engineering

meet-the-2025-ig-nobel-prize-winners

Meet the 2025 Ig Nobel Prize winners


The annual award ceremony features miniature operas, scientific demos, and the 24/7 lectures.

The Ig Nobel Prizes honor “achievements that first make people laugh and then make them think.” Credit: Aurich Lawson / Getty Images

Does alcohol enhance one’s foreign language fluency? Do West African lizards have a preferred pizza topping? And can painting cows with zebra stripes help repel biting flies? These and other unusual research questions were honored tonight in a virtual ceremony to announce the 2025 recipients of the annual Ig Nobel Prizes. Yes, it’s that time of year again, when the serious and the silly converge—for science.

Established in 1991, the Ig Nobels are a good-natured parody of the Nobel Prizes; they honor “achievements that first make people laugh and then make them think.” The unapologetically campy awards ceremony features miniature operas, scientific demos, and the 24/7 lectures whereby experts must explain their work twice: once in 24 seconds and the second in just seven words.

Acceptance speeches are limited to 60 seconds. And as the motto implies, the research being honored might seem ridiculous at first glance, but that doesn’t mean it’s devoid of scientific merit. In the weeks following the ceremony, the winners will also give free public talks, which will be posted on the Improbable Research website.

Without further ado, here are the winners of the 2025 Ig Nobel prizes.

Biology

Example of the area of legs and body used to count biting flies on cows.

Credit: Tomoki Kojima et al., 2019

Citation: Tomoki Kojima, Kazato Oishi, Yasushi Matsubara, Yuki Uchiyama, Yoshihiko Fukushima, Naoto Aoki, Say Sato, Tatsuaki Masuda, Junichi Ueda, Hiroyuki Hirooka, and Katsutoshi Kino, for their experiments to learn whether cows painted with zebra-like striping can avoid being bitten by flies.

Any dairy farmer can tell you that biting flies are a pestilent scourge for cattle herds, which is why one so often sees cows throwing their heads, stamping their feet, flicking their tails, and twitching their skin—desperately trying to shake off the nasty creatures. There’s an economic cost as well since it causes the cattle to graze and feed less, bed down for shorter times, and start bunching together, which increases heat stress and risks injury to the animals. That results in less milk yield for dairy cows and less beef yields from feedlot cattle.

You know who isn’t much bothered by biting flies? The zebra. Scientists have long debated the function of the zebra’s distinctive black-and-white striped pattern. Is it for camouflage? Confusing potential predators? Or is it to repel those pesky flies? Tomoki Kojima et al. decided to put the latter hypothesis to the test, painting zebra stripes on six pregnant Japanese black cows at the Aichi Agricultural Research Center in Japan. They used water-borne lacquers that washed away after a few days, so the cows could take turns being in three different groups: zebra stripes, just black stripes, or no stripes (as a control).

The results: the zebra stripes significantly decreased both the number of biting flies on the cattle and the animals’ fly-repelling behaviors compared to those with black stripes or no stripes. The one exception was for skin twitching—perhaps because it is the least energy intensive of those behaviors. Why does it work? The authors suggest it might have something to do with modulation brightness or polarized light that confuses the insects’ motion detection system, used to control their approach when landing on a surface. But that’s a topic for further study.

Chemistry

Freshly cooked frozen w:blintzes in a non-stick frying pan coated with Teflon

Credit: Andrevan/CC BY-SA 2.5

Citation: Rotem Naftalovich, Daniel Naftalovich, and Frank Greenway, for experiments to test whether eating Teflon [a form of plastic more formally called “polytetrafluoroethylene”] is a good way to increase food volume and hence satiety without increasing calorie content.

Diet sodas and other zero-calorie drinks are a mainstay of the modern diet, thanks to the development of artificial sweeteners whose molecules can’t be metabolized by the human body. The authors of this paper are intrigued by the notion of zero-calorie foods, which they believe could be achieved by increasing the satisfying volume and mass of food without increasing the calories. And they have just the additive for that purpose: polytetrafluoroethylene (PTFE), more commonly known as Teflon.

Yes, the stuff they use on nonstick cookware. They insist that Teflon is inert, heat-resistant, impervious to stomach acid, tasteless, cost-effective, and available in handy powder form for easy mixing into food. They recommend a ratio of three parts food to one part Teflon powder.

The authors understand that to the average layperson, this is going to sound like a phenomenally bad idea—no thank you, I would prefer not to have powdered Teflon added to my food. So they spend many paragraphs citing all the scientific studies on the safety of Teflon—it didn’t hurt rats in feeding trials!—as well as the many applications for which it is already being used. These include Teflon-coated stirring rods used in labs and coatings on medical devices like bladder catheters and gynecological implants, as well as the catheters used for in vitro fertilization. And guys, you’ll be happy to know that Teflon doesn’t seem to affect sperm motility or viability. I suspect this will still be a hard sell in the consumer marketplace.

Physics

Cacio e pepe is an iconic pasta dish that is also frustratingly difficult to make

Credit: Simone Frau

Citation: Giacomo Bartolucci, Daniel Maria Busiello, Matteo Ciarchi, Alberto Corticelli, Ivan Di Terlizzi, Fabrizio Olmeda, Davide Revignas, and Vincenzo Maria Schimmenti, for discoveries about the physics of pasta sauce, especially the phase transition that can lead to clumping, which can be a cause of unpleasantness.

