falcon 9

rocket-report:-ula-is-losing-engineers;-spacex-is-launching-every-two-days

Rocket Report: ULA is losing engineers; SpaceX is launching every two days

Every other day —

The first missions of Stoke Space’s reusable Nova rocket will fly in expendable mode.

A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Enlarge / A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Welcome to Edition 7.07 of the Rocket Report! SpaceX has not missed a beat since the Federal Aviation Administration gave the company a green light to resume Falcon 9 launches after a failure last month. In 19 days, SpaceX has launched 10 flights of the Falcon 9 rocket, taking advantage of all three of its Falcon 9 launch pads. This is a remarkable cadence in its own right, but even though it’s a small sample size, it is especially impressive right out of the gate after the rocket’s grounding.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

A quick turnaround for Rocket Lab. Rocket Lab launched its 52nd Electron rocket on August 11 from its private spaceport on Mahia Peninsula in New Zealand, Space News reports. The company’s light-class Electron rocket deployed a small radar imaging satellite into a mid-inclination orbit for Capella Space. This was the shortest turnaround between two Rocket Lab missions from its primary launch base in New Zealand, coming less than nine days after an Electron rocket took off from the same pad with a radar imaging satellite for the Japanese company Synspective. Capella’s Acadia 3 satellite was originally supposed to launch in July, but Capella requested a delay to perform more testing of its spacecraft. Rocket Lab swapped its place in the Electron launch sequence and launched the Synspective mission first.

Now, silence at the launch pad … Rocket Lab hailed the swap as an example of the flexibility provided by Electron, as well as the ability to deliver payloads to specific orbits that are not feasible with rideshare missions, according to Space News. For this tailored launch service, Rocket Lab charges a premium launch price over the price of launching a small payload on a SpaceX rideshare mission. However, SpaceX’s rideshare launches gobble up the lion’s share of small satellites within Rocket Lab’s addressable market. On Friday, a Falcon 9 rocket is slated to launch 116 small payloads into polar orbit. Rocket Lab, meanwhile, projects just one more launch before the end of September and expects to perform 15 to 18 Electron launches this year, a record for the company but well short of the 22 it forecasted earlier in the year. Rocket Lab says customer readiness is the reason it will be far short of projections.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Defense contractors teaming up on solid rockets. Lockheed Martin and General Dynamics are joining forces to kickstart solid rocket motor production, announcing a strategic teaming agreement today that could see new motors roll off the line as early as 2025, Breaking Defense reports. The new agreement could position a third vendor to enter into the ailing solid rocket motor industrial base, which currently only includes L3Harris subsidiary Aerojet Rocketdyne and Northrop Grumman in the United States. Both companies have struggled to meet demands from weapons makers like Lockheed and RTX, which are in desperate need of solid rocket motors for products such as Javelin or the PAC-3 missiles used by the Patriot missile defense system.

Pressure from startups … Demand for solid rocket motors has skyrocketed since Russia’s invasion of Ukraine as the United States and its partners sought to backfill stocks of weapons like Javelin and Stinger, as well as provide motors to meet growing needs in the space domain. Although General Dynamics has kept its interest in the solid rocket motor market quiet until now, several defense tech startups, such as Ursa Major Technologies, Anduril, and X-Bow Systems, have announced plans to enter the market. (submitted by Ken the Bin)

Going polar with crew. SpaceX will fly the first human spaceflight over the Earth’s poles, possibly before the end of this year, Ars reports. The private Crew Dragon mission will be led by a Chinese-born cryptocurrency entrepreneur named Chun Wang, and he will be joined by a polar explorer, a roboticist, and a filmmaker whom he has befriended in recent years. The “Fram2” mission, named after the Norwegian research ship Fram, will launch into a polar corridor from SpaceX’s launch facilities in Florida and fly directly over the north and south poles. The three- to five-day mission is being timed to fly over Antarctica near the summer solstice in the Southern Hemisphere, to afford maximum lighting.

Wang’s inclination is Wang’s prerogative … Wang told Ars he wanted to try something new, and flying a polar mission aligned with his interests in cold places on Earth. He’s paying the way on a commercial basis, and SpaceX in recent years has demonstrated it can launch satellites into polar orbit from Cape Canaveral, Florida, something no one had done in more than 50 years. The highest-inclination flight ever by a human spacecraft was the Soviet Vostok 6 mission in 1963 when Valentina Tereshkova’s spacecraft reached 65.1 degrees. Now, Fram2 will fly repeatedly and directly over the poles.

Rocket Report: ULA is losing engineers; SpaceX is launching every two days Read More »

rocket-report:-falcon-9-is-back;-starship-could-be-recovered-off-australia

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia

Starship down under —

Elon Musk doesn’t expect the next Starship test flight to occur before late August.

Welcome to Edition 7.05 of the Rocket Report! The Federal Aviation Administration grounded SpaceX’s Falcon 9 rocket for 15 days after a rare failure of its upper stage earlier this month. The FAA gave the green light for Falcon 9 to return to flight July 25, and within a couple of days, SpaceX successfully launched three missions from three launch pads. There’s a lot on Falcon 9’s to-do list, so we expect SpaceX to quickly return to form with several flights per week.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Big delay for a reusable rocket testbed. The French space agency, CNES, has revealed that the inaugural test flight of its Callisto reusable rocket demonstrator will not take place until late 2025 or early 2026, European Spaceflight reports. CNES unveiled an updated website for the Callisto rocket program earlier this month, showing the test rocket has been delayed from a debut launch later this year to until late 2025 or early 2026. The Callisto rocket is designed to test techniques and technologies required for reusable rockets, such as vertical takeoff and vertical landing, with suborbital flights from the Guiana Space Center in South America.

Cooperative action … Callisto, which stands for Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations, is a joint project between CNES, German space agency DLR, and JAXA, the Japanese space agency. It will stand 14 meters (46 feet) tall and weigh about 4 metric tons (8,800 pounds), with an engine supplied by Japan. Callisto is one of several test projects in Europe aiming to pave the way for a future reusable rocket. (submitted by EllPeaTea and Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Small step for Themis. Another European project established to demonstrate reusable rocket tech is making slow progress toward a first flight. The Themis project, funded by the European Space Agency, is similar in purpose to the Callisto testbed discussed above. This week, the German aerospace manufacturing company MT Aerospace announced it has begun testing a demonstrator of the landing legs that will be used aboard the Themis reusable booster, European Spaceflight reports. The landing legs for Themis are made of carbon fiber-reinforced plastic composites, and the initial test demonstrated good deployment and showed it would withstand the impact energy of landing.

