moon

intuitive-machines—known-for-its-moon-landers—will-become-a-military-contractor

Intuitive Machines—known for its Moon landers—will become a military contractor

The company’s success in just reaching the Moon’s surface has put it in position to become one of NASA’s leading lunar contractors. NASA has awarded more robotic lunar lander contracts to Intuitive Machines than to any other company, with two missions complete and at least two more in development. Intuitive Machines is also one of the companies NASA selected to compete for a contract to develop an unpressurized Moon buggy for astronauts to drive across the lunar surface.

Branching out

The addition of Lanteris will make Intuitive Machines competitive for work outside of the lunar realm.

“This marks the moment Intuitive Machines transitions from a lunar company to a multi-domain space prime, setting the pace for how the industry’s next generation will operate,” said Steve Altemus, the company’s CEO.

Altemus said Lanteris will initially become a subsidiary of Intuitive Machines, followed by a complete integration under the Intuitive Machines banner.

Lanteris builds numerous satellites for the US Space Force, NASA, and commercial customers. The company can trace its history to 1957, when it was established as the Western Development Laboratories division of Philco Corporation, a battery and electronics manufacturer founded in 1892.

Philco constructed a satellite factory in Palo Alto, California, and produced its first spacecraft for launch in 1960. The satellite, named Courier 1B, made history as the world’s first active repeater communications relay station in orbit, meaning it could receive messages from the ground, store them, and then retransmit them.

The contractor underwent numerous mergers and acquisitions, becoming part of Ford Motor Company, Loral Corporation, and the Canadian company MDA Space before it was bought up by Advent more than two years ago. In nearly 70 years, the company has produced more than 300 satellites, many of them multi-ton platforms for broadcasting television signals from geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. Lanteris has contracts to build dozens more satellites in the next few years.

Intuitive Machines—known for its Moon landers—will become a military contractor Read More »

spacex-teases-simplified-starship-as-alarms-sound-over-moon-landing-delays

SpaceX teases simplified Starship as alarms sound over Moon landing delays


“SpaceX shares the goal of returning to the Moon as expeditiously as possible.”

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

SpaceX on Thursday released the most detailed public update in nearly two years on its multibillion-dollar contract to land astronauts on the Moon for NASA, amid growing sentiment that China is likely to beat the United States back to the lunar surface with humans.

In a lengthy statement published on SpaceX’s website Thursday, the company said it “will be a central enabler that will fulfill the vision of NASA’s Artemis program, which seeks to establish a lasting presence on the lunar surface… and ultimately forge the path to land the first humans on Mars.”

Getting to Mars is SpaceX’s overarching objective, a concise but lofty mission statement introduced by Elon Musk at the company’s founding nearly a quarter-century ago. Musk has criticized NASA’s Artemis program, which aims to return US astronauts to the Moon for the first time since the last Apollo lunar mission in 1972, as unambitious and too reliant on traditional aerospace contractors.

Is this a priority for SpaceX?

The Starship rocket and its massive Super Heavy booster are supposed to be SpaceX’s solution for fulfilling Musk’s mission of creating a settlement on Mars. The red planet has been the focus each time Musk has spoken at length about Starship in the last couple of years, with Moon missions receiving little or no time in his comments, whether they’re scripted or off the cuff.

In the background, SpaceX’s engineers have been busy developing a version of the Starship rocket to fly crews to and from the surface of the Moon for NASA. The agency’s current architecture calls for astronauts to transit from the Earth to the vicinity of the Moon inside NASA’s Orion spacecraft, made by Lockheed Martin, then link up with Starship in lunar orbit for a ride to the Moon’s south pole.

After completing their mission on the surface, the astronauts will ride Starship back into space and dock with Orion to bring them home. Starship and Orion may also link together by docking at the planned Gateway mini-space station orbiting the Moon, but Gateway’s future is in question as NASA faces budget cuts.

NASA has contracts with SpaceX valued at more than $4 billion to land two astronaut crews on the Moon on NASA’s Artemis III and Artemis IV missions. The contract also covers milestones ahead of any human mission, such as an uncrewed Starship landing and takeoff at the Moon, to prove the vehicle is ready.

SpaceX’s Starship descends toward the Indian Ocean at the conclusion of Flight 11 on October 3. Credit: SpaceX

The fresh update from SpaceX lists recent achievements the company has accomplished on the path to the Moon, including demos of life support and thermal control systems, the docking adapter to link Starship with Orion, navigation hardware and software, a landing leg structural test, and engine firings in conditions similar to what the ship will see at the Moon.

Many of these milestones were completed ahead of schedule, SpaceX said. But the biggest tests, such as demonstrating in-orbit refueling, remain ahead. Some NASA officials believe mastering orbital refueling will take many tries, akin to SpaceX’s iterative two steps forward, one step back experience with its initial Starship test flights.

The first test to transfer large amounts of cryogenic liquid methane and liquid oxygen between two Starships in low-Earth orbit is now planned for next year. This time a year ago, SpaceX aimed to launch the first orbital refueling demo before the end of 2025.

Orbital refueling is key to flying Starship to the Moon or Mars. The rocket consumes all of its propellant getting to low-Earth orbit, and it needs more gas to go farther. For lunar missions, SpaceX will launch a Starship-derived propellant depot into orbit, refill it with perhaps a dozen or more Starship tankers, and then dock the Starship lander with it to load its tanks before heading off to the Moon.

Officials haven’t given a precise number of tanker flights required for a Starship lunar lander. It’s likely engineers won’t settle on an exact number until they obtain data on how much of the super-cold liquid propellant boils off in space, and how efficient it is to transfer from ship to ship. Whatever the number, SpaceX says Starship’s design for recovery and rapid reuse will facilitate a fast-paced launch and refueling campaign.

SpaceX tests the elevator to be used on Starship. Credit: SpaceX

The upshot of overcoming the refueling hurdle is Starship’s promise of becoming a transformative vehicle. Starship is enormous compared to any other concept for landing on the Moon. One single Starship has a pressurized habitable volume of more than 600 cubic meters, or more than 21,000 cubic feet, roughly two-thirds that of the entire International Space Station, according to SpaceX. Starship will have dual airlocks, or pathways for astronauts and equipment to exit and enter the spacecraft.

An elevator will lower people and cargo down to the lunar surface from the crew cabin at the top of the 15-story-tall spacecraft. For pure cargo missions, SpaceX says Starship will be capable of landing up to 100 metric tons of cargo directly on the Moon’s surface. This would unlock the ability to deliver large rovers, nuclear reactors, or lunar habitats to the Moon in one go. In the long run, the Starship architecture could allow landers to be reused over and over again. All of this is vital if NASA wants to build a permanent base or research outpost on the Moon.

A competition in more ways than one

But hard things take time. SpaceX dealt with repeated setbacks in the first half of this year: three in-flight failures of Starship and one Starship explosion on the ground at the company’s development facility in South Texas. Since then, teams have reeled off consecutive successful Starship test flights ahead of the debut of an upgraded Starship variant called Version 3 in the coming months. Starship Version 3 will have the accoutrements for refueling, and SpaceX says this will also be the version to fly to the Moon.

The recent Starship delays, coupled with the scope of work to go, have raised concerns that the Artemis program is falling behind China’s initiative to land its own astronauts on the Moon. China’s goal is to do it by 2030, a schedule reiterated in Chinese state media this week. The Chinese program relies on an architecture more closely resembling NASA’s old Apollo designs.

The official schedule for the first Artemis crew landing, on Artemis III, puts it in 2027, but that timeline is no longer achievable. Starship and new lunar spacesuits developed by Axiom Space won’t be ready, in part because NASA didn’t award the contracts to SpaceX and Axiom until 2021 and 2022.

All of this adds up to waning odds that the United States can beat China back to the Moon, according to a growing chorus of voices in the space community. Last month, former NASA chief Jim Bridenstine, who led the agency during the first Trump administration, told Congress the United States was likely to lose the second lunar space race.

At a space conference earlier this week, Bridenstine suggested the Trump administration use its powers to fast-track a lunar landing, even floating the idea of invoking the Defense Production Act, a law that grants the president authority to marshal industrial might to meet pressing national needs.

An executive order from President Donald Trump could authorize such an effort and declare a “national security imperative that we’re going to beat China to the Moon,” Bridenstine said at the American Astronautical Society’s von Braun Space Exploration Symposium in Huntsville, Alabama.

Charlie Bolden, NASA’s administrator under former President Barack Obama, also expressed doubts that NASA could land humans on the Moon before China, or by the end of Trump’s term in the White House. “Let’s be real, OK? Everybody in this room knows, to say we’re going to do it by the end of the term, or we’re going to do it before the Chinese, that doesn’t help industry.”

But Bolden said maybe it’s not so terrible if China lands people on the Moon before NASA can return with astronauts. “We may not make 2030, and that’s OK with me, as long as we get there in 2031 better than they are with what they have there.”

Sean Duffy, NASA’s acting administrator, doesn’t see it the same way. Duffy said last week he would give contractors until this Wednesday to propose other ways of landing astronauts on the Moon sooner than the existing plan. SpaceX and Blue Origin, the space company founded by billionaire Jeff Bezos, confirmed they submitted updated plans to NASA this week.

SpaceX released a new rendering of the internal crew cabin for the Starship lunar lander. Credit: SpaceX

Blue Origin has a separate contract with NASA to provide its own human-rated lunar lander—Blue Moon Mark 2—for entry into service on the Artemis V mission, likely not to occur before the early 2030s. A smaller unpiloted lander—Blue Moon Mark 1—is on track to launch on Blue Origin’s first lunar landing attempt next year.

Blue Moon Mark 1 is still a big vehicle, standing taller than the lunar lander used by NASA during the Apollo program. But it doesn’t match the 52-foot (16-meter) height of Blue Origin’s Mark 2 lander, and tops out well short of the roughly 165-foot-tall (50-meter) Starship lander.

What’s more, Blue Moon Mark 1 won’t need to be refueled after launch, unlike Starship and Mark 2. Jacki Cortese, senior director of civil space at Blue Origin, confirmed Tuesday that her company is looking at employing a “more incremental approach” using Mark 1 to accelerate an Artemis crew landing. Ars first reported Blue Origin was studying how to modify Blue Moon Mark 1 for astronauts.