“Pasta alla cacio e pepe” is a simple dish: just tonnarelli pasta, pecorino cheese, and pepper. But its simplicity is deceptive. The dish is notoriously challenging to make because it’s so easy for the sauce to form unappetizing clumps with a texture more akin to stringy mozzarella rather than being smooth and creamy. As we reported in April, Italian physicists came to the rescue with a foolproof recipe based on their many scientific experiments, according to a new paper published in the journal Physics of Fluids. The trick: using corn starch for the cheese and pepper sauce instead of relying on however much starch leaches into the boiling water as the pasta is cooked.

Traditionally, the chef will extract part of the water and starch solution—which is cooled to a suitable temperature to avoid clumping as the cheese proteins “denaturate”—and mix it with the cheese to make the sauce, adding the pepper last, right before serving. But the authors note that temperature is not the only factor that can lead to this dreaded “mozzarella phase.” If one tries to mix cheese and water without any starch, the clumping is more pronounced. There is less clumping with water containing a little starch, like water in which pasta has been cooked. And when one mixes the cheese with pasta water “risottata”—i.e., collected and heated in a pan so enough water evaporates that there is a higher concentration of starch—there is almost no clumping.

The authors found that the correct starch ratio is between 2 to 3 percent of the cheese weight. Below that, you get the clumping phase separation; above that, and the sauce becomes stiff and unappetizing as it cools. Pasta water alone contains too little starch. Using pasta water “risottata” may concentrate the starch, but the chef has less control over the precise amount of starch. So the authors recommend simply dissolving 4 grams of powdered potato or corn starch in 40 grams of water, heating it gently until it thickens and combining that gel with the cheese. They also recommend toasting the black pepper briefly before adding it to the mixture to enhance its flavors and aromas.

Engineering Design

Experimental set-up (a) cardboard enclosure (b) UV-C tube light (c) SMPS

Credit: Vikash Kumar and Sarthak Mittal

Citation: Vikash Kumar and Sarthak Mittal, for analyzing, from an engineering design perspective, “how foul-smelling shoes affects the good experience of using a shoe-rack.”

Shoe odor is a universal problem, even in India, according to the authors of this paper, who hail from Shiv Nadar University (SNU) in Uttar Pradesh. All that heat and humidity means people perspire profusely when engaging even in moderate physical activity. Add in a lack of proper ventilation and washing, and shoes become a breeding ground for odor-causing bacteria called Kytococcus sedentarius. Most Indians make use of shoe racks to store their footwear, and the odors can become quite intense in that closed environment.

Yet nobody has really studied the “smelly shoe” problem when it comes to shoe racks. Enter Kumar and Mittal, who conducted a pilot study with the help of 149 first-year SNU students. More than half reported feeling uncomfortable about their own or someone else’s smelly shoes, and 90 percent kept their shoes in a shoe rack. Common methods to combat the odor included washing the shoes and drying them in the sun; using spray deodorant; or sprinkling the shoes with an antibacterial powder. They were unaware of many current odor-combatting products on the market, such as tea tree and coconut oil solutions, thyme oil, or isopropyl alcohol.

Clearly, there is an opportunity to make a killing in the odor-resistant shoe rack market. So naturally Kumar and Mittal decided to design their own version. They opted to use bacteria-killing UV rays (via a UV-C tube light) as their built-in “odor eater,” testing their device on the shoes of several SNU athletes, “which had a very strong noticeable odor.” They concluded that an exposure time of two to three minutes was sufficient to kill the bacteria and get rid of the odor.

Aviation

Wing membranes (patagia) of Townsend's big-eared bat, Corynorhinus townsendii

Credit: Public domain

Citation: Francisco Sánchez, Mariana Melcón, Carmi Korine, and Berry Pinshow, for studying whether ingesting alcohol can impair bats’ ability to fly and also their ability to echolocate.

Nature is rife with naturally occurring ethanol, particularly from ripening fruit, and that fruit in turn is consumed by various microorganisms and animal species. There are occasional rare instances of some mammals, birds, and even insects consuming fruit rich in ethanol and becoming intoxicated, making those creatures more vulnerable to potential predators or more accident-prone due to lessened motor coordination. Sánchez et al. decided to look specifically at the effects of ethanol on Egyptian fruit bats, which have been shown to avoid high-ethanol fruit. The authors wondered if this might be because the bats wanted to avoid becoming inebriated.

They conducted their experiments on adult male fruit bats kept in an outdoor cage that served as a long flight corridor. The bats were given liquid food with varying amounts of ethanol and then released in the corridor, with the authors timing how long it took each bat to fly from one end to the other. A second experiment followed the same basic protocol, but this time the authors recorded the bats’ echolocation calls with an ultrasonic microphone. The results: The bats that received liquid food with the highest ethanol content took longer to fly the length of the corridor, evidence of impaired flight ability. The quality of those bats’ echolocation was also adversely affected, putting them at a higher risk of colliding with obstacles mid-flight.

Psychology

Narcissus (1597–99) by Caravaggio; the man in love with his own reflection

Credit: Public domain

Citation: Marcin Zajenkowski and Gilles Gignac, for investigating what happens when you tell narcissists—or anyone else—that they are intelligent.

Not all narcissists are created equal. There are vulnerable narcissists who tend to be socially withdrawn, have low self-esteem, and are prone to negative emotions. And then there are grandiose narcissists, who exhibit social boldness, high self-esteem, and are more likely to overestimate their own intelligence. The prevailing view is that this overconfidence stems from narcissism. The authors wanted to explore whether this effect might also work in reverse, i.e., that believing one has superior intelligence due to positive external feedback can lead to at least a temporary state of narcissism.

Zajenkowski et al. recruited 361 participants from Poland who were asked to rate their level of intelligence compared to other people; complete the Polish version of the Narcissistic Personality Inventory; and take an IQ test to compare their perceptions of their own intelligence with an objective measurement. The participants were then randomly assigned to one of two groups. One group received positive feedback—telling them they did indeed have a higher IQ than most people—while the other received negative feedback.

