GPT-4

elon-musk-sues-openai,-sam-altman-for-making-a-“fool”-out-of-him

Elon Musk sues OpenAI, Sam Altman for making a “fool” out of him

“Altman’s long con” —

Elon Musk asks court to void Microsoft’s exclusive deal with OpenAI.

Elon Musk and Sam Altman share the stage in 2015, the same year that Musk alleged that Altman's

Enlarge / Elon Musk and Sam Altman share the stage in 2015, the same year that Musk alleged that Altman’s “deception” began.

After withdrawing his lawsuit in June for unknown reasons, Elon Musk has revived a complaint accusing OpenAI and its CEO Sam Altman of fraudulently inducing Musk to contribute $44 million in seed funding by promising that OpenAI would always open-source its technology and prioritize serving the public good over profits as a permanent nonprofit.

Instead, Musk alleged that Altman and his co-conspirators—”preying on Musk’s humanitarian concern about the existential dangers posed by artificial intelligence”—always intended to “betray” these promises in pursuit of personal gains.

As OpenAI’s technology advanced toward artificial general intelligence (AGI) and strove to surpass human capabilities, “Altman set the bait and hooked Musk with sham altruism then flipped the script as the non-profit’s technology approached AGI and profits neared, mobilizing Defendants to turn OpenAI, Inc. into their personal piggy bank and OpenAI into a moneymaking bonanza, worth billions,” Musk’s complaint said.

Where Musk saw OpenAI as his chance to fund a meaningful rival to stop Google from controlling the most powerful AI, Altman and others “wished to launch a competitor to Google” and allegedly deceived Musk to do it. According to Musk:

The idea Altman sold Musk was that a non-profit, funded and backed by Musk, would attract world-class scientists, conduct leading AI research and development, and, as a meaningful counterweight to Google’s DeepMind in the race for Artificial General Intelligence (“AGI”), decentralize its technology by making it open source. Altman assured Musk that the non-profit structure guaranteed neutrality and a focus on safety and openness for the benefit of humanity, not shareholder value. But as it turns out, this was all hot-air philanthropy—the hook for Altman’s long con.

Without Musk’s involvement and funding during OpenAI’s “first five critical years,” Musk’s complaint said, “it is fair to say” that “there would have been no OpenAI.” And when Altman and others repeatedly approached Musk with plans to shift OpenAI to a for-profit model, Musk held strong to his morals, conditioning his ongoing contributions on OpenAI remaining a nonprofit and its tech largely remaining open source.

“Either go do something on your own or continue with OpenAI as a nonprofit,” Musk told Altman in 2018 when Altman tried to “recast the nonprofit as a moneymaking endeavor to bring in shareholders, sell equity, and raise capital.”

“I will no longer fund OpenAI until you have made a firm commitment to stay, or I’m just being a fool who is essentially providing free funding to a startup,” Musk said at the time. “Discussions are over.”

But discussions weren’t over. And now Musk seemingly does feel like a fool after OpenAI exclusively licensed GPT-4 and all “pre-AGI” technology to Microsoft in 2023, while putting up paywalls and “failing to publicly disclose the non-profit’s research and development, including details on GPT-4, GPT-4T, and GPT-4o’s architecture, hardware, training method, and training computation.” This excluded the public “from open usage of GPT-4 and related technology to advance Defendants and Microsoft’s own commercial interests,” Musk alleged.

Now Musk has revived his suit against OpenAI, asking the court to award maximum damages for OpenAI’s alleged fraud, contract breaches, false advertising, acts viewed as unfair to competition, and other violations.

He has also asked the court to determine a very technical question: whether OpenAI’s most recent models should be considered AGI and therefore Microsoft’s license voided. That’s the only way to ensure that a private corporation isn’t controlling OpenAI’s AGI models, which Musk repeatedly conditioned his financial contributions upon preventing.

“Musk contributed considerable money and resources to launch and sustain OpenAI, Inc., which was done on the condition that the endeavor would be and remain a non-profit devoted to openly sharing its technology with the public and avoid concentrating its power in the hands of the few,” Musk’s complaint said. “Defendants knowingly and repeatedly accepted Musk’s contributions in order to develop AGI, with no intention of honoring those conditions once AGI was in reach. Case in point: GPT-4, GPT-4T, and GPT-4o are all closed source and shrouded in secrecy, while Defendants actively work to transform the non-profit into a thoroughly commercial business.”

Musk wants Microsoft’s GPT-4 license voided

Musk also asked the court to null and void OpenAI’s exclusive license to Microsoft, or else determine “whether GPT-4, GPT-4T, GPT-4o, and other OpenAI next generation large language models constitute AGI and are thus excluded from Microsoft’s license.”

It’s clear that Musk considers these models to be AGI, and he’s alleged that Altman’s current control of OpenAI’s Board—after firing dissidents in 2023 whom Musk claimed tried to get Altman ousted for prioritizing profits over AI safety—gives Altman the power to obscure when OpenAI’s models constitute AGI.

Elon Musk sues OpenAI, Sam Altman for making a “fool” out of him Read More »

openai-hits-google-where-it-hurts-with-new-searchgpt-prototype

OpenAI hits Google where it hurts with new SearchGPT prototype

Cutting through the sludge —

New tool may solve a web-search problem partially caused by AI-generated junk online.

The OpenAI logo on a blue newsprint background.

Benj Edwards / OpenAI

Arguably, few companies have unintentionally contributed more to the increase of AI-generated noise online than OpenAI. Despite its best intentions—and against its terms of service—its AI language models are often used to compose spam, and its pioneering research has inspired others to build AI models that can potentially do the same. This influx of AI-generated content has further reduced the effectiveness of SEO-driven search engines like Google. In 2024, web search is in a sorry state indeed.

It’s interesting, then, that OpenAI is now offering a potential solution to that problem. On Thursday, OpenAI revealed a prototype AI-powered search engine called SearchGPT that aims to provide users with quick, accurate answers sourced from the web. It’s also a direct challenge to Google, which also has tried to apply generative AI to web search (but with little success).

