fossils

wyoming-dinosaur-mummies-give-us-a-new-view-of-duck-billed-species

Wyoming dinosaur mummies give us a new view of duck-billed species


Exquisitely preserved fossils come from a single site in Wyoming.

The scaly skin of a crest over the back of the juvenile duck-billed dinosaur Edmontosaurus annectens. Credit: Tyler Keillor/Fossil Lab

Edmontosaurus annectens, a large herbivore duck-billed dinosaur that lived toward the end of the Cretaceous period, was discovered back in 1908 in east-central Wyoming by C.H. Sternberg, a fossil collector. The skeleton, later housed at the American Museum of Natural History in New York and nicknamed the “AMNH mummy,” was covered by scaly skin imprinted in the surrounding sediment that gave us the first approximate idea of what the animal looked like.

More than a century later, a team of paleontologists led by Paul C. Sereno, a professor of organismal biology at the University of Chicago, got back to the same exact place where Sternberg dug up the first Edmontosaurus specimen. The researchers found two more Edmontosaurus mummies with all fleshy external anatomy imprinted in a sub-millimeter layer of clay. For the first time, we uncovered an accurate image of what Edmontosaurus really looked like, down to the tiniest details, like the size of its scales and the arrangement of spikes on its tail. And we were in for at least a few surprises.

Evolving images

Our view of Edmontosaurus changed over time, even before Sereno’s study. The initial drawing of Edmontosaurus was made in 1909 by Charles R. Knight, a famous paleoartist, who based his visualization on the first specimen found by Sternberg. “He was accurate in some ways, but he made a mistake in that he drew the crest extending throughout the entire length of the body,” Sereno says. The mummy Knight based his drawing on had no tail, so understandably, the artist used his imagination to fill in the gaps and made the Edmontosaurus look a little bit like a dragon.

An update to Knight’s image came in 1984 due to Jack Horner, one of the most influential American paleontologists, who found a section of Edmontosaurus tail that had spikes instead of a crest. “The specimen was not prepared very accurately, so he thought the spikes were rectangular and didn’t touch each other,” Sereno explains. “In his reconstruction he extended the spikes from the tail all the way to the head—which was wrong,” Sereno says. Over time, we ended up with many different, competing visions of Edmontosaurus. “But I think now we finally nailed down the way it truly looked,” Sereno claims.

To nail it down, Sereno’s team retraced the route to where Sternberg found the first Edmontosaurus mummy. This was not easy, because the team had to rely on Sternberg’s notes, which often referred to towns and villages that were no longer on the map. But based on interviews with Wyoming farmers, Sereno managed to reach the “mummy zone,” an area less than 10 kilometers in diameter, surprisingly abundant in Cretaceous fossils.

“To find dinosaurs, you need to understand geology,” Sereno says. And in the “mummy zone,” geological processes created something really special.

Dinosaur templating

The fossils are found in part of the Lance Formation, a geological formation that originated in the last three or so million years of the Cretaceous period, just before the dinosaurs’ extinction. It extends through North Dakota, South Dakota, Wyoming, Montana, and even to parts of Canada. “The formation is roughly 200 meters thick. But when you approach the mummy zone—surprise! The formation suddenly goes up to a thousand meters thick,” Sereno says. “The sedimentation rate in there was very high for some reason.”

Sereno thinks the most likely reason behind the high sedimentation rate was frequent and regular flooding of the area by a nearby river. These floods often drowned the unfortunate dinosaurs that roamed there and covered their bodies with mud and clay that congealed against a biofilm which formed at the surface of decaying carcasses. “It’s called clay templating, where the clay sticks to the outside of the skin and preserves a very thin layer, a mask, showing how the animal looked like,” Sereno says.

Clay templating is a process well-known by scientists studying deep-sea invertebrate organisms because that’s the only way they can be preserved. “It’s just no one ever thought it could happen to a large dinosaur buried in a river,” Sereno says. But it’s the best explanation for the Wyoming mummy zone, where Sereno’s team managed to retrieve two more Edmontosaurus skeletons surrounded by clay masks under 1 millimeter thick. These revealed the animal’s appearance with amazing, life-like accuracy.

As a result, the Edmontosaurus image got updated one more time. And some of the updates were rather striking.

