Gemini 2.0

farewell-photoshop?-google’s-new-ai-lets-you-edit-images-by-asking.

Farewell Photoshop? Google’s new AI lets you edit images by asking.


New AI allows no-skill photo editing, including adding objects and removing watermarks.

A collection of images either generated or modified by Gemini 2.0 Flash (Image Generation) Experimental. Credit: Google / Ars Technica

There’s a new Google AI model in town, and it can generate or edit images as easily as it can create text—as part of its chatbot conversation. The results aren’t perfect, but it’s quite possible everyone in the near future will be able to manipulate images this way.

Last Wednesday, Google expanded access to Gemini 2.0 Flash’s native image-generation capabilities, making the experimental feature available to anyone using Google AI Studio. Previously limited to testers since December, the multimodal technology integrates both native text and image processing capabilities into one AI model.

The new model, titled “Gemini 2.0 Flash (Image Generation) Experimental,” flew somewhat under the radar last week, but it has been garnering more attention over the past few days due to its ability to remove watermarks from images, albeit with artifacts and a reduction in image quality.

That’s not the only trick. Gemini 2.0 Flash can add objects, remove objects, modify scenery, change lighting, attempt to change image angles, zoom in or out, and perform other transformations—all to varying levels of success depending on the subject matter, style, and image in question.

To pull it off, Google trained Gemini 2.0 on a large dataset of images (converted into tokens) and text. The model’s “knowledge” about images occupies the same neural network space as its knowledge about world concepts from text sources, so it can directly output image tokens that get converted back into images and fed to the user.

Adding a water-skiing barbarian to a photograph with Gemini 2.0 Flash.

Adding a water-skiing barbarian to a photograph with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Incorporating image generation into an AI chat isn’t itself new—OpenAI integrated its image-generator DALL-E 3 into ChatGPT last September, and other tech companies like xAI followed suit. But until now, every one of those AI chat assistants called on a separate diffusion-based AI model (which uses a different synthesis principle than LLMs) to generate images, which were then returned to the user within the chat interface. In this case, Gemini 2.0 Flash is both the large language model (LLM) and AI image generator rolled into one system.

Interestingly, OpenAI’s GPT-4o is capable of native image output as well (and OpenAI President Greg Brock teased the feature at one point on X last year), but that company has yet to release true multimodal image output capability. One reason why is possibly because true multimodal image output is very computationally expensive, since each image either inputted or generated is composed of tokens that become part of the context that runs through the image model again and again with each successive prompt. And given the compute needs and size of the training data required to create a truly visually comprehensive multimodal model, the output quality of the images isn’t necessarily as good as diffusion models just yet.

Creating another angle of a person with Gemini 2.0 Flash.

Creating another angle of a person with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Another reason OpenAI has held back may be “safety”-related: In a similar way to how multimodal models trained on audio can absorb a short clip of a sample person’s voice and then imitate it flawlessly (this is how ChatGPT’s Advanced Voice Mode works, with a clip of a voice actor it is authorized to imitate), multimodal image output models are capable of faking media reality in a relatively effortless and convincing way, given proper training data and compute behind it. With a good enough multimodal model, potentially life-wrecking deepfakes and photo manipulations could become even more trivial to produce than they are now.

Putting it to the test

So, what exactly can Gemini 2.0 Flash do? Notably, its support for conversational image editing allows users to iteratively refine images through natural language dialogue across multiple successive prompts. You can talk to it and tell it what you want to add, remove, or change. It’s imperfect, but it’s the beginning of a new type of native image editing capability in the tech world.

We gave Gemini Flash 2.0 a battery of informal AI image-editing tests, and you’ll see the results below. For example, we removed a rabbit from an image in a grassy yard. We also removed a chicken from a messy garage. Gemini fills in the background with its best guess. No need for a clone brush—watch out, Photoshop!

We also tried adding synthesized objects to images. Being always wary of the collapse of media reality, called the “cultural singularity,” we added a UFO to a photo the author took from an airplane window. Then we tried adding a Sasquatch and a ghost. The results were unrealistic, but this model was also trained on a limited image dataset (more on that below).