All of this is a reminder of something Blue Origin said in 2021, when NASA passed over Bezos’ company to award the first Artemis lander contract to SpaceX. Blue Origin protested the award and filed a lawsuit against the government, triggering a lunar lander work stoppage that lasted several months until a federal judge dismissed the suit.

Blue Origin said SpaceX’s approach with numerous refueling sorties was “immensely complex and high risk” and argued its proposal was the better option for NASA. The statement has taken on a meme-worthy status among fans of Starship.

But SpaceX bid a lower cost, and NASA officials said it was the only proposal the agency could afford at the time. And then, when Blue Origin won a contract from NASA in 2023 to provide a second lander option, the company’s concept also hinged on refueling the Blue Moon Mark 2 lander in space.

Now, SpaceX is making a new offering to NASA. Like Blue Origin, SpaceX said it has sent in a proposal for a “simplified architecture” for landing astronauts on the Moon, but did not provide details.

“We’ve shared and are formally assessing a simplified mission architecture and concept of operations that we believe will result in a faster return to the Moon while simultaneously improving crew safety,” the company said.

Since NASA selected SpaceX for the Human Landing System contract in 2021, the company said it has been “consistently responsive to NASA as requirements for Artemis III have changed.”

For example, NASA originally required SpaceX to only demonstrate it could land Starship on the Moon before moving forward with a crew mission. Lori Glaze, who leads NASA’s human exploration division, said in July that the agency is now requiring the uncrewed landing demo to also include an ascent from the Moon’s surface. NASA wants to know if Starship can not just land astronauts on the Moon, but also get them back.

“Starship continues to simultaneously be the fastest path to returning humans to the surface of the Moon and a core enabler of the Artemis program’s goal to establish a permanent, sustainable presence on the lunar surface,” SpaceX said. “SpaceX shares the goal of returning to the Moon as expeditiously as possible, approaching the mission with the same alacrity and commitment that returned human spaceflight capability to America under NASA’s Commercial Crew program.”

An artist’s illustration of multiple Starships on the lunar surface, with a Moon base in the background. Credit: SpaceX

SpaceX has built a reputation for doing things quickly. One example has been the rapid-fire launch cadence of the company’s workhorse Falcon 9 rocket. SpaceX is setting up launch pads and factories to manufacture and launch Super Heavy and Starshipcombining together to make the largest rocket ever built—at an even faster rate than Falcon 9.

The company has launched 11 full-scale test flights of Starship/Super Heavy since April 2023. “This campaign has quickly matured the core Starship and has produced numerous feats,” SpaceX said. The company listed some of them:

  • Multiple successful ascents of the world’s most powerful rocket
  • The launch, return, catch, and reuse of that rocket to unlock the high launch rate cadence needed for lunar missions
  • The transfer of approximately 5 metric tons of cryogenic propellant between tanks while in space
  • Successful in-space relights of the Raptor engines that are critical for the maneuvers that will send Starship to the Moon
  • Multiple controlled reentries through Earth’s atmosphere

It’s true that these feats have come fast. Many more remain on the road ahead before SpaceX can make good on its commitment to NASA.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX teases simplified Starship as alarms sound over Moon landing delays Read More »

nasa’s-next-moonship-reaches-last-stop-before-launch-pad

NASA’s next Moonship reaches last stop before launch pad

The Orion spacecraft, which will fly four people around the Moon, arrived inside the cavernous Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida late Thursday night, ready to be stacked on top of its rocket for launch early next year.

The late-night transfer covered about 6 miles (10 kilometers) from one facility to another at the Florida spaceport. NASA and its contractors are continuing preparations for the Artemis II mission after the White House approved the program as an exception to work through the ongoing government shutdown, which began on October 1.

The sustained work could set up Artemis II for a launch opportunity as soon as February 5 of next year. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will be the first humans to fly on the Orion spacecraft, a vehicle that has been in development for nearly two decades. The Artemis II crew will make history on their 10-day flight by becoming the first people to travel to the vicinity of the Moon since 1972.

Where things stand

The Orion spacecraft, developed by Lockheed Martin, has made several stops at Kennedy over the last few months since leaving its factory in May.

First, the capsule moved to a fueling facility, where technicians filled it with hydrazine and nitrogen tetroxide propellants, which will feed Orion’s main engine and maneuvering thrusters on the flight to the Moon and back. In the same facility, teams loaded high-pressure helium and ammonia coolant into Orion propulsion and thermal control systems.

The next stop was a nearby building where the Launch Abort System was installed on the Orion spacecraft. The tower-like abort system would pull the capsule away from its rocket in the event of a launch failure. Orion stands roughly 67 feet (20 meters) tall with its service module, crew module, and abort tower integrated together.

Teams at Kennedy also installed four ogive panels to serve as an aerodynamic shield over the Orion crew capsule during the first few minutes of launch.

The Orion spacecraft, with its Launch Abort System and ogive panels installed, is seen last month inside the Launch Abort System Facility at Kennedy Space Center, Florida. Credit: NASA/Frank Michaux

It was then time to move Orion to the Vehicle Assembly Building (VAB), where a separate team has worked all year to stack the elements of NASA’s Space Launch System rocket. In the coming days, cranes will lift the spacecraft, weighing 78,000 pounds (35 metric tons), dozens of stories above the VAB’s center aisle, then up and over the transom into the building’s northeast high bay to be lowered atop the SLS heavy-lift rocket.

NASA’s next Moonship reaches last stop before launch pad Read More »

blue-origin-aims-to-land-next-new-glenn-booster,-then-reuse-it-for-moon-mission

Blue Origin aims to land next New Glenn booster, then reuse it for Moon mission


“We fully intend to recover the New Glenn first stage on this next launch.”

New Glenn lifts off on its debut flight on January 16, 2025. Credit: Blue Origin

There’s a good bit riding on the second launch of Blue Origin’s New Glenn rocket.

Most directly, the fate of a NASA science mission to study Mars’ upper atmosphere hinges on a successful launch. The second flight of Blue Origin’s heavy-lifter will send two NASA-funded satellites toward the red planet to study the processes that drove Mars’ evolution from a warmer, wetter world to the cold, dry planet of today.

A successful launch would also nudge Blue Origin closer to winning certification from the Space Force to begin launching national security satellites.

But there’s more on the line. If Blue Origin plans to launch its first robotic Moon lander early next year—as currently envisioned—the company needs to recover the New Glenn rocket’s first stage booster. Crews will again dispatch Blue Origin’s landing platform into the Atlantic Ocean, just as they did for the first New Glenn flight in January.

The debut launch of New Glenn successfully reached orbit, a difficult feat for the inaugural flight of any rocket. But the booster fell into the Atlantic Ocean after three of the rocket’s engines failed to reignite to slow down for landing. Engineers identified seven changes to resolve the problem, focusing on what Blue Origin calls “propellant management and engine bleed control improvements.”

Relying on reuse

Pat Remias, Blue Origin’s vice president of space systems development, said Thursday that the company is confident in nailing the landing on the second flight of New Glenn. That launch, with NASA’s next set of Mars probes, is likely to occur no earlier than November from Cape Canaveral Space Force Station, Florida.

“We fully intend to recover the New Glenn first stage on this next launch,” Remias said in a presentation at the International Astronautical Congress in Sydney. “Fully intend to do it.”

Blue Origin, owned by billionaire Jeff Bezos, nicknamed the booster stage for the next flight “Never Tell Me The Odds.” It’s not quite fair to say the company’s leadership has gone all-in with their bet that the next launch will result in a successful booster landing. But the difference between a smooth touchdown and another crash landing will have a significant effect on Bezos’ Moon program.

That’s because the third New Glenn launch, penciled in for no earlier than January of next year, will reuse the same booster flown on the upcoming second flight. The payload on that launch will be Blue Origin’s first Blue Moon lander, aiming to become the largest spacecraft to reach the lunar surface. Ars has published a lengthy feature on the Blue Moon lander’s role in NASA’s effort to return astronauts to the Moon.

“We will use that first stage on the next New Glenn launch,” Remias said. “That is the intent. We’re pretty confident this time. We knew it was going to be a long shot [to land the booster] on the first launch.”

A long shot, indeed. It took SpaceX 20 launches of its Falcon 9 rocket over five years before pulling off the first landing of a booster. It was another 15 months before SpaceX launched a previously flown Falcon 9 booster for the first time.

With New Glenn, Blue’s engineers hope to drastically shorten the learning curve. Going into the second launch, the company’s managers anticipate refurbishing the first recovered New Glenn booster to launch again within 90 days. That would be a remarkable accomplishment.

Dave Limp, Blue Origin’s CEO, wrote earlier this year on social media that recovering the booster on the second New Glenn flight will “take a little bit of luck and a lot of excellent execution.”

On September 26, Blue Origin shared this photo of the second New Glenn booster on social media.

Blue Origin’s production of second stages for the New Glenn rocket has far outpaced manufacturing of booster stages. The second stage for the second flight was test-fired in April, and Blue completed a similar static-fire test for the third second stage in August. Meanwhile, according to a social media post written by Limp last week, the body of the second New Glenn booster is assembled, and installation of its seven BE-4 engines is “well underway” at the company’s rocket factory in Florida.

The lagging production of New Glenn boosters, known as GS1s (Glenn Stage 1s), is partly by design. Blue Origin’s strategy with New Glenn has been to build a small number of GS1s, each of which is more expensive and labor-intensive than SpaceX’s Falcon 9. This approach counts on routine recoveries and rapid refurbishment of boosters between missions.

However, this strategy comes with risks, as it puts the booster landings in the critical path for ramping up New Glenn’s launch rate. At one time, Blue aimed to launch eight New Glenn flights this year; it will probably end the year with two.

Laura Maginnis, Blue Origin’s vice president of New Glenn mission management, said last month that the company was building a fleet of “several boosters” and had eight upper stages in storage. That would bode well for a quick ramp-up in launch cadence next year.

However, Blue’s engineers haven’t had a chance to inspect or test a recovered New Glenn booster. Even if the next launch concludes with a successful landing, the rocket could come back to Earth with some surprises. SpaceX’s initial development of Falcon 9 and Starship was richer in hardware, with many boosters in production to decouple successful landings from forward progress.

Blue Moon

All of this means a lot is riding on an on-target landing of the New Glenn booster on the next flight. Separate from Blue Origin’s ambitions to fly many more New Glenn rockets next year, a good recovery would also mean an earlier demonstration of the company’s first lunar lander.