Delicate elephants

Sereno’s team analyzed the newly discovered Edmontosaurus mummies with a barrage of modern imaging techniques like CT scans, X-rays, photogrammetry, and more. “We created a detailed model of the skin and wrapped it around the skeleton—some of these technologies were not even available 10 years ago,” Sereno says. The result was an updated Edmontosaurus image that includes changes to the crest, the spikes, and the appearance of its skin. Perhaps most surprisingly, it adds hooves to its legs.

It turned out both Knight and Horner were partially right about the look of Edmontosaurus’ back. The fleshy crest, as depicted by Knight, indeed started at the top of the head and extended rearward along the spine. The difference was that there was a point where this crest changed into a row of spikes, as depicted in the Horner version. The spikes were similar to the ones found on modern chameleons, where each spike corresponds one-to-one with the vertebrae underneath it.

“Another thing that was stunning in Edmontosaurus was the small size of its scales,” Sereno says. Most of the scales were just 1 to 4 millimeters across. They grew slightly larger toward the bottom of the tail, but even there they did not exceed 1 centimeter. “You can find such scales on a lizard, and we’re talking about an animal the size of an elephant,” Sereno adds. The skin covered with these super-tiny scales was also incredibly thin, which the team deduced from the wrinkles they found in their imagery.

And then came the hooves. “In a hoof, the nail goes around the toe and wraps, wedge-shaped, around its bottom,” Sereno explains. The Edmontosaurus had singular, central hooves on its fore legs with a “frog,” a triangular, rubbery structure at the underside. “They looked very much like equine hooves, so apparently these were not invented by mammals,” Sereno says. “Dinosaurs had them.” The hind legs that supported most of the animal’s weight, on the other hand, had three wedge-shaped hooves wrapped around three digits and a fleshy heel toward the back—a structure found in modern-day rhinos.

“There are so many amazing ‘firsts’ preserved in these duck-billed mummies,” Sereno says. “The earliest hooves were documented in a land vertebrate, the first confirmed hooved reptile, and the first hooved four-legged animal with different forelimb and hindlimb posture.” But Edmontosaurus, while first in many aspects, was not the last species Sereno’s team found in the mummy zone.

Looking for wild things

“When I was walking through the grass in the mummy zone for the first time, the first hill I found a T. rex in a concretion. Another mummy we found was a Triceratops,” Sereno says. Both these mummies are currently being examined and will be covered in the upcoming papers published by Sereno’s team. And both are unique in their own way.

The T. rex mummy was preserved in a surprisingly life-like pose, which Sereno thinks indicates the predator might have been buried alive. Edmontosaurus mummies, on the other hand, were positioned in a death pose, which meant the animals most likely died up to a week before the mud covered their carcasses. This, in principle, should make the T. rex clay mask even more true-to-life, since there should be no need to account for desiccation and decay when reconstructing the animal’s image.

Sereno, though, seems to be even more excited about the Triceratops mummy. “We already found Triceratops scales were 10 times larger than the largest scales on the Edmontosaurus, and its skin had no wrinkles, so it was significantly thicker. And we’re talking about animals of similar size living in the same area and in the same time,” Sereno says. To him, this could indicate that the physiology of the Triceratops and Edmontosaurus was radically different.

“We are in the age of discovery. There are so many things to come. It’s just the beginning,” Sereno says. “Anyway, the next two mummies we want to cover are the Triceratops and the T. Rex. And I can already tell you what we have with the Triceratops is wild,” he adds.

Science, 2025. DOI: 10.1126/science.adw3536

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Wyoming dinosaur mummies give us a new view of duck-billed species Read More »

150-million-year-old-pterosaur-cold-case-has-finally-been-solved

150 million-year-old pterosaur cold case has finally been solved

Smyth thinks that so few adults show up on the fossil record in this region not only because they were more likely to survive, but also because those that couldn’t were not buried as quickly. Carcasses would float on the water anywhere from days to weeks. As they decomposed, parts would fall to the lagoon bottom. Juveniles were small enough to be swept under and buried quickly by sediments that would preserve them.

Cause of death

The humerus fractures found in Lucky I and Lucky II were especially significant because forelimb injuries are the most common among existing flying vertebrates. The humerus attaches the wing to the body and bears most flight stress, which makes it more prone to trauma. Most humerus fractures happen in flight as opposed to being the result of a sudden impact with a tree or cliff. And these fractures were the only skeletal trauma seen in any of the juvenile pterosaur specimens from Solnhofen.