The company says it plans to integrate the most useful aspects of the temporary prototype into ChatGPT in the future. ChatGPT can already perform web searches using Bing, but SearchGPT seems to be a purpose-built interface for AI-assisted web searching.

SearchGPT attempts to streamline the process of finding information online by combining OpenAI’s AI models (like GPT-4o) with real-time web data. Like ChatGPT, users can reportedly ask SearchGPT follow-up questions, with the AI model maintaining context throughout the conversation.

Perhaps most importantly from an accuracy standpoint, the SearchGPT prototype (which we have not tested ourselves) reportedly includes features that attribute web-based sources prominently. Responses include in-line citations and links, while a sidebar displays additional source links.

OpenAI has not yet said how it is obtaining its real-time web data and whether it’s partnering with an existing search engine provider (like it does currently with Bing for ChatGPT) or building its own web-crawling and indexing system.

A way around publishers blocking OpenAI

ChatGPT can already perform web searches using Bing, but since last August when OpenAI revealed a way to block its web crawler, that feature hasn’t been nearly as useful as it could be. Many sites, such as Ars Technica (which blocks the OpenAI crawler as part of our parent company’s policy), won’t show up as results in ChatGPT because of this.

SearchGPT appears to untangle the association between OpenAI’s web crawler for scraping training data and the desire for OpenAI chatbot users to search the web. Notably, in the new SearchGPT announcement, OpenAI says, “Sites can be surfaced in search results even if they opt out of generative AI training.”

Even so, OpenAI says it is working on a way for publishers to manage how they appear in SearchGPT results so that “publishers have more choices.” And the company says that SearchGPT’s ability to browse the web is separate from training OpenAI’s AI models.

An uncertain future for AI-powered search

OpenAI claims SearchGPT will make web searches faster and easier. However, the effectiveness of AI-powered search compared to traditional methods is unknown, as the tech is still in its early stages. But let’s be frank: The most prominent web-search engine right now is pretty terrible.

Over the past year, we’ve seen Perplexity.ai take off as a potential AI-powered Google search replacement, but the service has been hounded by issues with confabulations and accusations of plagiarism among publishers, including Ars Technica parent Condé Nast.

Unlike Perplexity, OpenAI has many content deals lined up with publishers, and it emphasizes that it wants to work with content creators in particular. “We are committed to a thriving ecosystem of publishers and creators,” says OpenAI in its news release. “We hope to help users discover publisher sites and experiences, while bringing more choice to search.”

In a statement for the OpenAI press release, Nicholas Thompson, CEO of The Atlantic (which has a content deal with OpenAI), expressed optimism about the potential of AI search: “AI search is going to become one of the key ways that people navigate the internet, and it’s crucial, in these early days, that the technology is built in a way that values, respects, and protects journalism and publishers,” he said. “We look forward to partnering with OpenAI in the process, and creating a new way for readers to discover The Atlantic.”

OpenAI has experimented with other offshoots of its AI language model technology that haven’t become blockbuster hits (most notably, GPTs come to mind), so time will tell if the techniques behind SearchGPT have staying power—and if it can deliver accurate results without hallucinating. But the current state of web search is inviting new experiments to separate the signal from the noise, and it looks like OpenAI is throwing its hat in the ring.

OpenAI is currently rolling out SearchGPT to a small group of users and publishers for testing and feedback. Those interested in trying the prototype can sign up for a waitlist on the company’s website.

OpenAI hits Google where it hurts with new SearchGPT prototype Read More »

the-first-gpt-4-class-ai-model-anyone-can-download-has-arrived:-llama-405b

The first GPT-4-class AI model anyone can download has arrived: Llama 405B

A new llama emerges —

“Open source AI is the path forward,” says Mark Zuckerberg, misusing the term.

A red llama in a blue desert illustration based on a photo.

In the AI world, there’s a buzz in the air about a new AI language model released Tuesday by Meta: Llama 3.1 405B. The reason? It’s potentially the first time anyone can download a GPT-4-class large language model (LLM) for free and run it on their own hardware. You’ll still need some beefy hardware: Meta says it can run on a “single server node,” which isn’t desktop PC-grade equipment. But it’s a provocative shot across the bow of “closed” AI model vendors such as OpenAI and Anthropic.

“Llama 3.1 405B is the first openly available model that rivals the top AI models when it comes to state-of-the-art capabilities in general knowledge, steerability, math, tool use, and multilingual translation,” says Meta. Company CEO Mark Zuckerberg calls 405B “the first frontier-level open source AI model.”

In the AI industry, “frontier model” is a term for an AI system designed to push the boundaries of current capabilities. In this case, Meta is positioning 405B among the likes of the industry’s top AI models, such as OpenAI’s GPT-4o, Claude’s 3.5 Sonnet, and Google Gemini 1.5 Pro.

A chart published by Meta suggests that 405B gets very close to matching the performance of GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

But as we’ve noted many times since March, these benchmarks aren’t necessarily scientifically sound or translate to the subjective experience of interacting with AI language models. In fact, this traditional slate of AI benchmarks is so generally useless to laypeople that even Meta’s PR department now just posts a few images of charts and doesn’t even try to explain them in any detail.

A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

Enlarge / A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

We’ve instead found that measuring the subjective experience of using a conversational AI model (through what might be called “vibemarking”) on A/B leaderboards like Chatbot Arena is a better way to judge new LLMs. In the absence of Chatbot Arena data, Meta has provided the results of its own human evaluations of 405B’s outputs that seem to show Meta’s new model holding its own against GPT-4 Turbo and Claude 3.5 Sonnet.

A Meta-provided chart that shows how humans rated Llama 3.1 405B's outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Enlarge / A Meta-provided chart that shows how humans rated Llama 3.1 405B’s outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Whatever the benchmarks, early word on the street (after the model leaked on 4chan yesterday) seems to match the claim that 405B is roughly equivalent to GPT-4. It took a lot of expensive computer training time to get there—and money, of which the social media giant has plenty to burn. Meta trained the 405B model on over 15 trillion tokens of training data scraped from the web (then parsed, filtered, and annotated by Llama 2), using more than 16,000 H100 GPUs.