Adding a UFO to a photograph with Gemini 2.0 Flash. Google / Benj Edwards

We then added a video game character to a photo of an Atari 800 screen (Wizard of Wor), resulting in perhaps the most realistic image synthesis result in the set. You might not see it here, but Gemini added realistic CRT scanlines that matched the monitor’s characteristics pretty well.

Adding a monster to an Atari video game with Gemini 2.0 Flash.

Adding a monster to an Atari video game with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Gemini can also warp an image in novel ways, like “zooming out” of an image into a fictional setting or giving an EGA-palette character a body, then sticking him into an adventure game.

“Zooming out” on an image with Gemini 2.0 Flash. Google / Benj Edwards

And yes, you can remove watermarks. We tried removing a watermark from a Getty Images image, and it worked, although the resulting image is nowhere near the resolution or detail quality of the original. Ultimately, if your brain can picture what an image is like without a watermark, so can an AI model. It fills in the watermark space with the most plausible result based on its training data.

Removing a watermark with Gemini 2.0 Flash.

Removing a watermark with Gemini 2.0 Flash. Credit: Nomadsoul1 via Getty Images

And finally, we know you’ve likely missed seeing barbarians beside TV sets (as per tradition), so we gave that a shot. Originally, Gemini didn’t add a CRT TV set to the barbarian image, so we asked for one.

Adding a TV set to a barbarian image with Gemini 2.0 Flash.

Adding a TV set to a barbarian image with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Then we set the TV on fire.

Setting the TV set on fire with Gemini 2.0 Flash.

Setting the TV set on fire with Gemini 2.0 Flash. Credit: Google / Benj Edwards

All in all, it doesn’t produce images of pristine quality or detail, but we literally did no editing work on these images other than typing requests. Adobe Photoshop currently lets users manipulate images using AI synthesis based on written prompts with “Generative Fill,” but it’s not quite as natural as this. We could see Adobe adding a more conversational AI image-editing flow like this one in the future.

Multimodal output opens up new possibilities

Having true multimodal output opens up interesting new possibilities in chatbots. For example, Gemini 2.0 Flash can play interactive graphical games or generate stories with consistent illustrations, maintaining character and setting continuity throughout multiple images. It’s far from perfect, but character consistency is a new capability in AI assistants. We tried it out and it was pretty wild—especially when it generated a view of a photo we provided from another angle.

Creating a multi-image story with Gemini 2.0 Flash, part 1. Google / Benj Edwards

Text rendering represents another potential strength of the model. Google claims that internal benchmarks show Gemini 2.0 Flash performs better than “leading competitive models” when generating images containing text, making it potentially suitable for creating content with integrated text. From our experience, the results weren’t that exciting, but they were legible.

An example of in-image text rendering generated with Gemini 2.0 Flash.

An example of in-image text rendering generated with Gemini 2.0 Flash. Credit: Google / Ars Technica

Despite Gemini 2.0 Flash’s shortcomings so far, the emergence of true multimodal image output feels like a notable moment in AI history because of what it suggests if the technology continues to improve. If you imagine a future, say 10 years from now, where a sufficiently complex AI model could generate any type of media in real time—text, images, audio, video, 3D graphics, 3D-printed physical objects, and interactive experiences—you basically have a holodeck, but without the matter replication.

Coming back to reality, it’s still “early days” for multimodal image output, and Google recognizes that. Recall that Flash 2.0 is intended to be a smaller AI model that is faster and cheaper to run, so it hasn’t absorbed the entire breadth of the Internet. All that information takes a lot of space in terms of parameter count, and more parameters means more compute. Instead, Google trained Gemini 2.0 Flash by feeding it a curated dataset that also likely included targeted synthetic data. As a result, the model does not “know” everything visual about the world, and Google itself says the training data is “broad and general, not absolute or complete.”