Also delayed … Like Callisto, Themis is facing delays in getting to the launch pad. ArianeGroup, the ESA-selected Themis prime contractor, had been expected to conduct an initial hop test of the demonstrator before the end of 2024. However, officials have announced the initial hop tests won’t happen until sometime next year. The Themis booster is intended to eventually become the first stage booster for an orbital-class partially reusable rocket being developed by MaiaSpace, a subsidiary of ArianeGroup. (submitted by Ken the Bin)

Falcon 9 is flying again. A SpaceX Falcon 9 rocket returned to flight on July 27, barely two weeks after an upper stage failure ended a streak of more than 300 consecutive successful launches, Ars reports. By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband Internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company and attempting to get the world’s most active booster back into service.

Best part is no part … The Falcon 9 successfully deployed its payload of Starlink satellites about an hour after lifting off from NASA’s Kennedy Space Center in Florida. Later in the weekend, SpaceX launched two more Starlink missions on Falcon 9 rockets from Florida and California, notching three flights in less than 28 hours. The launch failure on the previous Falcon 9 launch was caused by a liquid oxygen leak on the upper stage, which led to a “hard start” on the upper stage engine when it attempted to reignite in flight. Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system.

Atlas V’s NSSL era is over. United Launch Alliance delivered a classified US military payload to orbit Tuesday for the last time with an Atlas V rocket, ending the Pentagon’s use of Russian rocket engines as national security missions transition to all-American launchers, Ars reports. This was the 101st launch of an Atlas V rocket since its debut in 2002, and the 58th and final Atlas V mission with a US national security payload since 2007. The Atlas V is powered by an RD-180 main engine made in Russia, and with a little prodding from SpaceX (via a lawsuit) and Congress, the Pentagon started making moves to end its reliance on the RD-180 a decade ago.

Other options available … The RD-180 never failed on a National Security Space Launch (NSSL) mission using the Atlas V rocket, but its use became politically untenable after Russia’s annexation of Crimea in 2014, which predated Russia’s full-scale invasion of Ukraine eight years later. SpaceX began launching US military missions in 2018, and ULA debuted its new Vulcan rocket in January. Assuming a successful second test flight of Vulcan in September, ULA’s next-generation rocket has a good shot at launching its first national security mission by the end of the year. The Space Force’s policy is to maintain at least two independent launch vehicles capable of flying military payloads into orbit. Vulcan and SpaceX’s Falcon rocket family fulfill that requirement, so the military no longer needs the Atlas V. However, 15 more Atlas V rockets remain in ULA’s inventory for future commercial flights.

Crackdown at the Cape. While this week’s landmark launch of the Atlas V rocket is worthy of celebration, there’s a new ULA policy that deserves ridicule, Ars reports. Many of the spectacular photos of rocket launches shared on social media come from independent photographers, who often make little to no money working for an established media organization. Instead, they rely on sales of prints to recoup at least some of their expenses for gas, food, and camera equipment needed to capture these images, which often serve as free publicity for launch providers like ULA. Last month, ULA announced it will no longer permit these photographers to set up remote cameras at their launch pads if they sell their images independently. This new policy was in place for the Atlas V launch from Cape Canaveral, Florida, on Tuesday morning.

But why? … “ULA will periodically confirm editorial publication for media participating in remote camera placement,” ULA stated in an email distributed to photographers last month. “If publication does not occur, or photos are sold outside of editorial purposes, privileges to place remote cameras may be revoked.” To the photographers who spend many hours preparing their equipment, waiting to set up and remove cameras, and persevering through scrubs and more, it seemed like a harsh judgment. And nobody knows why it happened. ULA has offered no public comment about the new policy, and the company did not respond to questions from Ars about the agreement.

Astroscale achieves a first in orbit. There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet, Ars reports. A Japanese company named Astroscale launched a small satellite in February to chase down the derelict upper stage from a Japanese H-IIA rocket. Astroscale’s ADRAS-J spacecraft arrived near the H-IIA upper stage in April, and the company announced this week that its satellite has now completed two 360-degree fly-arounds of the rocket. This is the first time a satellite has maneuvered around an actual piece of space junk, and it offers an unprecedented snapshot of how an abandoned rocket holds up to 15 years in the harsh environment of space.

Prepping for the future … Astroscale’s ADRAS-J mission is partially funded by the Japan Aerospace Exploration Agency (JAXA). Astroscale and JAXA also have a contract for a follow-up mission named ADRAS-J2, which will attempt to link up with the same H-IIA rocket and steer it on a trajectory to burn up in Earth’s atmosphere. This would be the first demonstration of active debris removal, a concept pursued by Astroscale and other companies to help clear space junk out of low-Earth orbit.

An update on Ariane 6. The European Space Agency has released its first update on the results from the first flight of the Ariane 6 rocket since its launch July 9. Europe’s new flagship rocket had a mostly successful inaugural test flight. Its first stage, solid rocket boosters, and upper stage performed as expected for the first phase of the flight, delivering eight small satellites into an on-target orbit. The launch pad at the Guiana Space Center in South America also held up to the violent environment of launch, ESA said.

Still investigating … However, the final phase of the mission didn’t go according to plan. The upper stage’s Vinci engine was supposed to reignite for a third time on the test flight to deorbit the rocket, which would have released two small reentry capsules on technology demonstration missions to test heat shield technologies. This didn’t happen. An Auxiliary Propulsion Unit, which is a small engine to provide additional bursts of thrust and pressurize the upper stage’s propellant tanks, shut down shortly after startup ahead of the third burn of the primary Vinci engine. “This meant the Vinci engine’s third boost could not take place,” ESA said. “Analysis of the APU’s behavior is ongoing and further information will be made available as soon as possible, while the next task force update is expected in September.” (submitted by Ken the Bin)

Room to grow at Starbase. SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months, Ars reports. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026. To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site.

The answer is probably yes … On Monday, the FAA signaled that it is inclined to grant this request. The agency released a draft assessment indicating that its extensive 2022 analysis of Starship launch activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposal for more launches. There is more to do for this conclusion to become official, including public meetings and a public comment period this month.

SpaceX eyes Australia. SpaceX is in talks with US and Australian officials to land and recover one of its Starship rockets off Australia’s coast, a possible first step toward a bigger presence for Elon Musk’s company in the region as the two countries bolster security ties, Reuters reports. At the end of SpaceX’s fourth Starship test flight in June, the rocket made a controlled splashdown in the Indian Ocean hundreds of miles off the northwest coast of Australia. The discussions now underway are focused on the possibility of towing a future Starship vehicle from its splashdown point in the ocean to a port in Australia, where SpaceX engineers could inspect it and learn more about how it performed.