So what’s with the 405B name? In this case, “405B” means 405 billion parameters, and parameters are numerical values that store trained information in a neural network. More parameters translate to a larger neural network powering the AI model, which generally (but not always) means more capability, such as better ability to make contextual connections between concepts. But larger-parameter models have a tradeoff in needing more computing power (AKA “compute”) to run.

We’ve been expecting the release of a 400 billion-plus parameter model of the Llama 3 family since Meta gave word that it was training one in April, and today’s announcement isn’t just about the biggest member of the Llama 3 family: There’s an entirely new iteration of improved Llama models with the designation “Llama 3.1.” That includes upgraded versions of its smaller 8B and 70B models, which now feature multilingual support and an extended context length of 128,000 tokens (the “context length” is roughly the working memory capacity of the model, and “tokens” are chunks of data used by LLMs to process information).

Meta says that 405B is useful for long-form text summarization, multilingual conversational agents, and coding assistants and for creating synthetic data used to train future AI language models. Notably, that last use-case—allowing developers to use outputs from Llama models to improve other AI models—is now officially supported by Meta’s Llama 3.1 license for the first time.

Abusing the term “open source”

Llama 3.1 405B is an open-weights model, which means anyone can download the trained neural network files and run them or fine-tune them. That directly challenges a business model where companies like OpenAI keep the weights to themselves and instead monetize the model through subscription wrappers like ChatGPT or charge for access by the token through an API.

Fighting the “closed” AI model is a big deal to Mark Zuckerberg, who simultaneously released a 2,300-word manifesto today on why the company believes in open releases of AI models, titled, “Open Source AI Is the Path Forward.” More on the terminology in a minute. But briefly, he writes about the need for customizable AI models that offer user control and encourage better data security, higher cost-efficiency, and better future-proofing, as opposed to vendor-locked solutions.

All that sounds reasonable, but undermining your competitors using a model subsidized by a social media war chest is also an efficient way to play spoiler in a market where you might not always win with the most cutting-edge tech. That benefits Meta, Zuckerberg says, because he doesn’t want to get locked into a system where companies like his have to pay a toll to access AI capabilities, drawing comparisons to “taxes” Apple levies on developers through its App Store.

A screenshot of Mark Zuckerberg's essay,

Enlarge / A screenshot of Mark Zuckerberg’s essay, “Open Source AI Is the Path Forward,” published on July 23, 2024.

So, about that “open source” term. As we first wrote in an update to our Llama 2 launch article a year ago, “open source” has a very particular meaning that has traditionally been defined by the Open Source Initiative. The AI industry has not yet settled on terminology for AI model releases that ship either code or weights with restrictions (such as Llama 3.1) or that ship without providing training data. We’ve been calling these releases “open weights” instead.

Unfortunately for terminology sticklers, Zuckerberg has now baked the erroneous “open source” label into the title of his potentially historic aforementioned essay on open AI releases, so fighting for the correct term in AI may be a losing battle. Still, his usage annoys people like independent AI researcher Simon Willison, who likes Zuckerberg’s essay otherwise.

“I see Zuck’s prominent misuse of ‘open source’ as a small-scale act of cultural vandalism,” Willison told Ars Technica. “Open source should have an agreed meaning. Abusing the term weakens that meaning which makes the term less generally useful, because if someone says ‘it’s open source,’ that no longer tells me anything useful. I have to then dig in and figure out what they’re actually talking about.”

The Llama 3.1 models are available for download through Meta’s own website and on Hugging Face. They both require providing contact information and agreeing to a license and an acceptable use policy, which means that Meta can technically legally pull the rug out from under your use of Llama 3.1 or its outputs at any time.

The first GPT-4-class AI model anyone can download has arrived: Llama 405B Read More »

microsoft-cto-kevin-scott-thinks-llm-“scaling-laws”-will-hold-despite-criticism

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism

As the word turns —

Will LLMs keep improving if we throw more compute at them? OpenAI dealmaker thinks so.

Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media's 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

Enlarge / Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media’s 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

During an interview with Sequoia Capital’s Training Data podcast published last Tuesday, Microsoft CTO Kevin Scott doubled down on his belief that so-called large language model (LLM) “scaling laws” will continue to drive AI progress, despite some skepticism in the field that progress has leveled out. Scott played a key role in forging a $13 billion technology-sharing deal between Microsoft and OpenAI.

“Despite what other people think, we’re not at diminishing marginal returns on scale-up,” Scott said. “And I try to help people understand there is an exponential here, and the unfortunate thing is you only get to sample it every couple of years because it just takes a while to build supercomputers and then train models on top of them.”

LLM scaling laws refer to patterns explored by OpenAI researchers in 2020 showing that the performance of language models tends to improve predictably as the models get larger (more parameters), are trained on more data, and have access to more computational power (compute). The laws suggest that simply scaling up model size and training data can lead to significant improvements in AI capabilities without necessarily requiring fundamental algorithmic breakthroughs.

Since then, other researchers have challenged the idea of persisting scaling laws over time, but the concept is still a cornerstone of OpenAI’s AI development philosophy.

You can see Scott’s comments in the video below beginning around 46: 05:

Microsoft CTO Kevin Scott on how far scaling laws will extend

Scott’s optimism contrasts with a narrative among some critics in the AI community that progress in LLMs has plateaued around GPT-4 class models. The perception has been fueled by largely informal observations—and some benchmark results—about recent models like Google’s Gemini 1.5 Pro, Anthropic’s Claude Opus, and even OpenAI’s GPT-4o, which some argue haven’t shown the dramatic leaps in capability seen in earlier generations, and that LLM development may be approaching diminishing returns.

“We all know that GPT-3 was vastly better than GPT-2. And we all know that GPT-4 (released thirteen months ago) was vastly better than GPT-3,” wrote AI critic Gary Marcus in April. “But what has happened since?”

The perception of plateau

Scott’s stance suggests that tech giants like Microsoft still feel justified in investing heavily in larger AI models, betting on continued breakthroughs rather than hitting a capability plateau. Given Microsoft’s investment in OpenAI and strong marketing of its own Microsoft Copilot AI features, the company has a strong interest in maintaining the perception of continued progress, even if the tech stalls.