The results confirmed most of the researchers’ hypotheses. In general, participants gave lower estimates of their relative intelligence after completing the IQ test, which provided an objective check of sorts. But the type of feedback they received had a measurable impact. Positive feedback enhanced their feelings of uniqueness (a key aspect of grandiose narcissism). Those who received negative feedback rated their own intelligence as being lower, and that negative feedback had a larger effect than positive feedback. The authors concluded that external feedback helped shape the subjects’ perception of their own intelligence, regardless of the accuracy of that feedback.

Nutrition

Rainbow lizards eating ‘four cheese’ pizza at a seaside touristic resort in Togo.

Credit: Daniele Dendi et al, 2022

Citation: Daniele Dendi, Gabriel H. Segniagbeto, Roger Meek, and Luca Luiselli, for studying the extent to which a certain kind of lizard chooses to eat certain kinds of pizza.

Move over, Pizza Rat, here come the Pizza Lizards—rainbow lizards, to be precise. This is a species common to urban and suburban West Africa. The lizards primarily live off insects and arthropods, but their proximity to humans has led to some developing a more omnivorous approach to their foraging. Bread is a particular favorite. Case in point: One fine sunny day at a Togo seaside resort, the authors noticed a rainbow lizard stealing a tourist’s slice of four-cheese pizza and happily chowing down.

Naturally, they wanted to know if this was an isolated incident or whether the local rainbow lizards routinely feasted on pizza slices. And did the lizards have a preferred topping? Inquiring minds need to know. So they monitored the behavior of nine particular lizards, giving them the choice between a plate of four-cheese pizza and a plate of “four seasons” pizza, spaced about 10 meters apart.

It only took 15 minutes for the lizards to find the pizza and eat it, sometimes fighting over the remaining slices. But they only ate the four-cheese pizza. For the authors, this suggests there might be some form of chemical cues that attract them to the cheesy pizzas, or perhaps it’s easier for them to digest. I’d love to see how the lizards react to the widely derided Canadian bacon and pineapple pizza.

Pediatrics

Pumped breast milk in bottles

Citation: Julie Mennella and Gary Beauchamp, for studying what a nursing baby experiences when the baby’s mother eats garlic.

Mennella and Beauchamp designed their experiment to investigate two questions: whether the consumption of garlic altered the odor of a mother’s breast milk, and if so, whether those changes affected the behavior of nursing infants. (Garlic was chosen because it is known to produce off flavors in dairy cow milk and affect human body odor.) They recruited eight women who were exclusively breastfeeding their infants, taking samples of their breast milk over a period when the participants abstained from eating sulfurous foods (garlic, onion, asparagus), and more samples after the mothers consumed either a garlic capsule or a placebo.

The results: Mothers who ingested the garlic capsules produced milk with a perceptibly more intense odor, as evaluated by several adult panelists brought in to sniff the breast milk samples. The strong odor peaked at two hours after ingestion and decreased fats, which is consistent with prior research on cows that ingested highly odorous feeds. As for the infants, those whose mothers ingested garlic attached to the breast for longer periods and sucked more when the milk smelled like garlic. This could be relevant to ongoing efforts to determine whether sensory experiences during breastfeeding can influence how readily infants accept new foods upon weaning, and perhaps even their later food preferences.

Literature

closeup of a hand with clubbed fingernails

Credit: William B. Bean

Citation: The late Dr. William B. Bean, for persistently recording and analyzing the rate of growth of one of his fingernails over a period of 35 years.

If you’re surprised to see a study on fingernail growth rates under the Literature category, it will all make sense once you read the flowery prose stylings of Dr. Bean. He really did keep detailed records of how fast his fingernails grew for 35 years, claiming in his final report that “the nail provides a slowly moving keratin kymograph that measures age on the inexorable abscissa of time.” He sprinkles his observations with ponderous references to medieval astrology, James Boswell, and Moby Dick, with a dash of curmudgeonly asides bemoaning the sterile modern medical teaching methods that permeate “the teeming mass of hope and pain, technical virtuosity, and depersonalization called a ‘health center.'”

So what did our pedantic doctor discover in those 35 years, not just studying his own nails, but meticulously reviewing all the available scientific literature? Well, for starters, the rate of fingernail growth diminishes as one ages; Bean noted that his growth rates remained steady early on, but “slowed down a trifle” over the last five years of his project. Nails grow faster in children than adults. A warm environment can also accelerate growth, as does biting one’s fingernails—perhaps, he suggests, because the biting stimulates blood flow to the area. And he debunks the folklore of hair and nails growing even after death: it’s just the retraction and contraction of the skin post-mortem that makes it seem like the nails are growing.

Peace

Citation: Fritz Renner, Inge Kersbergen, Matt Field, and Jessica Werthmann, for showing that drinking alcohol sometimes improves a person’s ability to speak in a foreign language.

Alcohol is well-known to have detrimental effects on what’s known in psychological circles as “executive functioning,” impacting things like working memory and inhibitory control. But there’s a widespread belief among bilingual people that a little bit of alcohol actually improves one’s fluency in a foreign language, which also relies on executive functioning. So wouldn’t being intoxicated actually have an adverse effect on foreign language fluency? Renner et al. decided to investigate further.

They recruited 50 native German-speaking undergrad psychology students at Maastricht University in the Netherlands who were also fluent in Dutch. They were randomly divided into two groups. One group received an alcoholic drink (vodka with bitter lemon), and the other received water. Each participant consumed enough to be slightly intoxicated after 15 minutes, and then engaged in a discussion in Dutch with a native Dutch speaker. Afterward, they were asked to rate their self-perception of their skill at Dutch, with the Dutch speakers offering independent observer ratings.