Eventually, it’ll come back to land … On the next Starship flight, currently planned for no earlier than late August, SpaceX plans to attempt to recover Starship’s giant Super Heavy booster using catch arms on the launch pad tower in Texas. On Sunday, Elon Musk told SpaceX and Tesla enthusiasts at an event called the “X Takeover” that it will take a few more flights for engineers to get comfortable returning the Starship itself to a landing onshore. “We want to be really confident that the ship heat shield is super robust and lands at the exact right location,” he said. “So before we try to bring the ship back to the launch site, we probably want to have at least three successful landings of the ship [at sea].” (submitted by Ken the Bin)

Next three launches

August 2: Electron | “Owl for One, One for Owl” | Mahia Peninsula, New Zealand | 16: 39 UTC

August 3: Falcon 9 | NG-21 | Cape Canaveral Space Force Station, Florida | 15: 28 UTC

August 4: Falcon 9 | Starlink 11-1 | Vandenberg Space Force Base, California | 07: 00 UTC

Listing image by SpaceX

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia Read More »

spacex-roars-back-to-orbit-barely-two-weeks-after-in-flight-anomaly

SpaceX roars back to orbit barely two weeks after in-flight anomaly

Look who’s back, back again —

“It was incredible to see how quickly the team was able to identify the cause of the mishap.”

The Starlink 10-9 mission lifts off early Saturday morning from Florida.

Enlarge / The Starlink 10-9 mission lifts off early Saturday morning from Florida.

SpaceX webcast

Early on Saturday morning, at 1: 45 am local time, a Falcon 9 rocket soared into orbit from its launch site at Kennedy Space Center in Florida.

By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company, and attempting to get the world’s most active booster back into service.

And by all measures, it performed. The first stage booster, B-1069, made its 17th flight into orbit before landing on the Just Read the Instructions drone ship in the Atlantic Ocean. Then, a little more than an hour after liftoff, the rocket’s second stage released its payload into a good orbit, from which the Starlink spacecraft will use their on-board thrusters to reach operational altitudes in the coming weeks.

A crack in the sense line

The Falcon 9 rocket only failed a little more than 15 days ago, during a Starlink launch from Vandenberg Space Force Base, California, at 7: 35 pm PDT (02: 35 UTC) on July 11. During that mission, just a few minutes after stage separation, an unusual buildup of ice was observed on the Merlin vacuum engine that powers the second stage of the vehicle.

According to the company, the Merlin vacuum engine successfully completed its first burn after the second stage separated. However, during this time a liquid oxygen leak developed near the engine—which led to the buildup of ice observed during the webcast.

Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system. “This line cracked due to fatigue caused by high loading from engine vibration and looseness in the clamp that normally constrains the line,” the company said in an update published prior to Saturday morning’s launch.

This leak excessively cooled the engine, and caused a lower amount of igniter fluid to be available prior to re-lighting the Merlin for its second burn to circularize the rocket’s orbit before releasing the Starlink satellites. This caused a hard start of the Merlin engine. Ultimately the satellites were released into a lower orbit, where they burnt up in Earth’s atmosphere within days.

The sense line that failed is redundant, SpaceX said. It is not used by the flight safety system, and can be covered by alternate sensors already present on the engine. In the near term, the sense line will be removed from the second stage engine for Falcon 9 launches.

During a news briefing Thursday, SpaceX director Sarah Walker said this sense line was installed based on a customer requirement for another mission. The only difference between this component and other commonly flown sense lines is that it has two connections rather than one, she said. This may have made it a bit more susceptible to vibration, leading to a small crack.

Getting back fast

SpaceX identified the cause of the failure within hours of the anomaly, and worked the Federal Aviation Administration to come to a rapid resolution. On Thursday, the launch company received permission to return to flight.

“It was incredible to see how quickly the team was able to identify the cause of the mishap, and then the associated corrective actions to ensure success,” Walker said.

Before the failure on the night of July 11th, SpaceX had not experienced a mission failure in the previous 297 launches of the Falcon 9 rocket, dating back to the Amos-6 launch pad explosion in September 2016. The short interval between the failure earlier this month, and Saturday’s return to flight, appears to be unprecedented in spaceflight history.

The company now plans to launch two more Starlink missions on the Falcon 9 rocket this weekend, one from Cape Canaveral Space Force Station in Florida, as well as Vandenberg Space Force Base in California. It then has three additional missions before a critical astronaut flight for NASA, Crew-9, that could occur as soon as August 18.

For this reason, NASA was involved in the investigation of the second stage failure. Steve Stich, manager of NASA’s Commercial Crew Program, said SpaceX did an “extraordinary job” in identifying the root cause of the failure, and then rapidly looking at its Dragon spacecraft and first stage of the Falcon 9 rocket to ensure there were no other sensors that could cause similar problems.

SpaceX roars back to orbit barely two weeks after in-flight anomaly Read More »

the-falcon-9-rocket-may-return-to-flight-as-soon-as-tuesday-night

The Falcon 9 rocket may return to flight as soon as Tuesday night

That’s pretty fast —

SpaceX is waiting for a determination from the FAA.

File photo of a Falcon 9 launch on May 6 from Cape Canaveral Space Force Station, Florida.

Enlarge / File photo of a Falcon 9 launch on May 6 from Cape Canaveral Space Force Station, Florida.

SpaceX

It was only about 10 days ago that the Falcon 9 rocket’s upper stage failed in flight, preventing the rocket from delivering its 20 Starlink satellites into a proper orbit. Because they were released lower than expected—about 135 km above the Earth’s surface and subject to atmospheric drag—these satellites ultimately reentered the planet’s atmosphere and burnt up.

Typically, after a launch failure, a rocket will be sidelined for months while engineers and technicians comb over the available data and debris to identify a cause, perform tests, and institute a fix.

However, according to multiple sources, SpaceX was ready to launch the Falcon 9 rocket as soon as late last week. Currently, the company has a launch opportunity for no earlier than 12: 14 am ET (04: 14 UTC) on Wednesday for its Starlink 10-4 mission.

A quick fix?

In a summary of the anomaly posted shortly afterward, SpaceX did not identify the cause of the failure beyond saying, “The Merlin Vacuum engine experienced an anomaly and was unable to complete its second burn.”

Officially, the company has provided no additional information since then. However, the company’s engineers were able to identify the cause of the failure almost immediately and, according to sources, the fix was straightforward.

SpaceX was confident enough in this determination to resume launches of the Falcon 9 rocket one week after the failure. However, it is precluded from doing so while the US Federal Aviation Administration conducts a mishap investigation.

To that end, a week ago on July 15, SpaceX submitted a request to the FAA to resume launching its Falcon 9 rocket while this investigation into the anomaly continues. “The FAA is reviewing the request and will be guided by data and safety at every step of the process,” the FAA said in a statement at the time.

Crewed missions on deck

So, as of today, SpaceX is waiting for a determination from the FAA as to whether it will be allowed to resume Falcon 9 launches less than two weeks after the failure occurred.

The company plans to launch at least three Starlink missions in rapid succession from its two launch pads in Florida and one in California to determine the effectiveness of the fix. It would like to demonstrate the reliability of the Falcon 9 rocket, which had recorded more than 300 successful missions since its last failure during a pad accident in September 2016, before two upcoming crewed missions.

