launch

spacex-launches-europe’s-hera-asteroid-mission-ahead-of-hurricane-milton

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton


The launch of another important mission, NASA’s Europa Clipper, is on hold due to Hurricane Milton.

The European Space Agency’s Hera spacecraft flies away from the Falcon 9 rocket’s upper stage a little more than an hour after liftoff Monday. Credit: SpaceX

Two years ago, a NASA spacecraft smashed into a small asteroid millions of miles from Earth to test a technique that could one day prove useful to deflect an object off a collision course with Earth. The European Space Agency launched a follow-up mission Monday to go back to the crash site and see the damage done.

The nearly $400 million (363 million euro) Hera mission, named for the Greek goddess of marriage, will investigate the aftermath of a cosmic collision between NASA’s DART spacecraft and the skyscraper-size asteroid Dimorphos on September 26, 2022. NASA’s Double Asteroid Redirection Test mission was the first planetary defense experiment, and it worked, successfully nudging Dimorphos off its regular orbit around a larger companion asteroid named Didymos.

But NASA had to sacrifice the DART spacecraft in the deflection experiment. Its destruction meant there were no detailed images of the condition of the target asteroid after the impact. A small Italian CubeSat deployed by DART as it approached Dimorphos captured fuzzy long-range views of the collision, but Hera will perform a comprehensive survey when it arrives in late 2026.

“We are going to have a surprise to see what Dimorphos looks like, which is, first, scientifically exciting, but also important because if we want to validate the technique and validate the model that can reproduce the impact, we need to know the final outcome,” said Patrick Michel, principal investigator on the Hera mission from Côte d’Azur Observatory in Nice, France. “And we don’t have it. With Hera, it’s like a detective going back to the crime scene and telling us what really happened.”

Last ride before the storm

The Hera spacecraft, weighing in at 2,442 pounds (1,108 kilograms), lifted off on top of a SpaceX Falcon 9 rocket at 10: 52 am EDT (14: 52 UTC) Monday from Cape Canaveral Space Force Station, Florida.

Officials weren’t sure the weather conditions at Cape Canaveral would permit a launch Monday, with widespread rain showers and a blanket of cloud cover hanging over Florida’s Space Coast. But the conditions were just good enough to be acceptable for a rocket launch, and the Falcon 9 lit its nine kerosene-fueled engines to climb away from pad 40 after a smooth countdown.

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission.

Credit: SpaceX

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission. Credit: SpaceX

This was probably the final opportunity to launch Hera before the spaceport shutters in advance of Hurricane Milton, a dangerous Category 5 storm taking aim at the west coast of Florida. If the mission didn’t launch Monday, SpaceX was prepared to move the Falcon 9 rocket and the Hera spacecraft back inside a hangar for safekeeping until the storm passes.

Meanwhile, at NASA’s Kennedy Space Center a few miles away, SpaceX is securing a Falcon Heavy rocket with the Europa Clipper spacecraft to ride out Hurricane Milton inside a hangar at Launch Complex 39A. Europa Clipper is a $5.2 billion flagship mission to explore Jupiter’s most enigmatic icy moon, and it was supposed to launch Thursday, the same day Hurricane Milton will potentially move over Central Florida.

NASA announced Sunday that it is postponing Europa Clipper’s launch until after the storm.

“The safety of launch team personnel is our highest priority, and all precautions will be taken to protect the Europa Clipper spacecraft,” said Tim Dunn, senior launch director at NASA’s Launch Services Program. “Once we have the ‘all-clear’ followed by facility assessment and any recovery actions, we will determine the next launch opportunity for this NASA flagship mission.”

Europa Clipper must launch by November 6 in order to reach Jupiter and its moon Europa in 2030. ESA’s Hera mission had a similarly tight window to get off the ground in October and arrive at asteroids Didymos and Dimorphos in December 2026.

Returning to flight

The Falcon 9 did its job Monday, accelerating the Hera spacecraft to a blistering speed of 26,745 mph (43,042 km/hr) with successive burns by its first stage booster and upper stage engine. This was the highest-speed payload injection ever achieved by SpaceX.

SpaceX did not attempt to recover the Falcon 9’s reusable booster on Monday’s flight because Hera needed all of the rocket’s oomph to gain enough speed to escape the pull of Earth’s gravity.

“Good launch, good orbit, and good payload deploy,” wrote Kiko Dontchev, SpaceX’s vice president of launch, on X.

This was the first Falcon 9 launch in nine days—an unusually long gap between SpaceX missions—after the rocket’s upper stage misfired during a maneuver to steer itself out of orbit following an otherwise successful launch September 28 with a two-man crew heading for the International Space Station.

The upper stage engine apparently “over-burned,” and the rocket debris fell into the atmosphere short of its expected reentry corridor in the Pacific Ocean, sources said. The Federal Aviation Administration grounded the Falcon 9 rocket while SpaceX investigates the malfunction, but the FAA granted approval for SpaceX to launch the Hera mission because its trajectory would carry the rocket away from Earth, rather than back into the atmosphere for reentry.

“The FAA has determined that the absence of a second stage reentry for this mission adequately mitigates the primary risk to the public in the event of a reoccurrence of the mishap experienced with the Crew-9 mission,” the FAA said in a statement.

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida.

Credit: SpaceX

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida. Credit: SpaceX

This was the third time the FAA has grounded SpaceX’s Falcon 9 rocket fleet in less than three months, following another upper stage failure in July that caused the destruction of 20 Starlink Internet satellites and the crash-landing of a Falcon 9 booster on an offshore drone ship in August. Federal regulators are responsible for ensuring commercial rocket launches don’t endanger the public.

These were the first major anomalies on any Falcon 9 launch since 2021.

It’s not clear when the FAA will clear SpaceX to resume launching other Falcon 9 missions. However, the launch of the Europa Clipper mission on a Falcon Heavy rocket, which uses essentially the same upper stage as a Falcon 9, is not licensed by the FAA because it is managed by NASA, another government agency. NASA will have final authority on whether to give the green light for the launch of Europa Clipper.

Surveying the damage

ESA’s Hera spacecraft is on course for a flyby of Mars next March to take advantage of the red planet’s gravity to slingshot itself on a trajectory to intercept its twin target asteroids. Near Mars, Hera will zoom relatively close to the planet’s asteroid-like moon, Deimos, to obtain rare closeups.

Then, Hera will approach Didymos and Dimorphos a little more than two years from now, maneuvering around the binary asteroid system at a range of distances, eventually moving as close as about a half-mile (1 kilometer) away.

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022.

Credit: ASI/NASA

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA

Dimorphos orbits Didymos once every 11 hours and 23 minutes, roughly 32 minutes shorter than the orbital period before DART’s impact in 2022. This change in orbit proved the effectiveness of a kinetic impactor in deflecting an asteroid that threatens Earth.

Dimorphos, the smaller of the two asteroids, has a diameter of around 500 feet (150 meters), while Didymos measures approximately a half-mile (780 meters) wide. Neither asteroid poses a risk to Earth, so NASA chose them as the objective for DART.

The Hubble Space Telescope spotted a debris field trailing the binary asteroid system after DART’s impact. Astronomers identified at least 37 boulders drifting away from the asteroids, material ejected when the DART spacecraft slammed into Dimorphos at a velocity of 14,000 mph (22,500 kmh).

Scientists will use Hera, with its suite of cameras and instruments, to study how the strike by DART changed the asteroid Dimorphos. Did the impact leave a crater, or did it reshape the entire asteroid? There are “tentative hints” that the asteroid’s shape changed after the collision, according to Michael Kueppers, Hera’s project scientist at ESA.

“If this is the case, it would also mean that the cohesion of Dimorphos is extremely low; that indeed, even an object the size of Dimorphos would be held together by its weight, by its gravity, and not by cohesion,” Kueppers said. “So it really would be a rubble pile.”

Hera will also measure the mass of Dimorphos, something DART was unable to do. “That is important to measure the efficiency of the impact… which was the momentum that was transferred from the impacting satellite to the asteroid,” Kueppers said.

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision.

Credit: NASA, ESA, D. Jewitt (UCLA)

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. Credit: NASA, ESA, D. Jewitt (UCLA)

The central goal of Hera is to fill the gaps in knowledge about Didymos and Dimorphos. Precise measurements of DART’s momentum, coupled with a better understanding of the interior structure of the asteroids, will allow future mission planners to know how best to deflect a hazardous object threatening Earth.

“The third part is to generally investigate the two asteroids to know their physical properties, their interior properties, their strength, essentially to be able to extrapolate or to scale the outcome of DART to another impact should we really need it one day,” Kueppers said.

Hera will release two briefcase-size CubeSats, named Juventas and Milani, to work in concert with ESA’s mothership. Juventas carries a compact radar to probe the internal structure of the smaller asteroid and will eventually attempt a landing on Dimorphos. Milani will study the mineral composition of individual boulders around DART’s impact site.

“This is the first time that we send a spacecraft to a small body, which is actually a multi-satellite system, with one main spacecraft and two CubeSats doing closer proximity operations,” Michel said. “This has never been done.”

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership.

Credit: ESA-Science Office

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership. Credit: ESA-Science Office

One source of uncertainty, and perhaps worry, about the environment around Didymos and Dimorphos is the status of the debris field observed by Hubble a few months after DART’s impact. But this is not likely to be a problem, according to Kueppers.

“I’m not really worried about potential boulders at Didymos,” he said, recalling the relative ease with which ESA’s Rosetta spacecraft navigated around an active comet from 2014 through 2016.

Ignacio Tanco, ESA’s flight director for Hera, doesn’t share Kuepper’s optimism.

“We didn’t hit the comet with a hammer,” said Tanco, who is responsible for keeping the Hera spacecraft safe. “The debris question for me is actually a source of… I wouldn’t say concern, but certainly precaution. It’s something that we’ll need to approach carefully once we get there.”

“That’s the difference between an engineer and a scientist,” Kuepper joked.

Scientists originally wanted Hera to be in the vicinity of the Didymos binary asteroid system before DART’s arrival, allowing it to directly observe the impact and its fallout. But ESA’s member states did not approve funding for the Hera mission in time, and the space agency only signed the contract to build the Hera spacecraft in 2020.

ESA first studied a mission like DART and Hera more than 20 years ago, when scientists proposed a mission called Don Quijote to get an asteroid deflection. But other missions took priority in Europe’s space program. Now, Hera is on course to write the final chapter of the story of humanity’s first planetary defense test.