The lander set to launch on the third New Glenn mission is known as Blue Moon Mark 1, an unpiloted vehicle designed to robotically deliver up to 3 metric tons (about 6,600 pounds) of cargo to the lunar surface. The spacecraft will have a height of about 26 feet (8 meters), taller than the lunar lander used for NASA’s Apollo astronaut missions.

The first Blue Moon Mark 1 is funded from Blue Origin’s coffers. It is now fully assembled and will soon ship to NASA’s Johnson Space Center in Houston for vacuum chamber testing. Then, it will travel to Florida’s Space Coast for final launch preparations.

“We are building a series, not a singular lander, but multiple types and sizes and scales of landers to go to the Moon,” Remias said.

The second Mark 1 lander will carry NASA’s VIPER rover to prospect for water ice at the Moon’s south pole in late 2027. Around the same time, Blue will use a Mark 1 lander to deploy two small satellites to orbit the Moon, flying as low as a few miles above the surface to scout for resources like water, precious metals, rare Earth elements, and helium-3 that could be extracted and exploited by future explorers.

A larger lander, Blue Moon Mark 2, is in an earlier stage of development. It will be human-rated to land astronauts on the Moon for NASA’s Artemis program.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship. Credit: Blue Origin

NASA’s other crew-rated lander will be derived from SpaceX’s Starship rocket. But Starship and Blue Moon Mark 2 are years away from being ready to accommodate a human crew, and both require orbital cryogenic refueling—something never before attempted in space—to transit out to the Moon.

This has led to a bit of a dilemma at NASA. China is also working on a lunar program, eyeing a crew landing on the Moon by 2030. Many experts say that, as of today, China is on pace to land astronauts on the Moon before the United States.

Of course, 12 US astronauts walked on the Moon in the Apollo program. But no one has gone back since 1972, and NASA and China are each planning to return to the Moon to stay.

One way to speed up a US landing on the Moon might be to use a modified version of Blue Origin’s Mark 1 lander, Ars reported Thursday.

If this is the path NASA takes, the stakes for the next New Glenn launch and landing will soar even higher.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin aims to land next New Glenn booster, then reuse it for Moon mission Read More »

in-their-own-words:-the-artemis-ii-crew-on-the-frenetic-first-hours-of-their-flight

In their own words: The Artemis II crew on the frenetic first hours of their flight

No one will be able to sleep when the launch window opens, however.

Wiseman: About seven seconds prior to liftoff, the four main engines light, and they come up to full power. And then the solids light, and that’s when you’re going. What’s crazy to me is that it’s six and a half seconds into flight before the solids clear the top of the tower. Five million pounds of machinery going straight uphill. Six and a half seconds to clear the tower. As a human, I can’t wait to feel that force.

A little more than two minutes into flight, the powerful side-mounted boosters will separate. They will have done the vast majority of lifting to that point, with the rocket already reaching a velocity of 3,100 mph (5,000 kph) and an altitude of 30 miles (48 km), well on its way to space. As payload specialists, Koch and Hansen will largely be along for the ride. Wiseman, the commander, and Glover, the pilot, will be tracking the launch, although the rocket’s flight will be fully automated unless something goes wrong.

Wiseman: Victor and I, we have a lot of work. We have a lot of systems to monitor. Hopefully, everything goes great, and if it doesn’t, we’re very well-trained on what to do next.

After 8 minutes and 3 seconds, the rocket’s core stage will shut down, and the upper stage and Orion spacecraft will separate about 10 seconds later. They will be in space, with about 40 minutes to prepare for their next major maneuver.

In orbit

Koch: The wildest thing in this mission is that literally, right after main-engine cutoff, the first thing Jeremy and I do is get up and start working. I don’t know of a single other mission, certainly not in my memory, where that has been the case in terms of physical movement in the vehicle, setting things up.

Koch, Wiseman, and Glover have all flown to space before, either on a SpaceX Dragon or Russian Soyuz vehicle, and spent several months on the International Space Station. So they know how their bodies will react to weightlessness. Nearly half of all astronauts experience “space adaptation syndrome” during their first flight to orbit, and there is really no way to predict who it will afflict beforehand. This is a real concern for Hansen, a first-time flier, who is expected to hop out of his seat and start working.

Canadian Astronaut Jeremy Hansen is a first-time flier on Artemis II.

Credit: NASA

Canadian Astronaut Jeremy Hansen is a first-time flier on Artemis II. Credit: NASA

Hansen: I’m definitely worried about that, just from a space motion sickness point of view. So I’ll just be really intentional. I won’t move my head around a lot. Obviously, I’m gonna have to get up and move. And I’ll just be very intentional in those first few hours while I’m moving around. And the other thing that I’ll do—it’s very different from Space Station—is I just have everything memorized, so I don’t have to read the procedure on those first few things. So I’m not constantly going down to the [tablet] and reading, and then up. And I’ll just try to minimize what I do.

Koch and Hansen will set up and test essential life support systems on the spacecraft because if the bathroom does not work, they’re not going to the Moon.

Hansen: We kind of split the vehicle by side. So Christina is on the side of the toilet. She’s taking care of all that stuff. I’m on the side of the water dispenser, which is something they want to know: Can we dispense water? It’s not a very complicated system. We just got to get up, get the stuff out of storage, hook it up. I’ll have some camera equipment that I’ll pull out of there. I’ve got the masks we use if we have a fire and we’re trying to purge the smoke. I’ve got to get those set up and make sure they’re good to go. So it’s just little jobs, little odds and ends.

Unlike a conventional rocket mission, Artemis II vehicle’s upper stage, known as the Interim Cryogenic Propulsion Stage, will not fire right away. Rather, after separating from the core stage, Orion will be in an elliptical orbit that will take it out to an apogee of 1,200 nautical miles, nearly five times higher than the International Space Station. There, the crew will be further from Earth than anyone since the Apollo program.

In their own words: The Artemis II crew on the frenetic first hours of their flight Read More »

rocket-report:-keeping-up-with-kuiper;-new-glenn’s-second-flight-slips

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips


Amazon plans to conduct two launches of Kuiper broadband satellites just days apart.

An unarmed Trident II D5 Life Extension (D5LE) missile launches from an Ohio-class ballistic missile submarine off the coast of Florida. Credit: US Navy

Welcome to Edition 8.12 of the Rocket Report! We often hear from satellite operators—from the military to venture-backed startups—about their appetite for more launch capacity. With so many rocket launches happening around the world, some might want to dismiss these statements as a corporate plea for more competition, and therefore lower prices. SpaceX is on pace to launch more than 150 times this year. China could end the year with more than 70 orbital launches. These are staggering numbers compared to global launch rates just a few years ago. But I’m convinced there’s room for more alternatives for reliable (and reusable) rockets. All of the world’s planned mega-constellations will need immense launch capacity just to get off the ground, and if successful, they’ll go into regular replacement and replenishment cycles. Throw in the still-undefined Golden Dome missile shield and many nations’ desire for a sovereign launch capability, and it’s easy to see the demand curve going up.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sharp words from Astra’s Chris Kemp. Chris Kemp, the chief executive officer of Astra, apparently didn’t get the memo about playing nice with his competitors in the launch business. Kemp made some spicy remarks at the Berkeley Space Symposium 2025 earlier this month, billed as the largest undergraduate aerospace event at the university (see video of the talk). During the speech, Kemp periodically deviated from building up Astra to hurling insults at several of his competitors in the launch industry, Ars reports. To be fair to Kemp, some of his criticisms are not without a kernel of truth. But they are uncharacteristically rough all the same, especially given Astra’s uneven-at-best launch record and financial solvency to date.

Wait, what?! … Kemp is generally laudatory in his comments about SpaceX, but his most crass statement took aim at the quality of life of SpaceX employees at Starbase, Texas. He said life at Astra is “more fun than SpaceX because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn.” For the record, no SpaceX employees have been beheaded. “And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day.” Kemp also accused Firefly Aerospace of sending Astra “garbage” rocket engines as part of the companies’ partnership on propulsion for Astra’s next-generation rocket.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

A step forward for Europe’s reusable rocket program. No one could accuse the European Space Agency and its various contractors of moving swiftly when it comes to the development of reusable rockets. However, it appears that Europe is finally making some credible progress, Ars reports. Last week, the France-based ArianeGroup aerospace company announced that it completed the integration of the Themis vehicle, a prototype rocket that will test various landing technologies, on a launch pad in Sweden. Low-altitude hop tests, a precursor for developing a rocket’s first stage that can vertically land after an orbital launch, could start late this year or early next.

Hopping into the future … “This milestone marks the beginning of the ‘combined tests,’ during which the interface between Themis and the launch pad’s mechanical, electrical, and fluid systems will be thoroughly trialed, with the aim of completing a test under cryogenic conditions,” ArianeGroup said. This particular rocket will likely undergo only short hops, initially about 100 meters. A follow-up vehicle, Themis T1E, is intended to fly medium-altitude tests at a later date. Some of the learnings from these prototypes will feed into a smaller, reusable rocket intended to lift 500 kilograms to low-Earth orbit. This is under development by MaiaSpace, a subsidiary of ArianeGroup. Eventually, the European Space Agency would like to use technology developed as part of Themis to develop a new line of reusable rockets that will succeed the Ariane 6 rocket.

Navy conducts Trident missile drills. The US Navy carried out four scheduled missile tests of a nuclear-capable weapons system off the coast of Florida within the last week, Defense News reports. The service’s Strategic Systems Programs conducted flights of unarmed Trident II D5 Life Extension missiles from a submerged Ohio-class ballistic missile submarine from September 17 to September 21 as part of an ongoing scheduled event meant to test the reliability of the system. “The missile tests were not conducted in response to any ongoing world events,” a Navy release said.

Secret with high visibility … The Navy periodically performs these Trident missile tests off the coasts of Florida and California, taking advantage of support infrastructure and range support from the two busiest US spaceports. The military doesn’t announce the exact timing of the tests, but warnings issued for pilots to stay out of the area give a general idea of when they might occur. One of the launch events Sunday was visible from Puerto Rico, illuminating the night sky in photos published on social media. The missiles fell in the Atlantic Ocean as intended, the Navy said. The Trident II D5 missiles were developed in the 1980s and are expected to remain in service on the Navy’s ballistic missile submarines into the 2040s. The Trident system is one leg of the US military’s nuclear triad, alongside land-based Minuteman ballistic missiles and nuclear-capable strategic bombers. (submitted by EllPeaTea)

Firefly plans for Alpha’s return to flight. Firefly Aerospace expects to resume Alpha launches in the “coming weeks,” with two flights planned before the end of the year, Space News reports. These will be the first flights of Firefly’s one-ton-class Alpha rocket since a failure in April destroyed a Lockheed Martin tech demo satellite after liftoff from California. In a quarterly earnings call, Firefly shared a photo showing its next two Alpha rockets awaiting shipment from the company’s Texas factory.