There is still a slight possibility that the Polaris Dawn mission, led by commercial astronaut Jared Isaacman, could launch in early August. This would be followed by the Crew-9 mission for NASA, which will carry four astronauts to the International Space Station.

Notably, neither of these crewed missions requires a second burn of the Merlin engine, which is where the failure occurred earlier this month during the Starlink mission.

The Falcon 9 rocket may return to flight as soon as Tuesday night Read More »

spacex’s-unmatched-streak-of-perfection-with-the-falcon-9-rocket-is-over

SpaceX’s unmatched streak of perfection with the Falcon 9 rocket is over

Numerous pieces of ice fell off the second stage of the Falcon 9 rocket during its climb into orbit from Vandenberg Space Force Base, California.

Enlarge / Numerous pieces of ice fell off the second stage of the Falcon 9 rocket during its climb into orbit from Vandenberg Space Force Base, California.

SpaceX

A SpaceX Falcon 9 rocket suffered an upper stage engine failure and deployed a batch of Starlink Internet satellites into a perilously low orbit after launch from California Thursday night, the first blemish on the workhorse launcher’s record in more than 300 missions since 2016.

Elon Musk, SpaceX’s founder and CEO, posted on X that the rocket’s upper stage engine failed when it attempted to reignite nearly an hour after the Falcon 9 lifted off from Vandenberg Space Force Base, California, at 7: 35 pm PDT (02: 35 UTC).

Frosty evidence

After departing Vandenberg to begin SpaceX’s Starlink 9-3 mission, the rocket’s reusable first stage booster propelled the Starlink satellites into the upper atmosphere, then returned to Earth for an on-target landing on a recovery ship parked in the Pacific Ocean. A single Merlin Vacuum engine on the rocket’s second stage fired for about six minutes to reach a preliminary orbit.

A few minutes after liftoff of SpaceX’s Starlink 9-3 mission, veteran observers of SpaceX launches noticed an unusual build-up of ice around the top of the Merlin Vacuum engine, which consumes a propellant mixture of super-chilled kerosene and cryogenic liquid oxygen. The liquid oxygen is stored at a temperature of several hundred degrees below zero.

Numerous chunks of ice fell away from the rocket as the upper stage engine powered into orbit, but the Merlin Vacuum, or M-Vac, engine appeared to complete its first burn as planned. A leak in the oxidizer system or a problem with insulation could lead to ice accumulation, although the exact cause, and its possible link to the engine malfunction later in flight, will be the focus of SpaceX’s investigation into the failure.

A second burn with the upper stage engine was supposed to raise the perigee, or low point, of the rocket’s orbit well above the atmosphere before releasing 20 Starlink satellites to continue climbing to their operational altitude with their own propulsion.

“Upper stage restart to raise perigee resulted in an engine RUD for reasons currently unknown,” Musk wrote in an update two hours after the launch. RUD (rapid unscheduled disassembly) is a term of art in rocketry that usually signifies a catastrophic or explosive failure.

“Team is reviewing data tonight to understand root cause,” Musk continued. “Starlink satellites were deployed, but the perigee may be too low for them to raise orbit. Will know more in a few hours.”

Telemetry from the Falcon 9 rocket indicated it released the Starlink satellites into an orbit with a perigee just 86 miles (138 kilometers) above Earth, roughly 100 miles (150 kilometers) lower than expected, according to Jonathan McDowell, an astrophysicist and trusted tracker of spaceflight activity. Detailed orbital data from the US Space Force was not immediately available.

Ripple effects

While ground controllers scramble to salvage the 20 Starlink satellites, SpaceX engineers began probing what went wrong with the second stage’s M-Vac engine. For SpaceX and its customers, the investigation into the rocket malfunction is likely the more pressing matter.

SpaceX could absorb the loss of 20 Starlink satellites relatively easily. The company’s satellite assembly line can produce 20 Starlink spacecraft in a few days. But the Falcon 9 rocket’s dependability and high flight rate have made it a workhorse for NASA, the US military, and the wider space industry. An investigation will probably delay several upcoming SpaceX flights.

The first in-flight failure for SpaceX’s Falcon rocket family since June 2015, a streak of 344 consecutive successful launches until tonight.

A lot of unusual ice was observed on the Falcon 9’s upper stage during its first burn tonight, some of it falling into the engine plume. https://t.co/1vc3P9EZjj pic.twitter.com/fHO73MYLms

— Stephen Clark (@StephenClark1) July 12, 2024

Depending on the cause of the problem and what SpaceX must do to fix it, it’s possible the company can recover from the upper stage failure and resume launching Starlink satellites soon. Most of SpaceX’s launches aren’t for external customers, but deploy satellites for the company’s own Starlink network. This gives SpaceX a unique flexibility to quickly return to flight with the Falcon 9 without needing to satisfy customer concerns.

The Federal Aviation Administration, which licenses all commercial space launches in the United States, will require SpaceX to conduct a mishap investigation before resuming Falcon 9 flights.

“The FAA will be involved in every step of the investigation process and must approve SpaceX’s final report, including any corrective actions,” an FAA spokesperson said. “A return to flight is based on the FAA determining that any system, process, or procedure related to the mishap does not affect public safety.”

Two crew missions are supposed to launch on SpaceX’s human-rated Falcon 9 rocket in the next six weeks, but those launch dates are now in doubt.

The all-private Polaris Dawn mission, commanded by billionaire Jared Isaacman, is scheduled to launch on a Falcon 9 rocket on July 31 from NASA’s Kennedy Space Center in Florida. Isaacman and three commercial astronaut crewmates will spend five days in orbit on a mission that will include the first commercial spacewalk outside their Crew Dragon capsule, using new pressure suits designed and built by SpaceX.

NASA’s next crew mission with SpaceX is slated to launch from Florida aboard a Falcon 9 rocket around August 19. This team of four astronauts will replace a crew of four who have been on the International Space Station since March.

Some customers, especially NASA’s commercial crew program, will likely want to see the results of an in-depth inquiry and require SpaceX to string together a series of successful Falcon 9 flights with Starlink satellites before clearing their own missions for launch. SpaceX has already launched 70 flights with its Falcon family of rockets since January 1, an average cadence of one launch every 2.7 days, more than the combined number of orbital launches by all other nations this year.

With this rapid-fire launch cadence, SpaceX could quickly demonstrate the fitness of any fixes engineers recommend to resolve the problem that caused Thursday night’s failure. But investigations into rocket failures often take weeks or months. It was too soon, early on Friday, to know the true impact of the upper stage malfunction on SpaceX’s launch schedule.

SpaceX’s unmatched streak of perfection with the Falcon 9 rocket is over Read More »

nasa-selects-spacex-to-launch-a-gamma-ray-telescope-into-an-unusual-orbit

NASA selects SpaceX to launch a gamma-ray telescope into an unusual orbit

Plane change —

The Falcon 9 rocket is pretty much the only rocket available to launch this mission.