“This is our contribution of ESA to humanity to help us in the future protect our planet,” said Josef Aschbacher, ESA’s director general.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton Read More »

ula’s-second-vulcan-rocket-lost-part-of-its-booster-and-kept-going

ULA’s second Vulcan rocket lost part of its booster and kept going


The US Space Force says this test flight was critical for certifying Vulcan for military missions.

United Launch Alliance’s Vulcan rocket, under contract for dozens of flights for the US military and Amazon’s Kuiper broadband network, lifted off from Florida on its second test flight Friday, suffered an anomaly with one of its strap-on boosters, and still achieved a successful mission, the company said in a statement.

This test flight, known as Cert-2, is the second certification mission for the new Vulcan rocket, a milestone that paves the way for the Space Force to clear ULA’s new rocket to begin launching national security satellites in the coming months.

While ULA said the Vulcan rocket continued to hit its marks during the climb into orbit Friday, engineers are investigating what happened with one of its solid rocket boosters shortly after liftoff.

After a last-minute aborted countdown earlier in the morning, the 202-foot-tall (61.6-meter) Vulcan rocket lit its twin methane-fueled BE-4 engines and two side-mounted solid rocket boosters to climb away from Cape Canaveral Space Force Station, Florida, at 7: 25 am EDT (11: 25 UTC) Friday.

A little tilt

As the rocket arced east from Cape Canaveral, a shower of sparks suddenly appeared at the base of the Vulcan rocket around 37 seconds into the mission. The exhaust plume from one of the strap-on boosters, made by Northrop Grumman, changed significantly, and the rocket slightly tilted on its axis before the guidance system and main engines made a steering correction.

Videos from the launch show the booster’s nozzle, the bell-shaped exhaust exit cone at the bottom of the booster, fall away from the rocket.

“It looks dramatic, like all things on a rocket,” Bruno wrote on X. “But it’s just the release of the nozzle. No explosions occurred.”

During the ascent of the Vulcan rocket on the #Cert2 mission, there appeared to be an issue with the solid rocket booster on the right side of the vehicle as seen from the KSC Press Site. However, the Centaur was able to reach orbit.https://t.co/3iwWLVWZHp

📹: @ABernNYC pic.twitter.com/5h06ffNMXr

— Spaceflight Now (@SpaceflightNow) October 4, 2024

The Federal Aviation Administration, which licenses commercial space launches in the United States, said in a statement that it assessed the booster anomaly and “determined no investigation is warranted at this time.” The FAA is not responsible for regulating launch vehicle anomalies unless they impact public safety.

The Vulcan rocket comes in several configurations, with zero, two, four, or six solid-fueled boosters clustered around the liquid-fueled core stage. ULA can tailor the configuration based on the parameters of each mission, such as payload mass and target orbit.

The boosters, which Northrop Grumman calls graphite epoxy motors, are 63 inches (1.6 meters) in diameter and 72 feet (22 meters) long. Their nozzles are made of a composite heat-resistant carbon-phenolic material.

Bruno added that the rest of the damaged booster’s composite casing held up fine during its roughly 90-second burn, but the anomaly caused “reduced, asymmetric thrust” that the rocket compensated for during the rest of its ascent into space.

The Federal Aviation Administration, which regulates commercial space launches, is not immediately requiring an investigation into the booster anomaly. The FAA said it is “assessing the operation and will issue an updated statement if the agency determines an investigation is warranted.”

Remarkably, the Vulcan rocket soldiered on and jettisoned both strap-on boosters to fall into the Atlantic Ocean. They’re not designed for recovery, so ULA and Northrop Grumman engineers will have to piece together what happened from imagery and performance data beamed down from the rocket in flight.

The BE-4 main engines, supplied by Jeff Bezos’ space company Blue Origin, appeared to work flawlessly for the first five minutes of the flight. The core stage shut down its engines and separated from Vulcan’s Centaur upper stage, which ignited two Aerojet Rocketdyne RL10 engines to propel the rocket into orbit.

The second Vulcan rocket lifts off from Cape Canaveral Space Force Station, Florida, powered by two methane-fueled BE-4 engines and two solid rocket boosters.

Credit: United Launch Alliance

The second Vulcan rocket lifts off from Cape Canaveral Space Force Station, Florida, powered by two methane-fueled BE-4 engines and two solid rocket boosters. Credit: United Launch Alliance

Live data displayed on ULA’s webcast of the launch suggested the RL10 engines fired for approximately 20 seconds longer than planned, apparently to compensate for the lower thrust from the damaged booster during the first phase of the flight. The Centaur upper stage completed a second burn about a half-hour into the mission.

The rocket did not carry a real satellite. Earlier this year, ULA decided to launch a dummy payload to simulate the mass of a spacecraft, when it became clear the original payload for Vulcan’s second flight—Sierra Space’s first Dream Chaser spaceplane—would not be ready to fly this fall. ULA says it self-funded most of the cost of the Cert-2 test flight, which Bruno suggested was somewhere below $100 million.

Bullseye insertion

“Orbital insertion was perfect,” Bruno wrote on X.

The Centaur engines were supposed to fire a third time later Friday to send the rocket on a trajectory to escape Earth orbit and head into the Solar System. ULA also planned to perform experiments with the Centaur upper stage to demonstrate technologies and capabilities for longer-duration missions that could eventually last days, weeks, or months. The company did not provide an update on the results of these experiments.

Friday morning’s launch follows the debut test flight of the Vulcan rocket on January 8, which sent a commercial lunar lander from Astrobotic on a trajectory toward the Moon. The launch in January was nearly perfect.

ULA is a 50-50 joint venture between Boeing and Lockheed Martin, which merged their rocket divisions to form a single company in 2006. SpaceX, with its Falcon 9 and Falcon Heavy rockets, is ULA’s main competitor in the market for launching large US military satellites into orbit.

In 2020, the Pentagon awarded ULA and SpaceX multibillion-dollar “Phase 2” contracts to share responsibilities for launching dozens of national security space missions through 2027. Defense officials selected ULA’s Vulcan rocket to launch 25 national security missions, the majority of the launches up for competition. The rest went to SpaceX’s Falcon 9 and Falcon Heavy, which started delivering on its Phase 2 contract in January 2023.

Later this year, the Space Force is expected to select up to three companies—almost certainly ULA, SpaceX, and perhaps Blue Origin with its soon-to-debut New Glenn rocket—in a fresh competition to be eligible for contracts to launch the military’s largest spacecraft through 2029.

The Space Force required ULA to complete two successful Vulcan test flights before clearing the new rocket for launching military satellites. Despite the booster malfunction, ULA officials clearly believe the Vulcan rocket did enough Friday for the Space Force to certify it.

“The success of Vulcan’s second certification flight heralds a new age of forward-looking technology committed to meeting the ever-growing requirements of space launch and supporting our nation’s assured access to space,” Bruno said in a statement. “We had an observation on one of our solid rocket boosters (SRBs) that we are reviewing, but we are overall pleased with the rocket’s performance and had a bullseye insertion.”

A closer view of the Vulcan rocket’s BE-4 main engines and twin solid-fueled boosters.

Credit: United Launch Alliance

A closer view of the Vulcan rocket’s BE-4 main engines and twin solid-fueled boosters. Credit: United Launch Alliance

In a press release after Friday’s launch, the Space Force hailed the test flight as a “certification milestone.”

“This is a significant achievement for both ULA and an important milestone for the nation’s strategic space lift capability,” said Brig. Gen. Kristin Panzenhagen, Space Systems Command’s program executive officer for assured access to space. “The Space Force’s partnership with launch companies, such as ULA, are absolutely critical in deploying on-orbit capabilities that protect our national interests.

“We are already starting to review the performance data from this launch, and we look forward to Vulcan meeting the certification requirements for a range of national security space missions,” Panzenhagen said in a statement.

The Space Force is eager for Vulcan to become operational. Some of the military’s most critical reconnaissance, communications, and missile warning satellites are slated to fly on Vulcan rockets.

Ramping up

Going into Friday’s test flight, ULA and the Space Force hoped to launch one or two more Vulcan rockets by the end of the year, both with US Space Force payloads. The timing of the next Vulcan launch, assuming the Space Force certifies the new rocket, will likely hinge on the outcome of the investigation into the booster anomaly.

ULA has already transported all major components of the next Vulcan rocket from its factory in Alabama to Cape Canaveral for final launch preparations. The company has a backlog of 69 Vulcan flights, counting missions for the Space Force, the National Reconnaissance Office, Amazon’s Kuiper network, and Sierra Space’s Dream Chaser spaceplane to resupply the International Space Station.

In a prelaunch briefing with reporters, Bruno said ULA aims to launch up to 20 times next year. Roughly half of that number will be Vulcan flights, and the rest will be Atlas V rockets, which ULA is retiring in favor of Vulcan.

There are 15 Atlas V rockets left to fly, primarily for Amazon and Boeing’s Starliner crew capsule. The nozzle failure Friday may also affect the schedule for Atlas V launches because the soon-to-retire rocket uses a similar booster design from Northrop Grumman.

ULA eventually wants to launch up to 25 Vulcan rockets per year from its launch pads at Cape Canaveral and at Vandenberg Space Force Base, California. The launch provider is outfitting a second assembly building in Florida to stack Vulcan rockets, a capability that will shorten the time between liftoffs. ULA is modifying its Atlas V launch pad in California to support Vulcan flights there next year.

ULA announced the Vulcan rocket in 2015 to replace the Atlas V and Delta IV rockets, which had stellar success records but were not cost-competitive with SpaceX’s partially reusable Falcon 9. The Atlas V also uses a Russian main engine, a situation that became politically untenable after Russia’s annexation of Crimea in 2014, and more so after the Russian invasion of Ukraine in 2022. The final Russian engines for the Atlas V arrived in the United States in 2021.

The Vulcan rocket is somewhat less expensive than the Atlas V, and significantly cheaper than the Delta IV, but still more costly than SpaceX’s Falcon 9. There is a closer price parity between Vulcan and SpaceX’s Falcon Heavy rocket.

Bruno hinted at the cost of developing the rocket in his roundtable discussion with reporters earlier this week.

“Developing a rocket, and then the infrastructure to develop a new space launch vehicle, the rule of thumb is it costs you somewhere between $5 billion and $7 billion,” Bruno said. “Vulcan is not outside the rule of thumb.”