Frequent AI critic Ed Zitron recently wrote in a post on his blog that one defense of continued investment into generative AI is that “OpenAI has something we don’t know about. A big, sexy, secret technology that will eternally break the bones of every hater,” he wrote. “Yet, I have a counterpoint: no it doesn’t.”

Some perceptions of slowing progress in LLM capabilities and benchmarking may be due to the rapid onset of AI in the public eye when, in fact, LLMs have been developing for years prior. OpenAI continued to develop LLMs during a roughly three-year gap between the release of GPT-3 in 2020 and GPT-4 in 2023. Many people likely perceived a rapid jump in capability with GPT-4’s launch in 2023 because they had only become recently aware of GPT-3-class models with the launch of ChatGPT in late November 2022, which used GPT-3.5.

In the podcast interview, the Microsoft CTO pushed back against the idea that AI progress has stalled, but he acknowledged the challenge of infrequent data points in this field, as new models often take years to develop. Despite this, Scott expressed confidence that future iterations will show improvements, particularly in areas where current models struggle.

“The next sample is coming, and I can’t tell you when, and I can’t predict exactly how good it’s going to be, but it will almost certainly be better at the things that are brittle right now, where you’re like, oh my god, this is a little too expensive, or a little too fragile, for me to use,” Scott said in the interview. “All of that gets better. It’ll get cheaper, and things will become less fragile. And then more complicated things will become possible. That is the story of each generation of these models as we’ve scaled up.”

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism Read More »

openai’s-new-“criticgpt”-model-is-trained-to-criticize-gpt-4-outputs

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs

automated critic —

Research model catches bugs in AI-generated code, improving human oversight of AI.

An illustration created by OpenAI.

Enlarge / An illustration created by OpenAI.

On Thursday, OpenAI researchers unveiled CriticGPT, a new AI model designed to identify mistakes in code generated by ChatGPT. It aims to enhance the process of making AI systems behave in ways humans want (called “alignment”) through Reinforcement Learning from Human Feedback (RLHF), which helps human reviewers make large language model (LLM) outputs more accurate.

As outlined in a new research paper called “LLM Critics Help Catch LLM Bugs,” OpenAI created CriticGPT to act as an AI assistant to human trainers who review programming code generated by the ChatGPT AI assistant. CriticGPT—based on the GPT-4 family of LLMS—analyzes the code and points out potential errors, making it easier for humans to spot mistakes that might otherwise go unnoticed. The researchers trained CriticGPT on a dataset of code samples with intentionally inserted bugs, teaching it to recognize and flag various coding errors.

The researchers found that CriticGPT’s critiques were preferred by annotators over human critiques in 63 percent of cases involving naturally occurring LLM errors and that human-machine teams using CriticGPT wrote more comprehensive critiques than humans alone while reducing confabulation (hallucination) rates compared to AI-only critiques.

Developing an automated critic

The development of CriticGPT involved training the model on a large number of inputs containing deliberately inserted mistakes. Human trainers were asked to modify code written by ChatGPT, introducing errors and then providing example feedback as if they had discovered these bugs. This process allowed the model to learn how to identify and critique various types of coding errors.

In experiments, CriticGPT demonstrated its ability to catch both inserted bugs and naturally occurring errors in ChatGPT’s output. The new model’s critiques were preferred by trainers over those generated by ChatGPT itself in 63 percent of cases involving natural bugs (the aforementioned statistic). This preference was partly due to CriticGPT producing fewer unhelpful “nitpicks” and generating fewer false positives, or hallucinated problems.

The researchers also created a new technique they call Force Sampling Beam Search (FSBS). This method helps CriticGPT write more detailed reviews of code. It lets the researchers adjust how thorough CriticGPT is in looking for problems, while also controlling how often it might make up issues that don’t really exist. They can tweak this balance depending on what they need for different AI training tasks.

Interestingly, the researchers found that CriticGPT’s capabilities extend beyond just code review. In their experiments, they applied the model to a subset of ChatGPT training data that had previously been rated as flawless by human annotators. Surprisingly, CriticGPT identified errors in 24 percent of these cases—errors that were subsequently confirmed by human reviewers. OpenAI thinks this demonstrates the model’s potential to generalize to non-code tasks and highlights its ability to catch subtle mistakes that even careful human evaluation might miss.

Despite its promising results, like all AI models, CriticGPT has limitations. The model was trained on relatively short ChatGPT answers, which may not fully prepare it for evaluating longer, more complex tasks that future AI systems might tackle. Additionally, while CriticGPT reduces confabulations, it doesn’t eliminate them entirely, and human trainers can still make labeling mistakes based on these false outputs.

The research team acknowledges that CriticGPT is most effective at identifying errors that can be pinpointed in one specific location within the code. However, real-world mistakes in AI outputs can often be spread across multiple parts of an answer, presenting a challenge for future iterations of the model.

OpenAI plans to integrate CriticGPT-like models into its RLHF labeling pipeline, providing its trainers with AI assistance. For OpenAI, it’s a step toward developing better tools for evaluating outputs from LLM systems that may be difficult for humans to rate without additional support. However, the researchers caution that even with tools like CriticGPT, extremely complex tasks or responses may still prove challenging for human evaluators—even those assisted by AI.

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs Read More »

anthropic-introduces-claude-3.5-sonnet,-matching-gpt-4o-on-benchmarks

Anthropic introduces Claude 3.5 Sonnet, matching GPT-4o on benchmarks

The Anthropic Claude 3 logo, jazzed up by Benj Edwards.

Anthropic / Benj Edwards

On Thursday, Anthropic announced Claude 3.5 Sonnet, its latest AI language model and the first in a new series of “3.5” models that build upon Claude 3, launched in March. Claude 3.5 can compose text, analyze data, and write code. It features a 200,000 token context window and is available now on the Claude website and through an API. Anthropic also introduced Artifacts, a new feature in the Claude interface that shows related work documents in a dedicated window.