Artist's illustration of the COSI spacecraft.

Enlarge / Artist’s illustration of the COSI spacecraft.

A small research satellite designed to study the violent processes behind the creation and destruction of chemical elements will launch on a SpaceX Falcon 9 rocket in 2027, NASA announced Tuesday.

The Compton Spectrometer and Imager (COSI) mission features a gamma-ray telescope that will scan the sky to study gamma-rays emitted by the explosions of massive stars and the end of their lives. These supernova explosions generate reactions that fuse new atomic nuclei, a process called nucleosynthesis, of heavier elements.

Using data from COSI, scientists will map where these elements are forming in the Milky Way galaxy. COSI’s observations will also yield new insights into the annihilation of positrons, the antimatter equivalent of electrons, which appear to be originating from the center of the galaxy. Another goal for COSI will be to rapidly report the location of short gamma-ray bursts, unimaginably violent explosions that flash and then fade in just a couple of seconds. These bursts are likely caused by merging neutron stars.

The COSI mission will be sensitive to so-called soft gamma rays, a relatively unexplored segment of the electromagnetic spectrum. The telescope is based on a design scientists have flown on research balloon flights.

NASA selected COSI in a competition for funding to become the next mission in the agency’s Explorers program in 2021. Earlier this year, NASA formally approved the mission to proceed into development for launch in August 2027, with an overall budget in the range of $267 million to $294 million, according to NASA budget documents.

From Florida to the equator

COSI is a relatively small spacecraft, built by Northrop Grumman and weighing less than a ton, but it will ride alone into orbit on top of a Falcon 9 rocket. That’s because COSI will operate in an unusual orbit about 340 miles (550 kilometers) over the equator, an orbit chosen to avoid interference from radiation over the South Atlantic Anomaly, the region where the inner Van Allen radiation belt comes closest to Earth’s surface.

SpaceX’s Falcon 9 will deliver COSI directly into its operational orbit after taking off from Cape Canaveral, Florida, then will fire its upper stage in a sideways maneuver to make a turn at the equator. This type of maneuver, called a plane change, takes a lot of energy, or delta-V, on par with the delta-V required to put a heavier satellite into a much higher orbit.

File photo of a Falcon 9 launch on May 6 from Cape Canaveral Space Force Station, Florida.

Enlarge / File photo of a Falcon 9 launch on May 6 from Cape Canaveral Space Force Station, Florida.

SpaceX

NASA awarded SpaceX a firm-fixed-price contract valued at $69 million to launch the COSI mission. This is about a 37 percent increase in the price NASA paid SpaceX in a 2019 contract for launch of the similarly sized IXPE X-ray telescope into a similar orbit as COSI. The higher price is at least partially explained by inflation.

The space agency didn’t have much of a decision to make in the COSI launch contract. The Falcon 9 is the only rocket certified by NASA that can launch a satellite with the mass of COSI into its equatorial orbit.

In the next couple of years, NASA hopes United Launch Alliance’s Vulcan rocket and Blue Origin’s New Glenn launcher will be in the mix to compete for launch contracts for missions like COSI. All of ULA’s remaining Atlas V rockets are already booked by other customers.

NASA selects SpaceX to launch a gamma-ray telescope into an unusual orbit Read More »

mere-days-before-its-debut,-the-ariane-6-rocket-loses-a-key-customer-to-spacex

Mere days before its debut, the Ariane 6 rocket loses a key customer to SpaceX

Zut Alors! —

“I am impatiently waiting to understand what reasons could have led Eumetsat to such a decision.”

The flight hardware core stage for Europe’s new rocket, Ariane 6, is moved onto the launch pad for the first time. A launch is due to occur on July 9, 2024.

Enlarge / The flight hardware core stage for Europe’s new rocket, Ariane 6, is moved onto the launch pad for the first time. A launch is due to occur on July 9, 2024.

ESA-M. Pédoussaut

In a shocking announcement this week, the European intergovernmental organization responsible for launching and operating the continent’s weather satellites has pulled its next mission off a future launch of Europe’s new Ariane 6 rocket. Instead, the valuable MTG-S1 satellite will now reach geostationary orbit on SpaceX’s Falcon 9 rocket in 2025.

“This decision was driven by exceptional circumstances” said Phil Evans, director general of the organization Eumetsat. “It does not compromise our standard policy of supporting European partners, and we look forward to a successful SpaceX launch for this masterpiece of European technology.”

The decision, taken at a council meeting of Eumetsat’s 30 member nations on Wednesday and Thursday, comes less than two weeks before the debut of the Ariane 6 rocket, scheduled for July 9.

Stabbed in the back

Outwardly, at least, this decision reflects a lack of confidence in the reliability of the Ariane 6 rocket, the ability of European companies ArianeGroup and Arianespace to produce future versions of the Ariane 6, or both. It comes not just on the eve of the long-awaited debut of the Ariane 6, but also at a time when European officials are trying to close ranks and ensure that satellites built in Europe get launched on European rockets.

The retirement of the Ariane 5 rocket last July, and years of delays in the readiness for the Ariane 6 rocket, have led to a painful period in which European officials have had to come hat-in-hand to their longtime competitor and nemesis in the rocket industry, SpaceX, for launch services. As a result some of Europe’s most valuable missions, including the Euclid space telescope and several Galileo satellites, have already launched on the Falcon 9.

This has been embarrassing enough for European launch officials, who effectively created the concept of “commercial” space launch with the first Ariane rockets decades ago. For a long time, they, alongside Russia, were the kings of launching other people’s satellites. But now, on the eve of restoring European access to space, Eumetsat has effectively stabbed this industry in the back.

That is not too strong of language, either. In its release, Eumetsat described its new Meteosat Third Generation-Sounder 1 satellite as a “unique masterpiece of European technology.” The organization added, “This first European sounding satellite in a geostationary orbit will bring a revolution for weather forecasting and climate monitoring in Europe and Africa, and make it possible, for the first time, to observe the full lifecycle of a convective storm from space.” Critically, Eutmetsat was not willing to entrust this spacecraft to Europe’s new flagship rocket.

Philippe Baptiste, the chairman and chief executive of the French space agency CNES, certainly felt the sting, calling the decision a “brutal change” and saying it was a “disappointing day” for European space efforts.

“I am impatiently waiting to understand what reasons could have led Eumetsat to such a decision, at a time where all major European space countries as well as the European Commission are calling for launching European satellites on European launchers!” Baptiste wrote on LinkedIn. “Not mentioning the fact that we are 10 days away from the maiden flight of Ariane 6. How far will we, Europeans, go in our naivety?”

Why did they do this?

It is difficult to fully understand the motivations of Eumetsat in this decision. Most probably, there were some timing and reliability concerns. The MTG-S1 satellite was due to launch on the third flight of the Ariane 6 rocket, a mission nominally scheduled for early 2025. On this timeline the satellite very likely would have gotten to space more quickly than it otherwise would now on a Falcon 9.