Updated at 5: 15 pm EDT (21: 15 UTC) with new FAA statement.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

ULA’s second Vulcan rocket lost part of its booster and kept going Read More »

ula-hasn’t-given-up-on-developing-a-long-lived-cryogenic-space-tug

ULA hasn’t given up on developing a long-lived cryogenic space tug


On Friday’s launch, United Launch Alliance will test the limits of its Centaur upper stage.

United Launch Alliance’s second Vulcan rocket underwent a countdown dress rehearsal Tuesday. Credit: United Launch Alliance

The second flight of United Launch Alliance’s Vulcan rocket, planned for Friday morning, has a primary goal of validating the launcher’s reliability for delivering critical US military satellites to orbit.

Tory Bruno, ULA’s chief executive, told reporters Wednesday that he is “supremely confident” the Vulcan rocket will succeed in accomplishing that objective. The Vulcan’s second test flight, known as Cert-2, follows a near-flawless debut launch of ULA’s new rocket on January 8.

“As I come up on Cert-2, I’m pretty darn confident I’m going to have a good day on Friday, knock on wood,” Bruno said. “These are very powerful, complicated machines.”

The Vulcan launcher, a replacement for ULA’s Atlas V and Delta IV rockets, is on contract to haul the majority of the US military’s most expensive national security satellites into orbit over the next several years. The Space Force is eager to certify Vulcan to launch these payloads, but military officials want to see two successful test flights before committing one of its satellites to flying on the new rocket.

If Friday’s test flight goes well, ULA is on track to launch at least one—and perhaps two—operational missions for the Space Force by the end of this year. The Space Force has already booked 25 launches on ULA’s Vulcan rocket for military payloads and spy satellites for the National Reconnaissance Office. Including the launch Friday, ULA has 70 Vulcan rockets in its backlog, mostly for the Space Force, the NRO, and Amazon’s Kuiper satellite broadband network.

The Vulcan rocket is powered by two methane-fueled BE-4 engines produced by Jeff Bezos’ space company Blue Origin, and ULA can mount zero, two, four, or six strap-on solid rocket boosters from Northrop Grumman around the Vulcan’s first stage to propel heavier payloads to space. The rocket’s Centaur V upper stage is fitted with a pair of hydrogen-burning RL10 engines from Aerojet Rocketdyne.

The second Vulcan rocket will fly in the same configuration as the first launch earlier this year, with two strap-on solid-fueled boosters. The only noticeable modification to the rocket is the addition of some spray-on foam insulation around the outside of the first stage methane tank, which will keep the cryogenic fuel at the proper temperature as Vulcan encounters aerodynamic heating on its ascent through the atmosphere.

“This will give us just over one second more usable propellant,” Bruno wrote on X.

There is one more change from Vulcan’s first launch, which boosted a commercial lunar lander for Astrobotic on a trajectory toward the Moon. This time, there are no real spacecraft on the Vulcan rocket. Instead, ULA mounted a dummy payload to the Centaur V upper stage to simulate the mass of a functioning satellite.

ULA originally planned to launch Sierra Space’s first Dream Chaser spaceplane on the second Vulcan rocket. But the Dream Chaser won’t be ready to fly its first mission to resupply the International Space Station until next year. Under pressure from the Pentagon, ULA decided to move ahead with the second Vulcan launch without a payload at the company’s own expense, which Bruno tallied in the “high tens of millions of dollars.”

Heliocentricity

The test flight will begin with liftoff from Cape Canaveral Space Force Station, Florida, during a three-hour launch window opening at 6 am EDT (10: 00 UTC). The 202-foot-tall (61.6-meter) Vulcan rocket will head east over the Atlantic Ocean, shedding its boosters, first stage, and payload fairing in the first few minutes of flight.

The Centaur upper stage will fire its RL10 engines two times, completing the primary mission within about 35 minutes of launch. The rocket will then continue on for a series of technical demonstrations before ending up on an Earth escape trajectory into a heliocentric orbit around the Sun.

“We have a number of experiments that we’re conducting that are really technology demonstrations and measurements that are associated with our high-performance, longer-duration version of Centaur V that we’ll be introducing in the future,” Bruno said. “And these will help us go a little bit faster on that development. And, of course, because we don’t have an active spacecraft as a payload, we also have more instrumentation that we’re able to use for just characterizing the vehicle.”

The Centaur V upper stage for the Vulcan rocket.

The Centaur V upper stage for the Vulcan rocket. Credit: United Launch Alliance

ULA engineers have worked on the design of a long-lived upper stage for more than a decade. Their vision was to develop an upper stage fed by super-efficient cryogenic liquid hydrogen and liquid oxygen propellants that could generate its own power and operate in space for days, weeks, or longer rather than an upper stage’s usual endurance limit of several hours. This would allow the rocket to not only deliver satellites into bespoke high-altitude orbits but also continue on to release more payloads at different altitudes or provide longer-term propulsion in support of other missions.

The concept was called the Advanced Cryogenic Evolved Stage (ACES). ULA’s corporate owners, Boeing and Lockheed Martin, never authorized the full development of ACES, and the company said in 2020 that it was no longer pursuing the ACES concept.

The Centaur V upper stage currently used on the Vulcan rocket is a larger version of the thin-walled, pressure-stabilized Centaur upper stage that has been flying since the 1960s. Bruno said the Centaur V design, as it is today, offers as much as 12 hours of operating life in space. This is longer than any other existing rocket using cryogenic propellants, which can boil off over time.

ULA’s chief executive still harbors an ambition for regaining some of the same capabilities promised by ACES.

“What we are looking to do is to extend that by orders of magnitude,” Bruno said. “And what that would allow us to do is have a in-space transportation capability for in-space mobility and servicing and things like that.”

Space Force leaders have voiced a desire for future spacecraft to freely maneuver between different orbits, a concept the military calls “dynamic space operations.” This would untether spacecraft operations from fuel limitations and eventually require the development of in-orbit refueling, propellant depots, or novel propulsion technologies.

No one has tried to store large amounts of super-cold propellants in space for weeks or longer. Accomplishing this is a non-trivial thermal problem, requiring insulation to keep heat from the Sun from reaching the liquid cryogenic propellant, stored at temperatures of several hundred degrees below zero.

Bruno hesitated to share details of the experiments ULA plans for the Centaur V upper stage on Friday’s test flight, citing proprietary concerns. He said the experiments will confirm analytical models about how the upper stage performs in space.

“Some of these are devices, some of these are maneuvers because maneuvers make a difference, and some are related to performance in a way,” he said. “In some cases, those maneuvers are helping us with the thermal load that tries to come in and boil off the propellants.”

Eventually, ULA would like to eliminate hydrazine attitude control fuel and battery power from the Centaur V upper stage, Bruno said Wednesday. This sounds a lot like what ULA wanted to do with ACES, which would have used an internal combustion engine called Integrated Vehicle Fluids (IVF) to recycle gasified waste propellants to pressurize its propellant tanks, generate electrical power, and feed thrusters for attitude control. This would mean the upper stage wouldn’t need to rely on hydrazine, helium, or batteries.

ULA hasn’t talked much about the IVF system in recent years, but Bruno said the company is still developing it. “It’s part of all of this, but that’s all I will say, or I’ll start revealing what all the gadgets are.”

A comparison between ULA’s legacy Centaur upper stage and the new Centaur V.

A comparison between ULA’s legacy Centaur upper stage and the new Centaur V. Credit: United Launch Alliance

George Sowers, former vice president and chief scientist at ULA, was one of the company’s main advocates for extending the lifetime of upper stages and developing technologies for refueling and propellant depot. He retired from ULA in 2017 and is now a professor at the Colorado School of Mines and an independent aerospace industry consultant.

In an interview with Ars earlier this year, Sowers said ULA solved many of the problems with keeping cryogenic propellants at the right temperature in space.

“We had a lot of data on boil-off, just from flying Centaurs all the way to geosynchronous orbit, which doesn’t involve weeks, but it involves maybe half a day or so, which is plenty of time to get all the temperatures to stabilize at deep space levels,” Sowers said. “So you have to understand the heat transfer very well. Good models are very important.”

ULA experimented with different types of insulation and vapor cooling, which involves taking cold gas that boiled off of cryogenic fuel and blowing it on heat penetration points into the tanks.

“There are tricks to managing boil-off,” he said. “One of the tricks is that you never want to boil oxygen. You always want to boil hydrogen. So you size your propellant tanks and your propellant loads, assuming you’re going to have that extra hydrogen boil-off. Then what you can do is use the hydrogen to keep the oxygen cold to keep it from boiling.

“The amount of heat that you can reject by boiling off one kilogram of hydrogen is about five times what you would reject by boiling off one kilogram of oxygen. So those are some of the thermodynamic tricks,” Sowers said. “The way ULA accomplished that is by having a common bulkhead, so the hydrogen tank and the oxygen tank are in thermal contact. So hydrogen keeps the oxygen cold.”

ULA’s experiments showed it could get the hydrogen boil-off rate down to about 10 percent per year, based on thermodynamic models calibrated by data from flying older versions of the Centaur upper stage on Atlas V rockets, according to Sowers.

“In my mind, that kind of cemented the idea that distribution depots and things like that are very well in hand without having to have exotic cryocoolers, which tend to use a lot of power,” Sowers said. “It’s about efficiency. If you can do it passively, you don’t have to expend energy on cryocoolers.”

“We’re going to go to days, and then we’re going to go to weeks, and then we think it’s possible to take us to months,” Bruno said. “That’s a game changer.”

However, ULA’s corporate owners haven’t yet fully bought into this vision. Bruno said the Vulcan rocket and its supporting manufacturing and launch infrastructure cost between $5 billion and $7 billion to develop. ULA also plans to eventually recover and reuse BE-4 main engines from the Vulcan rocket, but that is still at least several years away.

But ULA is reportedly up for sale, and a well-capitalized buyer might find the company’s long-duration cryogenic upper stage more attractive and worth the investment.

“There’s a whole lot of missions that enables,” Bruno said. “So that’s a big step in capability, both for the United States and also commercially.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

ULA hasn’t given up on developing a long-lived cryogenic space tug Read More »

spacex-launches-mission-to-bring-starliner-astronauts-back-to-earth

SpaceX launches mission to bring Starliner astronauts back to Earth

Ch-ch-changes —

SpaceX is bringing back propulsive landings with its Dragon capsule, but only in emergencies.

Updated

SpaceX's Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

Enlarge / SpaceX’s Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

NASA/Keegan Barber

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov lifted off Saturday from Florida’s Space Coast aboard a SpaceX Dragon spacecraft, heading for a five-month expedition on the International Space Station.