Evidence suggesting the injuries to the two fledgling pterosaurs happened before death includes the displacement of bones while they were still in flight (something recognizable from storm deaths of extant birds and bats) and the smooth edges of the break, which happens in life, as opposed to the jagged edges of postmortem breaks. There were also no visible signs of healing.

Storms disproportionately affected flying creatures at Solnhofen, which were often taken down by intense winds. Many of Solnhofen’s fossilized vertebrates were pterosaurs and other winged species such as bird ancestor Arachaeopteryx. Flying invertebrates were also doomed.

Even marine invertebrates and fish were threatened by storm conditions, which churned the lagoons and brought deep waters with higher salt levels and low oxygen to the surface. Anything that sank to the bottom was exceptionally preserved because of these same conditions, which were too harsh for scavengers and paused decomposition. Mud kicked up by the storms also helped with the fossilization process by quickly covering these organisms and providing further protection from the elements.

“The same storm events responsible for the burial of these individuals also transported the pterosaurs into the lagoonal basins and were likely the primary cause of their injury and death,” Smyth concluded.

Although Lucky I and Lucky II were decidedly unlucky, the exquisite preservation of their skeletons that shows how they died has finally allowed researchers to solve a case that went cold for over a hundred thousand years.

Current Biology, 2025. DOI: 10.1016/j.cub.2025.08.006

150 million-year-old pterosaur cold case has finally been solved Read More »

for-giant-carnivorous-dinosaurs,-big-size-didn’t-mean-a-big-bite

For giant carnivorous dinosaurs, big size didn’t mean a big bite

“And then you have the Spinosaurus which was kind of weird in general,” Rowe says.  “There was a study by Dave Hone and Tom Holtz about how it was waiting on the shorelines, waiting for food to go by that it could fish out.” But Spinosaurus’ foraging wasn’t limited to fishing. There was a pterosaur found preserved in its stomach and there were iguanodon remains found in the maw of a Baryonyx, another large carnivore belonging to the same lineage as the Spinosaurus. “They had great diversity in their diet. They were generalists, but our results show they weren’t these massive bone-crunching predators like the T. rex,” Rowe says. Because the T. rex was just built different.

King of the Cretaceous jungle

The Tyranosauroidea lineage had stiff, akinetic skulls, meaning they had very little mobility in the joints. The T. rex skull could and most likely did withstand very high stress as the animal pursued a “high stress, high power” strategy, entirely different from other large carnivores. “They were very much like big crocodiles with extremely strong, reinforced jaws and powerful muscles that could pulverize bones,” Rowe claims.

The T. rex, he argued, was a specialist—an ambush predator that attacked large, highly mobile prey, aiming to subdue it with a single bite. “And we have fossil evidence of that,” Rowe says. “In the Museum of Natural History in New York, there is a Hadrosaur, a large herbivorous dinosaur with a duck-like beak, and there’s a T. rex tooth embedded in its back.” This, he thinks, means the T. rex was actively preying on this animal, especially since there are healing marks around the stuck tooth. “Even with this super strong bite, the T. rex wasn’t always successful,” Rowe adds.

Still, the fight with the Spinosaurus most likely wouldn’t go the way it did in Jurassic Park III. “The T. rex was built to fight like that; the Spinosaurus really wasn’t”, Rowe says.

Current Biology, 2025.  DOI: 10.1016/j.cub.2025.06.051

For giant carnivorous dinosaurs, big size didn’t mean a big bite Read More »

lizards-and-snakes-are-35-million-years-older-than-we-thought

Lizards and snakes are 35 million years older than we thought

Lizards are ancient creatures. They were around before the dinosaurs and persisted long after dinosaurs went extinct. We’ve now found they are 35 million years older than we thought they were.

Cryptovaranoides microlanius was a tiny lizard that skittered around what is now southern England during the late Triassic, around 205 million years ago. It likely snapped up insects in its razor teeth (its name means “hidden lizard, small butcher”). But it wasn’t always considered a lizard. Previously, a group of researchers who studied the first fossil of the creature, or holotype, concluded that it was an archosaur, part of a group that includes the extinct dinosaurs and pterosaurs along with extant crocodilians and birds.