However, because this 4-ton satellite is going to geostationary orbit, it would have been the first mission to require the use of a more powerful version of the Ariane 6 rocket. Instead of using two solid-rocket boosters, this “64” version of the rocket uses four solid-rocket boosters. It seems likely that Eumetsat officials had concerns that the timeline for this launch would drag out and perhaps some mission assurance concerns about being the first launch of an Ariane 64 rocket.

Whatever their reasons, the European satellite officials have thrown a massive turd into the punchbowl at festivities for the debut of the Ariane 6 rocket.

Mere days before its debut, the Ariane 6 rocket loses a key customer to SpaceX Read More »

rocket-report:-china-flies-reusable-rocket-hopper;-falcon-heavy-dazzles

Rocket Report: China flies reusable rocket hopper; Falcon Heavy dazzles

SpaceX's 10th Falcon Heavy rocket climbs into orbit with a new US government weather satellite.

Enlarge / SpaceX’s 10th Falcon Heavy rocket climbs into orbit with a new US government weather satellite.

Welcome to Edition 6.50 of the Rocket Report! SpaceX launched its 10th Falcon Heavy rocket this week with the GOES-U weather satellite for NOAA, and this one was a beauty. The late afternoon timing of the launch and atmospheric conditions made for great photography. Falcon Heavy has become a trusted rocket for the US government, and its next flight in October will deploy NASA’s Europa Clipper spacecraft on the way to explore one of Jupiter’s enigmatic icy moons.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Sir Peter Beck dishes on launch business. Ars spoke with the recently knighted Peter Beck, founder and CEO of Rocket Lab, on where his scrappy company fits in a global launch marketplace dominated by SpaceX. Rocket Lab racked up the third-most number of orbital launches by any US launch company (it’s headquartered in California but primarily assembles and launches rockets in New Zealand). SpaceX’s rideshare launch business with the Falcon 9 rocket is putting immense pressure on small launch companies like Rocket Lab. However, Beck argues his Electron rocket is a bespoke solution for customers desiring to put their satellite in a specific place at a specific time, a luxury they can’t count on with a SpaceX rideshare.

Ruthlessly efficient … A word that Beck returned to throughout his interview with Ars was “ruthless.” He said Rocket Lab’s success is a result of the company being “ruthlessly efficient and not making mistakes.” At one time, Rocket Lab was up against Virgin Orbit in the small launch business, and Virgin Orbit had access to capital through billionaire Richard Branson. Now, SpaceX is the 800-pound gorilla in the market. “We have a saying here at Rocket Lab that we have no money, so we have to think. We’ve never been in a position to outspend our competitors. We just have to out-think them. We have to be lean and mean.”

Firefly reveals plans for new launch sites. Firefly Aerospace plans to use the state of Virginia-owned launch pad at NASA’s Wallops Flight Facility for East Coast launches of its Alpha small-satellite rocket, Aviation Week reports. The company plans to use Pad 0A for US military and other missions, particularly those requiring tight turnaround between procurement and launch. This is the same launch pad previously used by Northrop Grumman’s Antares rocket, and it’s the soon-to-be home of the Medium Launch Vehicle (MLV) jointly developed by Northrop and Firefly. The launch pad will be configured for Alpha launches beginning in 2025, according to Firefly, which previously planned to develop an Alpha launch pad at Cape Canaveral Space Force Station in Florida. Now, Alpha and MLV rockets will fly from the same site on the East Coast, while Alpha will continue launching from the West Coast at Vandenberg Space Force Base, California.

Hello, Sweden… A few days after the announcement for launches from Virginia, Firefly unveiled a collaborative agreement with Swedish Space Corporation to launch Alpha rockets from the Esrange Space Center in Sweden as soon as 2026. Esrange has been the departure point for numerous suborbital and sounding rocket for nearly 50 years, but the spaceport is being upgraded for orbital satellite launches. A South Korean startup named Perigee Aerospace announced in May it signed an agreement to be the first user of Esrange’s orbital launch capability. Firefly is the second company to make plans to launch satellites from the remote site in northern Sweden. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

China hops closer to reusable rockets. The Shanghai Academy of Spaceflight Technology (SAST), part of China’s apparatus of state-owned aerospace companies, has conducted the country’s highest altitude launch and landing test so far as several teams chase reusable rocket capabilities, Space News reports. A 3.8-meter-diameter (9.2-foot) test article powered by three methane liquid-oxygen engines lifted off from the Gobi Desert on June 23 and soared to an altitude of about 12 kilometers (7.5 miles) before setting down successfully for a vertical propulsive touchdown on landing legs at a nearby landing area. SAST will follow up with a 70-kilometer (43.5-mile) suborbital test using grid fins for better control. A first orbital flight of the new reusable rocket is planned for 2025.

Lots of players … If you don’t exclusively follow China’s launch sector, you should be forgiven for being unable to list all the companies working on new reusable rockets. Late last year, a Chinese startup named iSpace flew a hopper rocket testbed to an altitude of several hundred meters as part of a development program for the company’s upcoming partially reusable Hyperbola 2 rocket. A company named Space Pioneer plans to launch its medium-class Tianlong 3 rocket for the first time later this year. Tianlong 3 looks remarkably like SpaceX’s Falcon 9, and its first stage will eventually be made reusable. China recently test-fired engines for the government’s new Long March 10, a partially reusable rocket planned to become China’s next-generation crew launch vehicle. These are just a few of the reusable rocket programs in China. (submitted by Ken the Bin)

Spanish launch startup invests in Kourou. PLD Space says it is ready to start construction at a disused launch complex at the Guiana Space Center in Kourou, French Guiana. The Spanish launch startup announced this week a 10 million euro ($10.7 million) investment in the launch complex for its Miura 5 rocket, with preparations of the site set to begin “after the summer.” The launch pad was previously used by the French Diamant rocket in the 1970s and is located several miles away from the launch pads used by the European Ariane 6 and Vega rockets. PLD Space is on track to become the first fully commercial company to launch from the spaceport in South America.

Free access to space … Also this week, PLD Space announced a new program to offer space aboard the first two flights of its Miura 5 rocket for free, European Spaceflight reports. The two-stage Miura 5 rocket will be capable of delivering about a half-ton of payload mass into a Sun-synchronous orbit. PLD Space will offer free launch services aboard the first two Miura 5 flights, which are expected to take place in late 2025 and early 2026. The application process will close on July 30, and winning proposals will be announced on November 30. (submitted by Ken the Bin and EllPeaTea)

Rocket Report: China flies reusable rocket hopper; Falcon Heavy dazzles Read More »

some-european-launch-officials-still-have-their-heads-stuck-in-the-sand

Some European launch officials still have their heads stuck in the sand

This is fine —

“Starship will not eradicate Ariane 6 at all.”