The two-man crew launched on top of SpaceX’s Falcon 9 rocket at 1: 17 pm EDT (17: 17 UTC), taking an advantage of a break in stormy weather to begin a five-month expedition in space. Nine kerosene-fueled Merlin engines powered the first stage of the flight on a trajectory northeast from Cape Canaveral Space Force Station, then the booster detached and returned to landing at Cape Canaveral as the Falcon 9’s upper stage accelerated SpaceX’s Crew Dragon Freedom spacecraft into orbit.

“It was a sweet ride,” Hague said after arriving in space. With a seemingly flawless launch, Hague and Gorbunov are on track to arrive at the space station around 5: 30 pm EDT (2130 UTC) Sunday.

Empty seats

This is SpaceX’s 15th crew mission since 2020, and SpaceX’s 10th astronaut launch for NASA, but Saturday’s launch was unusual in a couple of ways.

“All of our missions have unique challenges and this one, I think, will be memorable for a lot of us,” said Ken Bowersox, NASA’s associate administrator for space operations.

First, only two people rode into orbit on SpaceX’s Crew Dragon spacecraft, rather than the usual complement of four astronauts. This mission, known as Crew-9, originally included Hague, Gorbunov, commander Zena Cardman, and NASA astronaut Stephanie Wilson.

But the troubled test flight of Boeing’s Starliner spacecraft threw a wrench into NASA’s plans. The Starliner mission launched in June with NASA astronauts Butch Wilmore and Suni Williams. Boeing’s spacecraft reached the space station, but thruster failures and helium leaks plagued the mission, and NASA officials decided last month it was too risky to being the crew back to Earth on Starliner.

NASA selected SpaceX and Boeing for multibillion-dollar commercial crew contracts in 2014, with each company responsible for developing human-rated spaceships to ferry astronauts to and from the International Space Station. SpaceX flew astronauts for the first time in 2020, and Boeing reached the same milestone with the test flight that launched in June.

Ultimately, the Starliner spacecraft safely returned to Earth on September 6 with a successful landing in New Mexico. But it left Wilmore and Williams behind on the space station with the lab’s long-term crew of seven astronauts and cosmonauts. The space station crew rigged two temporary seats with foam inside a SpaceX Dragon spacecraft currently docked at the outpost, where the Starliner astronauts would ride home if they needed to evacuate the complex in an emergency.

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

Enlarge / NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

NASA/Kim Shiflett

This is a temporary measure to allow the Dragon spacecraft to return to Earth with six people instead of the usual four. NASA officials decided to remove two of the astronauts from the next SpaceX crew mission to free up normal seats for Wilmore and Williams to ride home in February, when Crew-9 was already slated to end its mission.

The decision to fly the Starliner spacecraft back to Earth without its crew had several second order effects on space station operations. Managers at NASA’s Johnson Space Center in Houston had to decide who to bump from the Crew-9 mission, and who to keep on the crew.

Nick Hague and Aleksandr Gorbunov ended up keeping their seats on the Crew-9 flight. Hague originally trained as the pilot on Crew-9, and NASA decided he would take Zena Cardman’s place as commander. Hague, a 49-year-old Space Force colonel, is a veteran of one long-duration mission on the International Space Station, and also experienced a rare in-flight launch abort in 2018 due to a failure of a Russian Soyuz rocket.

NASA announced the original astronaut assignments for the Crew-9 mission in January. Cardman, a 36-year-old geobiologist, would have been the first rookie astronaut without test pilot experience to command a NASA spaceflight. Three-time space shuttle flier Stephanie Wilson, 58, was the other astronaut removed from the Crew-9 mission.

The decision on who to fly on Crew-9 was a “really close call,” said Bowersox, who oversees NASA’s spaceflight operations directorate. “They were thinking very hard about flying Zena, but in this situation, it made sense to have somebody who had at least one flight under their belt.”

Gorbunov, a 34-year-old Russian aerospace engineer making his first flight to space, moved over to take pilot’s seat in the Crew Dragon spacecraft, although he remains officially designated a mission specialist. His remaining presence on the crew was preordained because of an international agreement between NASA and Russia’s space agency that provides seats for Russian cosmonauts on US crew missions and US astronauts on Russian Soyuz flights to the space station.

Bowersox said NASA will reassign Cardman and Wilson to future flights.

NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Enlarge / NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Operational flexibility

This was also the first launch of astronauts from Space Launch Complex-40 (SLC-40) at Cape Canaveral, SpaceX’s busiest launch pad. SpaceX has outfitted the launch pad with the equipment necessary to support launches of human spaceflight missions on the Crew Dragon spacecraft, including a more than 200-foot-tall tower and a crew access arm to allow astronauts to board spaceships on top of Falcon 9 rockets.

SLC-40 was previously based on a “clean pad” architecture, without any structures to service or access Falcon 9 rockets while they were vertical on the pad. SpaceX also installed slide chutes to give astronauts and ground crews an emergency escape route away from the launch pad in an emergency.

SpaceX constructed the crew tower last year and had it ready for the launch of a Dragon cargo mission to the space station in March. Saturday’s launch demonstrated the pad’s ability to support SpaceX astronaut missions, which have previously all departed from Launch Complex-39A (LC-39A) at NASA’s Kennedy Space Center, a few miles north of SLC-40.

Bringing human spaceflight launch capability online at SLC-40 gives SpaceX and NASA additional flexibility in their scheduling. For example, LC-39A remains the only launch pad configured to support flights of SpaceX’s Falcon Heavy rocket. SpaceX is now preparing LC-39A for a Falcon Heavy launch October 10 with NASA’s Europa Clipper mission, which only has a window of a few weeks to depart Earth this year and reach its destination at Jupiter in 2030.

With SLC-40 now certified for astronaut launches, SpaceX and NASA teams are able to support the Crew-9 and Europa Clipper missions without worrying about scheduling conflicts. The Florida spaceport now has three launch pads certified for crew flights—two for SpaceX’s Dragon and one for Boeing’s Starliner—and NASA will add a fourth human-rated launch pad with the Artemis II mission to the Moon late next year.

“That’s pretty exciting,” said Pam Melroy, NASA’s deputy administrator. “I think it’s a reflection of where we are in our space program at NASA, but also the capabilities that the United States has developed.”

Earlier this week, Hague and Gorbunov participated in a launch day dress rehearsal, when they had the opportunity to familiarize themselves with SLC-40. The launch pad has the same capabilities as LC-39A, but with a slightly different layout. SpaceX also test-fired the Falcon 9 rocket Tuesday evening, before lowering the rocket horizontal and moving it back into a hangar for safekeeping as the outer bands of Hurricane Helene moved through Central Florida.

Inside the hangar, SpaceX technicians discovered sooty exhaust from the Falcon 9’s engines accumulated on the outside of the Dragon spacecraft during the test-firing. Ground teams wiped the soot off of the craft’s solar arrays and heat shield, then repainted portions of the capsule’s radiators around the edge of Dragon’s trunk section before rolling the vehicle back to the launch pad Friday.

“It’s important that the radiators radiate heat in the proper way to space, so we had to put some some new paint on to get that back to the right emissivity and the right reflectivity and absorptivity of the solar radiation that hit those panels so it will reject the heat properly,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Gerstenmaier also outlined a new backup ability for the Crew Dragon spacecraft to safely splash down even if all of its parachutes fail to deploy on final descent back to Earth. This involves using the capsule’s eight powerful SuperDraco thrusters, normally only used in the unlikely instance of a launch abort, to fire for a few seconds and slow Dragon’s speed for a safe splashdown.

A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

Enlarge / A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

SpaceX

“The way it works is, in the case where all the parachutes totally fail, this essentially fires the thrusters at the very end,” Gerstenmaier said. “That essentially gives the crew a chance to land safely, and essentially escape the vehicle. So it’s not used in any partial conditions. We can land with one chute out. We can land with other failures in the chute system. But this is only in the case where all four parachutes just do not operate.”

When SpaceX first designed the Crew Dragon spacecraft more than a decade ago, the company wanted to use the SuperDraco thrusters to enable the capsule to perform propulsive helicopter-like landings. Eventually, SpaceX and NASA agreed to change to a more conventional parachute-assisted splashdown.

The SuperDracos remained on the Crew Dragon spacecraft to push the capsule away from its Falcon 9 rocket during a catastrophic launch failure. The eight high-thrust engines burn hydrazine and nitrogen tetroxide propellants that combust when making contact with one another.

The backup option has been activated for some previous commercial Crew Dragon missions, but not for a NASA flight, according to Gerstenmaier. The capability “provides a tolerable landing for the crew,” he added. “So it’s a true deep, deep contingency. I think our philosophy is, rather than have a system that you don’t use, even though it’s not maybe fully certified, it gives the crew a chance to escape a really, really bad situation.”

Steve Stich, NASA’s commercial crew program manager, said the emergency propulsive landing capability will be enabled for the return of the Crew-8 mission, which has been at the space station since March. With the arrival of Hague and Gorbunov on Crew-9—and the extension of Wilmore and Williams’ mission—the Crew-8 mission is slated to depart the space station and splash down in early October.

This story was updated after confirmation of a successful launch.

SpaceX launches mission to bring Starliner astronauts back to Earth Read More »

the-war-of-words-between-spacex-and-the-faa-keeps-escalating

The war of words between SpaceX and the FAA keeps escalating

Elon Musk, SpaceX's founder and CEO, has called for the resignation of the FAA administrator.

Enlarge / Elon Musk, SpaceX’s founder and CEO, has called for the resignation of the FAA administrator.

The clash between SpaceX and the Federal Aviation Administration escalated this week, with Elon Musk calling for the head of the federal regulator to resign after he defended the FAA’s oversight and fines levied against the commercial launch company.

The FAA has said it doesn’t expect to determine whether to approve a launch license for SpaceX’s next Starship test flight until late November, two months later than the agency previously communicated to Musk’s launch company. Federal regulators are reviewing changes to the rocket’s trajectory necessary for SpaceX to bring Starship’s giant reusable Super Heavy booster back to the launch pad in South Texas. This will be the fifth full-scale test flight of Starship but the first time SpaceX attempts such a maneuver on the program.

This week, SpaceX assembled the full Starship rocket on its launch pad at the company’s Starbase facility near Brownsville, Texas. “Starship stacked for Flight 5 and ready for launch, pending regulatory approval,” SpaceX posted on X.