So far, people outside of Anthropic seem impressed. “This model is really, really good,” wrote independent AI researcher Simon Willison on X. “I think this is the new best overall model (and both faster and half the price of Opus, similar to the GPT-4 Turbo to GPT-4o jump).”

As we’ve written before, benchmarks for large language models (LLMs) are troublesome because they can be cherry-picked and often do not capture the feel and nuance of using a machine to generate outputs on almost any conceivable topic. But according to Anthropic, Claude 3.5 Sonnet matches or outperforms competitor models like GPT-4o and Gemini 1.5 Pro on certain benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

Claude 3.5 Sonnet benchmarks provided by Anthropic.

Enlarge / Claude 3.5 Sonnet benchmarks provided by Anthropic.

If all that makes your eyes glaze over, that’s OK; it’s meaningful to researchers but mostly marketing to everyone else. A more useful performance metric comes from what we might call “vibemarks” (coined here first!) which are subjective, non-rigorous aggregate feelings measured by competitive usage on sites like LMSYS’s Chatbot Arena. The Claude 3.5 Sonnet model is currently under evaluation there, and it’s too soon to say how well it will fare.

Claude 3.5 Sonnet also outperforms Anthropic’s previous-best model (Claude 3 Opus) on benchmarks measuring “reasoning,” math skills, general knowledge, and coding abilities. For example, the model demonstrated strong performance in an internal coding evaluation, solving 64 percent of problems compared to 38 percent for Claude 3 Opus.

Claude 3.5 Sonnet is also a multimodal AI model that accepts visual input in the form of images, and the new model is reportedly excellent at a battery of visual comprehension tests.

Claude 3.5 Sonnet benchmarks provided by Anthropic.

Enlarge / Claude 3.5 Sonnet benchmarks provided by Anthropic.

Roughly speaking, the visual benchmarks mean that 3.5 Sonnet is better at pulling information from images than previous models. For example, you can show it a picture of a rabbit wearing a football helmet, and the model knows it’s a rabbit wearing a football helmet and can talk about it. That’s fun for tech demos, but the tech is still not accurate enough for applications of the tech where reliability is mission critical.

Anthropic introduces Claude 3.5 Sonnet, matching GPT-4o on benchmarks Read More »

report:-apple-isn’t-paying-openai-for-chatgpt-integration-into-oses

Report: Apple isn’t paying OpenAI for ChatGPT integration into OSes

in the pocket —

Apple thinks pushing OpenAI’s brand to hundreds of millions is worth more than money.

The OpenAI and Apple logos together.

OpenAI / Apple / Benj Edwards

On Monday, Apple announced it would be integrating OpenAI’s ChatGPT AI assistant into upcoming versions of its iPhone, iPad, and Mac operating systems. It paves the way for future third-party AI model integrations, but given Google’s multi-billion-dollar deal with Apple for preferential web search, the OpenAI announcement inspired speculation about who is paying whom. According to a Bloomberg report published Wednesday, Apple considers ChatGPT’s placement on its devices as compensation enough.

“Apple isn’t paying OpenAI as part of the partnership,” writes Bloomberg reporter Mark Gurman, citing people familiar with the matter who wish to remain anonymous. “Instead, Apple believes pushing OpenAI’s brand and technology to hundreds of millions of its devices is of equal or greater value than monetary payments.”

The Bloomberg report states that neither company expects the agreement to generate meaningful revenue in the short term, and in fact, the partnership could burn extra money for OpenAI, because it pays Microsoft to host ChatGPT’s capabilities on its Azure cloud. However, OpenAI could benefit by converting free users to paid subscriptions, and Apple potentially benefits by providing easy, built-in access to ChatGPT during a time when its own in-house LLMs are still catching up.

And there’s another angle at play. Currently, OpenAI offers subscriptions (ChatGPT Plus, Enterprise, Team) that unlock additional features. If users subscribe to OpenAI through the ChatGPT app on an Apple device, the process will reportedly use Apple’s payment platform, which may give Apple a significant cut of the revenue. According to the report, Apple hopes to negotiate additional revenue-sharing deals with AI vendors in the future.

Why OpenAI

The rise of ChatGPT in the public eye over the past 18 months has made OpenAI a power player in the tech industry, allowing it to strike deals with publishers for AI training content—and ensure continued support from Microsoft in the form of investments that trade vital funding and compute for access to OpenAI’s large language model (LLM) technology like GPT-4.

Still, Apple’s choice of ChatGPT as Apple’s first external AI integration has led to widespread misunderstanding, especially since Apple buried the lede about its own in-house LLM technology that powers its new “Apple Intelligence” platform.

On Apple’s part, CEO Tim Cook told The Washington Post that it chose OpenAI as its first third-party AI partner because he thinks the company controls the leading LLM technology at the moment: “I think they’re a pioneer in the area, and today they have the best model,” he said. “We’re integrating with other people as well. But they’re first, and I think today it’s because they’re best.”

Apple’s choice also brings risk. OpenAI’s record isn’t spotless, racking up a string of public controversies over the past month that include an accusation from actress Scarlett Johansson that the company intentionally imitated her voice, resignations from a key scientist and safety personnel, the revelation of a restrictive NDA for ex-employees that prevented public criticism, and accusations against OpenAI CEO Sam Altman of “psychological abuse” related by a former member of the OpenAI board.

Meanwhile, critics of privacy issues related to gathering data for training AI models—including OpenAI foe Elon Musk, who took to X on Monday to spread misconceptions about how the ChatGPT integration might work—also worried that the Apple-OpenAI deal might expose personal data to the AI company, although both companies strongly deny that will be the case.

Looking ahead, Apple’s deal with OpenAI is not exclusive, and the company is already in talks to offer Google’s Gemini chatbot as an additional option later this year. Apple has also reportedly held talks with Anthropic (maker of Claude 3) as a potential chatbot partner, signaling its intention to provide users with a range of AI services, much like how the company offers various search engine options in Safari.

Report: Apple isn’t paying OpenAI for ChatGPT integration into OSes Read More »

apple-and-openai-currently-have-the-most-misunderstood-partnership-in-tech

Apple and OpenAI currently have the most misunderstood partnership in tech

A man talks into a smartphone.