Righting the ship … These next two launches really need to go well for Firefly. The Alpha rocket has, at best, a mixed record with only two fully successful flights in six attempts. Two other missions put their payloads into off-target orbits, and two Alpha launches failed to reach orbit at all. Firefly went public on the NASDAQ stock exchange last month, raising nearly $900 million in the initial public offering to help fund the company’s future programs, namely the medium-lift Eclipse rocket developed in partnership with Northrop Grumman. There’s a lot to like about Firefly. The company achieved the first fully successful landing of a commercial spacecraft on the Moon in March. NASA has selected Firefly for three more commercial landings on the Moon, and Firefly reported this week it has an agreement with an unnamed commercial customer for an additional dedicated mission. But the Alpha program hasn’t had the same level of success. We’ll see if Firefly can get the rocket on track soon. (submitted by EllPeaTea)

Avio wins contract to launch “extra-European” mission. Italian rocket builder Avio has signed a launch services agreement with US-based launch aggregator SpaceLaunch for a Vega C launch carrying an Earth observation satellite for an “extra-European institutional customer” in 2027, European Spaceflight reports. Avio announced that it had secured the launch contract on September 18. According to the company, the contract was awarded through an open international competition, with Vega C chosen for its “versatility and cost-effectiveness.” While Avio did not reveal the identity of the “extra-European” customer, it said that it would do so later this year.

Plenty of peculiarities … There are several questions to unpack here, and Andrew Parsonson of European Spaceflight goes through them all. Presumably, extra-European means the customer is based outside of Europe. Avio’s statement suggests we’ll find out the answer to that question soon. Details about the US-based launch broker SpaceLaunch are harder to find. SpaceLaunch appears to have been founded in January 2025 by two former Firefly Aerospace employees with a combined 40 years of experience in the industry. On its website, the company claims to provide end-to-end satellite launch integration, mission management, and launch procurement services with a “portfolio of launch vehicle capacity around the globe.” SpaceLaunch boasts it has supported the launch of more than 150 satellites on 12 different launch vehicles. However, according to public records, it does not appear that the company itself has supported a single launch. Instead, the claim seems to credit SpaceLaunch with launches that were actually carried out during the two founders’ previous tenures at Spaceflight, Firefly Aerospace, Northrop Grumman, and the US Air Force. (submitted by EllPeaTea)

Falcon 9 launches three missions for NASA and NOAA. Scientists loaded three missions worth nearly $1.6 billion on a SpaceX Falcon 9 rocket for launch Wednesday, toward an orbit nearly a million miles from Earth, to measure the supersonic stream of charged particles emanating from the Sun, Ars reports. One of the missions, from the National Oceanic and Atmospheric Administration (NOAA), will beam back real-time observations of the solar wind to provide advance warning of geomagnetic storms that could affect power grids, radio communications, GPS navigation, air travel, and satellite operations. The other two missions come from NASA, with research objectives that include studying the boundary between the Solar System and interstellar space and observing the rarely seen outermost layer of our own planet’s atmosphere.

Immense value …All three spacecraft will operate in orbit around the L1 Lagrange point, a gravitational balance point located more than 900,000 miles (1.5 million kilometers) from Earth. Bundling these three missions onto the same rocket saved at least tens of millions of dollars in launch costs. Normally, they would have needed three different rockets. Rideshare missions to low-Earth orbit are becoming more common, but spacecraft departing for more distant destinations like the L1 Lagrange point are rare. Getting all three missions on the same launch required extensive planning, a stroke of luck, and fortuitous timing. “This is the ultimate cosmic carpool,” said Joe Westlake, director of NASA’s heliophysics division. “These three missions heading out to the Sun-Earth L1 point riding along together provide immense value for the American taxpayer.”

US officials concerned about China mastering reusable launch. SpaceX’s dominance in reusable rocketry is one of the most important advantages the United States has over China as competition between the two nations extends into space, US Space Force officials said Monday. But several Chinese companies are getting close to fielding their own reusable rockets, Ars reports. “It’s concerning how fast they’re going,” said Brig. Gen. Brian Sidari, the Space Force’s deputy chief of space operations for intelligence. “I’m concerned about when the Chinese figure out how to do reusable lift that allows them to put more capability on orbit at a quicker cadence than currently exists.”

By the numbers … China has used 14 different types of rockets on its 56 orbital-class missions this year, and none have flown more than 11 times. Eight US rocket types have cumulatively flown 145 times, with 122 of those using SpaceX’s workhorse Falcon 9. Without a reusable rocket, China must maintain more rocket companies to sustain a launch rate of just one-third to one-half that of the United States. This contrasts with the situation just four years ago, when China outpaced the United States in orbital rocket launches. The growth in US launches has been a direct result of SpaceX’s improvements to launch at a higher rate, an achievement primarily driven by the recovery and reuse of Falcon 9 boosters and payload fairings.

Atlas V launches more Kuiper satellites. Roughly an hour past sunrise Thursday, an Atlas V rocket from United Launch Alliance took flight from Cape Canaveral Space Force Station, Florida. Onboard the rocket, flying in its most powerful configuration, were the next 27 Project Kuiper broadband satellites from Amazon, Spaceflight Now reports. This is the third batch of production satellites launched by ULA and the fifth overall for the growing low-Earth orbit constellation. The Atlas V rocket released the 27 Kuiper satellites about 280 miles (450 kilometers) above Earth. The satellites will use onboard propulsion to boost themselves to their assigned orbit at 392 miles (630 kilometers).

Another Kuiper launch on tap … With this deployment, Amazon now has 129 satellites in orbit. This is a small fraction of the network’s planned total of 3,232 satellites, but Amazon has enjoyed a steep ramp-up in the Kuiper launch cadence as the company’s satellite assembly line in Kirkland, Washington, continues churning out spacecraft. Another 24 Kuiper satellites are slated to launch September 30 on a SpaceX Falcon 9 rocket, and Amazon has delivered enough satellites to Florida for an additional launch later this fall. (submitted by EllPeaTea)

German military will fly with Ariane 6. Airbus Defense and Space has awarded Arianespace a contract to launch a pair of SATCOMBw-3 communications satellites for the German Armed Forces, European Spaceflight reports. Airbus is the prime contractor for the nearly $2.5 billion (2.1 billion euro) SATCOMBw-3 program, which will take over from the two-satellite SATCOMBw-2 constellation currently providing secure communications for the German military. Arianespace announced Wednesday that it had been awarded the contract to launch the satellites aboard two Ariane 6 rockets. “By signing this new strategic contract for the German Armed Forces, Arianespace accomplishes its core mission of guaranteeing autonomous access to space for European sovereign satellites,” said Arianespace CEO David Cavaillolès.

Running home to Europe … The chief goal of the Ariane 6 program is to provide Europe with independent access to space, something many European governments see as a strategic requirement. Several European military, national security, and scientific satellites have launched on SpaceX Falcon 9 rockets in the last few years as officials waited for the debut of the Ariane 6 rocket. With three successful Ariane 6 flights now in the books, European customers seem to now have the confidence to commit to flying their satellites on Ariane 6. (submitted by EllPeaTea)

Artemis II launch targeted for February. NASA is pressing ahead with preparations for the first launch of humans beyond low-Earth orbit in more than five decades, and officials said Tuesday that the Artemis II mission could take flight early next year, Ars reports. Although work remains to be done, the space agency is now pushing toward a launch window that opens on February 5, 2026, officials said during a news conference on Tuesday at Johnson Space Center. The Artemis II mission represents a major step forward for NASA and seeks to send four astronauts—Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen—around the Moon and back. The 10-day mission will be the first time astronauts have left low-Earth orbit since the Apollo 17 mission in December 1972.

Orion named Integrity The first astronauts set to fly to the Moon in more than 50 years will do so in Integrity, Ars reports. NASA’s Artemis II crew revealed Integrity as the name of their Orion spacecraft during a news conference on Wednesday at the Johnson Space Center in Houston. “We thought, as a crew, we need to name this spacecraft. We need to have a name for the Orion spacecraft that we’re going to ride this magical mission on,” said Wiseman, commander of the Artemis II mission.

FAA reveals new Starship trajectories. Sometime soon, perhaps next year, SpaceX will attempt to fly one of its enormous Starship rockets from low-Earth orbit back to its launch pad in South Texas. A successful return and catch at the launch tower would demonstrate a key capability underpinning Elon Musk’s hopes for a fully reusable rocket. In order for this to happen, SpaceX must overcome the tyranny of geography. A new document released by the Federal Aviation Administration shows the narrow corridors Starship will fly to space and back when SpaceX tries to recover them, Ars reports.

Flying over people It was always evident that flying a Starship from low-Earth orbit back to Starbase would require the rocket to fly over Mexico and portions of South Texas. The rocket launches to the east over the Gulf of Mexico, so it must approach Starbase from the west when it comes in for a landing. The new maps show SpaceX will launch Starships to the southeast over the Gulf and the Caribbean Sea, and directly over Jamaica, or to the northeast over the Gulf and the Florida peninsula. On reentry, the ship will fly over Baja California and Mexico’s interior near the cities of Hermosillo and Chihuahua, each with a population of roughly a million people. The trajectory would bring Starship well north of the Monterrey metro area and its 5.3 million residents, then over the Rio Grande Valley near the Texas cities of McAllen and Brownsville.

New Glenn’s second flight at least a month away. The second launch of Blue Origin’s New Glenn rocket, carrying a NASA smallsat mission to Mars, is now expected in late October or early November, Space News reports. Tim Dunn, NASA’s senior launch director at Kennedy Space Center, provided an updated schedule for the second flight of New Glenn in comments after a NASA-sponsored launch on a Falcon 9 rocket Wednesday. Previously, the official schedule from NASA showed the launch date as no earlier than September 29.