The researchers were surprised to find that intoxication improved the participants’ Dutch fluency, based on the independent observer reports. (Self-evaluations were largely unaffected by intoxication levels.) One can’t simply attribute this to so-called “Dutch courage,” i.e., increased confidence associated with intoxication. Rather, the authors suggest that intoxication lowers language anxiety, thereby increasing one’s foreign language proficiency, although further research would be needed to support that hypothesis.

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Meet the 2025 Ig Nobel Prize winners Read More »

misunderstood-“photophoresis”-effect-could-loft-metal-sheets-to-exosphere

Misunderstood “photophoresis” effect could loft metal sheets to exosphere


Photophoresis can generate a tiny bit of lift without any moving parts.

Image of a wooden stand holding a sealed glass bulb with a spinning set of vanes, each of which has a lit and dark side.

Most people would recognize the device in the image above, although they probably wouldn’t know it by its formal name: the Crookes radiometer. As its name implies, placing the radiometer in light produces a measurable change: the blades start spinning.

Unfortunately, many people misunderstand the physics of its operation (which we’ll return to shortly). The actual forces that drive the blades to spin, called photophoresis, can act on a variety of structures as long as they’re placed in a sufficiently low-density atmosphere. Now, a team of researchers has figured out that it may be possible to use the photophoretic effect to loft thin sheets of metal into the upper atmosphere of Earth and other planets. While their idea is to use it to send probes to the portion of the atmosphere that’s too high for balloons and too low for satellites, they have tested some working prototypes a bit closer to the Earth’s surface.

Photophoresis

It’s quite common—and quite wrong—to see explanations of the Crookes radiometer that involve radiation pressure. Supposedly, the dark sides of the blades absorb more photons, each of which carries a tiny bit of momentum, giving the dark side of the blades a consistent push. The problem with this explanation is that photons are bouncing off the silvery side, which imparts even more momentum. If the device were spinning due to radiation pressure, it would be turning in the opposite direction than it actually does.

An excess of the absorbed photons on the dark side is key to understanding how it works, though. Photophoresis operates through the temperature difference that develops between the warm, light-absorbing dark side of the blade and the cooler silvered side.

Any gas molecule that bumps into the dark side will likely pick up some of the excess thermal energy from it and move away from the blade faster than it arrived. At the sorts of atmospheric pressures we normally experience, these molecules don’t get very far before they bump into other gas molecules, which keeps any significant differences from developing.

But a Crookes radiometer is in a sealed glass container with a far lower air pressure. This allows the gas molecules to speed off much farther from the dark surface of the blade before they run into anything, creating an area of somewhat lower pressure at its surface. That causes gas near the surface of the shiny side to rush around and fill this lower-pressure area, imparting the force that starts the blades turning.

It’s pretty impressively inefficient in that sort of configuration, though. So people have spent a lot of time trying to design alternative configurations that can generate a bit more force. One idea with a lot of research traction is a setup that involves two thin metal sheets—one light, one dark—arranged parallel to each other. Both sheets would be heavily perforated to cut down on weight. And a subset of them would have a short pipe connecting holes on the top and bottom sheet. (This has picked up the nickname “nanocardboard.”)

These pipes would serve several purposes. One is to simply link the two sheets into a single unit. Another is to act as an insulator, keeping heat from moving from the dark sheet to the light one, and thus enhancing the temperature gradient. Finally, they provide a direct path for air to move from the top of the light-colored sheet to the bottom of the dark one, giving a bit of directed thrust to help keep the sheets aloft.

Optimization

As you might imagine, there are a lot of free parameters you can tweak: the size of the gap between the sheets, the density of perforations in them, the number of those holes that are connected by a pipe, and so on. So a small team of researchers developed a system to model different configurations and attempt to optimize for lift. (We’ll get to their motivations for doing so a bit later.)

Starting with a disk of nanocardboard, “The inputs to the model are the geometric, optical and thermal properties of the disk, ambient gas conditions, and external radiative heat fluxes on the disk,” as the researchers describe it. “The outputs are the conductive heat fluxes on the two membranes, the membrane temperatures, and the net photophoretic lofting force on the structure.” In general, the ambient gas conditions needed to generate lift are similar to the ones inside the Crookes radiometer: well below the air pressure at sea level.

The model suggested that three trends should influence any final designs. The first is that the density of perforations is a balance. At relatively low elevations (meaning a denser atmosphere), many perforations increase the stress on large sheets, but they decrease the stress for small items at high elevations. The other thing is that, rather than increasing with surface area, lift tends to drop because the sheets are more likely to equilibrate to the prevailing temperatures. A square millimeter of nanocardboard produces over 10 times more lift per surface area than a 10-square-centimeter piece of the same material.

Finally, the researchers calculate that the lift is at its maximum in the mesosphere, the area just above the stratosphere (50–100 kilometers above Earth’s surface).

Light and lifting

The researchers then built a few sheets of nanocardboard to test the output of their model. The actual products, primarily made of chromium, aluminum, and aluminum oxide, were incredibly light, weighing only a gram for a square meter of material. When illuminated by a laser or white LED, they generated measurable force on a testing device, provided the atmosphere was kept sufficiently sparse. With an exposure equivalent to sunlight, the device generated more than it weighed.

It’s a really nice demonstration that we can take a relatively obscure and weak physical effect and design devices that can levitate in the upper atmosphere, powered by nothing more than sunlight—which is pretty cool.