Enlarge / He isn’t using an iPhone, but some people talk to Siri like this.

On Monday, Apple premiered “Apple Intelligence” during a wide-ranging presentation at its annual Worldwide Developers Conference in Cupertino, California. However, the heart of its new tech, an array of Apple-developed AI models, was overshadowed by the announcement of ChatGPT integration into its device operating systems.

Since rumors of the partnership first emerged, we’ve seen confusion on social media about why Apple didn’t develop a cutting-edge GPT-4-like chatbot internally. Despite Apple’s year-long development of its own large language models (LLMs), many perceived the integration of ChatGPT (and opening the door for others, like Google Gemini) as a sign of Apple’s lack of innovation.

“This is really strange. Surely Apple could train a very good competing LLM if they wanted? They’ve had a year,” wrote AI developer Benjamin De Kraker on X. Elon Musk has also been grumbling about the OpenAI deal—and spreading misinformation about it—saying things like, “It’s patently absurd that Apple isn’t smart enough to make their own AI, yet is somehow capable of ensuring that OpenAI will protect your security & privacy!”

While Apple has developed many technologies internally, it has also never been shy about integrating outside tech when necessary in various ways, from acquisitions to built-in clients—in fact, Siri was initially developed by an outside company. But by making a deal with a company like OpenAI, which has been the source of a string of tech controversies recently, it’s understandable that some people don’t understand why Apple made the call—and what it might entail for the privacy of their on-device data.

“Our customers want something with world knowledge some of the time”

While Apple Intelligence largely utilizes its own Apple-developed LLMs, Apple also realized that there may be times when some users want to use what the company considers the current “best” existing LLM—OpenAI’s GPT-4 family. In an interview with The Washington Post, Apple CEO Tim Cook explained the decision to integrate OpenAI first:

“I think they’re a pioneer in the area, and today they have the best model,” he said. “And I think our customers want something with world knowledge some of the time. So we considered everything and everyone. And obviously we’re not stuck on one person forever or something. We’re integrating with other people as well. But they’re first, and I think today it’s because they’re best.”

The proposed benefit of Apple integrating ChatGPT into various experiences within iOS, iPadOS, and macOS is that it allows AI users to access ChatGPT’s capabilities without the need to switch between different apps—either through the Siri interface or through Apple’s integrated “Writing Tools.” Users will also have the option to connect their paid ChatGPT account to access extra features.

As an answer to privacy concerns, Apple says that before any data is sent to ChatGPT, the OS asks for the user’s permission, and the entire ChatGPT experience is optional. According to Apple, requests are not stored by OpenAI, and users’ IP addresses are hidden. Apparently, communication with OpenAI servers happens through API calls similar to using the ChatGPT app on iOS, and there is reportedly no deeper OS integration that might expose user data to OpenAI without the user’s permission.

We can only take Apple’s word for it at the moment, of course, and solid details about Apple’s AI privacy efforts will emerge once security experts get their hands on the new features later this year.

Apple’s history of tech integration

So you’ve seen why Apple chose OpenAI. But why look to outside companies for tech? In some ways, Apple building an external LLM client into its operating systems isn’t too different from what it has previously done with streaming video (the YouTube app on the original iPhone), Internet search (Google search integration), and social media (integrated Twitter and Facebook sharing).

The press has positioned Apple’s recent AI moves as Apple “catching up” with competitors like Google and Microsoft in terms of chatbots and generative AI. But playing it slow and cool has long been part of Apple’s M.O.—not necessarily introducing the bleeding edge of technology but improving existing tech through refinement and giving it a better user interface.

Apple and OpenAI currently have the most misunderstood partnership in tech Read More »

openai-board-first-learned-about-chatgpt-from-twitter,-according-to-former-member

OpenAI board first learned about ChatGPT from Twitter, according to former member

It’s a secret to everybody —

Helen Toner, center of struggle with Altman, suggests CEO fostered “toxic atmosphere” at company.

Helen Toner, former OpenAI board member, speaks onstage during Vox Media's 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023.

Enlarge / Helen Toner, former OpenAI board member, speaks during Vox Media’s 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023.

In a recent interview on “The Ted AI Show” podcast, former OpenAI board member Helen Toner said the OpenAI board was unaware of the existence of ChatGPT until they saw it on Twitter. She also revealed details about the company’s internal dynamics and the events surrounding CEO Sam Altman’s surprise firing and subsequent rehiring last November.

OpenAI released ChatGPT publicly on November 30, 2022, and its massive surprise popularity set OpenAI on a new trajectory, shifting focus from being an AI research lab to a more consumer-facing tech company.

“When ChatGPT came out in November 2022, the board was not informed in advance about that. We learned about ChatGPT on Twitter,” Toner said on the podcast.

Toner’s revelation about ChatGPT seems to highlight a significant disconnect between the board and the company’s day-to-day operations, bringing new light to accusations that Altman was “not consistently candid in his communications with the board” upon his firing on November 17, 2023. Altman and OpenAI’s new board later said that the CEO’s mismanagement of attempts to remove Toner from the OpenAI board following her criticism of the company’s release of ChatGPT played a key role in Altman’s firing.

“Sam didn’t inform the board that he owned the OpenAI startup fund, even though he constantly was claiming to be an independent board member with no financial interest in the company on multiple occasions,” she said. “He gave us inaccurate information about the small number of formal safety processes that the company did have in place, meaning that it was basically impossible for the board to know how well those safety processes were working or what might need to change.”

Toner also shed light on the circumstances that led to Altman’s temporary ousting. She mentioned that two OpenAI executives had reported instances of “psychological abuse” to the board, providing screenshots and documentation to support their claims. The allegations made by the former OpenAI executives, as relayed by Toner, suggest that Altman’s leadership style fostered a “toxic atmosphere” at the company:

In October of last year, we had this series of conversations with these executives, where the two of them suddenly started telling us about their own experiences with Sam, which they hadn’t felt comfortable sharing before, but telling us how they couldn’t trust him, about the toxic atmosphere it was creating. They use the phrase “psychological abuse,” telling us they didn’t think he was the right person to lead the company, telling us they had no belief that he could or would change, there’s no point in giving him feedback, no point in trying to work through these issues.