Apart from the Starship regulatory reviews, the FAA last week announced it is proposing more than $633,000 in fines on SpaceX due to alleged violations of the company’s launch license associated with two flights of the company’s Falcon 9 rocket from Florida. It is rare for the FAA’s commercial spaceflight division to fine launch companies.

Michael Whitaker, the FAA’s administrator, discussed the agency’s ongoing environmental and safety reviews of SpaceX’s Starship rocket in a hearing before a congressional subcommittee in Washington Tuesday. During the hearing, which primarily focused on the FAA’s oversight of Boeing’s commercial airplane business, one lawmaker asked Whitaker the FAA’s relationship with SpaceX.

Public interest

“I think safety is in the public interest and that’s our primary focus,” said Michael Whitaker, the FAA administrator, in response to questions from Rep. Kevin Kiley, a California Republican. “It’s the only tool we have to get compliance on safety matters,” he said, referring to the FAA’s fines.

The stainless-steel Super Heavy booster is larger than a Boeing 747 jumbo jet. SpaceX says the flight path to return the first stage of the rocket to land will mean a “slightly larger area could experience a sonic boom,” and a stainless-steel ring that jettisons from the top of the booster, called the hot-staging ring, will fall in a different location in the Gulf of Mexico just offshore from the rocket’s launch and landing site.

The FAA, which is primarily charged with ensuring rocket launches don’t endanger the public, is consulting with other agencies on these matters, along with issues involving SpaceX’s discharge of water into the environment around the Starship launch pad in Texas. The pad uses water to cool a steel flame deflector that sits under the 33 main engines of Starship’s Super Heavy booster.

SpaceX says fines levied against it this year by the Texas Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency (EPA) related to the launch pad’s water system were “entirely tied to disagreements over paperwork” and not any dumping of pollutants into the environment around the Starship launch site.

SpaceX installed the water-cooled flame deflector under the Starship launch mount after the engine exhaust rocket’s first test flight excavated a large hole in the ground. Gwynne Shotwell, SpaceX’s president and chief operating officer, summed up her view of the issue in a hearing with Texas legislators in Austin on Tuesday.

“To protect that from happening again, we built this kind of upside-down shower head to basically cool the flame as the rocket was lifting off,” she said. “That was licensed and permitted by TCEQ. The EPA came in afterwards and didn’t like the license or the permit that we had for that, and wanted to turn it into a federal permit, which we are working on now.”

“We work very closely with organizations such as TCEQ,” Shotwell said. “You may have read a little bit of nonsense in the papers recently about that, but we’re working quite well with them.”

The war of words between SpaceX and the FAA keeps escalating Read More »

nasa-is-ready-to-start-buying-vulcan-rockets-from-united-launch-alliance

NASA is ready to start buying Vulcan rockets from United Launch Alliance

Full stack —

The second test flight of the Vulcan rocket is scheduled for liftoff on October 4.

The first stage of ULA's second Vulcan rocket was raised onto its launch platform August 11 at Cape Canaveral Space Force Station, Florida.

Enlarge / The first stage of ULA’s second Vulcan rocket was raised onto its launch platform August 11 at Cape Canaveral Space Force Station, Florida.

United Launch Alliance is free to compete for NASA contracts with its new Vulcan rocket after a successful test flight earlier this year, ending a period where SpaceX was the only company competing for rights to launch the agency’s large science missions.

For several years, ULA was unable to bid for NASA launch contracts after the company sold all of its remaining Atlas V rockets to other customers, primarily for Amazon’s Project Kuiper Internet network. ULA could not submit its new Vulcan rocket, which will replace the Atlas V, for NASA to consider in future launch contracts until the Vulcan completed at least one successful flight, according to Tim Dunn, senior launch director at NASA’s Launch Services Program.

The Vulcan rocket’s first certification flight on January 8, called Cert-1, was nearly flawless, demonstrating the launcher’s methane-fueled BE-4 engines built by Blue Origin and an uprated twin-engine Centaur upper stage. A second test flight, known as Cert-2, is scheduled to lift off no earlier than October 4 from Cape Canaveral Space Force Station, Florida. Assuming the upcoming launch is as successful as the first one, the US Space Force aims to launch its first mission on a Vulcan rocket by the end of the year.

The Space Force has already booked 25 launches on ULA’s Vulcan rocket for military payloads and spy satellites for the National Reconnaissance Office. But these missions won’t launch until Vulcan completes its second test flight, clearing the way for the Space Force to certify ULA’s new rocket for national security missions.

Back in the game

NASA’s Launch Services Program (LSP) is responsible for selecting and overseeing launch providers for the agency’s robotic science missions. NASA’s near-term options for launching large missions include SpaceX’s Falcon 9 and Falcon Heavy rockets, ULA’s Vulcan, and Blue Origin’s New Glenn launcher.

However, only SpaceX’s rockets have been available for NASA bids since 2021, when ULA sold all of its remaining Atlas V rockets to Amazon. For example, ULA did not submit proposals for the launch of a GOES weather satellite or NASA’s Roman Space Telescope, two of the more lucrative launch contracts the agency has awarded in the last couple of years. NASA selected SpaceX’s Falcon Heavy, the only eligible rocket, for both missions.

This is a notable role reversal for SpaceX and ULA, a 50-50 joint venture between Boeing and Lockheed Martin that was the sole launch provider for large NASA science missions and military satellites for nearly a decade. SpaceX launched its first mission for NASA’s Launch Services Program in January 2016.

The situation changed with the first flight of the Vulcan rocket in January.

“They certainly demonstrated a huge success earlier this year flying Cert-1,” Dunn told Ars in an interview. “They needed a successful flight to then bid for future missions, so that allowed them to be in a position to bid on our missions.”

NASA has not yet formally certified the Vulcan rocket to launch one of the agency’s science missions, but that would not stop NASA from selecting Vulcan for a contract. Some of NASA’s next big science missions up for launch contract awards include the nuclear-powered Dragonfly mission to explore Saturn’s moon Titan and an asteroid-hunting telescope named NEO Surveyor.

The second Vulcan flight next month will move ULA’s rocket toward certification by the Space Force and NASA.

“A second Cert flight that will then demonstrate a few other capabilities of the rocket allows more data for our certification team that is working in concert with the US Space Force’s certification team,” Dunn said. “We’re doing a lot of shared, intergovernmental collaborations in the certification work, so it allows us all more data, more confidence in that launch vehicle to meet all the needs that we believe we will have in the coming decade-plus.”

Two strap-on solid-fueled boosters and twin BE-4 main engines on ULA's second Vulcan rocket.

Enlarge / Two strap-on solid-fueled boosters and twin BE-4 main engines on ULA’s second Vulcan rocket.

Blue Origin’s New Glenn could also compete for contracts to launch NASA’s larger, more expensive missions after it completes at least one successful flight. Blue Origin is currently eligible for bids to launch NASA’s smaller missions, such as the ESCAPADE mission to Mars already assigned to New Glenn. NASA is willing to accept more risk for launching these types of lower-cost missions.

ULA capped off the assembly of its second Vulcan rocket at Cape Canaveral on Saturday when technicians lifted the launcher’s payload fairing atop Vulcan’s first-stage booster and Centaur upper stage. For its second launch, Vulcan will carry a dummy payload instead of a real satellite. The second Vulcan flight was initially supposed to launch Sierra Space’s first Dream Chaser spaceplane to the International Space Station, but Dream Chaser isn’t ready, and the Space Force is eager for ULA to get moving and finish the certification process.

The head of Space Systems Command, Lt. Gen. Philip Garrant, told Ars last week that he is “optimistic” ULA will be in a position to launch its first Space Force missions with the Vulcan rocket by the end of this year. ULA has already delivered Vulcan rocket parts for the next two missions to Cape Canaveral, but the Cert-2 launch needs to go off without a hitch.

“We’re working very closely with ULA on that, as well as the manifest for the following missions,” Garrant said. “All of the rocket parts are at the launch locations, ready to go, but clearly the priority is the certification flight and making sure that the launch vehicle is certified. But we are optimistic that we’re going to get those launches off.”

NASA is ready to start buying Vulcan rockets from United Launch Alliance Read More »

rocket-report:-china-leaps-into-rocket-reuse;-19-people-are-currently-in-orbit

Rocket Report: China leaps into rocket reuse; 19 people are currently in orbit

Ascendant —

Launch startups in China and Europe are borrowing ideas and rhetoric from SpaceX.

Landspace's reusable rocket test vehicle lifts off from the Jiuquan Satellite Launch Center on Wednesday, September 11, 2024.

Enlarge / Landspace’s reusable rocket test vehicle lifts off from the Jiuquan Satellite Launch Center on Wednesday, September 11, 2024.

Welcome to Edition 7.11 of the Rocket Report! Outside of companies owned by American billionaires, the most imminent advancements in reusable rockets are coming from China’s quasi-commercial launch industry. This industry is no longer nascent. After initially relying on solid-fueled rocket motors apparently derived from Chinese military missiles, China’s privately funded launch firms are testing larger launchers, with varying degrees of success, and now performing hop tests reminiscent of SpaceX’s Grasshopper and F9R Dev1 programs more than a decade ago.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Landspace hops closer to a reusable rocket. Chinese private space startup Landspace has completed a 10-kilometer (33,000-foot) vertical takeoff and vertical landing test on its Zhuque-3 (ZQ-3) reusable rocket testbed, including a mid-flight engine reignition at near supersonic conditions, Aviation Week & Space Technology reports. The 18.3-meter (60-foot) vehicle took off from the Jiuquan launch base in northwestern China, ascended to 10,002 meters, and then made a vertical descent and achieved an on-target propulsive landing 3.2 kilometers (2 miles) from the launch pad. Notably, the rocket’s methane-fueled variable-thrust engine intentionally shutdown in flight, then reignited for descent, as engines would operate on future full-scale booster flybacks. The test booster used grid fins and cold gas thrusters to control itself when its main engine was dormant, according to Landspace.