But the researchers have a goal beyond that. The mesophere turns out to be a really difficult part of the atmosphere to study. It’s not dense enough to support balloons or aircraft, but it still has enough gas to make quick work of any satellites. So the researchers really want to turn one of these devices into an instrument-carrying aircraft. Unfortunately, that would mean adding the structural components needed to hold instruments, along with the instruments themselves. And even in the mesosphere, where lift is optimal, these things do not generate much in the way of lift.

Plus, there’s the issue of getting them there, given that they won’t generate enough lift in the lower atmosphere, so they’ll have to be carried into the upper stratosphere by something else and then be released gently enough to not damage their fragile structure. And then, unless you’re lofting them during the polar summer, they will likely come floating back down at night.

None of this is to say this is an impossible dream. But there are definitely a lot of very large hurdles between the work and practical applications on Earth—much less on Mars, where the authors suggest the system could also be used to explore the mesosphere. But even if that doesn’t end up being realistic, this is still a pretty neat bit of physics.

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Misunderstood “photophoresis” effect could loft metal sheets to exosphere Read More »

new-adhesive-surface-modeled-on-a-remora-works-underwater

New adhesive surface modeled on a remora works underwater


It was tested for its ability to adhere to the inside of the digestive tract.

Most adhesives can’t stick to wet surfaces because water and other fluids disrupt the adhesive’s bonding mechanisms. This problem, though, has been beautifully solved by evolution in remora suckerfish, which use an adhesive disk on top of their heads to attach to animals like dolphins, sharks, and even manta rays.

A team of MIT scientists has now taken a close look at these remora disks and reverse-engineered them. “Basically, we looked at nature for inspiration,” says Giovanni Traverso, a professor at MIT Department of Mechanical Engineering and senior author of the study.

Sticking Variety

Remora adhesive disks are an evolutionary adaptation of the fish’s first dorsal fin, the one that in other species sits on top of the body, just behind the head and gill covers. The disk rests on an intercalary backbone—a bone structure that most likely evolved from parts of the spine. This bony structure supports lamellae, specialized bony plates with tiny backward-facing spikes called spinules. The entire disk is covered with soft tissue compartments that are open at the top. “This makes the remora fish adhere very securely to soft-bodied, fast-moving marine hosts,” Traverso says.

A remora attaches to the host by pressing itself against the skin, which pushes the water out of these compartments, creating a low-pressure zone. Then, the spinules mechanically interlock with the host’s surface, making the whole thing work a bit like a combination of a suction cup and Velcro. When the fish wants to detach from a host, it lifts the disk, letting water back into the compartments to remove the suction. Once released, it can simply swim away.

What impressed the scientists the most, though, was the versatility of those disks. Reef-associated species of remora like Phtheirichthys lineatus are generalists and stick to various hosts, including other fish, sharks, or turtles. Other species living in the open sea are more specialized and attach to cetaceans, swordfish, or marlins. While most remoras attach to the external tissue of their hosts, R. albescens sticks within the oral cavities and gill chamber of manta rays.

a close up of a fish, showing its head covered by an oval-shaped pad that has lots of transverse ridges.

A close-up of the adhesive pad of a remora. Credit: Stephen Frink

To learn what makes all these different disks so good at sticking underwater, the team first examined their anatomy in detail. It turned out that the difference between the disks was mostly in the positioning of lamellae. Generalist species have a mix of parallel and angled lamellae, while remoras sticking to fast-swimming hosts have them mostly parallel. R. albescens, on the other hand, doesn’t have a dominant lamellae orientation pattern but has them positioned at a very wide variety of angles.

The researchers wanted to make an adhesive device that would work for a wide range of applications, including maritime exploration or underwater manufacturing. Their initial goal, though, was designing a drug delivery platform that could reliably stick to the inside walls of the gastrointestinal tract. So, they chose R. albescens disks as their starting point, since that species already attaches internally to its host. They termed their device an Mechanical Underwater Soft Adhesion System (MUSAS).

However, they didn’t just opt for a biomimetic, copy-and-paste design. “There were things we did differently,” Traverso says.

Upgrading nature

The first key difference was deployment. MUSAS was supposed to travel down the GI tract to reach its destination, so the first challenge was making it fit into a pill. The team chose the size 000 capsule, which at 26 millimeters in length and 9.5 millimeters in diameter, is the largest Food and Drug Administration-approved ingestible form. MUSAS had a supporting structure—just like remora disks, but made with stainless steel. The angled lamellae with spinules fashioned after those on R. albescens were made of a shape memory nickel-titanium alloy. The role of remora’s soft tissues, which provide the suction by dividing the disk into compartments, was played by an elastomer.

MUSAS, would be swallowed in a folded form within its huge pill. “The capsule is tuned to dissolve in specific pH environment, which is how we determine the target location—for example the small intestine has a slightly different pH than the stomach”, says Ziliang Kang, an MIT researcher in Traverso’s group and lead author of the study.  Once released, the shape memory alloy in MUSAS lamellae-like structures would unfold in response to body temperature and the whole thing would stick to the wall of the target organ, be it the esophagus, the stomach, or the intestines.

The mechanism of sticking was also a bit different from that of remoras. “The fish can swim and actively press itself against the surface it wants to stick to. MUSAS can’t do that, so instead we relied on the peristaltic movements within the GI tract to exert the necessary force,” Traverso explains. When the muscles contract, MUSAS would be pressed against the wall and attach to it. And it was expected to stay there for quite some time.

The team ran a series of experiments to evaluate MUSAS performance in a few different scenarios. The drug-delivery platform application was tested on pig organ samples. MUSAS stayed in the sample GI tract for an average of nine days, with the longest sticking time reaching three and a half weeks. MUSAS managed to stay in place despite food and fluids going through the samples.