No surprise … It was already apparent that this launch wouldn’t happen September 29. Blue Origin has test-fired the second stage for the upcoming flight of the New Glenn rocket but hasn’t rolled the first stage to the launch pad for its static fire. Seeing the rocket emerge from Blue’s factory in Florida will be an indication that the launch date is finally near. Blue Origin will launch NASA’s ESCAPADE mission, a pair of small satellites to study how the solar wind interacts with the Martian upper atmosphere.

Blue Origin will launch a NASA rover to the Moon. NASA has awarded Blue Origin a task order worth up to $190 million to deliver its Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon’s surface, Aviation Week & Space Technology reports. Blue Origin, one of 13 currently active Commercial Lunar Payload Services (CLPS) providers, submitted the only bid to carry VIPER to the Moon after NASA requested offers from industry last month. NASA canceled the VIPER mission last year, citing cost overruns with the rover and delays in its planned ride to the Moon aboard a lander provided by Astrobotic. But engineers had already completed assembly of the rover, and scientists protested NASA’s decision to terminate the mission.

Some caveats … Blue Origin will deliver VIPER to a location near the Moon’s south pole in late 2027 using a robotic Blue Moon MK1 lander, a massive craft larger than the Apollo lunar landing module. The company’s first Blue Moon MK1 lander is scheduled to fly to the Moon next year. NASA’s contract for the VIPER delivery calls for Blue Origin to design accommodations for the rover on the Blue Moon lander. The agency said it will decide whether to proceed with the actual launch on a New Glenn rocket and delivery of VIPER to the Moon based partially on the outcome of the first Blue Moon test flight next year.

Next three launches

Sept. 26: Long March 4C | Unknown Payload | Jiuquan Satellite Launch Center, China | 19: 20 UTC

Sept. 27: Long March 6A | Unknown Payload | Taiyuan Satellite Launch Center, China | 12: 39 UTC

Sept. 28: Falcon 9 | Starlink 11-20 | Vandenberg Space Force Base, California | 23: 32 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips Read More »

the-crew-of-artemis-ii-will-fly-on-integrity-during-mission-to-the-moon

The crew of Artemis II will fly on Integrity during mission to the Moon

Three men and one woman, all in orange pressure suits, stand in front of a silver-coated space capsule in an overhead view

The Artemis II crew (from the right): Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen pose in front of their Orion spacecraft, which they have named Integrity. Credit: NASA/Rad Sinyak

Whole and undivided

Ultimately, Integrity was inspired by something one of their instructors said while on a team-building trip to Iceland.

“He coined this for us, and we held on to it,” said Hansen, who, unlike his NASA crewmates, is a Canadian Space Agency astronaut. “It was this idea that you’re not a person who has integrity, you’re a person who strives to be in integrity. Sometimes you’re out of integrity, and sometimes you’re in your integrity. That was profound for all of us.”

For Glover, it boiled down to the definition.

“The Latin root means ‘whole.’ It’s a very simple concept, and it’s about being whole. This crew comes together as pieces—the four of us and our backups—but the six of us make up a whole team. The vehicle, the pieces come together and make up a whole spacecraft,” he said.

“What people anecdotally say is that integrity is what you do when no one’s watching. That, and truth, honor, and integrity matter,” said Glover. “There are so many layers to that name and what it means and what it inspires.”

Integrating Integrity

Integrity is one of the tenets of the Astronaut Code of Professional Responsibility. It is also one of the Canadian Space Agency’s core values.

“We all strive to be in integrity all of the time, but integrity isn’t an absolute that you either have or don’t have,” said Koch. “So this helps us give grace and build trust with each other.”

“I hope that people hearing [the name] over the 10 days of the mission appreciate all of the different things that it means, from a whole ship, a whole crew, to a wholeness and wellness that I think humanity just needs. We need to hear more of that togetherness and wholeness,” said Glover.

Three men and a woman, all in blue flight suits, pose for a photograph backdropped by images of the moon and Mars

NASA’s Artemis II crew (from the left) Victor Glover, Reid Wiseman, Christina Koch, and Jeremy Hansen at the Johnson Space Center in Houston on Wednesday, September 24, 2025. Credit: collectSPACE.com

Now that it has been announced, next up is for Integrity to be used as the crew’s possible call sign.

“We waited to make sure the whole enterprise was ready for us to announce it before we even used it,” said Glover. “I think we’ll start using it in sims: ‘Houston, Integrity. Integrity, Houston.’ That’s the plan.

“But if someone doesn’t like that, then we won’t, and we can say Orion,” he said.

The crew of Artemis II will fly on Integrity during mission to the Moon Read More »

a-japanese-lander-crashed-on-the-moon-after-losing-track-of-its-location

A Japanese lander crashed on the Moon after losing track of its location


“It’s not impossible, so how do we overcome our hurdles?”

Takeshi Hakamada, founder and CEO of ispace, attends a press conference in Tokyo on June 6, 2025, to announce the outcome of his company’s second lunar landing attempt. Credit: Kazuhiro Nogi/AFP via Getty Images

A robotic lander developed by a Japanese company named ispace plummeted to the Moon’s surface Thursday, destroying a small rover and several experiments intended to demonstrate how future missions could mine and harvest lunar resources.

Ground teams at ispace’s mission control center in Tokyo lost contact with the Resilience lunar lander moments before it was supposed to touch down in a region called Mare Frigoris, or the Sea of Cold, a basaltic plain in the Moon’s northern hemisphere.

A few hours later, ispace officials confirmed what many observers suspected. The mission was lost. It’s the second time ispace has failed to land on the Moon in as many tries.

“We wanted to make Mission 2 a success, but unfortunately we haven’t been able to land,” said Takeshi Hakamada, the company’s founder and CEO.

Ryo Ujiie, ispace’s chief technology officer, said the final data received from the Resilience lander—assuming it was correct—showed it at an altitude of approximately 630 feet (192 meters) and descending too fast for a safe landing. “The deceleration was not enough. That was a fact,” Ujiie told reporters in a press conference. “We failed to land, and we have to analyze the reasons.”

The company said in a press release that a laser rangefinder used to measure the lander’s altitude “experienced delays in obtaining valid measurement values.” The downward-facing laser fires light pulses toward the Moon during descent, and clocks the time it takes to receive a reflection. This time delay at light speed tells the lander’s guidance system how far it is above the lunar surface. But something went wrong in the altitude measurement system on Thursday.

“As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing,” ispace said. “Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface.”

Controllers sent a command to reboot the lander in hopes of reestablishing communication, but the Resilience spacecraft remained silent.

“Given that there is currently no prospect of a successful lunar landing, our top priority is to swiftly analyze the telemetry data we have obtained thus far and work diligently to identify the cause,” Hakamada said in a statement. “We will strive to restore trust by providing a report of the findings to our shareholders, payload customers, Hakuto-R partners, government officials, and all supporters of ispace.”

Overcoming obstacles

The Hakuto name harkens back to ispace’s origin in 2010 as a contender for the Google Lunar X-Prize, a sweepstakes that offered a $20 million grand prize to the first privately funded team to put a lander on the Moon. Hakamada’s group was called Hakuto, which means “white rabbit” in Japanese. The prize shut down in 2018 without a winner, leading some of the teams to dissolve or find new purpose. Hakamada stayed the course, raised more funding, and rebooted the program under the name Hakuto-R.

It’s a story of resilience, hence the name of ispace’s second lunar lander. The mission made it closer to the Moon than the ispace’s first landing attempt in 2023, but Thursday’s failure is a blow to Hakamada’s project.

“As a fact, we tried twice and we haven’t been able to land on the Moon,” Hakamada said through an interpreter. “So we have to say it’s hard to land on the Moon, technically. We know it’s not easy. It’s not something that everyone can do. We know it’s hard, but the important point is it’s not impossible. The US private companies have succeeded in landing, and also JAXA in Japan has succeeded in landing, so it’s not impossible. So how do we overcome our hurdles?”

The Resilience lander and Tenacious rover, seen mounted near the top of the spacecraft, inside a test facility at the Tsukuba Space Center in Tsukuba, Ibaraki Prefecture, on Thursday, Sept. 12, 2024. Credit: Toru Hanai/Bloomberg via Getty Images

In April 2023, ispace’s first lander crashed on the Moon due to a similar altitude measurement problem. The spacecraft thought it was on the surface of the Moon, but was actually firing its engine to hover at an altitude of 3 miles (5 kilometers). The spacecraft ran out of fuel and went into a free fall before impacting the Moon.

Engineers blamed software as the most likely reason for the altitude-measurement problem. During descent, ispace’s lander passed over a 10,000-foot-tall (3,000-meter) cliff, and the spacecraft’s computer interpreted the sudden altitude change as erroneous.

Ujiie, who leads ispace’s technical teams, said the failure mode Thursday was “similar” to that of the first mission two years ago. But at least in ispace’s preliminary data reviews, engineers saw different behavior from the Resilience lander, which flew with a new type of laser rangefinder after ispace’s previous supplier stopped producing the device.

“From Mission 1 to Mission 2, we improved the software,” Ujiie said. “Also, we improved how to approach the landing site… We see different phenomena from Mission 1, so we have to do more analysis to give you any concrete answers.”

If ispace landed smoothly on Thursday, the Resilience spacecraft would have deployed a small rover developed by ispace’s European subsidiary. The rover was partially funded by the Luxembourg Space Agency with support from the European Space Agency. It carried a shovel to scoop up a small amount of lunar soil and a camera to take a photo of the sample. NASA had a contract with ispace to purchase the lunar soil in a symbolic proof of concept to show how the government might acquire material from commercial mining companies in the future.

The lander also carried a water electrolyzer experiment to demonstrate technologies that could split water molecules into hydrogen and oxygen, critical resources for a future Moon base. Other payloads aboard the Resilience spacecraft included cameras, a food production experiment, a radiation monitor, and a Swedish art project called “MoonHouse.”

The spacecraft chassis used for ispace’s first two landing attempts was about the size of a compact car, with a mass of about 1 metric ton (2,200 pounds) when fully fueled. The company’s third landing attempt is scheduled for 2027 with a larger lander. Next time, ispace will fly to the Moon in partnership between the company’s US subsidiary and Draper Laboratory, which has a contract with NASA to deliver experiments to the lunar surface.

Track record

The Resilience lander launched in January on top of a SpaceX Falcon 9 rocket, riding to space in tandem with a commercial Moon lander named Blue Ghost from Firefly Aerospace. Firefly’s lander took a more direct journey to the Moon and achieved a soft landing on March 2. Blue Ghost operated on the lunar surface for two weeks and completed all of its objectives.