Now, another research team from the University of Bristol has analyzed that fossil and determined that Cryptovaranoides is not an archosaur but a lepidosaur, part of a larger order of reptiles that includes squamates, the reptile group that encompasses modern snakes and lizards. It is now also the oldest known squamate.

The misunderstandings about this species all come down to features in its bones that are squamate apomorphies. These are traits unique to squamates that were not present in their ancestral form, but evolved later. Certain forelimb bones, skull bones, jawbones, and even teeth of Cryptovaranoides share characteristics with those from both modern and extinct lizards.

Wait, what is that thing?

So what does the new team argue that the previous team that studied Cryptovaranoides gets wrong? The new paper argues that the interpretation of a few bones in particular stand out, especially the humerus and radius.

In the humerus of this lizard, structures called the ectepicondylar and entepicondylar foramina, along with the radial condyle, were either not considered or may have been misinterpreted. The entepicondylar foramen is an opening in the far end of the humerus, which is an upper arm bone in humans and upper forelimb bone in lizards. The ectepicondylar foramen is a structure on the outer side of the humerus where the extensor muscles attach, helping a lizard bend and straighten its legs. Both features are “often regarded as key lepidosaur and squamate characteristics,” the Bristol research team said in a study recently published in Royal Society Open Science.

Lizards and snakes are 35 million years older than we thought Read More »

bizarre-egg-laying-mammals-once-ruled-australia—then-lost-their-teeth

Bizarre egg-laying mammals once ruled Australia—then lost their teeth

Eggs came first, no chickens involved —

Finds may indicate what the common ancestor of the platypus and echidna looked like.

A small animal with spiky fur and a long snout strides over grey soil.

Enlarge / The echidna, an egg-laying mammal, doesn’t develop teeth.

Outliers among mammals, monotremes lay eggs instead of giving birth to live young. Only two types of monotremes, the platypus and echidna, still exist, but more monotreme species were around about 100 million years ago. Some of them might possibly be even weirder than their descendants.

Monotreme fossils found in refuse from the opal mines of Lightning Ridge, Australia, have now revealed the opalized jawbones of three previously unknown species that lived during the Cenomanian age of the early Cretaceous. Unlike modern monotremes, these species had teeth. They also include a creature that appears to have been a mashup of a platypus and echidna—an “echidnapus.”

Fossil fragments of three known species from the same era were also found, meaning that at least six monotreme species coexisted in what is now Lightning Ridge. According to the researchers who unearthed these new species, the creatures may have once been as common in Australia as marsupials are today.

“[This is] the most diverse monotreme assemblage on record,” they said in a study recently published in Alcheringa: An Australasian Journal of Paleontology.

The Echidnapus emerges

Named Opalios spendens, the “echidnapus” shows similarities to both ornithorhynchoids (the platypus and similar species) and tachyglossids (echidna and similar species). It is thought to have evolved before the common ancestor of either extant monotreme.

The O. splendens holotype had been fossilized in opal like the other Lightning Ridge specimens, but unlike some, it is preserved so well that the internal structure of its bones is visible. Every mammalian fossil from Lightning Ridge has been identified as a monotreme based partly on their peculiarly large dental canals. While the fossil evidence suggests the jaw and snout of O. splendens are narrow and curved, similar to those of an echidna, it simultaneously displays platypus features.

So what relates the echidnapus to a platypus? Despite its jaw being echidna-like at first glance, its dentary, or the part of the jaw that bears the teeth, is similar in size to that of the platypus ancestor Ornithorhynchus anatinus. Other features related more closely to the platypus than the echidna have to do with its ramus, or the part of the jaw that attaches to the skull. It has a short ascending ramus (the rear end) and twisted horizontal ramus (the front end) that are seen in other ornithorhynchoids.

Another platypus-like feature of O. splendens is the flatness of the front of its lower jaw, which is consistent with the flatness of the platypus snout. The size of its jaw also suggests a body size closer to that of a platypus. Though the echidnapus had characteristics of both surviving monotremes, neither of those have the teeth found on this fossil.