Even when the team poked the devices with a pipette to test what they called “resisting dynamic interference,” MUSAS just slid a little but remained firmly attached. Other experiments included using MUSAS to attach temperature sensors to external tissues of live fish and putting sensors that could detect reflux events in the GI tract of live pigs.

Branching out

The team is working on making MUSAS compatible with a wider range of drugs and mRNA vaccines. “We also think about using this for stimulating tissues,” Traverso says. The solution he has in mind would use MUSAS to deliver electrical pulses to the walls of the GI tract, which Traverso’s lab has shown can activate appetite-regulating hormones. But the team also wants to go beyond strictly medical applications.

The team demonstrated that MUSAS is really strong as an adhesive. When it sticks to a surface, it can hold a weight over a thousand times greater than its own. This puts MUSAS more or less on par with some of the best adhesives we have, such as polyurethane glues or epoxy resins. What’s more, this sticking strength was measured when MUSAS was attached to soft, uneven, wet surfaces. “On a rigid, even surface, the force-to-weight ratio should be even higher,” Kang claims. And this, Kang thinks, makes scaled-up variants of MUSAS a good match for underwater manufacturing.

“The first scenario I see is using MUSAS as grippers attached to robotic arms moving around soft objects,” Kang explains. Currently, this is done using vacuum systems that simply suck onto a fabric or other surface. The problem is that these solutions are rather complex and heavy. Scaled-up MUSAS should be able to achieve the same thing passively, cutting cost and weight. The second idea Kang has is using MUSAS in robots designed to perform maintenance jobs beneath the waterline on boats or ships. “We are really trying to see what is possible,” Traverso says.

Nature, 2025.  DOI: 10.1038/s41586-025-09304-4

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

New adhesive surface modeled on a remora works underwater Read More »

why-it-makes-perfect-sense-for-this-bike-to-have-two-gears-and-two-chains

Why it makes perfect sense for this bike to have two gears and two chains

Buffalo S2 bike, seen from the drive side, against a gray background, double kickstand and rack visible.

Credit: World Bicycle Relief

The S2 model aimed to give riders an uphill climbing gear but without introducing the complexities of a gear-shifting derailleur, tensioned cables, and handlebar shifters. Engineers at SRAM came up with a solution that’s hard to imagine for other bikes but not too hard to grasp. A freewheel in the back has two cogs, with a high gear for cruising and a low gear for climbing. If you pedal backward a half-rotation, the outer, higher gear engages or disengages, taking over the work from the lower gear. The cogs, chains, and chainrings on this bike are always moving, but only one gear is ever doing the work.

Seth at Berm Peak suggests that the shifting is instantaneous and seemingly perfect, without clicking or chain slipping. If one chain breaks, you can ride on the other chain and cog until you can get it fixed. There might be some inefficiencies in the amount of tension on the chains since they have to be somewhat even. But after trying out ideas with simplified internal gear hubs and derailleurs, SRAM recommended the two-chain design and donated it to the bike charity.

Two people loading yellow milk-style crates of cargo onto Buffalo bicycles, seemingly in the street of a small village.

Credit: World Bicycle Relief

Buffalo S2 bikes cost $165, just $15 more than the original, and a $200 donation covers the building and shipping of such a bike to most places. You can read more about the engineering principles and approach to sustainability on World Bike Relief’s site.

Why it makes perfect sense for this bike to have two gears and two chains Read More »

teaching-a-drone-to-fly-without-a-vertical-rudder

Teaching a drone to fly without a vertical rudder


We can get a drone to fly like a pigeon, but we needed to use feathers to do it.

Pigeons manage to get vertical without using a vertical tail. Credit: HamidEbrahimi

Most airplanes in the world have vertical tails or rudders to prevent Dutch roll instabilities, a combination of yawing and sideways motions with rolling that looks a bit like the movements of a skater. Unfortunately, a vertical tail adds weight and generates drag, which reduces fuel efficiency in passenger airliners. It also increases the radar signature, which is something you want to keep as low as possible in a military aircraft.

In the B-2 stealth bomber, one of the very few rudderless airplanes, Dutch roll instabilities are dealt with using drag flaps positioned at the tips of its wings, which can split and open to make one wing generate more drag than the other and thus laterally stabilize the machine. “But it is not really an efficient way to solve this problem,” says David Lentink, an aerospace engineer and a biologist at the University of Groningen, Netherlands. “The efficient way is solving it by generating lift instead of drag. This is something birds do.”

Lentink led the study aimed at better understanding birds’ rudderless flight mechanics.

Automatic airplanes

Birds flight involves near-constant turbulence—“When they fly around buildings, near trees, near rocks, near cliffs,” Lentink says. The leading hypothesis on how they manage this in a seemingly graceful, effortless manner was suggested by a German scientist named Franz Groebbels. He argued that birds’ ability relied on their reflexes. When he held a bird in his hands, he noticed that its tail would flip down when the bird was pitched up and down, and when the bird was moved left and right, its wings also responded to movement by extending left and right asymmetrically. “Another reason to think reflexes matter is comparing this to our own human locomotion—when we stumble, it is a reflex that saves us from falling,” Lentink claims.

Groebbels’ intuition about birds’ reflexes being responsible for flight stabilization was later backed by neuroscience. The movements of birds’ wings and muscles were recorded and found to be proportional to the extent that the bird was pitched or rolled. The hypothesis, however, was extremely difficult to test with a flying bird—all the experiments aimed at confirming it have been done on birds that were held in place. Another challenge was determining if those wing and tail movements were reflexive or voluntary.