That’s just a fancy way of saying that the image output quality isn’t perfect—yet. But there is plenty of room for improvement in the future to incorporate more visual “knowledge” as training techniques advance and compute drops in cost. If the process becomes anything like we’ve seen with diffusion-based AI image generators like Stable Diffusion, Midjourney, and Flux, multimodal image output quality may improve rapidly over a short period of time. Get ready for a completely fluid media reality.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Farewell Photoshop? Google’s new AI lets you edit images by asking. Read More »

samsung’s-galaxy-s25-event-was-an-ai-presentation-with-occasional-phone-hardware

Samsung’s Galaxy S25 event was an AI presentation with occasional phone hardware

Samsung announced the Galaxy S25, S25+, and S25 Ultra at its Unpacked event today. What is different from last year’s models? With the phones themselves, not much, other than a new chipset and a wide camera. But pure AI optimism? Samsung managed to pack a whole lot more of that into its launch event and promotional materials.

The corners on the S25 Ultra are a bit more rounded, the edges are flatter, and the bezels seem to be slightly thinner. The S25 and S25+ models have the same screen size as the S24 models, at 6.2 and 6.7 inches, respectively, while the Ultra notches up slightly from 6.8 to 6.9 inches.

Samsung’s S25 Ultra, in titanium builds colored silver blue, black, gray, and white silver.

Credit: Samsung

Samsung’s S25 Ultra, in titanium builds colored silver blue, black, gray, and white silver. Credit: Samsung

The S25 Ultra, starting at $1,300, touts a Snapdragon 8 Elite processor, a new 50-megapixel ultra-wide lens, and what Samsung claims is improved detail in software-derived zoom images. It comes with the S Pen, a vestige of the departed Note line, but as The Verge notes, there is no Bluetooth included, so you can’t pull off hand gestures with the pen off the screen or use it as a quirky remote camera trigger.

Samsung’s S25 Plus phones, in silver blue, navy, and icy blue.

Credit: Samsung

Samsung’s S25 Plus phones, in silver blue, navy, and icy blue. Credit: Samsung

It’s much the same with the S25 and S25 Plus, starting at $800. The base models got an upgrade to a default of 12GB of RAM. The displays, cameras, and general shape and build are the same. All the Galaxy devices released in 2025 have Qi2 wireless charging support—but not by default. You’ll need a “Qi2 Ready” magnetic case to get a sturdy attachment and the 15 W top charging speed.

One thing that hasn’t changed, for the better, is Samsung’s recent bump up in longevity. Each Galaxy S25 model gets seven years of security updates and seven of OS upgrades, which matches Google’s Pixel line in number of years.

Side view of the Galaxy S25 Edge, which is looking rather thin. Samsung

At the very end of Samsung’s event, for less than 30 seconds, a “Galaxy S25 Edge” was teased. In a mostly black field with some shiny metal components, Samsung seemed to be teasing the notably slimmer variant of the S25 that had been rumored. The same kinds of leaks about an “iPhone Air” have been circulating. No details were provided beyond its name, and a brief video suggesting its svelte nature.

Samsung’s Galaxy S25 event was an AI presentation with occasional phone hardware Read More »

the-ai-war-between-google-and-openai-has-never-been-more-heated

The AI war between Google and OpenAI has never been more heated

Over the past month, we’ve seen a rapid cadence of notable AI-related announcements and releases from both Google and OpenAI, and it’s been making the AI community’s head spin. It has also poured fuel on the fire of the OpenAI-Google rivalry, an accelerating game of one-upmanship taking place unusually close to the Christmas holiday.

“How are people surviving with the firehose of AI updates that are coming out,” wrote one user on X last Friday, which is still a hotbed of AI-related conversation. “in the last <24 hours we got gemini flash 2.0 and chatGPT with screenshare, deep research, pika 2, sora, chatGPT projects, anthropic clio, wtf it never ends."

Rumors travel quickly in the AI world, and people in the AI industry had been expecting OpenAI to ship some major products in December. Once OpenAI announced “12 days of OpenAI” earlier this month, Google jumped into gear and seemingly decided to try to one-up its rival on several counts. So far, the strategy appears to be working, but it’s coming at the cost of the rest of the world being able to absorb the implications of the new releases.