The trajectory of ispace’s lander was slower, following a lower-energy, more fuel-efficient path to the Moon before entering lunar orbit last month. Once in orbit, the lander made a few more course corrections to line up with its landing site, then commenced its final descent on Thursday.

Thursday’s landing attempt was the seventh time a privately developed Moon lander tried to conduct a controlled touchdown on the lunar surface.

Two Texas-based companies have had the most success. One of them, Houston-based Intuitive Machines, landed its Odysseus spacecraft on the Moon in February 2024, marking the first time a commercial lander reached the lunar surface intact. But the lander tipped over after touchdown, cutting its mission short after achieving some limited objectives. A second Intuitive Machines lander reached the Moon in one piece in March of this year, but it also fell over and didn’t last as long as the company’s first mission.

Firefly’s Blue Ghost operated for two weeks after reaching the lunar surface, accomplishing all of its objectives and becoming the first fully successful privately owned spacecraft to land and operate on the Moon.

Intuitive Machines, Firefly, and a third company—Astrobotic Technology—have launched their lunar missions under contract with a NASA program aimed at fostering a commercial marketplace for transportation to the Moon. Astrobotic’s first lander failed soon after its departure from Earth. The first two missions launched by ispace were almost fully private ventures, with limited participation from the Japanese space agency, Luxembourg, and NASA.

The Earth looms over the Moon’s horizon in this image from lunar orbit captured on May 27, 2025, by ispace’s Resilience lander. Credit: ispace

Commercial travel to the Moon only began in 2019, so there’s not much of a track record to judge the industry’s prospects. When NASA started signing contracts for commercial lunar missions, the then-chief of the agency’s science vision, Thomas Zurbuchen, estimated the initial landing attempts would have a 50-50 chance of success. On the whole, NASA’s experience with Intuitive Machines, Firefly, and Astrobotic isn’t too far off from Zurbuchen’s estimate, with one full success and a couple of partial successes.

The commercial track record worsens if you include private missions from ispace and Israel’s Beresheet lander.

But ispace and Hakamada haven’t given up on the dream. The company’s third mission will launch under the umbrella of the same NASA program that contracted with Intuitive Machines, Firefly, and Astrobotic. Hakamada cited the achievements of Firefly and Intuitive Machines as evidence that the commercial model for lunar missions is a valid one.

“The ones that have the landers, there are two companies I mentioned. Also, Blue Origin maybe coming up. Also, ispace is a possibility,” Hakamada said. “So, very few companies. We would like to catch up as soon as possible.”

It’s too early to know how the failure on Thursday might impact ispace’s next mission with Draper and NASA.

“I have to admit that we are behind,” said Jumpei Nozaki, director and chief financial officer at ispace. “But we do not really think we are behind from the leading group yet. It’s too early to decide that. The players in the world that can send landers to the Moon are very few, so we still have some competitive edge.”

“Honestly, there were some times I almost cried, but I need to lead this company, and I need to have a strong will to move forward, so it’s not time for me to cry,” Hakamada said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

A Japanese lander crashed on the Moon after losing track of its location Read More »

blue-origin-boss:-government-should-forget-launch-and-focus-on-“exotic”-missions

Blue Origin boss: Government should forget launch and focus on “exotic” missions


“There’s not yet a commercial reason only to go to the Moon with humans.”

In this long exposure photograph, Blue Origin’s New Glenn rocket pierces a cloud deck over Florida’s Space Coast on its inaugural flight January 16. Credit: Blue Origin

Eighteen months after leaving his job as a vice president at Amazon to take over as Blue Origin’s chief executive, Dave Limp has some thoughts on how commercial companies and government agencies like NASA should explore the Solar System together.

Limp had no background in the space industry before taking the helm of Jeff Bezos’ space company in December 2023. He started his career as a computer scientist at Apple, took a stint at a venture capital firm, and joined Amazon in 2010, where he managed development of consumer devices like Alexa, Kindle, and the Fire TV.

“I had no thoughts of ever running a space company,” Limp said Thursday at a space conference in Washington, DC. “I’ve done consumer electronics my whole life. Started at Apple and did a bunch of other things, and so when I decided to retire from Amazon, I was looking for something that I could give back a little bit, be a little bit more philanthropic in the sort of second half of my career. I didn’t want to stop working, just wanted to do something different. And about that same time, Jeff was looking for a CEO.”

While he’s still a relative newcomer to the space business, Limp’s views align with those of many policy wonks and industry leaders who have the ears of senior officials in the Trump administration, including Jared Isaacman, President Trump’s nominee to become the next NASA administrator. Limp’s long tenure at Amazon and his selection as Blue Origin’s new CEO demonstrate that he also has the trust of Bezos, who was dissatisfied with his company’s slow progress in spaceflight.

“I think Jeff convinced me, and he’s very persuasive, that Blue didn’t need another rocket scientist,” Limp said. “We have thousands of the world’s best rocket scientists. What we needed was a little bit more decisiveness, a little bit more ability to think about: How do we manufacture at scale? And those are things I’ve done in the past, and so I’ve never looked back.”

David Limp, CEO of Blue Origin, speaks during the 2025 Humans to the Moon and Mars Summit at George Washington University in Washington, DC, on May 29, 2025. Credit: Alex Wroblewski / AFP via Getty Images

Leave it to us

In remarks Thursday at the Humans to the Moon & Mars Summit, Limp advocated for commercial companies, like his own, taking a larger role in developing the transportation and infrastructure to meet lofty national objectives established by government leaders.

In some ways, NASA has long been moving in this direction, beginning with initiatives ceding most launch services to private industry in the 1990s. More recently, NASA has turned to commercial companies for crew and cargo deliveries to the International Space Station and cargo and human-rated Moon landers.

However, NASA, with the backing of key congressional leaders, has held an iron grip on having its own heavy-lift launcher and crew capsule to ferry astronauts between Earth and destinations beyond low-Earth orbit. Now, these vehicles—the Space Launch System and Orion spacecraft—may be canceled if Congress agrees with Trump’s proposed NASA budget.

Commercial rockets close to matching or exceeding the Space Launch System’s lift capability are available for purchase or likely will be soon. These include SpaceX’s Starship mega-rocket and Blue Origin’s New Glenn launcher. Both are already key elements of NASA’s Artemis program, which aims to land US astronauts on the Moon as a stepping stone toward human expeditions to Mars.

But NASA still plans to use its government-owned Space Launch System rocket and Orion spacecraft to transport astronauts out to the Moon, where they will rendezvous with a Starship or Blue Origin’s Blue Moon lander to fly to and from the lunar surface.

SLS and Orion are expensive vehicles, costing more than $4 billion per launch for the initial set of four Artemis missions, according to a report by NASA’s inspector general. While commercial companies like Boeing, Lockheed Martin, and Northrop Grumman build elements of SLS and Orion, NASA acts as the prime integrator. The agency signed cost-plus contracts with the companies building SLS and Orion, meaning the government is on the hook for cost overruns. And there have been many.

Artist’s concept of Blue Ring, a propulsive spacecraft platform Blue Origin says it is developing to carry payloads to different orbits, and possibly all the way to Mars, at lower costs than feasible today. Credit: Blue Origin

NASA’s robotic science probes are also getting more expensive, even when accounting for inflation. Given the way NASA procures science probes, it would cost NASA more today to send an orbiter to Mars than it did for a similarly sized spacecraft a quarter-century ago.

This has to change in order for NASA and private companies like Blue Origin and SpaceX to make their ambitions a reality, Limp said Thursday.

“I think commercial folks can worry about the infrastructure,” he said. “We can do the launch. We can build the satellite buses that can get you to Mars much more frequently, that don’t cost billions of dollars. We can take a zero, and over time, maybe two zeros off of that. And if the governments around the world leave that to the commercial side, then there are a lot more resources that are freed up for the science side, for the national prestige side, and those types of things.”

The bottom line

Limp followed these comments with a dose of realism you don’t often hear from space industry executives. While there’s a growing list of commercially viable markets in space (things like Starlink and satellite servicing wouldn’t have been money-makers 20 years ago), the market for human spaceflight still requires some level of government commitment.

“I think the thing about bringing commercial aspects to exploration, to science, to the Moon, to Mars, is that we have to see a business prospect for it,” Limp said. “We have to turn it into a business, and that benefits American taxpayers because we will use that capital as efficiently as we can to get to the Moon, to get to Mars in a safe way, but in a way that’s the most efficient.

“We’re committed to that, no matter what the architecture looks like, but it does take the US government and international governments to have the motivation to do it,” he continued. “There’s not yet a commercial reason only to go to the Moon with humans. There are lots of commercial reasons to put robotics on the Moon and other types of things. So, we do need to have conviction that the Moon is important and Mars is important as well.”

Trump and Musk, an ally and advisor to the president, rekindled the question of Moon or Mars in a series of remarks during the early weeks of the new Trump administration. The Artemis Moon program began during the first Trump administration, with the goal of returning astronauts to the Moon for the first time since 1972. NASA would establish a sustained presence at the Moon, using our nearest planetary body as a proving ground for the next destination for humans in Solar System exploration: Mars.

Space industry rivals Jeff Bezos, second from left, and Elon Musk, second from right, inside the US Capitol for President Donald Trump’s inauguration on January 20, 2025. Credit: Chip Somodevilla/Getty Images

SpaceX’s Starship, while capable of one day landing on the Moon, was designed for long-duration cruises to Mars. Blue Origin’s Blue Moon is tailored for lunar landings.

“As an American, I don’t want another Sputnik moment,” Limp said. “From my standpoint, getting boots on the Moon and setting the groundwork for permanence on the Moon is of national importance and urgency. Rest assured, Blue will do everything in its power to try to make that happen, but in a cost-effective way.”

NASA, please don’t leave us

Since retaking office in January, Trump has mentioned human missions to Mars multiple times, but not the Moon. Isaacman, who may be confirmed as NASA administrator by the Senate as soon as next week, told lawmakers in April that the agency should pursue human missions to the Moon and Mars simultaneously. The details of how that might work haven’t been released but could come out in the White House’s detailed budget proposal for fiscal-year 2026.

A blueprint of Trump’s spending proposal released May 2 includes a 25 percent cut to NASA’s overall budget, but the plan would provide additional money for human space exploration at the Moon and Mars. “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the White House budget office wrote.