The first stage of Ariane 6 rocket Europe's Spaceport in Kourou in the French overseas department of Guiana, on March 26, 2024.

Enlarge / The first stage of Ariane 6 rocket Europe’s Spaceport in Kourou in the French overseas department of Guiana, on March 26, 2024.

LUDOVIC MARIN/AFP via Getty Images

There was a panel discussion at a space conference in Singapore 11 years ago that has since become legendary in certain corners of the space industry for what it reveals about European attitudes toward upstart SpaceX.

The panel included representatives from a handful of launch enterprises, including Europe-based Arianespace, and the US launch company SpaceX. At one point during the discussion, the host asked the Arianespace representative—its chief of sales in Southeast Asia, Richard Bowles—how the institutional European company would respond to SpaceX’s promise of lower launch costs and reuse with the Falcon 9 rocket.

“What I’m discovering in the market is that SpaceX primarily seems to be selling a dream, which is good. We should all dream,” Bowles replied. “I think a $5 million launch or a $15 million launch is a bit of a dream. Personally, I think reusability is a dream. How am I going to respond to a dream? My answer to respond to a dream is, first of all, you don’t wake people up.”

To be fair to Bowles, at the time of his remarks, SpaceX had only launched the Falcon 9 five times by the middle of 2013. But his condescension was nevertheless something to behold.

Later in the discussion, Bowles added that he did not believe launching 100 times a year, something that SpaceX was starting to talk about, was “realistic.” Then, in a moment of high paternalism, he turned to the SpaceX official on the panel and said, “You shouldn’t present things that are not realistic.”

In response, Barry Matsumori, a senior vice president at SpaceX, calmly said he would let his company’s response come through its actions.

Actions do speak louder than words

Eleven years later, of course, SpaceX is launching more than 100 times a year. The company’s internal price for launching a Falcon 9 is significantly less than $20 million. And all of this is possible through the reuse of the rocket’s first stage and payload fairings, each of which have now proven capable of flying 20 or more times.

One might think that, in the decade since, European launch officials would have learned their lesson. After all, last year, the continent had to resort to launching its valuable Euclid Space Telescope on a Falcon 9 rocket. This year, because the new European Ariane 6 rocket was not yet ready after myriad delays, multiple Galileo satellites have been launched and will be launched on the Falcon 9 rocket.

Some officials have taken note. In a candid commentary last year, European Space Agency chief Josef Aschbacher acknowledged that the continent faced an “acute” launcher crisis amid the Ariane 6 delays and the rise of SpaceX as a launch competitor. “SpaceX has undeniably changed the launcher market paradigm as we know it,” Aschbacher wrote. “With the dependable reliability of Falcon 9 and the captivating prospects of Starship, SpaceX continues to totally redefine the world’s access to space, pushing the boundaries of possibility as they go along.”

But not everyone got the message, it seems.

Next month, the Ariane 6 rocket should finally make its debut. It will probably be successful. Europe has excellent technical capabilities in regard to launch. But from day one, the Ariane 6 launch vehicle will cost significantly more than the Falcon 9 rocket, which has similar capabilities, and offer no provision for reuse. Certainly, it will meet Europe’s institutional needs. But it likely will not shake up the market, nor realistically compete with a fully reusable Falcon 9.

Who really needs to be woken up?

And what about Starship? If and when SpaceX can deliver it to the market, the next-generation rocket will offer a fully reusable booster with five times the lift capacity of the Ariane 6 rocket for half its cost or less. How can Europe hope to compete with that? The European Space Agency’s director of space transportation, Toni Tolker-Nielsen—who works for Aschbacher, it should be noted—said he’s not concerned.

“Honestly, I don’t think Starship will be a game-changer or a real competitor,” he said in an interview with Space News. “This huge launcher is designed to fly people to the Moon and Mars. Ariane 6 is perfect for the job if you need to launch a four- or five-ton satellite. Starship will not eradicate Ariane 6 at all.”

In one sense, Tolker-Nielsen is correct. Starship will not change how Europe gets its small and medium-sized satellites into space. Made and launched in Europe, the Ariane 6 rocket will be a workhorse for the continent. Indeed, some European officials are going so far as to press for legislation mandating that European satellites launch on European rockets.

But to say Starship will not be a game-changer represents the same head-in-the-sand attitude displayed by Bowles a decade ago with his jokes about not waking the deluded dreamers up. In hindsight, it’s clear that the dreamers were not SpaceX or its customers. Rather, they were European officials who had lulled themselves into thinking their dominance in commercial launch would persist without innovation.

While they slumbered, these officials ignored the rise of reusability. They decided the Ariane 6 rocket should look like its expendable predecessors, with solid rocket boosters. Meanwhile, following the rise of the Falcon 9, nearly all new rocket projects have incorporated a significant reusability component. It’s no longer just SpaceX founder Elon Musk saying companies need to pursue reuse or perish. Almost everyone is.

Perhaps someone should wake Tolker-Nielsen up.

Some European launch officials still have their heads stuck in the sand Read More »

rocket-report:-north-korean-rocket-explosion;-launch-over-chinese-skyline

Rocket Report: North Korean rocket explosion; launch over Chinese skyline

A sea-borne variant of the commercial Ceres 1 rocket lifts off near the coast of Rizhao, a city of 3 million in China's Shandong province.

Enlarge / A sea-borne variant of the commercial Ceres 1 rocket lifts off near the coast of Rizhao, a city of 3 million in China’s Shandong province.

Welcome to Edition 6.46 of the Rocket Report! It looks like we will be covering the crew test flight of Boeing’s Starliner spacecraft and the fourth test flight of SpaceX’s giant Starship rocket over the next week. All of this is happening as SpaceX keeps up its cadence of flying multiple Starlink missions per week. The real stars are the Ars copy editors helping make sure our stories don’t use the wrong names.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Another North Korean launch failure. North Korea’s latest attempt to launch a rocket with a military reconnaissance satellite ended in failure due to the midair explosion of the rocket during the first-stage flight this week, South Korea’s Yonhap News Agency reports. Video captured by the Japanese news organization NHK appears to show the North Korean rocket disappearing in a fireball shortly after liftoff Monday night from a launch pad on the country’s northwest coast. North Korean officials acknowledged the launch failure and said the rocket was carrying a small reconnaissance satellite named Malligyong-1-1.