“I think one pretty cool thing is that Groebbels wrote his paper back in 1929, long before autopilot systems or autonomous flight were invented, and yet he said that birds flew like automatic airplanes,” Lentink says. To figure out if he was right, Lentink and his colleagues started with the Groebbels’s analogy but worked their way backward—they started building autonomous airplanes designed to look and fly like birds.

Reverse-engineering pigeons

The first flying robot Lentink’s team built was called the Tailbot. It had fixed wings and a very sophisticated tail that could move with five actuated degrees of freedom. “It could spread—furl and unfurl—move up and down, move sideways, even asymmetrically if necessary, and tilt. It could do everything a bird’s tail can,” Lentink explains. The team put this robot in a wind tunnel that simulated turbulent flight and fine-tuned a controller that adjusted the tail’s position in response to changes in the robot’s body position, mimicking reflexes observed in real pigeons.

“We found that this reflexes controller that managed the tail’s movement worked and stabilized the robot in the wind tunnel. But when we took it outdoors, results were disappointing. It actually ended up crashing,” Lentink says. Given that relying on a morphing tail alone was not enough, the team built another robot called PigeonBot II, which added pigeon-like morphing wings.

Each wing could be independently tucked or extended. Combined with the morphing tail and nine servomotors—two per wing and five in the tail—the robot weighed around 300 grams, which is around the weight of a real pigeon. Reflexes were managed by the same controller that was modified to manage wing motions as well.

To enable autonomous flight, the team fitted the robot with two propellers and an off-the-shelf drone autopilot called Pixracer. The problem with the autopilot, though, was that it was designed for conventional controls you use in quadcopter drones. “We put an Arduino between the autopilot and the robot that translated autopilot commands to the morphing tail and wings’ motions of the robot,” Lentink says.

The Pigeon II passed the outdoor flying test. It could take off, land, and fly entirely on its own or with an operator issuing high-level commands like go up, go down, turn left, or turn right. Flight stabilization relied entirely on bird-like reflexes and worked well. But there was one thing electronics could not re-create: their robots used real pigeon feathers. “We used them because with current technology it is impossible to create structures that are as lightweight, as stiff, and as complex at the same time,” Lentink says.

Feathery marvels

Birds’ feathers appear simple, but they really are extremely advanced pieces of aerospace hardware. Their complexity starts with nanoscale features. “Feathers have 10-micron 3D hooks on their surface that prevent them from going too far apart. It is the only one-sided Velcro system in the world. This is something that has never been engineered, and there is nothing like this elsewhere in nature,” Lentink says. Those nanoscale hooks, when locked in, can bear loads reaching up to 20 grams.

Then there are macroscale properties. Feathers are not like aluminum structures that have one bending stiffness, one torque stiffness, and that’s it. “They are very stiff in one direction and very soft in another direction, but not soft in a weak way—they can bear significant loads,” Lentink says.

His team attempted to make artificial feathers with carbon fiber, but they couldn’t create anything as lightweight as a real feather.  “I don’t know of any 3D printer that could start with 10-micron nanoscale features and work all the way up to macro-scale structures that can be 20 centimeters long,” Lentink says. His team also discovered that pigeon’s feathers could filter out a lot of turbulence perturbations on their own. “It wasn’t just the form of the wing,” Lentink claims.

Lentink estimates that a research program aimed at developing aerospace materials even remotely comparable to feathers could take up to 20 years. But does this mean his whole concept of using reflex-based controllers to solve rudderless flight hangs solely on successfully reverse-engineering a pigeon’s feather? Not really.

Pigeon bombers?

The team thinks it could be possible to build airplanes that emulate the way birds stabilize rudderless flight using readily available materials. “Based on our experiments, we know what wing and tail shapes are needed and how to control them. And we can see if we can create the same effect in a more conventional way with the same types of forces and moments,” Lentink says. He suspects that developing entirely new materials with feather-like properties would only become necessary if the conventional approach bumps into some insurmountable roadblocks and fails.

“In aerospace engineering, you’ve got to try things out. But now we know it is worth doing,” Lentink claims. And he says military aviation ought to be the first to attempt it because the risk is more tolerable there. “New technologies are often first tried in the military, and we want to be transparent about it,” he says. Implementing bird-like rudderless flight stabilization in passenger airliners, which are usually designed in a very conservative fashion, would take a lot more research, “It may take easily take 15 years or more before this technology is ready to such level that we’d have passengers fly with it,” Lentink claims.

Still, he says there is still much we can learn from studying birds. “We know less about bird’s flight than most people think we know. There is a gap between what airplanes can do and what birds can do. I am trying to bridge this gap by better understanding how birds fly,” Lentink adds.

Science Robotics, 2024. DOI: 10.1126/scirobotics.ado4535

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Teaching a drone to fly without a vertical rudder Read More »

how-london’s-crystal-palace-was-built-so-quickly

How London’s Crystal Palace was built so quickly

London’s Great Exhibition of 1851 attracted some 6 million people eager to experience more than 14,000 exhibitors showcasing 19th-century marvels of technology and engineering. The event took place in the Crystal Palace, a 990,000-square-foot building of cast iron and plate glass originally located in Hyde Park. And it was built in an incredible 190 days. According to a recent paper published in the International Journal for the History of Engineering and Technology, one of the secrets was the use of a standardized screw thread, first proposed 10 years before its construction, although the thread did not officially become the British standard until 1905.

“During the Victorian era there was incredible innovation from workshops right across Britain that was helping to change the world,” said co-author John Gardner of Anglia Ruskin University (ARU). “In fact, progress was happening at such a rate that certain breakthroughs were perhaps never properly realized at the time, as was the case here with the Crystal Palace. Standardization in engineering is essential and commonplace in the 21st century, but its role in the construction of the Crystal Palace was a major development.”