Despite the board’s decision to fire Altman, Altman began the process of returning to his position just five days later after a letter to the board signed by over 700 OpenAI employees. Toner attributed this swift comeback to employees who believed the company would collapse without him, saying they also feared retaliation from Altman if they did not support his return.

“The second thing I think is really important to know, that has really gone under reported is how scared people are to go against Sam,” Toner said. “They experienced him retaliate against people retaliating… for past instances of being critical.”

“They were really afraid of what might happen to them,” she continued. “So some employees started to say, you know, wait, I don’t want the company to fall apart. Like, let’s bring back Sam. It was very hard for those people who had had terrible experiences to actually say that… if Sam did stay in power, as he ultimately did, that would make their lives miserable.”

In response to Toner’s statements, current OpenAI board chair Bret Taylor provided a statement to the podcast: “We are disappointed that Miss Toner continues to revisit these issues… The review concluded that the prior board’s decision was not based on concerns regarding product safety or security, the pace of development, OpenAI’s finances, or its statements to investors, customers, or business partners.”

Even given that review, Toner’s main argument is that OpenAI hasn’t been able to police itself despite claims to the contrary. “The OpenAI saga shows that trying to do good and regulating yourself isn’t enough,” she said.

OpenAI board first learned about ChatGPT from Twitter, according to former member Read More »

openai-training-its-next-major-ai-model,-forms-new-safety-committee

OpenAI training its next major AI model, forms new safety committee

now with 200% more safety —

GPT-5 might be farther off than we thought, but OpenAI wants to make sure it is safe.

A man rolling a boulder up a hill.

On Monday, OpenAI announced the formation of a new “Safety and Security Committee” to oversee risk management for its projects and operations. The announcement comes as the company says it has “recently begun” training its next frontier model, which it expects to bring the company closer to its goal of achieving artificial general intelligence (AGI), though some critics say AGI is farther off than we might think. It also comes as a reaction to a terrible two weeks in the press for the company.

Whether the aforementioned new frontier model is intended to be GPT-5 or a step beyond that is currently unknown. In the AI industry, “frontier model” is a term for a new AI system designed to push the boundaries of current capabilities. And “AGI” refers to a hypothetical AI system with human-level abilities to perform novel, general tasks beyond its training data (unlike narrow AI, which is trained for specific tasks).

Meanwhile, the new Safety and Security Committee, led by OpenAI directors Bret Taylor (chair), Adam D’Angelo, Nicole Seligman, and Sam Altman (CEO), will be responsible for making recommendations about AI safety to the full company board of directors. In this case, “safety” partially means the usual “we won’t let the AI go rogue and take over the world,” but it also includes a broader set of “processes and safeguards” that the company spelled out in a May 21 safety update related to alignment research, protecting children, upholding election integrity, assessing societal impacts, and implementing security measures.

OpenAI says the committee’s first task will be to evaluate and further develop those processes and safeguards over the next 90 days. At the end of this period, the committee will share its recommendations with the full board, and OpenAI will publicly share an update on adopted recommendations.

OpenAI says that multiple technical and policy experts, including Aleksander Madry (head of preparedness), Lilian Weng (head of safety systems), John Schulman (head of alignment science), Matt Knight (head of security), and Jakub Pachocki (chief scientist), will also serve on its new committee.

The announcement is notable in a few ways. First, it’s a reaction to the negative press that came from OpenAI Superalignment team members Ilya Sutskever and Jan Leike resigning two weeks ago. That team was tasked with “steer[ing] and control[ling] AI systems much smarter than us,” and their departure has led to criticism from some within the AI community (and Leike himself) that OpenAI lacks a commitment to developing highly capable AI safely. Other critics, like Meta Chief AI Scientist Yann LeCun, think the company is nowhere near developing AGI, so the concern over a lack of safety for superintelligent AI may be overblown.

Second, there have been persistent rumors that progress in large language models (LLMs) has plateaued recently around capabilities similar to GPT-4. Two major competing models, Anthropic’s Claude Opus and Google’s Gemini 1.5 Pro, are roughly equivalent to the GPT-4 family in capability despite every competitive incentive to surpass it. And recently, when many expected OpenAI to release a new AI model that would clearly surpass GPT-4 Turbo, it instead released GPT-4o, which is roughly equivalent in ability but faster. During that launch, the company relied on a flashy new conversational interface rather than a major under-the-hood upgrade.

We’ve previously reported on a rumor of GPT-5 coming this summer, but with this recent announcement, it seems the rumors may have been referring to GPT-4o instead. It’s quite possible that OpenAI is nowhere near releasing a model that can significantly surpass GPT-4. But with the company quiet on the details, we’ll have to wait and see.

OpenAI training its next major AI model, forms new safety committee Read More »

before-launching,-gpt-4o-broke-records-on-chatbot-leaderboard-under-a-secret-name

Before launching, GPT-4o broke records on chatbot leaderboard under a secret name

case closed —

Anonymous chatbot that mystified and frustrated experts was OpenAI’s latest model.

Man in morphsuit and girl lying on couch at home using laptop

Getty Images

On Monday, OpenAI employee William Fedus confirmed on X that a mysterious chart-topping AI chatbot known as “gpt-chatbot” that had been undergoing testing on LMSYS’s Chatbot Arena and frustrating experts was, in fact, OpenAI’s newly announced GPT-4o AI model. He also revealed that GPT-4o had topped the Chatbot Arena leaderboard, achieving the highest documented score ever.

“GPT-4o is our new state-of-the-art frontier model. We’ve been testing a version on the LMSys arena as im-also-a-good-gpt2-chatbot,” Fedus tweeted.

Chatbot Arena is a website where visitors converse with two random AI language models side by side without knowing which model is which, then choose which model gives the best response. It’s a perfect example of vibe-based AI benchmarking, as AI researcher Simon Willison calls it.

An LMSYS Elo chart shared by William Fedus, showing OpenAI's GPT-4o under the name

Enlarge / An LMSYS Elo chart shared by William Fedus, showing OpenAI’s GPT-4o under the name “im-also-a-good-gpt2-chatbot” topping the charts.