“All indicators met the expected design” … Landspace hailed the test as a major milestone in the company’s road to flying its next rocket, the Zhuque-3, as soon as next year. With nine methane-fueled main engines, the Zhuque-3 will initially be able to deliver 21 metric tons (46,300 pounds) of payload into low-Earth orbit with its booster flying in expendable mode. In 2026, Landspace aims to begin recovering Zhuque-3 first-stage boosters for reuse. Landspace is one of several Chinese companies working seriously on reusable rocket designs. Another Chinese firm, Deep Blue Aerospace, says it plans a 100-kilometer (62-mile) suborbital test of a reusable booster soon, ahead of the first flight of its medium-class Nebula-1 rocket next year. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Isar Aerospace sets low bar for success on first launch. Daniel Metzler, CEO of German launch startup Isar Aerospace, stated that the first flight of the Spectrum rocket would be a success if it didn’t destroy the launch site, European Spaceflight reports. During an interview at the Handelsblatt innovation conference, Metzler was asked what he would consider a successful inaugural flight of Spectrum. “For me, the first flight will be a success if we don’t blow up the launch site,” explained Metzler. “That would probably be the thing that would set us back the most in terms of technology and time.” This tempering of expectations sounds remarkably similar to statements made by Elon Musk about SpaceX’s first flight of the Starship rocket last year.

In the catbird seat? … Isar Aerospace could be in a position to become the first in a new crop of European commercial launch companies to attempt its first orbital flight. Another German company, Rocket Factory Augsburg, recently gave up on a possible launch this year after the booster for its first launch caught fire and collapsed during a test at a launch site in Scotland. Isar plans to launch its two-stage Spectrum rocket, designed to carry up to 1,000 kilograms (2,200 pounds) of payload into low-Earth orbit, from Andøya Spaceport in Norway. Isar hasn’t publicized any schedule for the first flight of Spectrum, but there are indications the publicity-shy company is testing hardware at the Norwegian spaceport. (submitted by Ken the Bin)

FAA to introduce new orbital debris rules. The Federal Aviation Administration is moving ahead with efforts to develop rules for the disposal of upper stages as another Centaur upper stage breaks apart in orbit, Space News reports. The FAA released draft regulations on the matter for public comment one year ago, and the head of the agency’s commercial spaceflight division recently said the rules are a “high priority for our organization.” The rules would direct launch operators to dispose of upper stages in one of five ways, from controlled reentries to placement in graveyard or “disposal” orbits not commonly used by operational satellites. One change the FAA might make to the draft rules is to reduce the required timeline for an uncontrolled reentry of a disposed upper stage from no more than 25 years to a shorter timeline. “We got a lot of comments that said it should be a lot less,” said Kelvin Coleman, head of the FAA’s commercial spaceflight office. “We’re taking that into consideration.”

Upper stages are a problem … Several recent breakups involving spent upper stages in orbit have highlighted the concern that dead rocket bodies could create unnecessary space junk. Last month, the upper stage from a Chinese Long March 6A disintegrated in low-Earth orbit, creating at least 300 pieces of space debris. More recently, a Centaur upper stage from a United Launch Alliance Atlas V rocket broke apart in a much higher orbit, resulting in more than 40 pieces of debris. This was the fourth time one of ULA’s Centaur upper stages has broken up since 2018. (submitted by Ken the Bin)

Rocket Report: China leaps into rocket reuse; 19 people are currently in orbit Read More »

sparks-are-flying-day-and-night-as-spacex-preps-starship-pad-to-catch-a-rocket

Sparks are flying day and night as SpaceX preps Starship pad to catch a rocket

Pretty much every day for the last couple of weeks, workers wielding welding guns and torches have climbed onto SpaceX’s Starship launch pad in South Texas to make last-minute upgrades ahead of the next test flight of the world’s largest rocket.

Livestreams of the launch site provided by LabPadre and NASASpaceflight.com have shown sparks raining down two mechanical arms extending from the side of the Starship launch tower at SpaceX’s Starbase launch site on the Gulf Coast east of Brownsville, Texas. We are publishing several views here of the welding activity with the permission of LabPadre, which runs a YouTube page with multiple live views of Starbase.

If SpaceX has its way on the next flight of Starship, these arms will close together to capture the first-stage booster, called Super Heavy, as it descends back to Earth and slows to a hover over the launch pad.

This method of rocket recovery is remarkably different from how SpaceX lands its smaller Falcon 9 booster, which has landing legs to touch down on offshore ocean-going platforms or at concrete sites onshore. Catching the rocket with large metallic arms—sometimes called “mechazilla arms” or “chopsticks”—would reduce the turnaround time to reuse the booster and simplify its design, according to SpaceX.

SpaceX has launched the nearly 400-foot-tall (121 meter) Starship rocket four times, most recently in June, when the Super Heavy booster, itself roughly 233 feet (71 meters) tall, made a pinpoint splashdown in the Gulf of Mexico just off the coast of Starbase.

On the same flight in June, the Starship upper stage flew halfway around the world and reentered the atmosphere over the Indian Ocean. The ship survived reentry and splashed down in the open ocean northwest of Australia. This flight was the first time either part of the Starship rocket made it back to Earth intact, but SpaceX didn’t recover the booster or the ship.

Doubling up

Lessons learned from the June test flight prompted SpaceX to replace thousands of heat shield tiles on the Starship vehicle for the next mission. While the ship survived reentry in June, onboard camera views showed numerous tiles ripped away from the vehicle. Last month, SpaceX test-fired engines on the booster and ship assigned to the next launch.

On August 8, SpaceX said Starship and Super Heavy were “ready to fly, pending regulatory approval” from the Federal Aviation Administration. An FAA spokesperson said the agency is evaluating SpaceX’s proposed flight profile for the next Starship test flight, when SpaceX wants to try catching the booster on the pad. This will be the first time SpaceX will try to bring the stainless-steel Super Heavy booster, as long as and wider than a Boeing 747 jumbo jet, back to a landing on land.

Sparks fly at Starbase as welders work overnight at the Starship launch pad.

Enlarge / Sparks fly at Starbase as welders work overnight at the Starship launch pad.

While the rocket appears to be ready to fly, SpaceX officials clearly believe there’s more work to do on the launch pad. Closer views revealed welders are installing structural supports, or doublers, to certain parts of the catch arms. Elsewhere on the arms, workers were seen removing and adding other unknown pieces of hardware. SpaceX hasn’t specified exactly what kind of work teams are doing on the Starship launch pad in Texas, but the focus is on beefing up hardware necessary for catching the Super Heavy booster.

All of this work is occurring during the hottest part of the year in South Texas. On most days this month, afternoon temperatures have soared into the mid-to-upper 90s Fahrenheit, with sticky humidity. A lot of the work on the catch arms has occurred at night, when temperatures drop into the lower 80s.

It’s unclear how long it will take for the FAA to approve a license for SpaceX to launch and recover the rocket on the next test flight or when SpaceX will complete the upgrades on the launch pad. Elon Musk, SpaceX’s founder and CEO, suggested earlier this month that the flight could take off by the end of August, but the condition of the launch pad and remaining tests indicate a launch is still probably at least a couple of weeks away.

Once workers finish up their tasks upgrading the pad and clearing scaffolding and cranes from the area, SpaceX will likely stack the Super Heavy booster and Starship upper stage and fill them with propellants during a full countdown rehearsal, as it has before each previous Starship launch.

Musk has signaled several times that the company will try to catch the Super Heavy booster on the next flight, which will also accelerate the Starship upper stage to nearly orbital velocity for another reentry demonstration over the Indian Ocean. Last month, SpaceX released a video teasing a catch of the booster on the next Starship flight, showing the rocket returning to Starbase with its Raptor engines firing.

Meanwhile, SpaceX has stacked a second Starship launch tower next to the existing launch pad in Texas. The company still has a lot of work to do to outfit the second launch pad before it is ready to support a Starship flight, but SpaceX could have it ready for activation sometime next year. SpaceX also plans two Starship launch pads at Cape Canaveral, Florida. All these sites will allow SpaceX to launch Starships more often. The company is also finishing a sprawling factory near the Starship factory in South Texas, just a couple of miles inland from the launch pads there.

Sparks are flying day and night as SpaceX preps Starship pad to catch a rocket Read More »

rocket-lab-entered-“hero-mode”-to-finish-mars-probes—now-it’s-up-to-blue-origin

Rocket Lab entered “hero mode” to finish Mars probes—now it’s up to Blue Origin

The two spacecraft for NASA's ESCAPADE mission at Rocket Lab's factory in Long Beach, California.

Enlarge / The two spacecraft for NASA’s ESCAPADE mission at Rocket Lab’s factory in Long Beach, California.

Two NASA spacecraft built by Rocket Lab are on the road from California to Florida this weekend to begin preparations for launch on Blue Origin’s first New Glenn rocket.

These two science probes must launch between late September and mid-October to take advantage of a planetary alignment between Earth and Mars that only happens once every 26 months. NASA tapped Blue Origin, Jeff Bezos’ space company, to launch the Escape and Plasma Acceleration and Dynamics Explorers (ESCAPADE) mission with a $20 million contract.

Last November, the space agency confirmed the $79 million ESCAPADE mission will launch on the inaugural flight of Blue Origin’s New Glenn rocket. With this piece of information, the opaque schedule for Blue Origin’s long-delayed first New Glenn mission suddenly became more clear.

The launch period opens on September 29. The two identical Mars-bound spacecraft for the ESCAPADE mission, nicknamed Blue and Gold, are now complete. Rocket Lab announced Friday that its manufacturing team packed the satellites and shipped them from their factory in Long Beach, California. Over the weekend, they arrived at a clean room facility just outside the gates of NASA’s Kennedy Space Center in Florida, where technicians will perform final checkups and load hydrazine fuel into both spacecraft, each a little more than a half-ton in mass.

Then, if Blue Origin is ready, ground teams will connect the ESCAPADE spacecraft with the New Glenn’s launch adapter, encapsulate the probes inside the payload fairing, and mount them on top of the rocket.

“There’s a whole bunch of checking and tests to make sure everything’s OK, and then we move into fueling, and then we integrate with the launch vehicle. So it’s a big milestone,” said Rob Lillis, the mission’s lead scientist from the University of California Berkeley’s Space Science Laboratory. “There have been some challenges along the way. This wasn’t easy to make happen on this schedule and for this cost. So we’re very happy to be where we are.”

Racing to the finish line

But there’s a lot for Blue Origin to accomplish in the next couple of months if the New Glenn rocket is going to be ready to send the ESCAPADE mission toward Mars in this year’s launch period. Blue Origin has not fully exercised a New Glenn rocket during a launch countdown, hasn’t pumped a full load of cryogenic propellants into the launch vehicle, and hasn’t test-fired a full complement of first stage or second stage engines.