“12 Days of OpenAI has turned into like 50 new @GoogleAI releases,” wrote another X user on Monday. “This past week, OpenAI & Google have been releasing at the speed of a new born startup,” wrote a third X user on Tuesday. “Even their own users can’t keep up. Crazy time we’re living in.”

“Somebody told Google that they could just do things,” wrote a16z partner and AI influencer Justine Moore on X, referring to a common motivational meme telling people they “can just do stuff.”

The Google AI rush

OpenAI’s “12 Days of OpenAI” campaign has included releases of their full o1 model, an upgrade from o1-preview, alongside o1-pro for advanced “reasoning” tasks. The company also publicly launched Sora for video generation, added Projects functionality to ChatGPT, introduced Advanced Voice features with video streaming capabilities, and more.

The AI war between Google and OpenAI has never been more heated Read More »

not-to-be-outdone-by-openai,-google-releases-its-own-“reasoning”-ai-model

Not to be outdone by OpenAI, Google releases its own “reasoning” AI model

Google DeepMind’s chief scientist, Jeff Dean, says that the model receives extra computing power, writing on X, “we see promising results when we increase inference time computation!” The model works by pausing to consider multiple related prompts before providing what it determines to be the most accurate answer.

Since OpenAI’s jump into the “reasoning” field in September with o1-preview and o1-mini, several companies have been rushing to achieve feature parity with their own models. For example, DeepSeek launched DeepSeek-R1 in early November, while Alibaba’s Qwen team released its own “reasoning” model, QwQ earlier this month.

While some claim that reasoning models can help solve complex mathematical or academic problems, these models might not be for everybody. While they perform well on some benchmarks, questions remain about their actual usefulness and accuracy. Also, the high computing costs needed to run reasoning models have created some rumblings about their long-term viability. That high cost is why OpenAI’s ChatGPT Pro costs $200 a month, for example.

Still, it appears Google is serious about pursuing this particular AI technique. Logan Kilpatrick, a Google employee in its AI Studio, called it “the first step in our reasoning journey” in a post on X.

Not to be outdone by OpenAI, Google releases its own “reasoning” AI model Read More »

google-goes-“agentic”-with-gemini-2.0’s-ambitious-ai-agent-features

Google goes “agentic” with Gemini 2.0’s ambitious AI agent features

On Wednesday, Google unveiled Gemini 2.0, the next generation of its AI-model family, starting with an experimental release called Gemini 2.0 Flash. The model family can generate text, images, and speech while processing multiple types of input including text, images, audio, and video. It’s similar to multimodal AI models like GPT-4o, which powers OpenAI’s ChatGPT.

“Gemini 2.0 Flash builds on the success of 1.5 Flash, our most popular model yet for developers, with enhanced performance at similarly fast response times,” said Google in a statement. “Notably, 2.0 Flash even outperforms 1.5 Pro on key benchmarks, at twice the speed.”

Gemini 2.0 Flash—which is the smallest model of the 2.0 family in terms of parameter count—launches today through Google’s developer platforms like Gemini API, AI Studio, and Vertex AI. However, its image generation and text-to-speech features remain limited to early access partners until January 2025. Google plans to integrate the tech into products like Android Studio, Chrome DevTools, and Firebase.

The company addressed potential misuse of generated content by implementing SynthID watermarking technology on all audio and images created by Gemini 2.0 Flash. This watermark appears in supported Google products to identify AI-generated content.

Google’s newest announcements lean heavily into the concept of agentic AI systems that can take action for you. “Over the last year, we have been investing in developing more agentic models, meaning they can understand more about the world around you, think multiple steps ahead, and take action on your behalf, with your supervision,” said Google CEO Sundar Pichai in a statement. “Today we’re excited to launch our next era of models built for this new agentic era.”

Google goes “agentic” with Gemini 2.0’s ambitious AI agent features Read More »