My, what teeth you don’t have

Cretaceous monotremes might not have had as many teeth as the echidnapus, but they all had some teeth. The other two new monotreme species that lived among the Lightning Ridge fauna were Dharragarra aurora and Parvopalus clytiei, and the jaw structure of each of these species is either closer to the platypus or the echidna. D. aurora has the slightly twisted jaw and enlarged canal in its mandible that are characteristic of an ornithorhynchoid. It might even be on the branch that gave rise the platypus.

P. clytiei is the second smallest known monotreme (after another extinct species named Teinolophos trusleri). It was more of an echidna type, with a snout that was curved and deep like that of a tachyglossid rather than flat like that of an ornithorhynchoid. It also had teeth, though fewer than the echidnapus. Why did those teeth end up disappearing altogether in modern monotremes?

Monotremes without teeth came onto the scene when the platypus (Ornithorhynchus anatinus) appeared during the Pleistocene, which began 2.6 million years ago. The researchers think competition for food caused the disappearance of teeth in the platypus—the spread of the Australo-New Guinean water rat may have affected which prey platypuses hunted for. Water rats eat mostly fish and shellfish along with some insects, which are also thought to have been part of the diet of ancient ornithorhynchoids. Turning to softer food to avoid competition may explain why the platypus evolved to be toothless.

As for echidnas, tachyglossids are thought to have lost their teeth after they diverged from ornithorhynchoids near the end of the Cretaceous. Echidnas are insectivores, grinding the hard shells of beetles and ants with spines inside their mouths, so have no need for teeth.

Although there is some idea of what happened to their teeth, the fate of the diverse species of Cretaceous monotremes, which were not only toothy but mostly larger than the modern platypus and echidna, remains unknown. The end of the Cretaceous brought a mass extinction triggered by the Chicxulub asteroid. Clearly, some monotremes survived it, but no monotreme fossils from the time have surfaced yet.

“It is unclear whether diverse monotreme fauna survived the end-Cretaceous mass extinction event, and subsequently persisted,” the researchers said in the same study. “Filling this mysterious interval of monotreme diversity and adaptive development should be a primary focus for research in the future.”

Alcheringa: An Australasian Journal of Palaeontology, 2024. DOI: 10.1080/03115518.2024.2348753

Bizarre egg-laying mammals once ruled Australia—then lost their teeth Read More »

renovation-relic:-man-finds-hominin-jawbone-in-parents’-travertine-kitchen-tile

Renovation relic: Man finds hominin jawbone in parents’ travertine kitchen tile

Kitchen reno surprise —

Yes, travertine often has embedded fossils. But not usually hominin ones.

closeup of fossilized jawbone in a piece of travertine tile

Enlarge / Reddit user Kidipadeli75 spotted a fossilized hominin jawbone in his parents’ new travertine kitchen tile.

Reddit user Kidipadeli75

Ah, Reddit! It’s a constant source of amazing stories that sound too good to be true… and yet! The latest example comes to us from a user named Kidipadeli75, a dentist who visited his parents after the latter’s kitchen renovation and noticed what appeared to be a human-like jawbone embedded in the new travertine tile. Naturally, he posted a photograph to Reddit seeking advice and input. And Reddit was happy to oblige.

User MAJOR_Blarg, for instance, is a dentist “with forensic odontology training” and offered the following:

While all old-world monkeys, apes, and hominids share the same dental formula, 2-1-2-3, and the individual molars and premolars can look similar, the specific spacing in the mandible itself is very specifically and characteristically human, or at least related and very recent hominid relative/ancestor. Most likely human given the success of the proliferation of H.s. and the (relatively) rapid formation of travertine.

Against modern Homo sapiens, which may not be entirely relevant, the morphology of the mandible is likely not northern European, but more similar to African, middle Eastern, mainland Asian.

Another user, deamatrona, who claims to hold an anthropology degree, also thought the dentition looked Asiatic, “which could be a significant find.” The thread also drew the attention of John Hawks, an anthropologist at the University of Wisconsin–Madison and longtime science blogger who provided some valuable context on his own website. (Hawks has been involved with the team that discovered Homo naledi at the Rising Star cave system in 2013.)