Russia’s role? … Experts initially thought the pending North Korean launch, which was known ahead of time from international airspace warning notices, would use the same Chŏllima 1 rocket used on three flights last year. But North Korean statements following the launch Monday indicated the rocket used a new propulsion system burning a petroleum-based fuel, presumably kerosene, with liquid oxygen as the oxidizer. The Chŏllima 1 rocket design used a toxic mixture of hypergolic hydrazine and nitrogen tetroxide as propellants. If North Korea’s statement is true, this would be a notable leap in the country’s rocket technology and begs the question of whether Russia played a significant role in the launch. Last year, Russian President Vladimir Putin pledged more Russian support for North Korea’s rocket program in a meeting with North Korean leader Kim Jong Un. (submitted by Ken the Bin and Jay500001)

Rocket Lab deploys small NASA climate satellite. Rocket Lab is in the midst of back-to-back launches for NASA, carrying identical climate research satellites into different orbits to study heat loss to space in Earth’s polar regions. The Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) satellites are each about the size of a shoebox, and NASA says data from PREFIRE will improve computer models that researchers use to predict how Earth’s ice, seas, and weather will change in a warming world. “The difference between the amount of heat Earth absorbs at the tropics and that radiated out from the Arctic and Antarctic is a key influence on the planet’s temperature, helping to drive dynamic systems of climate and weather,” NASA said in a statement.

Twice in a week… NASA selected Rocket Lab’s Electron launch vehicle to deliver the two PREFIRE satellites into orbit on two dedicated rides rather than launching at a lower cost on a rideshare mission. This is because scientists want the satellites flying at the proper alignment to ensure they fly over the poles several hours apart, providing the data needed to measure how the rate at which heat radiates from the polar regions changes over time. The first PREFIRE launch occurred on May 25, and the next one is slated for May 31. Both launches will take off from Rocket Lab’s base in New Zealand. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

A rocket launch comes to Rizhao. China has diversified its launch sector over the last decade to include new families of small satellite launchers and new spaceports. One of these relatively new small rockets, the solid-fueled Ceres 1, took off Wednesday from a floating launch pad positioned about 2 miles (3 km) off the coast of Rizhao, a city of roughly 3 million people in China’s Shandong province. The Ceres 1 rocket, developed by a quasi-commercial company called Galactic Energy, has previously flown from land-based launch pads and a sea-borne platform, but this mission originated from a location remarkably close to shore, with the skyline of a major metropolitan area as a backdrop.

Range safety … There’s no obvious orbital mechanics reason to position the rocket’s floating launch platform so near a major Chinese city, other than perhaps to gain a logistical advantage by launching close to port. The Ceres 1 rocket has a fairly good reliability record—11 successes in 12 flights—but for safety reasons, there’s no Western spaceport that would allow members of the public (not to mention a few million) to get so close to a rocket launch. For decades, Chinese rockets have routinely dropped rocket boosters containing toxic propellant on farms and villages downrange from the country’s inland spaceports.

Rocket Report: North Korean rocket explosion; launch over Chinese skyline Read More »

spacex’s-most-flown-reusable-rocket-will-go-for-its-20th-launch-tonight

SpaceX’s most-flown reusable rocket will go for its 20th launch tonight

File photo of a Falcon 9 rocket rolling out of its hangar at Cape Canaveral Space Force Station, Florida.

Enlarge / File photo of a Falcon 9 rocket rolling out of its hangar at Cape Canaveral Space Force Station, Florida.

For the first time, SpaceX will launch one of its reusable Falcon 9 boosters for a 20th time Friday night on a flight to deliver 23 more Starlink Internet satellites to orbit.

This milestone mission is scheduled to lift off at 9: 22 pm EDT Friday (01: 22 UTC Saturday) from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station, Florida. Forecasters from the US Space Force predict “excellent” weather for the primetime launch.

Falcon 9 will blaze a familiar trail into space, following the same profile as dozens of past Starlink missions.

The rocket’s first-stage booster will shut off its nine kerosene-fueled Merlin engines about two-and-a-half minutes into the flight, reaching a top speed of more than 5,000 mph (8,000 km per hour). The first stage will detach from the Falcon 9’s upper stage, which will continue firing into orbit. The 15-story-tall Falcon 9 booster, meanwhile, will follow an arcing trajectory before braking for a vertical landing on a drone ship floating in the Atlantic Ocean near the Bahamas.

The 23 flat-packed Starlink spacecraft will deploy from the upper stage a little more than an hour after liftoff, bringing the total number of Starlinks in low-Earth orbit to more than 5,800 spacecraft.

A hunger for launch

Pretty much every day, SpaceX is either launching a rocket or rolling one out of the hangar to the launch pad. At this pace, SpaceX is redefining what is routine in the space industry, but the rapid-fire launch rate also means the company is continually breaking records, mostly its own.

Friday night’s launch will break another one of those records. This first-stage booster, designated by the tail number B1062, has flown 19 times since its first flight in November 2020. The booster will now be the first in SpaceX’s inventory to go for a 20th flight, breaking a tie with three other rockets as the company’s fleet leader.

When SpaceX debuted the latest version of its Falcon 9 rocket, the Falcon 9 Block 5, officials said the reusable first stage could fly 10 times with minimal refurbishment and perhaps additional flights with a more extensive overhaul. Now, SpaceX is certifying Falcon 9 boosters for 40 flights.

This particular rocket has not undergone any extended maintenance or long-term grounding. It has flown an average of once every two months since debuting three-and-a-half years ago. So the 20-flight milestone SpaceX will achieve Friday night means this rocket has doubled its original design life and, at the same time, has reached the halfway point of its extended service life.

In its career, this booster has launched eight people and 530 spacecraft, mostly Starlinks. The rocket’s first two flights launched GPS navigation satellites for the US military, then it launched two commercial human spaceflight missions with Dragon crew capsules. These were the all-private Inspiration4 mission and Axiom Mission 1, the first fully commercial crew flight to the International Space Station.

A SpaceX Falcon 9 rocket lifts off Sunday, April 7, on the Bandwagon 1 rideshare mission.

Enlarge / A SpaceX Falcon 9 rocket lifts off Sunday, April 7, on the Bandwagon 1 rideshare mission.

Remarkably, this will be the sixth Falcon 9 launch in less than eight days, more flights than SpaceX’s main US rival, United Launch Alliance, has launched in 17 months.

It will be the 38th Falcon 9 launch of the year and the 111th flight of a Falcon 9 or Falcon Heavy rocket—the 114th launch by SpaceX overall—in the last 365 days. More than a third of SpaceX’s Falcon 9 or Falcon Heavy missions, a number that will stand at 332 after Friday night’s flight, have launched in the past year.

This month, for the first time, SpaceX demonstrated it could launch two Falcon 9 rockets in less than five days from the company’s launch pad at Vandenberg Space Force Base, California. SpaceX has also cut the turnaround time between Falcon 9 rockets at Launch Complex 39A at NASA’s Kennedy Space Center. The company’s most-used launch pad, SLC-40, can handle two Falcon 9 flights in less than four days.

It’s not just launch pad turnaround. SpaceX uses its drone ships—two based in Florida and one in California—for most Falcon 9 landings. In order to meet the appetite for Falcon 9 launches, SpaceX is getting rockets back to port and re-deploying drone ships back to sea at a faster rate.

SpaceX’s most-flown reusable rocket will go for its 20th launch tonight Read More »

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »