moon

china-showcases-new-moon-ship-and-reusable-rocket-in-one-extraordinary-test

China showcases new Moon ship and reusable rocket in one extraordinary test

A Chinese Long March 10 booster, powered by seven kerosene-fueled YF-100K engines, lifts off from the Wenchang Space Launch Site on Hainan Island on February 11, 2026 (local time).

Credit: Liu Yang/VCG via Getty Images

A Chinese Long March 10 booster, powered by seven kerosene-fueled YF-100K engines, lifts off from the Wenchang Space Launch Site on Hainan Island on February 11, 2026 (local time). Credit: Liu Yang/VCG via Getty Images

Mengzhou, which means “dream vessel” in Chinese, is scheduled for its first orbital test flight later this year. The spacecraft will launch on a Long March 10A rocket and dock with China’s Tiangong space station in low-Earth orbit. The Long March 10A, optimized for low-Earth orbit flights, will consist of a single reusable first-stage booster flying in combination with an upper stage. The full-size Long March 10, with 21 engines on three first-stage boosters connected together, will have the power to place payloads up to 70 metric tons into low-Earth orbit, and enough energy to propel the 26-metric-ton Mengzhou spacecraft to the Moon.

China’s leading state-owned space industry contractor, the China Aerospace and Science Technology Corporation (CASC), said the recovery of the Long March 10 booster after the in-flight abort test lays the foundation for “subsequent full-profile flight tests” and marks a “significant step” for China in “mastering reusable rocket technology.”

“The flight test further evaluated several key technologies, including the reliability of multiple engine restarts and high-altitude ignition during the rocket’s reentry phase, adaptability to complex force and thermal environments, and high-precision navigation control during the reentry phase.”

CASC oversees a sprawling industry of rocket and spacecraft manufacturers, including those responsible for designing and building the Mengzhou spacecraft and Long March 10 rocket.

The Mengzhou capsule splashes down in the South China Sea after the in-flight abort test.

Credit: China Manned Space Agency

The Mengzhou capsule splashes down in the South China Sea after the in-flight abort test. Credit: China Manned Space Agency

The successful splashdown and recovery of the Long March 10 booster continues a busy period for China’s reusable rocket initiatives. No fewer than 10 Chinese companies are working on reusable rockets at different levels of maturity, all seeking to match the success of SpaceX’s reusable rocket program in the United States.

In December, two Chinese launch providers debuted new rockets—the Zhuque-3 and Long March 12A—with recoverable and reusable boosters. The rockets reached orbit, but their boosters missed their landings downrange from their launch pads.

Several Chinese companies have also completed high-altitude “hop tests” to evaluate vertical takeoff and vertical landing technologies ahead of launching their first orbital flights.

These advancements in China’s reusable rocket and lunar exploration programs come as NASA prepares to launch a crew of four astronauts on a loop around the far side of the Moon as soon as next month. A US-made lunar lander is likely still a few years away from being ready to transport crews to and from the lunar surface.

China showcases new Moon ship and reusable rocket in one extraordinary test Read More »

why-would-elon-musk-pivot-from-mars-to-the-moon-all-of-a-sudden?

Why would Elon Musk pivot from Mars to the Moon all of a sudden?

As more than 120 million people tuned in to the Super Bowl for kickoff on Sunday evening, SpaceX founder Elon Musk turned instead to his social network. There, he tapped out an extended message in which he revealed that SpaceX is pivoting from the settlement of Mars to building a “self-growing” city on the Moon.

“For those unaware, SpaceX has already shifted focus to building a self-growing city on the Moon, as we can potentially achieve that in less than 10 years, whereas Mars would take 20+ years,” Musk wrote, in part.

Elon Musk tweet at 6: 24 pm ET on Sunday.

Credit: X/Elon Musk

Elon Musk tweet at 6: 24 pm ET on Sunday. Credit: X/Elon Musk

This is simultaneously a jolting and practical decision coming from Musk.