This part of the budget request is not controversial for industry leaders like Limp. On the other hand, the budget blueprint proposes slashing NASA’s space science budget by nearly $2.3 billion, Earth science by almost $1.2 billion, and space technology by $531 million.

While Limp didn’t directly address these budget proposals, these parts of NASA are largely focused on research projects that lack a commercial business case. Who else but a government space agency, or perhaps an especially generous type of philanthropic multi-billionaire, would pay to send a probe to study Jupiter’s icy moon Europa? Or a robot to zip by Pluto? Or how about a mission like Landsat, which documents everything from water resources to farms and urban sprawl and makes its data freely available to anyone with an Internet connection?

Most experts agree there are better ways to do these things. Reusable rockets, mass-produced satellite platforms, and improved contracting practices can bring down the costs of these missions. Bezos’ long-term goal for Blue Origin, which is to move all polluting factories off the Earth and into space, will be easier to achieve with government support, not just funding, Limp said.

“Getting up there, building factories on the Moon is a great step, and the government can really help with research dollars around that,” he said. “But it still does need the labs. The science missions need the JPLs [Jet Propulsion Laboratory] of the world. To make the human experience right, we need the Johnson Space Centers of the world to be able to kind of use that gold mine of institutional knowledge.

“I would say, and it might be a little provocative, let’s have those smart brains look on the forward-thinking types of things, the really edge of science, planning the really exotic missions, figuring out how to get to planetary bodies we haven’t gotten to before, and staying there,” Limp said.

Mark it down

For the first decade after Bezos founded Blue Origin in 2000, the company operated under the radar and seemed to move at a glacial pace. It launched its first small rocket in 2006 to an altitude of less than 300 feet and reached space with the suborbital New Shepard booster in 2015. Blue Origin finally reached orbit in January of this year on the debut test flight of its heavy-lift New Glenn rocket. Meanwhile, Blue Origin inked a deal with United Launch Alliance to supply a version of its New Glenn main engine to power that company’s Vulcan rocket.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship, NASA’s other Artemis lunar lander. Credit: Blue Origin

The next big mission for Blue Origin will be the first flight of its Blue Moon lander. The first version of Blue Moon, called MK1, will launch on a New Glenn rocket later this year and attempt to become the largest spacecraft to ever land on the Moon. This demonstration, without anyone onboard, is fully funded by Blue Origin, Limp said.

A future human-rated version, called MK2, is under development with the assistance of NASA. It will be larger and will require refueling to reach the lunar surface. Blue Moon MK1 can make a landing on one tank.

These are tangible achievements that would be the envy of any space industry startup not named SpaceX. But Musk’s rocket company left Blue Origin in the dust as it broke launch industry records repeatedly and began delivering NASA astronauts to the International Space Station in 2020. My colleague, Eric Berger, wrote a story in January describing Blue Origin’s culture. For much of its existence, one former employee said, Blue Origin had “zero incentive” to operate like SpaceX.

To ensure he would be in lock-step with his boss, Limp felt he had to ask a question that was on the minds of many industry insiders. He got the answer he wanted.

“The only question I really asked Jeff when I was talking about taking this job was, ‘What do you want Blue to be? Is it a hobby, or is it a business?'” Limp said. “And he had the right answer, which is, it’s a business, because I don’t know how to run a hobby, and I don’t think it’s sustainable.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin boss: Government should forget launch and focus on “exotic” missions Read More »

as-preps-continue,-it’s-looking-more-likely-nasa-will-fly-the-artemis-ii-mission

As preps continue, it’s looking more likely NASA will fly the Artemis II mission

NASA’s existing architecture still has a limited shelf life, and the agency will probably have multiple options for transporting astronauts to and from the Moon in the 2030s. A decision on the long-term future of SLS and Orion isn’t expected until the Trump administration’s nominee for NASA administrator, Jared Isaacman, takes office after confirmation by the Senate.

So, what is the plan for SLS?

There are different degrees of cancellation options. The most draconian would be an immediate order to stop work on Artemis II preparations. This is looking less likely than it did a few months ago and would come with its own costs. It would cost untold millions of dollars to disassemble and dispose of parts of Artemis II’s SLS rocket and Orion spacecraft. Canceling multibillion-dollar contracts with Boeing, Northrop Grumman, and Lockheed Martin would put NASA on the hook for significant termination costs.

Of course, these liabilities would be less than the $4.1 billion NASA’s inspector general estimates each of the first four Artemis missions will cost. Most of that money has already been spent for Artemis II, but if NASA spends several billion dollars on each Artemis mission, there won’t be much money left over to do other cool things.

Other options for NASA might be to set a transition point when the Artemis program would move off of the Space Launch System rocket, and perhaps even the Orion spacecraft, and switch to new vehicles.

Looking down on the Space Launch System for Artemis II. Credit: NASA/Frank Michaux

Another possibility, which seems to be low-hanging fruit for Artemis decision-makers, could be to cancel the development of a larger Exploration Upper Stage for the SLS rocket. If there are a finite number of SLS flights on NASA’s schedule, it’s difficult to justify the projected $5.7 billion cost of developing the upgraded Block 1B version of the Space Launch System. There are commercial options available to replace the rocket’s Boeing-built Exploration Upper Stage, as my colleague Eric Berger aptly described in a feature story last year.

For now, it looks like NASA’s orange behemoth has a little life left in it. All the hardware for the Artemis II mission has arrived at the launch site in Florida.

The Trump administration will release its fiscal-year 2026 budget request in the coming weeks. Maybe then NASA will also have a permanent administrator, and the veil will lift over the White House’s plans for Artemis.

As preps continue, it’s looking more likely NASA will fly the Artemis II mission Read More »

here’s-the-secret-to-how-firefly-was-able-to-nail-its-first-lunar-landing

Here’s the secret to how Firefly was able to nail its first lunar landing


Darkness fell over Mare Crisium, ending a daily dose of dazzling images from the Moon.

Firefly’s X-band communications antenna (left) is marked with the logos of NASA, Firefly Aerospace, and the US flag. Credit: Firefly Aerospace

Firefly Aerospace’s Blue Ghost science station accomplished a lot on the Moon in the last two weeks. Among other things, its instruments drilled into the Moon’s surface, tested an extraterrestrial vacuum cleaner, and showed that future missions could use GPS navigation signals to navigate on the lunar surface.

These are all important achievements, gathering data that could shed light on the Moon’s formation and evolution, demonstrating new ways of collecting samples on other planets, and revealing the remarkable reach of the US military’s GPS satellite network.

But the pièce de résistance for Firefly’s first Moon mission might be the daily dose of imagery that streamed down from the Blue Ghost spacecraft. A suite of cameras recorded the cloud of dust created as the lander’s engine plume blew away the uppermost layer of lunar soil as it touched down March 2 in Mare Crisium, or the Sea of Crises. This location is in a flat basin situated on the upper right quadrant of the side of the Moon always facing the Earth.

Other images from Firefly’s lander showed the craft shooting tethered electrodes out onto the lunar surface, like a baseball outfielder trying to throw out a runner at home plate. Firefly’s cameras also showed the lander’s drill as it began to probe several meters into the Moon’s crust.

The first Blue Ghost mission is part of NASA’s Commercial Lunar Payload Services (CLPS) program established in 2018 to partner with US companies for cargo transportation to the Moon. Firefly is one of 13 companies eligible to compete for CLPS missions, precursors to future astronaut landings on the Moon under NASA’s Artemis program.

Now, Firefly finds itself at the top of the pack of firms seeking to gain a foothold at the Moon.

Blue Ghost landed just after sunrise at Mare Crisium, an event shown in the blow video captured with four cameras mounted on the lander to observe how its engine plume interacted with loose soil on the lunar surface. The information will be useful as NASA plans to land astronauts on the Moon in the coming years.

“Although the data is still preliminary, the 3,000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, project manager for NASA’s SCALPSS experiment.

One of the vehicle’s payloads, named Lunar PlanetVac, dropped from the bottom of the lander and released a blast of gas to blow fine-grained lunar soil into a collection chamber for sieving. Provided by a company named Honeybee Robotics, this device could be used as a cheaper alternative to other sample collection methods, such as robotic arms, on future planetary science missions.

Just over 4 days on the Moon’s surface and #BlueGhost is checking off several science milestones! 8 out of 10 @NASA payloads, including LPV, EDS, NGLR, RAC, RadPC, LuGRE, LISTER, and SCALPSS, have already met their mission objectives with more to come. Lunar PlanetVac for example… pic.twitter.com/i7pOg70qYi

— Firefly Aerospace (@Firefly_Space) March 6, 2025

After two weeks of pioneering work, the Blue Ghost lander fell into darkness Sunday when the Sun sank below the horizon, robbing it of solar power and plunging temperatures below minus 200° Fahrenheit (148°Celcius). The spacecraft’s internal electronics likely won’t survive the two-week-long lunar night.

A precoded message from Blue Ghost marked the moment Sunday afternoon, signaling a transition to “monument mode.”

“Goodnight friends,” Blue Ghost radioed Firefly’s mission control center in Central Texas. “After exchanging our final bits of data, I will hold vigil in this spot in Mare Crisium to watch humanity’s continued journey to the stars. Here, I will outlast your mightiest rivers, your tallest mountains, and perhaps even your species as we know it.”

Blue Ghost’s legacy is now secure as the first fully successful commercial lunar lander. Its two-week mission was perhaps just as remarkable for what didn’t happen as it was for what did. The spacecraft encountered no significant problems on its transit to the Moon, its final descent, or during surface operations.

One of the few surprises of the mission was that the lander got hotter a little sooner than engineers predicted. At lunar noon, when the Sun is highest in the sky, temperatures can soar to 250° F (121° C).

“We started noticing that the lander was getting hotter than we expected, and we couldn’t really figure out why, because it was a little early for lunar noon,” Ray Allensworth, Firefly’s spacecraft program director, told Ars. “So we went back and started evaluating and realized that the crater that we landed next to was actually reflecting a really significant amount of heat. So we went back and we updated our thermal models, incorporated that crater into it, and it matched the environment we were seeing.”

Early Friday morning, the Blue Ghost spacecraft captured the first high-definition views of a total solar eclipse from the Moon. At the same time that skywatchers on Earth were looking up to see the Moon turn an eerie blood red, Firefly’s cameras were looking back at us as the Sun, Earth, and Moon moved into alignment and darkness fell at Mare Crisium.