These activities typically take place months before the first launch of a large new orbital-class rocket. For comparison, SpaceX test-fired its first fully assembled Falcon 9 rocket on the launch pad about three months before its first flight in 2010. United Launch Alliance completed a hot-fire test of its new Vulcan rocket on the launch pad last year, about seven months before its inaugural flight.

However, Blue Origin is making visible progress toward the first flight of New Glenn, after years of speculation and few outward signs of advancement. Earlier this year, the company raised a full-scale, 320-foot-tall (98-meter) New Glenn rocket on its launch pad at Cape Canaveral Space Force Station and loaded it with liquid nitrogen, a cryogenic substitute for the methane and liquid hydrogen fuel it will burn in flight.

Rocket Lab entered “hero mode” to finish Mars probes—now it’s up to Blue Origin Read More »

rocket-report:-ula-is-losing-engineers;-spacex-is-launching-every-two-days

Rocket Report: ULA is losing engineers; SpaceX is launching every two days

Every other day —

The first missions of Stoke Space’s reusable Nova rocket will fly in expendable mode.

A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Enlarge / A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Welcome to Edition 7.07 of the Rocket Report! SpaceX has not missed a beat since the Federal Aviation Administration gave the company a green light to resume Falcon 9 launches after a failure last month. In 19 days, SpaceX has launched 10 flights of the Falcon 9 rocket, taking advantage of all three of its Falcon 9 launch pads. This is a remarkable cadence in its own right, but even though it’s a small sample size, it is especially impressive right out of the gate after the rocket’s grounding.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

A quick turnaround for Rocket Lab. Rocket Lab launched its 52nd Electron rocket on August 11 from its private spaceport on Mahia Peninsula in New Zealand, Space News reports. The company’s light-class Electron rocket deployed a small radar imaging satellite into a mid-inclination orbit for Capella Space. This was the shortest turnaround between two Rocket Lab missions from its primary launch base in New Zealand, coming less than nine days after an Electron rocket took off from the same pad with a radar imaging satellite for the Japanese company Synspective. Capella’s Acadia 3 satellite was originally supposed to launch in July, but Capella requested a delay to perform more testing of its spacecraft. Rocket Lab swapped its place in the Electron launch sequence and launched the Synspective mission first.

Now, silence at the launch pad … Rocket Lab hailed the swap as an example of the flexibility provided by Electron, as well as the ability to deliver payloads to specific orbits that are not feasible with rideshare missions, according to Space News. For this tailored launch service, Rocket Lab charges a premium launch price over the price of launching a small payload on a SpaceX rideshare mission. However, SpaceX’s rideshare launches gobble up the lion’s share of small satellites within Rocket Lab’s addressable market. On Friday, a Falcon 9 rocket is slated to launch 116 small payloads into polar orbit. Rocket Lab, meanwhile, projects just one more launch before the end of September and expects to perform 15 to 18 Electron launches this year, a record for the company but well short of the 22 it forecasted earlier in the year. Rocket Lab says customer readiness is the reason it will be far short of projections.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Defense contractors teaming up on solid rockets. Lockheed Martin and General Dynamics are joining forces to kickstart solid rocket motor production, announcing a strategic teaming agreement today that could see new motors roll off the line as early as 2025, Breaking Defense reports. The new agreement could position a third vendor to enter into the ailing solid rocket motor industrial base, which currently only includes L3Harris subsidiary Aerojet Rocketdyne and Northrop Grumman in the United States. Both companies have struggled to meet demands from weapons makers like Lockheed and RTX, which are in desperate need of solid rocket motors for products such as Javelin or the PAC-3 missiles used by the Patriot missile defense system.

Pressure from startups … Demand for solid rocket motors has skyrocketed since Russia’s invasion of Ukraine as the United States and its partners sought to backfill stocks of weapons like Javelin and Stinger, as well as provide motors to meet growing needs in the space domain. Although General Dynamics has kept its interest in the solid rocket motor market quiet until now, several defense tech startups, such as Ursa Major Technologies, Anduril, and X-Bow Systems, have announced plans to enter the market. (submitted by Ken the Bin)

Going polar with crew. SpaceX will fly the first human spaceflight over the Earth’s poles, possibly before the end of this year, Ars reports. The private Crew Dragon mission will be led by a Chinese-born cryptocurrency entrepreneur named Chun Wang, and he will be joined by a polar explorer, a roboticist, and a filmmaker whom he has befriended in recent years. The “Fram2” mission, named after the Norwegian research ship Fram, will launch into a polar corridor from SpaceX’s launch facilities in Florida and fly directly over the north and south poles. The three- to five-day mission is being timed to fly over Antarctica near the summer solstice in the Southern Hemisphere, to afford maximum lighting.

Wang’s inclination is Wang’s prerogative … Wang told Ars he wanted to try something new, and flying a polar mission aligned with his interests in cold places on Earth. He’s paying the way on a commercial basis, and SpaceX in recent years has demonstrated it can launch satellites into polar orbit from Cape Canaveral, Florida, something no one had done in more than 50 years. The highest-inclination flight ever by a human spacecraft was the Soviet Vostok 6 mission in 1963 when Valentina Tereshkova’s spacecraft reached 65.1 degrees. Now, Fram2 will fly repeatedly and directly over the poles.

Rocket Report: ULA is losing engineers; SpaceX is launching every two days Read More »

china-begins-launching-a-megaconstellation,-and-it-sounds-a-lot-like-starlink

China begins launching a megaconstellation, and it sounds a lot like Starlink

Sailing in LEO —

Like Starlink, China’s Qianfan satellites have an easy-to-pack flat-panel design.

A Long March 6A rocket launches the first 18 Internet satellites for China's Qianfan, or Thousand Sails, broadband network.

Enlarge / A Long March 6A rocket launches the first 18 Internet satellites for China’s Qianfan, or Thousand Sails, broadband network.

Chinese officials have long signaled their interest in deploying a satellite network, or maybe several, to beam broadband Internet signals across China and other nations within its sphere of influence.

Two serious efforts are underway in China to develop a rival to SpaceX’s Starlink network, which the Chinese government has banned in its territory. The first batch of 18 satellites for one of those Chinese networks launched into low-Earth orbit Tuesday.

A Long March 6A rocket delivered the 18 spacecraft into a polar orbit following liftoff at 2: 42 am EDT (06: 42 UTC) from the Taiyuan launch base in northern China’s Shanxi province. The Long March 6A is one of China’s newest rockets—and the country’s first to employ strap-on solid rocket boosters—with the ability to deploy a payload of up to 4.5 metric tons (9,900 pounds) into a 700-kilometer (435-mile) Sun-synchronous orbit.

The rocket placed its payload of 18 Qianfan satellites into the proper orbit, and the launch mission was a complete success, according to the China Aerospace Science and Technology Corporation, the largest state-owned contractor for the Chinese space program.

Qianfan translates to “Thousand Sails,” and the 18 satellites launched Tuesday are the first of potentially thousands of spacecraft planned by Shanghai Spacecom Satellite Technology (SSST), a company backed by Shanghai’s municipal government. The network developed by SSST is also called the “Spacesail Constellation.”

Shanghai officials only began releasing details of this constellation last year. A filing with the International Telecommunication Union suggests the developers of Shanghai-based megaconstellation initially plan to deploy 1,296 satellites at an altitude of about 1,160 kilometers (721 miles).

Xinhua, China’s state-run news agency, said the constellation “will provide global users with low-latency, high-speed and ultra-reliable satellite broadband Internet services.”

Opening the floodgates?

SSST’s network was previously known as G60 Starlink, referencing a major cross-country highway in China and the project’s intent to imitate SpaceX’s broadband service.

Thousand Sails may eventually consist of more than 14,000 satellites, but like other Internet megaconstellations, the size of the fleet will likely grow at a rate commensurate with demand. It will take many years for SSST to deploy a 14,000-satellite constellation, if it ever does. SpaceX has rolled out several generations of Starlink satellites to offer new services and more capacity to meet customer uptake.

Chinese officials have released few details about the Qianfan satellites. But the project’s backers have said the spacecraft has a “standardized and modular” flat-panel design. “It meets the needs of stacking multiple satellites with one rocket,” said Shanghai Gesi Aerospace Technology, a joint venture set up by SSST and the Chinese Academy of Sciences to oversee manufacturing of Qianfan satellites.

This sounds a lot like the design of SpaceX’s Starlink satellites, which are flat-packed for launch on Falcon 9 rockets. SpaceX pioneered this way of launching and deploying large numbers of satellites. The approach used for Starlink, and apparently for Qianfan, streamlines the integration of multiple satellites with their launcher on the ground. It also simplifies their separation from the rocket once in orbit.

The new Qianfan satellite factory in Shanghai can produce up to 300 spacecraft per year, project officials said in December. Officials previously said the first 108 satellites for the Thousand Sails constellation would launch this year.

SSST announced in February it had raised more than $900 million from Chinese state-backed investment funds, Shanghai’s municipal government, and sources of venture capital. SSST’s origin is linked to a Chinese joint venture with a Germany-based company called KLEO Connect, which intended to develop a smaller constellation of low-Earth orbit satellites for data relay services.

China launched four technology demonstration satellites, purportedly related to the KLEO Connect venture, to test telecom hardware and electric propulsion systems in orbit. The joint venture fell apart with a flurry of lawsuits, and the German government last year blocked a complete takeover of KLEO Connect by its Chinese investors.

Now, SSST is going it alone with the Thousand Sails network. It has rapidly scaled up satellite manufacturing capacity in Shanghai. But outside of Starlink, companies with ideas for megaconstellations have run into serious headwinds.

OneWeb filed for bankruptcy in 2020 before eventually launching its entire first-generation network of 633 Internet satellites. Amazon has pushed back the full-scale deployment of its Project Kuiper megaconstellation, and the launch of the first operational Kuiper Internet satellites may be delayed again to 2025. The future of the European Union’s IRIS² satellite Internet network is in doubt after disagreements among European governments on funding the project.

The Thousand Sails constellation is less well-known than another planned Chinese satellite Internet network known as Guowang, or “national network,” which is supported by China’s central government. Guowang is owned by a state-backed company called SatNet, and its architecture will consist of 13,000 satellites. However, China has not yet launched any spacecraft for the Guowang project.

It’s unclear if the Thousand Sails network and the Guowang constellation will be direct competitors. They could be geared to different segments of the broadband market. In either case, China’s restrictive Internet policies with terrestrial networks will likely spill over into the satellite segment.