Why it’s a jolting decision

A quarter of a century ago, Musk founded SpaceX with a single-minded goal: settling Mars. One of his longest-tenured employees, SpaceX President and Chief Operating Officer Gwynne Shotwell, described her very first interview with Musk in 2002 to me as borderline messianic.

“He was talking about Mars, his Mars Oasis project,” Shotwell said. “He wanted to do Mars Oasis, because he wanted people to see that life on Mars was doable, and we needed to go there.”

She was not alone in this description of her first interaction with Musk. The vision for SpaceX has not wavered. Even in the company’s newest, massive Starship rocket factory at the Starbase facility in South Texas—also known as the Gateway to Mars—there are reminders of the red planet everywhere. For example, the carpet inside Musk’s executive conference room is rust red, the same color as the surface of Mars.

In the last 25 years, Musk has gone from an obscure, modestly wealthy person to the richest human being ever, from a political moderate to chief supporter of Donald Trump; from a respected entrepreneur to, well, to a lot of things to a lot of people: world’s greatest industrialist/supervillain/savant/grifter-fraudster.

But one thing that has remained constant across the Muskverse is his commitment to “extending the light of human consciousness” and to the belief that the best place to begin humanity’s journey toward becoming a multi-planetary species was Mars.

Why would Elon Musk pivot from Mars to the Moon all of a sudden? Read More »

the-fastest-human-spaceflight-mission-in-history-crawls-closer-to-liftoff

The fastest human spaceflight mission in history crawls closer to liftoff


After a remarkably smooth launch campaign, Artemis II reached its last stop before the Moon.

NASA’s Space Launch System rocket rolls to Launch Complex 39B on Saturday. Credit: Stephen Clark/Ars Technica

KENNEDY SPACE CENTER, Florida—Preparations for the first human spaceflight to the Moon in more than 50 years took a big step forward this weekend with the rollout of the Artemis II rocket to its launch pad.

The rocket reached a top speed of just 1 mph on the four-mile, 12-hour journey from the Vehicle Assembly Building to Launch Complex 39B at NASA’s Kennedy Space Center in Florida. At the end of its nearly 10-day tour through cislunar space, the Orion capsule on top of the rocket will exceed 25,000 mph as it plunges into the atmosphere to bring its four-person crew back to Earth.

“This is the start of a very long journey,” said NASA Administrator Jared Isaacman. “We ended our last human exploration of the moon on Apollo 17.”

The Artemis II mission will set several notable human spaceflight records. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will travel farther from Earth than any human in history. They won’t land. That distinction will fall to the next mission in line in NASA’s Artemis program.

But the Artemis II astronauts will travel more than 4,000 miles beyond the far side of the Moon (the exact distance depends on the launch date), setting up for a human spaceflight speed record during their blazing reentry over the Pacific Ocean a few days later. Koch will become the first woman to fly to the vicinity of the Moon, and Hansen will be the first non-US astronaut to do the same.

“We really are ready to go,” said Wiseman, the Artemis II commander, during Saturday’s rollout to the launch pad. “We were in a sim [in Houston] for about 10 hours yesterday doing our final capstone entry and landing sim. We got in T-38s last night and we flew to the Cape to be here for this momentous occasion.”

The rollout began around sunrise Saturday, with NASA’s Space Launch System rocket and Orion capsule riding a mobile launch platform and a diesel-powered crawler transporter along a throughway paved with crushed Alabama river rock. Employees, VIPs, and guests gathered along the crawlerway to watch the 11 million-pound stack inch toward the launch pad. The rollout concluded about an hour after sunset, when the crawler transporter’s jacking system lowered the mobile launch platform onto pedestals at Pad 39B.

Hitting the launch window

The rollout keeps the Artemis II mission on track for liftoff as soon as next month, when NASA has a handful of launch opportunities on February 6, 7, 8, 10, and 11.

The big milestone leading up to launch day will be a practice countdown or Wet Dress Rehearsal (WDR), currently slated for around February 2, when NASA’s launch team will pump more than 750,000 gallons of super-cold liquid hydrogen and liquid oxygen into the rocket. NASA had trouble keeping the cryogenic fluids at the proper temperature, then encountered hydrogen leaks when the launch team first tried to fill the rocket for the unpiloted Artemis I mission in 2022. Engineers implemented the same fixes on Artemis II that they used to finally get over the hump with propellant loading on Artemis I.

So, what are the odds NASA can actually get the Artemis II mission off the ground next month?

“We’ll have to have things go right,” said Matt Ramsey, NASA’s Artemis II mission manager, in an interview with Ars on Saturday. “There’s a day of margin there for weather. There’s some time after WDR that we’ve got for data reviews and that sort of thing. It’s not unreasonable, but I do think it’s a success-oriented schedule.”

The Moon has to be in the right position in its orbit for the Artemis II launch to proceed. There are also restrictions on launch dates to ensure the Orion capsule returns to Earth and reenters the atmosphere at an angle safe for the ship’s heat shield. If the launch does not happen in February, NASA has a slate of backup launch dates in early March.

Ars was at Kennedy Space Center for the rocket’s move to the launch pad Saturday. The photo gallery below shows the launcher emerging from the Vehicle Assembly Building, the same facility once used to stack Saturn V rockets during the Apollo Moon program. The Artemis II astronauts were also on hand for a question and answer session with reporters.

Around the clock

The first flight of astronauts on the SLS rocket and Orion spacecraft is running at least five years late. The flight’s architecture, trajectory, and goals have changed multiple times, and technical snags discovered during manufacturing and testing repeatedly shifted the schedule. The program’s engineering and budgetary problems are well documented.

But the team readying the rocket and spacecraft for launch has hit a stride in recent months. Technicians inside the Vehicle Assembly Building started stacking the SLS rocket in late 2024, beginning with the vehicle’s twin solid-fueled boosters. Then ground teams added the core stage, upper stage, and finally installed the Orion spacecraft on top of the rocket last October.

Working nearly around the clock in three shifts, it took about 12 months for crews at Kennedy to assemble the rocket and prepare it for rollout. But the launch campaign inside the VAB was remarkably smooth. Ground teams shaved about two months off the time it took to integrate the SLS rocket and Orion spacecraft for the Artemis I mission, which launched on the program’s first full-up unpiloted test flight in 2022.

“About a year ago, I was down here and we set the rollout date, and we hit it within a day or two,” said Matt Ramsey, NASA’s mission manager for Artemis II. “Being able to stay on schedule, it was a daily grind to be able to do that.”

Engineers worked through a handful of technical problems last year, including an issue with a pressure-assisted device used to assist the astronauts in opening the Orion hatch in the event of an emergency. More recently, NASA teams cleared a concern with caps installed on the rocket’s upper stage, according to Ramsey.

The most significant engineering review focused on proving the Orion heat shield is safe to fly. That assessment occurred in the background from the perspective of the technicians working on Artemis II at Kennedy.

The Artemis II team is now focused on activities at the launch pad. This week, NASA plans to perform a series of tests extending and retracting the crew access mark. Next, the Artemis II astronauts will rehearse an emergency evacuation from the launch pad. That will be followed by servicing of the rocket’s hydraulic steering system.

The big question mark

All of this leads up to the crucial practice countdown early next month. The astronauts won’t be aboard the rocket for the test, but almost everything else will look like launch day. The countdown will halt around 30 seconds prior to the simulated liftoff.

It took repeated tries to get through the Wet Dress Rehearsal for the Artemis I mission. There were four attempts at the countdown practice run before the first actual Artemis I launch countdown. After encountering hydrogen leaks on two scrubbed launch attempts, NASA performed another fueling test before finally successfully launching Artemis I in November 2022.

The launch team repaired a leaky hydrogen seal and introduced a gentler hydrogen loading procedure to overcome the problem. Hydrogen is an extremely efficient fuel for rockets, but its super-cold temperature and the tiny size of hydrogen molecules make it prone to leakage. The hydrogen feeds the SLS rocket’s four core stage engines and single upper stage engine.

“Artemis I was a test flight, and we learned a lot during that campaign getting to launch,” said Charlie Blackwell-Thompson, NASA’s Artemis II launch director. “The things that we’ve learned relative to how to go load this vehicle, how to load LOX (liquid oxygen), how to load hydrogen, have all been rolled in to the way in which we intend to load the Artemis II vehicle.”

NASA is hesitant to publicly set a target launch date until the agency gets through the dress rehearsal, but agency officials say a February launch remains feasible.

“We’ve held schedule pretty well getting to rollout today,” Isaacman said. “We have zero intention of communicating an actual launch date until we get through wet dress. But look, that’s our first window, and if everything is tracking accordingly, I know the teams are prepared, I know this crew is prepared, we’ll take it.”

“Wet dress is the driver to launch,” Blackwell-Thompson said. “With a wet dress that is without significant issues, if everything goes to plan, then certainly there are opportunities within February that could be achievable.”

One constraint that threw a wrench into NASA’s Artemis I launch campaign is no longer a significant factor for Artemis II. On Artemis I, NASA had to roll the rocket back to the Vehicle Assembly Building (VAB) after the wet dress rehearsal to complete final installation and testing on its flight termination system, which consists of a series of pyrotechnic charges designed to destroy the rocket if it flies off course and threatens populated areas after liftoff.

The US Space Force’s Eastern Range, responsible for public safety for all launches from Florida’s Space Coast, requires the flight termination system be retested after 28 to 35 days, a clock that started ticking last week before rollout. During Artemis I, technicians could not access the parts of the rocket they needed to in order to perform the retest at the launch pad. NASA now has structural arms to give ground teams the ability to reach parts higher up the rocket for the retest without returning to the hangar.

With this new capability, Artemis II could remain at the pad for launch opportunities in February and March before officials need to bring it back to the VAB to replace the flight termination system’s batteries, which still can’t be accessed at the pad.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The fastest human spaceflight mission in history crawls closer to liftoff Read More »

managers-on-alert-for-“launch-fever”-as-pressure-builds-for-nasa’s-moon-mission

Managers on alert for “launch fever” as pressure builds for NASA’s Moon mission

“Putting crew on the rocket and taking the crew around the Moon, this is going be our first step toward a sustained lunar presence,” Honeycutt said. “It’s 10 days [and] four astronauts going farther from Earth than any other human has ever traveled. We’ll be validating the Orion spacecraft’s life support, navigation and crew systems in the really harsh environments of deep space, and that’s going to pave the way for future landings.”

NASA’s 322-foot-tall (98-meter) SLS rocket inside the Vehicle Assembly Building on the eve of rollout to Launch Complex 39B.

Credit: NASA/Joel Kowsky

NASA’s 322-foot-tall (98-meter) SLS rocket inside the Vehicle Assembly Building on the eve of rollout to Launch Complex 39B. Credit: NASA/Joel Kowsky

There is still much work ahead before NASA can clear Artemis II for launch. At the launch pad, technicians will complete final checkouts and closeouts before NASA’s launch team gathers in early February for a critical practice countdown. During this countdown, called a Wet Dress Rehearsal (WDR), Blackwell-Thompson and her team will oversee the loading of the SLS rocket’s core stage and upper stage with super-cold liquid hydrogen and liquid oxygen propellants.

The cryogenic fluids, particularly liquid hydrogen, gave fits to the Artemis launch team as NASA prepared to launch the Artemis I mission—without astronauts—on the SLS rocket’s first test flight in 2022. Engineers resolved the issues and successfully launched the Artemis I mission in November 2022, and officials will apply the lessons for the Artemis II countdown.

“Artemis I was a test flight, and we learned a lot during that campaign getting to launch,” Blackwell-Thompson said. “And the things that we’ve learned relative to how to go load this vehicle, how to load LOX (liquid oxygen), how to load hydrogen, have all been rolled in to the way in which we intend to do for the Artemis II vehicle.”

Finding the right time to fly

Assuming the countdown rehearsal goes according to plan, NASA could be in a position to launch the Artemis II mission as soon as February 6. But the schedule for February 6 is tight, with no margin for error. Officials typically have about five days per month when they can launch Artemis II, when the Moon is in the right position relative to Earth, and the Orion spacecraft can follow the proper trajectory toward reentry and splashdown to limit stress on the capsule’s heat shield.

In February, the available launch dates are February 6, 7, 8, 10, and 11, with launch windows in the overnight hours in Florida. If the mission isn’t off the ground by February 11, NASA will have to stand down until a new series of launch opportunities beginning March 6. The space agency has posted a document showing all available launch dates and times through the end of April.

John Honeycutt, chair NASA’s Mission Management Team for the Artemis II mission, speaks during a news conference at Kennedy Space Center in Florida on January 16, 2026.

Credit: Jim Watson/AFP via Getty Images

John Honeycutt, chair NASA’s Mission Management Team for the Artemis II mission, speaks during a news conference at Kennedy Space Center in Florida on January 16, 2026. Credit: Jim Watson/AFP via Getty Images

NASA’s leaders are eager for Artemis II to fly. NASA is not only racing China, a reality the agency’s former administrator acknowledged during the Biden administration. Now, the Trump administration is pushing NASA to accomplish a human landing on the Moon by the end of his presidential term on January 20, 2029.

One of Honeycutt’s jobs as chair of the Mission Management Team (MMT) is ensuring all the Is are dotted and Ts are crossed amid the frenzy of final launch preparations. While the hardware for Artemis II is on the move in Florida, the astronauts and flight controllers are wrapping up their final training and simulations at Johnson Space Center in Houston.

“I think I’ve got a good eye for launch fever,” he said Friday.

“As chair of the MMT, I’ve got one job, and it’s the safe return of Reid, Victor, Christina, and Jeremy. I consider that a duty and a trust, and it’s one I intend to see through.”

Managers on alert for “launch fever” as pressure builds for NASA’s Moon mission Read More »

lego-announces-nasa-artemis-sls-rocket-set-to-lift-off-(literally)-in-2026

Lego announces NASA Artemis SLS rocket set to lift off (literally) in 2026

How do you top a highly detailed scale model of NASA’s new moon-bound rocket and its support tower? If you’re Lego, you make it so it can actually lift off.

Lego’s NASA Artemis Space Launch System Rocket, part of its Technic line of advanced building sets, will land on store shelves for $60 on January 1, 2026, and then “blast off” from kitchen tables, office desks and living room floors. The 632-piece set climbs skyward, separating from its expendable stages along the way, until the Orion crew spacecraft and its European Service Module top out the motion on their way to the moon—or wherever your imagination carries it.

“The educational LEGO Technic set shows the moment a rocket launches, in three distinct stages,” reads the product description on Lego’s website. “Turn the crank to see the solid rocket boosters separate from the core stage, which then also detaches. Continue turning to watch the upper stage with its engine module, Orion spacecraft and launch abort system separate.”

Crank it up

Illustration

The lid of the mobile launcher opens to reveal the gears that set the Lego Technic NASA Artemis Space Launch System Rocket into motion. Credit: LEGO

The new set captures all the major milestones of the first eight and a half minutes of an Artemis mission (with the exception of the jettison of the abort system tower, which on the real rocket occurs before the Orion separates from the core stage). Lego worked with NASA and the European Space Agency (ESA) to ensure the overall accuracy of the display.

“On the way up, there is sound. You can hear it—it is really noisy, the rocket,” said Olaf Kegger, the set’s designer at Lego, at an unveiling of his creation. He added that there is no sound when the motion is reversed, as the real SLS, “of course, does not go [back] down like this.”

Lego announces NASA Artemis SLS rocket set to lift off (literally) in 2026 Read More »

intuitive-machines—known-for-its-moon-landers—will-become-a-military-contractor

Intuitive Machines—known for its Moon landers—will become a military contractor

The company’s success in just reaching the Moon’s surface has put it in position to become one of NASA’s leading lunar contractors. NASA has awarded more robotic lunar lander contracts to Intuitive Machines than to any other company, with two missions complete and at least two more in development. Intuitive Machines is also one of the companies NASA selected to compete for a contract to develop an unpressurized Moon buggy for astronauts to drive across the lunar surface.

Branching out

The addition of Lanteris will make Intuitive Machines competitive for work outside of the lunar realm.

“This marks the moment Intuitive Machines transitions from a lunar company to a multi-domain space prime, setting the pace for how the industry’s next generation will operate,” said Steve Altemus, the company’s CEO.

Altemus said Lanteris will initially become a subsidiary of Intuitive Machines, followed by a complete integration under the Intuitive Machines banner.

Lanteris builds numerous satellites for the US Space Force, NASA, and commercial customers. The company can trace its history to 1957, when it was established as the Western Development Laboratories division of Philco Corporation, a battery and electronics manufacturer founded in 1892.

Philco constructed a satellite factory in Palo Alto, California, and produced its first spacecraft for launch in 1960. The satellite, named Courier 1B, made history as the world’s first active repeater communications relay station in orbit, meaning it could receive messages from the ground, store them, and then retransmit them.

The contractor underwent numerous mergers and acquisitions, becoming part of Ford Motor Company, Loral Corporation, and the Canadian company MDA Space before it was bought up by Advent more than two years ago. In nearly 70 years, the company has produced more than 300 satellites, many of them multi-ton platforms for broadcasting television signals from geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. Lanteris has contracts to build dozens more satellites in the next few years.

Intuitive Machines—known for its Moon landers—will become a military contractor Read More »

spacex-teases-simplified-starship-as-alarms-sound-over-moon-landing-delays

SpaceX teases simplified Starship as alarms sound over Moon landing delays


“SpaceX shares the goal of returning to the Moon as expeditiously as possible.”

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

SpaceX on Thursday released the most detailed public update in nearly two years on its multibillion-dollar contract to land astronauts on the Moon for NASA, amid growing sentiment that China is likely to beat the United States back to the lunar surface with humans.

In a lengthy statement published on SpaceX’s website Thursday, the company said it “will be a central enabler that will fulfill the vision of NASA’s Artemis program, which seeks to establish a lasting presence on the lunar surface… and ultimately forge the path to land the first humans on Mars.”

Getting to Mars is SpaceX’s overarching objective, a concise but lofty mission statement introduced by Elon Musk at the company’s founding nearly a quarter-century ago. Musk has criticized NASA’s Artemis program, which aims to return US astronauts to the Moon for the first time since the last Apollo lunar mission in 1972, as unambitious and too reliant on traditional aerospace contractors.

Is this a priority for SpaceX?

The Starship rocket and its massive Super Heavy booster are supposed to be SpaceX’s solution for fulfilling Musk’s mission of creating a settlement on Mars. The red planet has been the focus each time Musk has spoken at length about Starship in the last couple of years, with Moon missions receiving little or no time in his comments, whether they’re scripted or off the cuff.

In the background, SpaceX’s engineers have been busy developing a version of the Starship rocket to fly crews to and from the surface of the Moon for NASA. The agency’s current architecture calls for astronauts to transit from the Earth to the vicinity of the Moon inside NASA’s Orion spacecraft, made by Lockheed Martin, then link up with Starship in lunar orbit for a ride to the Moon’s south pole.

After completing their mission on the surface, the astronauts will ride Starship back into space and dock with Orion to bring them home. Starship and Orion may also link together by docking at the planned Gateway mini-space station orbiting the Moon, but Gateway’s future is in question as NASA faces budget cuts.

NASA has contracts with SpaceX valued at more than $4 billion to land two astronaut crews on the Moon on NASA’s Artemis III and Artemis IV missions. The contract also covers milestones ahead of any human mission, such as an uncrewed Starship landing and takeoff at the Moon, to prove the vehicle is ready.

SpaceX’s Starship descends toward the Indian Ocean at the conclusion of Flight 11 on October 3. Credit: SpaceX

The fresh update from SpaceX lists recent achievements the company has accomplished on the path to the Moon, including demos of life support and thermal control systems, the docking adapter to link Starship with Orion, navigation hardware and software, a landing leg structural test, and engine firings in conditions similar to what the ship will see at the Moon.

Many of these milestones were completed ahead of schedule, SpaceX said. But the biggest tests, such as demonstrating in-orbit refueling, remain ahead. Some NASA officials believe mastering orbital refueling will take many tries, akin to SpaceX’s iterative two steps forward, one step back experience with its initial Starship test flights.

The first test to transfer large amounts of cryogenic liquid methane and liquid oxygen between two Starships in low-Earth orbit is now planned for next year. This time a year ago, SpaceX aimed to launch the first orbital refueling demo before the end of 2025.

Orbital refueling is key to flying Starship to the Moon or Mars. The rocket consumes all of its propellant getting to low-Earth orbit, and it needs more gas to go farther. For lunar missions, SpaceX will launch a Starship-derived propellant depot into orbit, refill it with perhaps a dozen or more Starship tankers, and then dock the Starship lander with it to load its tanks before heading off to the Moon.

Officials haven’t given a precise number of tanker flights required for a Starship lunar lander. It’s likely engineers won’t settle on an exact number until they obtain data on how much of the super-cold liquid propellant boils off in space, and how efficient it is to transfer from ship to ship. Whatever the number, SpaceX says Starship’s design for recovery and rapid reuse will facilitate a fast-paced launch and refueling campaign.

SpaceX tests the elevator to be used on Starship. Credit: SpaceX

The upshot of overcoming the refueling hurdle is Starship’s promise of becoming a transformative vehicle. Starship is enormous compared to any other concept for landing on the Moon. One single Starship has a pressurized habitable volume of more than 600 cubic meters, or more than 21,000 cubic feet, roughly two-thirds that of the entire International Space Station, according to SpaceX. Starship will have dual airlocks, or pathways for astronauts and equipment to exit and enter the spacecraft.

An elevator will lower people and cargo down to the lunar surface from the crew cabin at the top of the 15-story-tall spacecraft. For pure cargo missions, SpaceX says Starship will be capable of landing up to 100 metric tons of cargo directly on the Moon’s surface. This would unlock the ability to deliver large rovers, nuclear reactors, or lunar habitats to the Moon in one go. In the long run, the Starship architecture could allow landers to be reused over and over again. All of this is vital if NASA wants to build a permanent base or research outpost on the Moon.

A competition in more ways than one

But hard things take time. SpaceX dealt with repeated setbacks in the first half of this year: three in-flight failures of Starship and one Starship explosion on the ground at the company’s development facility in South Texas. Since then, teams have reeled off consecutive successful Starship test flights ahead of the debut of an upgraded Starship variant called Version 3 in the coming months. Starship Version 3 will have the accoutrements for refueling, and SpaceX says this will also be the version to fly to the Moon.

The recent Starship delays, coupled with the scope of work to go, have raised concerns that the Artemis program is falling behind China’s initiative to land its own astronauts on the Moon. China’s goal is to do it by 2030, a schedule reiterated in Chinese state media this week. The Chinese program relies on an architecture more closely resembling NASA’s old Apollo designs.

The official schedule for the first Artemis crew landing, on Artemis III, puts it in 2027, but that timeline is no longer achievable. Starship and new lunar spacesuits developed by Axiom Space won’t be ready, in part because NASA didn’t award the contracts to SpaceX and Axiom until 2021 and 2022.

All of this adds up to waning odds that the United States can beat China back to the Moon, according to a growing chorus of voices in the space community. Last month, former NASA chief Jim Bridenstine, who led the agency during the first Trump administration, told Congress the United States was likely to lose the second lunar space race.

At a space conference earlier this week, Bridenstine suggested the Trump administration use its powers to fast-track a lunar landing, even floating the idea of invoking the Defense Production Act, a law that grants the president authority to marshal industrial might to meet pressing national needs.

