measured the magnetic field strength relative to orientation.

Uphill granular flow of microrobotic microrollers. Credit: Lehigh University.

The results: each micro-roller began to rotate in response to the magnetic torque, creating pairs that briefly formed and then split, and increasing the magnetic force increased the particle cohesion. This in turn gave the micro-rollers more traction and enabled them to move more quickly, working in concert to counterintuitively flow uphill. In the absence of that magnetic torque, the miro-rollers flowed downhill normally. The torque-induced action was so unexpected that the researchers coined a new term to describe it: a “negative angle of repose” caused by a negative coefficient of friction.

“Up until now, no one would have used these terms,” said Gilchrist. “They didn’t exist. But to understand how these grains are flowing uphill, we calculated what the stresses are that cause them to move in that direction. If you have a negative angle of repose, then you must have cohesion to give a negative coefficient of friction. These granular flow equations were never derived to consider these things, but after calculating it, what came out is an apparent coefficient of friction that is negative.”

It’s an intriguing proof of principle that could one day lead to new ways to control how substances mix or separate, as well as potential swarming microrobotics applications. The scientists have already started building tiny staircases with laser cutters and videotaping the micro-rollers climbing up and down the other. One micro-roller can’t overcome the height of each step, but many working collectively can do so, per Gilchrist.

DOI: Nature Communications, 2023. 10.1038/s41467-023-41327-1  (About DOIs).

Listing image by Lehigh University

Watch sand defy gravity and flow uphill thanks to “negative friction” Read More »