Chinese officials recognize the military utility of satellite Internet services like Starlink, which has supported Ukrainian military forces fighting Russian troops since 2022. A homegrown Starlink-like service would, no doubt, prove useful for China’s military.

Alongside potential domestic civilian users, China could use its satellite Internet networks as a diplomatic tool to build on existing partnerships between the Chinese government and developing countries. This could “lead to a leapfrogging moment, where African countries opt for the Chinese Internet constellation over Western providers due to the fact that much of their infrastructure is already Chinese-built,” the Royal United Services Institute, a UK think tank, wrote in a report last year.

While there are open questions about how China will use its satellite megaconstellations, their deployment will require a significant increase in the country’s launch capacity, driving the development of new commercial rockets, including reusable boosters, to lower costs and increase their flight rate.

China begins launching a megaconstellation, and it sounds a lot like Starlink Read More »

rocket-report:-falcon-9-is-back;-starship-could-be-recovered-off-australia

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia

Starship down under —

Elon Musk doesn’t expect the next Starship test flight to occur before late August.

Welcome to Edition 7.05 of the Rocket Report! The Federal Aviation Administration grounded SpaceX’s Falcon 9 rocket for 15 days after a rare failure of its upper stage earlier this month. The FAA gave the green light for Falcon 9 to return to flight July 25, and within a couple of days, SpaceX successfully launched three missions from three launch pads. There’s a lot on Falcon 9’s to-do list, so we expect SpaceX to quickly return to form with several flights per week.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Big delay for a reusable rocket testbed. The French space agency, CNES, has revealed that the inaugural test flight of its Callisto reusable rocket demonstrator will not take place until late 2025 or early 2026, European Spaceflight reports. CNES unveiled an updated website for the Callisto rocket program earlier this month, showing the test rocket has been delayed from a debut launch later this year to until late 2025 or early 2026. The Callisto rocket is designed to test techniques and technologies required for reusable rockets, such as vertical takeoff and vertical landing, with suborbital flights from the Guiana Space Center in South America.

Cooperative action … Callisto, which stands for Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations, is a joint project between CNES, German space agency DLR, and JAXA, the Japanese space agency. It will stand 14 meters (46 feet) tall and weigh about 4 metric tons (8,800 pounds), with an engine supplied by Japan. Callisto is one of several test projects in Europe aiming to pave the way for a future reusable rocket. (submitted by EllPeaTea and Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Small step for Themis. Another European project established to demonstrate reusable rocket tech is making slow progress toward a first flight. The Themis project, funded by the European Space Agency, is similar in purpose to the Callisto testbed discussed above. This week, the German aerospace manufacturing company MT Aerospace announced it has begun testing a demonstrator of the landing legs that will be used aboard the Themis reusable booster, European Spaceflight reports. The landing legs for Themis are made of carbon fiber-reinforced plastic composites, and the initial test demonstrated good deployment and showed it would withstand the impact energy of landing.

Also delayed … Like Callisto, Themis is facing delays in getting to the launch pad. ArianeGroup, the ESA-selected Themis prime contractor, had been expected to conduct an initial hop test of the demonstrator before the end of 2024. However, officials have announced the initial hop tests won’t happen until sometime next year. The Themis booster is intended to eventually become the first stage booster for an orbital-class partially reusable rocket being developed by MaiaSpace, a subsidiary of ArianeGroup. (submitted by Ken the Bin)

Falcon 9 is flying again. A SpaceX Falcon 9 rocket returned to flight on July 27, barely two weeks after an upper stage failure ended a streak of more than 300 consecutive successful launches, Ars reports. By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband Internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company and attempting to get the world’s most active booster back into service.

Best part is no part … The Falcon 9 successfully deployed its payload of Starlink satellites about an hour after lifting off from NASA’s Kennedy Space Center in Florida. Later in the weekend, SpaceX launched two more Starlink missions on Falcon 9 rockets from Florida and California, notching three flights in less than 28 hours. The launch failure on the previous Falcon 9 launch was caused by a liquid oxygen leak on the upper stage, which led to a “hard start” on the upper stage engine when it attempted to reignite in flight. Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system.

Atlas V’s NSSL era is over. United Launch Alliance delivered a classified US military payload to orbit Tuesday for the last time with an Atlas V rocket, ending the Pentagon’s use of Russian rocket engines as national security missions transition to all-American launchers, Ars reports. This was the 101st launch of an Atlas V rocket since its debut in 2002, and the 58th and final Atlas V mission with a US national security payload since 2007. The Atlas V is powered by an RD-180 main engine made in Russia, and with a little prodding from SpaceX (via a lawsuit) and Congress, the Pentagon started making moves to end its reliance on the RD-180 a decade ago.

Other options available … The RD-180 never failed on a National Security Space Launch (NSSL) mission using the Atlas V rocket, but its use became politically untenable after Russia’s annexation of Crimea in 2014, which predated Russia’s full-scale invasion of Ukraine eight years later. SpaceX began launching US military missions in 2018, and ULA debuted its new Vulcan rocket in January. Assuming a successful second test flight of Vulcan in September, ULA’s next-generation rocket has a good shot at launching its first national security mission by the end of the year. The Space Force’s policy is to maintain at least two independent launch vehicles capable of flying military payloads into orbit. Vulcan and SpaceX’s Falcon rocket family fulfill that requirement, so the military no longer needs the Atlas V. However, 15 more Atlas V rockets remain in ULA’s inventory for future commercial flights.

Crackdown at the Cape. While this week’s landmark launch of the Atlas V rocket is worthy of celebration, there’s a new ULA policy that deserves ridicule, Ars reports. Many of the spectacular photos of rocket launches shared on social media come from independent photographers, who often make little to no money working for an established media organization. Instead, they rely on sales of prints to recoup at least some of their expenses for gas, food, and camera equipment needed to capture these images, which often serve as free publicity for launch providers like ULA. Last month, ULA announced it will no longer permit these photographers to set up remote cameras at their launch pads if they sell their images independently. This new policy was in place for the Atlas V launch from Cape Canaveral, Florida, on Tuesday morning.

But why? … “ULA will periodically confirm editorial publication for media participating in remote camera placement,” ULA stated in an email distributed to photographers last month. “If publication does not occur, or photos are sold outside of editorial purposes, privileges to place remote cameras may be revoked.” To the photographers who spend many hours preparing their equipment, waiting to set up and remove cameras, and persevering through scrubs and more, it seemed like a harsh judgment. And nobody knows why it happened. ULA has offered no public comment about the new policy, and the company did not respond to questions from Ars about the agreement.

Astroscale achieves a first in orbit. There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet, Ars reports. A Japanese company named Astroscale launched a small satellite in February to chase down the derelict upper stage from a Japanese H-IIA rocket. Astroscale’s ADRAS-J spacecraft arrived near the H-IIA upper stage in April, and the company announced this week that its satellite has now completed two 360-degree fly-arounds of the rocket. This is the first time a satellite has maneuvered around an actual piece of space junk, and it offers an unprecedented snapshot of how an abandoned rocket holds up to 15 years in the harsh environment of space.

Prepping for the future … Astroscale’s ADRAS-J mission is partially funded by the Japan Aerospace Exploration Agency (JAXA). Astroscale and JAXA also have a contract for a follow-up mission named ADRAS-J2, which will attempt to link up with the same H-IIA rocket and steer it on a trajectory to burn up in Earth’s atmosphere. This would be the first demonstration of active debris removal, a concept pursued by Astroscale and other companies to help clear space junk out of low-Earth orbit.

An update on Ariane 6. The European Space Agency has released its first update on the results from the first flight of the Ariane 6 rocket since its launch July 9. Europe’s new flagship rocket had a mostly successful inaugural test flight. Its first stage, solid rocket boosters, and upper stage performed as expected for the first phase of the flight, delivering eight small satellites into an on-target orbit. The launch pad at the Guiana Space Center in South America also held up to the violent environment of launch, ESA said.

Still investigating … However, the final phase of the mission didn’t go according to plan. The upper stage’s Vinci engine was supposed to reignite for a third time on the test flight to deorbit the rocket, which would have released two small reentry capsules on technology demonstration missions to test heat shield technologies. This didn’t happen. An Auxiliary Propulsion Unit, which is a small engine to provide additional bursts of thrust and pressurize the upper stage’s propellant tanks, shut down shortly after startup ahead of the third burn of the primary Vinci engine. “This meant the Vinci engine’s third boost could not take place,” ESA said. “Analysis of the APU’s behavior is ongoing and further information will be made available as soon as possible, while the next task force update is expected in September.” (submitted by Ken the Bin)

Room to grow at Starbase. SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months, Ars reports. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026. To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site.

The answer is probably yes … On Monday, the FAA signaled that it is inclined to grant this request. The agency released a draft assessment indicating that its extensive 2022 analysis of Starship launch activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposal for more launches. There is more to do for this conclusion to become official, including public meetings and a public comment period this month.

SpaceX eyes Australia. SpaceX is in talks with US and Australian officials to land and recover one of its Starship rockets off Australia’s coast, a possible first step toward a bigger presence for Elon Musk’s company in the region as the two countries bolster security ties, Reuters reports. At the end of SpaceX’s fourth Starship test flight in June, the rocket made a controlled splashdown in the Indian Ocean hundreds of miles off the northwest coast of Australia. The discussions now underway are focused on the possibility of towing a future Starship vehicle from its splashdown point in the ocean to a port in Australia, where SpaceX engineers could inspect it and learn more about how it performed.

Eventually, it’ll come back to land … On the next Starship flight, currently planned for no earlier than late August, SpaceX plans to attempt to recover Starship’s giant Super Heavy booster using catch arms on the launch pad tower in Texas. On Sunday, Elon Musk told SpaceX and Tesla enthusiasts at an event called the “X Takeover” that it will take a few more flights for engineers to get comfortable returning the Starship itself to a landing onshore. “We want to be really confident that the ship heat shield is super robust and lands at the exact right location,” he said. “So before we try to bring the ship back to the launch site, we probably want to have at least three successful landings of the ship [at sea].” (submitted by Ken the Bin)

Next three launches

August 2: Electron | “Owl for One, One for Owl” | Mahia Peninsula, New Zealand | 16: 39 UTC

August 3: Falcon 9 | NG-21 | Cape Canaveral Space Force Station, Florida | 15: 28 UTC

August 4: Falcon 9 | Starlink 11-1 | Vandenberg Space Force Base, California | 07: 00 UTC

Listing image by SpaceX

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia Read More »