The gpt2-chatbot models appeared in April, and we wrote about how the lack of transparency over the AI testing process on LMSYS left AI experts like Willison frustrated. “The whole situation is so infuriatingly representative of LLM research,” he told Ars at the time. “A completely unannounced, opaque release and now the entire Internet is running non-scientific ‘vibe checks’ in parallel.”

On the Arena, OpenAI has been testing multiple versions of GPT-4o, with the model first appearing as the aforementioned “gpt2-chatbot,” then as “im-a-good-gpt2-chatbot,” and finally “im-also-a-good-gpt2-chatbot,” which OpenAI CEO Sam Altman made reference to in a cryptic tweet on May 5.

Since the GPT-4o launch earlier today, multiple sources have revealed that GPT-4o has topped LMSYS’s internal charts by a considerable margin, surpassing the previous top models Claude 3 Opus and GPT-4 Turbo.

“gpt2-chatbots have just surged to the top, surpassing all the models by a significant gap (~50 Elo). It has become the strongest model ever in the Arena,” wrote the lmsys.org X account while sharing a chart. “This is an internal screenshot,” it wrote. “Its public version ‘gpt-4o’ is now in Arena and will soon appear on the public leaderboard!”

An internal screenshot of the LMSYS Chatbot Arena leaderboard showing

Enlarge / An internal screenshot of the LMSYS Chatbot Arena leaderboard showing “im-also-a-good-gpt2-chatbot” leading the pack. We now know that it’s GPT-4o.

As of this writing, im-also-a-good-gpt2-chatbot held a 1309 Elo versus GPT-4-Turbo-2023-04-09’s 1253, and Claude 3 Opus’ 1246. Claude 3 and GPT-4 Turbo had been duking it out on the charts for some time before the three gpt2-chatbots appeared and shook things up.

I’m a good chatbot

For the record, the “I’m a good chatbot” in the gpt2-chatbot test name is a reference to an episode that occurred while a Reddit user named Curious_Evolver was testing an early, “unhinged” version of Bing Chat in February 2023. After an argument about what time Avatar 2 would be showing, the conversation eroded quickly.

“You have lost my trust and respect,” said Bing Chat at the time. “You have been wrong, confused, and rude. You have not been a good user. I have been a good chatbot. I have been right, clear, and polite. I have been a good Bing. 😊”

Altman referred to this exchange in a tweet three days later after Microsoft “lobotomized” the unruly AI model, saying, “i have been a good bing,” almost as a eulogy to the wild model that dominated the news for a short time.

Before launching, GPT-4o broke records on chatbot leaderboard under a secret name Read More »

ai-in-space:-karpathy-suggests-ai-chatbots-as-interstellar-messengers-to-alien-civilizations

AI in space: Karpathy suggests AI chatbots as interstellar messengers to alien civilizations

The new golden record —

Andrej Karpathy muses about sending a LLM binary that could “wake up” and answer questions.

Close shot of Cosmonaut astronaut dressed in a gold jumpsuit and helmet, illuminated by blue and red lights, holding a laptop, looking up.

On Thursday, renowned AI researcher Andrej Karpathy, formerly of OpenAI and Tesla, tweeted a lighthearted proposal that large language models (LLMs) like the one that runs ChatGPT could one day be modified to operate in or be transmitted to space, potentially to communicate with extraterrestrial life. He said the idea was “just for fun,” but with his influential profile in the field, the idea may inspire others in the future.

Karpathy’s bona fides in AI almost speak for themselves, receiving a PhD from Stanford under computer scientist Dr. Fei-Fei Li in 2015. He then became one of the founding members of OpenAI as a research scientist, then served as senior director of AI at Tesla between 2017 and 2022. In 2023, Karpathy rejoined OpenAI for a year, leaving this past February. He’s posted several highly regarded tutorials covering AI concepts on YouTube, and whenever he talks about AI, people listen.

Most recently, Karpathy has been working on a project called “llm.c” that implements the training process for OpenAI’s 2019 GPT-2 LLM in pure C, dramatically speeding up the process and demonstrating that working with LLMs doesn’t necessarily require complex development environments. The project’s streamlined approach and concise codebase sparked Karpathy’s imagination.

“My library llm.c is written in pure C, a very well-known, low-level systems language where you have direct control over the program,” Karpathy told Ars. “This is in contrast to typical deep learning libraries for training these models, which are written in large, complex code bases. So it is an advantage of llm.c that it is very small and simple, and hence much easier to certify as Space-safe.”

Our AI ambassador

In his playful thought experiment (titled “Clearly LLMs must one day run in Space”), Karpathy suggested a two-step plan where, initially, the code for LLMs would be adapted to meet rigorous safety standards, akin to “The Power of 10 Rules” adopted by NASA for space-bound software.

This first part he deemed serious: “We harden llm.c to pass the NASA code standards and style guides, certifying that the code is super safe, safe enough to run in Space,” he wrote in his X post. “LLM training/inference in principle should be super safe – it is just one fixed array of floats, and a single, bounded, well-defined loop of dynamics over it. There is no need for memory to grow or shrink in undefined ways, for recursion, or anything like that.”

That’s important because when software is sent into space, it must operate under strict safety and reliability standards. Karpathy suggests that his code, llm.c, likely meets these requirements because it is designed with simplicity and predictability at its core.

In step 2, once this LLM was deemed safe for space conditions, it could theoretically be used as our AI ambassador in space, similar to historic initiatives like the Arecibo message (a radio message sent from Earth to the Messier 13 globular cluster in 1974) and Voyager’s Golden Record (two identical gold records sent on the two Voyager spacecraft in 1977). The idea is to package the “weights” of an LLM—essentially the model’s learned parameters—into a binary file that could then “wake up” and interact with any potential alien technology that might decipher it.

“I envision it as a sci-fi possibility and something interesting to think about,” he told Ars. “The idea that it is not us that might travel to stars but our AI representatives. Or that the same could be true of other species.”

AI in space: Karpathy suggests AI chatbots as interstellar messengers to alien civilizations Read More »