For instance, much of the appeal of natural stone like travertine for home decor is its imperfections. But who knew that it’s actually quite common to find embedded fossils? It’s rarer to find hominin fossils but not unprecedented. Hawks specifically mentioned a quarry site near Bilzingsleben, Germany, where an archaeologist named Dietrich Mania discovered parts of two humans skulls and a mandible dating as far back as 470,000 years. And a hominin cranium was found in 2002 in a travertine quarry in southwestern Turkey. It was later dated to between 1.2 million and 1.6 million years old.

The obvious question—asked by numerous Redditors— is how one could possibly install all that kitchen tile without noticing a fossilized human jawbone in the travertine. Hawks offered a reasonable answer:

Quarries rough-cut travertine and other decorative stone into large panels, doing basic quality checks for gaps and large defects on the rough stone before polishing. Small defects and inclusions are the reason why people want travertine in the first place, so they don’t merit special attention. Consumers who buy travertine usually browse samples in a showroom to choose the type of rock, and they don’t see the actual panels or tile until installation. Tile or panels that are polished by machine and stacked in a workshop or factory for shipping are handled pretty quickly.

What this means is that there may be lots more hominin bones in people’s floors and showers.

Most will be hard to recognize. Random cross-sections of hominin bones are tough to make out from other kinds of fossils without a lot of training. Noticing a fossil is not so hard, but I have to say that I’ve often been surprised at what the rest of a fossil looks like after skilled preparators painstakingly extract it from the surrounding rock. The ways that either nature or a masonry saw may slice a fossil don’t correspond to an anatomy book, and a cross-section through part of a bone doesn’t usually resemble an X-ray image of a whole bone.

Cue a horde of amateur fossil enthusiasts excitedly scouring their travertine for signs of important archaeological finds.

But as Hawks notes, chances are that one wouldn’t be able to clearly identify a fossil even if it was embedded in one’s tile, given how thin such tiles and panels are typically cut. And one is far more likely to find fossils of algae, plants, mollusks, crustaceans, or similar smaller creatures than human remains. “Believe me, anthropologists don’t want to hear about every blob of bone in your tile,” Hawks wrote. “But certainly somebody has more pieces of the mandible of the Reddit post.”

Kidipadeli75 posted an update to the Reddit thread providing a few more details, such as that he and his parents live in Europe. He’s also pretty sure the mandible doesn’t belong to Jimmy Hoffa. While Kidipadeli75 originally thought the quarry of origin was in Spain, it is actually located in Turkey—just like the hominin cranium found near Kocabaş in 2002. The story is still developing, given that several researchers have already contacted Kidipadeli75 for more information and to offer their expertise. The bone might turn out to be very old indeed and potentially a scientifically significant find.

Could a new HGTV series be far behind? Renovation Relics, perhaps, or Fossil Fixer-Upper.  Feel free to pitch your own show ideas in the comments.

Renovation relic: Man finds hominin jawbone in parents’ travertine kitchen tile Read More »

it’s-a-fake:-mysterious-280-million-year-old-fossil-is-mostly-just-black-paint

It’s a fake: Mysterious 280 million-year-old fossil is mostly just black paint

A cautionary tale —

The long bones of the hind limbs appear to be genuine. The rest? Not so much.

image of a reptilian fossil in a rock

Enlarge / Discovered in 1931, Tridentinosaurus antiquus has now been found to be, in part, a forgery.

Valentina Rossi

For more than 90 years, scientists have puzzled over an unusual 280 million-year-old reptilian fossil discovered in the Italian Alps. It’s unusual because the skeleton is surrounded by a dark outline, long believed to be rarely preserved soft tissue. Alas, a fresh analysis employing a suite of cutting-edge techniques concluded that the dark outline is actually just bone-black paint. The fossil is a fake, according to a new paper published in the journal Paleontology.

An Italian engineer and museum employee named Gualtiero Adami found the fossil near the village of Piné. The fossil was a small lizard-like creature with a long neck and five-digit limbs. He turned it over to the local museum, and later that year, geologist Giorgio del Piaz announced the discovery of a new genus, dubbed Tridentinosaurus antiquus. The dark-colored body outline was presumed to be the remains of carbonized skin or flesh; fossilized plant material with carbonized leaf and shoot fragments were found in the same geographical area.