Diamond ring

The eclipse was a bonus for Firefly. It just happened to occur during the spacecraft’s two-week mission at the Moon, the timing of which was dependent on numerous factors, ranging from the readiness of the Blue Ghost lander to weather conditions at its launch site in Florida.

“We weren’t actually planning to have an eclipse until a few months prior to our launch, when we started evaluating and realizing that an eclipse was happening right before lunar sunset,” Allensworth said. “So luckily, that gave us some time to work some procedures and basically set up what we wanted to take images of, what cameras we wanted to run.”

The extra work paid off. Firefly released an image Friday showing a glint of sunlight reaching around the curvature of the Earth, some 250,000 miles (402,000 kilometers) away. This phenomenon is known as the “diamond ring” and is a subject of pursuit for many eclipse chasers, who travel to far-flung locations for a few minutes of totality.

A “diamond ring” appears around the edge of the Earth, a quarter-million miles from Firefly’s science station on the lunar surface. Credit: Firefly Aerospace

The Blue Ghost spacecraft, named for a species of firefly, took eclipse chasing to new heights. Not only did it see the Earth block the Sun from an unexplored location on the Moon, but the lander fell into shadow for 2 hours and 16 minutes, about 18 times longer than the longest possible total solar eclipse on the Earth.

The eclipse presented challenges for Firefly’s engineers monitoring the mission from Texas. Temperatures at the spacecraft’s airless landing site plummeted as darkness took hold, creating what Allensworth called a “pseudo lunar night.”

“We were seeing those temperatures rapidly start dropping,” Allensworth said Friday. “So it was kind of an interesting game of to play with the hardware to keep everything in its temperature bounds but also still powered on and capturing data.”

Shaping up

Using navigation cameras and autonomous guidance algorithms, the spacecraft detected potential hazards at its original landing site and diverted to a safer location more than 230 feet (70 meters) away, according to Allensworth.

Finally happy with the terrain below, Blue Ghost’s computer sent the command for landing, powered by eight thrusters pulsing in rapid succession to control the craft’s descent rate. The landing was gentler than engineers anticipated, coming down at less than 2.2 mph (1 meter per second).

According to preliminary data, Blue Ghost settled in a location just outside of its 330-foot (100-meter) target landing ellipse, probably due to the last-minute divert maneuvers ordered by the vehicle’s hazard avoidance system.

It looks like we’re slightly out of it, but it’s really OK,” Allensworth said. “NASA has told us, more than anything, that they want us to make sure we land softly… They seem comfortable where we’re at.”

Firefly originally intended to develop a spacecraft based on the design of Israel’s Beresheet lander, which was the first private mission to attempt a landing on the Moon in 2019. The spacecraft crashed, and Firefly opted to go with a new design more responsive to NASA’s requirements.

“Managing the center of gravity and the mass of the lander is most significant, and that informs a lot of how it physically takes shape,” Allensworth said. “So we did want to keep certain things in mind about that, and that really is what led to the lander being wider, shorter, broader. We have these bigger foot pads on there. All of those things were very intentional to help make the lander as stable and predictable as possible.”

Firefly’s Blue Ghost lander, seen here inside the company’s spacecraft manufacturing facility in Cedar Park, Texas. Credit: Stephen Clark/Ars Technica

These design choices must happen early in a spacecraft’s development. Landing on the Moon comes with numerous complications, including an often-uneven surface and the lack of an atmosphere, rendering parachutes useless. A lander targeting the Moon must navigate itself to a safe landing site without input from the ground.

The Odysseus, or Nova-C, lander built by Intuitive Machines snapped one of its legs and fell over on its side after arriving on the Moon last year. The altimeter on Odysseus failed, causing it to come down with too much horizontal velocity. The lander returned some scientific data from the Moon and qualified as a partial success. The spacecraft couldn’t recharge its batteries after landing on its side, and Odysseus shut down a few days after landing.

The second mission by Intuitive Machines reached the Moon on March 6, but it suffered the same fate. After tipping over, the Athena lander succumbed to low power within hours, preventing it from accomplishing its science mission for NASA.

The landers designed by Intuitive Machines are tall and skinny, towering more than 14 feet (4.3 meters) tall with a width of about 5.2 feet (1.6 meters). The Blue Ghost vehicle is short and squatty in shape—about 6.6 feet tall and 11.5 feet wide (2-by-3.5 meters). Firefly’s approach requires fewer landing legs than Intuitive Machines—four instead of six.

Steve Altemus, co-founder and CEO of Intuitive Machines, defended the design of his company’s lander in a press briefing after the second lunar landing tip-over earlier this month. The Nova-C lander isn’t too top-heavy for a safe landing because most of its cargo attaches to the bottom of the spacecraft, and for now, Altemus said Intuitive Machines is not considering a redesign.

Intuitive Machines stacked its two fuel and oxidizer tanks on top of each other, resulting in a taller vehicle. The Nova-C vehicle uses super-cold methane and liquid oxygen propellants, enabling a fast journey to the Moon over just a few days. The four propellant tanks on Blue Ghost are arranged in a diagonal configuration, with two containing hydrazine fuel and two holding an oxidizer called nitrogen tetroxide. Firefly’s Blue Ghost took about six weeks to travel from launch until landing.

The design trade-off means Firefly’s lander is heavier, with four tanks instead of two, according to Will Coogan, Blue Ghost’s chief engineer at Firefly. By going with a stockier lander design, Firefly needed to install four tanks because the spacecraft’s fuel and oxidizer have different densities. If Firefly went with just two tanks side-by-side, the spacecraft’s center of mass would change continually as it burns propellant during the final descent to the Moon, creating an unnecessary problem for the lander’s guidance, navigation, and control system to overcome.

“You want to avoid that,” Coogan told Ars before Blue Ghost’s launch. “What you can do is you can either get four tanks and have fuel and oxidizer at diagonal angles, and then you’re always centered, or you can stay with two tanks, and you can stack them.”

A camera on Firefly’s Blue Ghost lander captured a view of its shadow after touching down on the Moon just after sunrise on March 2. Earth looms over the horizon. Credit: Firefly Aerospace

The four landing legs on the Blue Ghost vehicle have shock-absorbing feet, with bowl-shaped pads able to bend if the lander comes down on a rock or a slope.

“If we did come in a little bit faster, we needed the legs to be able to take that, so we tested the legs really significantly on the ground,” Allensworth said. “We basically loaded them up on a makeshift weight bench at different angles and slammed it into the ground, slammed it into concrete, slammed it into regular simulant rocks, boulders, at different angles to really characterize what the legs could do.

“It’s actually really funny, because one of the edge cases that we didn’t test is if we came down very lightly, with almost no acceleration,” she said. “And that was the case that the lander landed in. I was joking with our structural engineer that he wasted all his time.”

Proof positive

Firefly delivered 10 NASA-sponsored science and technology demonstration experiments to the lunar surface, operating under contract with NASA’s CLPS program. CLPS builds on the commercial, service-based business model of NASA’s commercial cargo and crew program for transportation to the International Space Station.

NASA officials knew this approach was risky. The last landing on the Moon by a US spacecraft was the last Apollo mission in 1972, and most of the companies involved in CLPS are less than 20 years old, with little experience in deep space missions.

A Pittsburgh company named Astrobotic failed to reach the Moon on its first attempt in January 2024. The next month, Houston-based Intuitive Machines landed its Nova-C spacecraft on the lunar surface, but it tipped over after one of its legs snapped at the moment of touchdown.

Firefly, based in Cedar Park, Texas, was the third company to try a landing. Originally established as a rocket developer, Firefly signed up to be a CLPS provider and won a $101 million contract with NASA in 2021 to transport a government-funded science package to the Moon. NASA’s instruments aboard the Blue Ghost lander cost about $44 million.

The successful landing of Firefly’s Blue Ghost earlier this month buoyed NASA’s expectations for CLPS. “Overall, it’s been a fabulous, wonderful proof positive that the CLPS model does work,” said Brad Bailey, assistant deputy associate administrator for exploration in NASA’s Science Mission Directorate.

NASA has seven more CLPS missions on contract. The next could launch as soon as August when Blue Origin plans to send its first Blue Moon lander to the Moon. NASA has booked two more Blue Ghost missions with Firefly and two more landing attempts with Intuitive Machines, plus one more flight by Astrobotic and one lander from Draper Laboratory.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s the secret to how Firefly was able to nail its first lunar landing Read More »

yes,-we-are-about-to-be-treated-to-a-second-lunar-landing-in-a-week

Yes, we are about to be treated to a second lunar landing in a week

Because the space agency now has some expectation that Intuitive Machines will be fully successful with its second landing attempt, it has put some valuable experiments on board. Principal among them is the PRIME-1 experiment, which has an ice drill to sample any ice that lies below the surface. Drill, baby, drill.

The Athena lander also is carrying a NASA-funded “hopper” that will fire small hydrazine rockets to bounce around the Moon and explore lunar craters near the South Pole. It might even fly into a lava tube. If this happens it will be insanely cool.

Because this is a commercial program, NASA has encouraged the delivery companies to find additional, private payloads. Athena has some nifty ones, including a small rover from Lunar Outpost, a data center from Lonestar Data Holdings, and a 4G cellular network from Nokia. So there’s a lot riding on Athena‘s success.

So will it be a success?

“Of course, everybody’s wondering, are we gonna land upright?” Tim Crain, Intuitive Machines’ chief technology officer, told Ars. “So, I can tell you our laser test plan is much more comprehensive than those last time.”

During the first landing about a year ago, Odysseus‘ laser-based system for measuring altitude failed during the descent. Because Odysseus did not have access to altitude data, the spacecraft touched down faster, and on a 12-degree slope, which exceeded the 10-degree limit. As a result, the lander skidded across the surface, and one of its six legs broke, causing it to fall over.

Crain said about 10 major changes were made to the spacecraft and its software for the second mission. On top of that, about 30 smaller things, such as more efficient file management, were updated on the new vehicle.

In theory, everything should work this time. Intuitive Machines has the benefit of all of its learnings from the last time, and nearly everything worked right during this first attempt. But the acid test comes on Thursday.

The company and NASA will provide live coverage of the attempt beginning at 11: 30 am ET (16: 30 UTC) on NASA+, with landing set for just about one hour later. The Moon may be a harsh mistress, but hopefully not too harsh.

Yes, we are about to be treated to a second lunar landing in a week Read More »