The design competition for what would become the Crystal Palace was launched in March 1850, with a deadline four weeks later, and the actual, fully constructed building opened on May 1, 1851. The winning design, by Joseph Patterson, wasn’t chosen until quite late in the game after numerous designs had been rejected—most because they were simply too far above the £100,000 budget.

Joseph Paxton's first sketch for the Great Exhibition Building, c. 1850, using pen and ink on blotting paper

Joseph Paxton’s first sketch for the Great Exhibition Building, c. 1850, using pen and ink on blotting paper.

Joseph Paxton’s first sketch for the Great Exhibition Building, c. 1850, using pen and ink on blotting paper. Credit: Victoria and Albert Museum/CC BY-SA 3.0

Patterson’s design called for what was essentially a giant conservatory consisting of a multi-dimensional grid of 24-foot modules. The design elements included 3,300 supporting columns with four flange faces, drilled so they could be bolted to connecting and base pieces. (The hollow columns did double duty as drainage pipes for rainwater.) The design also called for diagonal bracing (aka cross bracing) for additional stability.

How London’s Crystal Palace was built so quickly Read More »

watch-sand-defy-gravity-and-flow-uphill-thanks-to-“negative-friction”

Watch sand defy gravity and flow uphill thanks to “negative friction”

On the second day of Christmas —

Applying magnetic forces to single iron oxide-coated particles spurs strange collective motion.

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2023, each day from December 25 through January 5. Today: how applying magnetic forces to individual “micro-roller” particles spurs collective motion, producing some pretty counter-intuitive results.

Engineering researchers at Lehigh University have discovered that sometimes sand can actually flow uphill.

Enlarge / Engineering researchers at Lehigh University have discovered that sometimes sand can actually flow uphill.

Lehigh University

We intuitively understand that the sand pouring through an hourglass, for example, forms a neat roughly pyramid-shaped pile at the bottom, in which the grains near the surface flow over an underlying base of stationary particles. Avalanches and sand dunes exhibit similar dynamics. But scientists at Lehigh University in Pennsylvania have discovered that applying a magnetic torque can actually cause sand-like particles to collectively flow uphill in seeming defiance of gravity, according to a September paper published in the journal Nature Communications.

Sand is pretty fascinating stuff from a physics standpoint. It’s an example of a granular material, since it acts both like a liquid and a solid. Dry sand collected in a bucket pours like a fluid, yet it can support the weight of a rock placed on top of it, like a solid, even though the rock is technically denser than the sand. So sand defies all those tidy equations describing various phases of matter, and the transition from flowing “liquid” to a rigid “solid” happens quite rapidly. It’s as if the grains act as individuals in the fluid form, but are capable of suddenly banding together when solidarity is needed, achieving a weird kind of “strength in numbers” effect.

Nor can physicists precisely predict an avalanche. That’s partly because of the sheer number of grains of sand in even a small pile, each of which will interact with several of its immediate neighboring grains simultaneously—and those neighbors shift from one moment to the next. Not even a supercomputer can track the movements of individual grains over time, so the physics of flow in granular media remains a vital area of research.

But grains of sand that collectively flow uphill? That is simply bizarre behavior. Lehigh University engineer James Gilchrist manages the Laboratory for Particle Mixing and Self-Organization and stumbled upon this odd phenomenon while experimenting with “micro-rollers”: polymer particles coated in iron oxide (a process called micro-encapsulation). He was rotating a magnet under a vial of micro-rollers one day and noticed they started to pile uphill. Naturally he and his colleagues had to investigate further.

For their experiments, Gilchrist et al. attached neodymium magnets to a motorized wheel at 90-degree intervals, alternating the outward facing poles. The apparatus also included a sample holder and a USB microscope in a fixed position. The micro-rollers were prepared by suspending them in a glass vial containing ethanol and using a magnet to separate them from dust or any uncoated particles. Once the micro-rollers were clean, they were dried, suspended in fresh ethanol, and loaded onto the sample holder. A vibrating motor agitated the samples to produce flattened granular beds, and the motorized wheel was set in motion to apply magnetic torque. A gaussmeter measured the magnetic field strength relative to orientation.

Uphill granular flow of microrobotic microrollers. Credit: Lehigh University.

The results: each micro-roller began to rotate in response to the magnetic torque, creating pairs that briefly formed and then split, and increasing the magnetic force increased the particle cohesion. This in turn gave the micro-rollers more traction and enabled them to move more quickly, working in concert to counterintuitively flow uphill. In the absence of that magnetic torque, the miro-rollers flowed downhill normally. The torque-induced action was so unexpected that the researchers coined a new term to describe it: a “negative angle of repose” caused by a negative coefficient of friction.

“Up until now, no one would have used these terms,” said Gilchrist. “They didn’t exist. But to understand how these grains are flowing uphill, we calculated what the stresses are that cause them to move in that direction. If you have a negative angle of repose, then you must have cohesion to give a negative coefficient of friction. These granular flow equations were never derived to consider these things, but after calculating it, what came out is an apparent coefficient of friction that is negative.”

It’s an intriguing proof of principle that could one day lead to new ways to control how substances mix or separate, as well as potential swarming microrobotics applications. The scientists have already started building tiny staircases with laser cutters and videotaping the micro-rollers climbing up and down the other. One micro-roller can’t overcome the height of each step, but many working collectively can do so, per Gilchrist.

DOI: Nature Communications, 2023. 10.1038/s41467-023-41327-1  (About DOIs).

Listing image by Lehigh University

Watch sand defy gravity and flow uphill thanks to “negative friction” Read More »