The specimen wasn’t officially described scientifically until 1959 when Piero Leonardi declared it to be part of the Protorosauria group. He thought it was especially significant for understanding early reptile evolution because of the preservation of presumed soft tissue surrounding the skeletal remains. Some suggested that T. antiquus had been killed by a pyroclastic surge during a volcanic eruption, which would explain the carbonized skin since the intense heat would have burnt the outer layers almost instantly. It is also the oldest body fossil found in the Alps, at some 280 million years old.

Yet the fossil had never been carefully analyzed using modern analytical techniques, according to co-author Valentina Rossi of University College Cork in Ireland. “The fossil is unique, so this poses some challenges, in terms of analysis that we can do when effectively we cannot afford to make any mistakes, i.e., damaging the fossil,” Rossi told Ars. “Previous preliminary studies were carried out in the past but were not conclusive and the results not straightforward to interpret. The incredible technological advancement we are experiencing in paleontology made this study possible, since we can now analyze very small quantities of precious fossil material at the molecular level, without the risk of damaging the whole specimen.”

The fossil under normal light (left) and under UV light (right).

Enlarge / The fossil under normal light (left) and under UV light (right).

Valentina Rossi

Rossi et al. focused on the dark body outline believed to be carbonized soft tissue for their analysis. This involved photographing the fossil—plus some fossilized plants found in the same area—in both white light and UV light, and using those images to build a photogrammetric map and 3D model. They also took minute samples and examined them with scanning electron microscopy, micro X-ray diffraction, Raman spectroscopy, and ATF-FTIR spectroscopy.

The entire specimen, both the body outline and the bones, fluoresced yellow under UV light; the plant specimens did not. But coatings like lacquers, varnishes, glues, and some artificial pigments do fluoresce yellow under UV light. There was no evidence of fossilized melanin, which one might expect to find in preserved soft tissue. Also, fossils with preserved soft tissue are typically flattened with little topography; the T. antiquus specimen showed a lot of topographical variation in the dark outline areas.

The authors thought this was consistent with some kind of mechanical preparation, perhaps to (unsuccessfully) expose more of the skeleton. They concluded that one or more layers of some kind of coating had been applied to the body outline and the bones. The granular texture of what had been presumed to be soft tissue was more consistent with manufactured pigments used in historical paintings—specifically, “a manufactured carbon-based pigment mixed with an organic binder,” i.e., bone black paint. Conclusion: T. antiquus is a forgery and scientists therefore should be wary of using the specimen in comparative phylogenetic analysis.

Tridentinosaurus antiquus.” height=”428″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/02/fakefossil2-640×428.jpg” width=”640″>

Enlarge / Valentina Rossi with an image of Tridentinosaurus antiquus.

Zixiao Yang

How could scientists have presumed the dark outline of carbonized soft tissue for so many decades? “This fossil was discovered in 1931 and back then fossils were treated very differently than today,” said Rossi. “Application of paints, consolidates and lacquers on fossil bones was the norm, because that was the only way to protect the specimens for further deterioration. It was also sometimes to embellish specimens by making them sleek and shiny. Unfortunately, in the case of Tridentinosaurus, the mechanical preparation did most of the damage and then the application of a black paint created the illusion of a lizard-like animal impression on the surface of the rock.”

This analysis also casts doubt on the validity of the fossil’s assigned taxon, which was based on observations of the body proportion and measurements of limbs, neck, and abdomen. Part of the fossil, at least, appears to be genuine—the long bones of the hind limbs—but that doesn’t mean it will be easier now to determine species or where the specimen fits in the fossil record. “The bones that are recognizable appear to be very poorly preserved, so it might be very difficult to extrapolate any information,” said Rossi. “But perhaps the discovery of new fossil material from the same area where this specimen was found might help identify this ancient animal.”

So how can paleontologists prevent this kind of error from happening in the future? Rossi recommends reporting such finds via scientific journals with a detailed explanation of the methods that were used to characterize the surface materials on both the fossil and the rock. “It’s important to be aware that certain practices are not acceptable anymore, and not just because it creates—whether intentionally or by genuine mistake—misinformation and distorts our perception of a specimen,” said Rossi. “But also because the fossil will be irreparably damaged, and we might have lost key information about the original aspect and preservation state of the fossil.”

Paleontology, 2024. DOI: 10.1111/pala.12690  (About DOIs).

It’s a fake: Mysterious 280 million-year-old fossil is mostly just black paint Read More »