An executive order from President Donald Trump could authorize such an effort and declare a “national security imperative that we’re going to beat China to the Moon,” Bridenstine said at the American Astronautical Society’s von Braun Space Exploration Symposium in Huntsville, Alabama.

Charlie Bolden, NASA’s administrator under former President Barack Obama, also expressed doubts that NASA could land humans on the Moon before China, or by the end of Trump’s term in the White House. “Let’s be real, OK? Everybody in this room knows, to say we’re going to do it by the end of the term, or we’re going to do it before the Chinese, that doesn’t help industry.”

But Bolden said maybe it’s not so terrible if China lands people on the Moon before NASA can return with astronauts. “We may not make 2030, and that’s OK with me, as long as we get there in 2031 better than they are with what they have there.”

Sean Duffy, NASA’s acting administrator, doesn’t see it the same way. Duffy said last week he would give contractors until this Wednesday to propose other ways of landing astronauts on the Moon sooner than the existing plan. SpaceX and Blue Origin, the space company founded by billionaire Jeff Bezos, confirmed they submitted updated plans to NASA this week.

SpaceX released a new rendering of the internal crew cabin for the Starship lunar lander. Credit: SpaceX

Blue Origin has a separate contract with NASA to provide its own human-rated lunar lander—Blue Moon Mark 2—for entry into service on the Artemis V mission, likely not to occur before the early 2030s. A smaller unpiloted lander—Blue Moon Mark 1—is on track to launch on Blue Origin’s first lunar landing attempt next year.

Blue Moon Mark 1 is still a big vehicle, standing taller than the lunar lander used by NASA during the Apollo program. But it doesn’t match the 52-foot (16-meter) height of Blue Origin’s Mark 2 lander, and tops out well short of the roughly 165-foot-tall (50-meter) Starship lander.

What’s more, Blue Moon Mark 1 won’t need to be refueled after launch, unlike Starship and Mark 2. Jacki Cortese, senior director of civil space at Blue Origin, confirmed Tuesday that her company is looking at employing a “more incremental approach” using Mark 1 to accelerate an Artemis crew landing. Ars first reported Blue Origin was studying how to modify Blue Moon Mark 1 for astronauts.

All of this is a reminder of something Blue Origin said in 2021, when NASA passed over Bezos’ company to award the first Artemis lander contract to SpaceX. Blue Origin protested the award and filed a lawsuit against the government, triggering a lunar lander work stoppage that lasted several months until a federal judge dismissed the suit.

Blue Origin said SpaceX’s approach with numerous refueling sorties was “immensely complex and high risk” and argued its proposal was the better option for NASA. The statement has taken on a meme-worthy status among fans of Starship.

But SpaceX bid a lower cost, and NASA officials said it was the only proposal the agency could afford at the time. And then, when Blue Origin won a contract from NASA in 2023 to provide a second lander option, the company’s concept also hinged on refueling the Blue Moon Mark 2 lander in space.

Now, SpaceX is making a new offering to NASA. Like Blue Origin, SpaceX said it has sent in a proposal for a “simplified architecture” for landing astronauts on the Moon, but did not provide details.

“We’ve shared and are formally assessing a simplified mission architecture and concept of operations that we believe will result in a faster return to the Moon while simultaneously improving crew safety,” the company said.

Since NASA selected SpaceX for the Human Landing System contract in 2021, the company said it has been “consistently responsive to NASA as requirements for Artemis III have changed.”

For example, NASA originally required SpaceX to only demonstrate it could land Starship on the Moon before moving forward with a crew mission. Lori Glaze, who leads NASA’s human exploration division, said in July that the agency is now requiring the uncrewed landing demo to also include an ascent from the Moon’s surface. NASA wants to know if Starship can not just land astronauts on the Moon, but also get them back.

“Starship continues to simultaneously be the fastest path to returning humans to the surface of the Moon and a core enabler of the Artemis program’s goal to establish a permanent, sustainable presence on the lunar surface,” SpaceX said. “SpaceX shares the goal of returning to the Moon as expeditiously as possible, approaching the mission with the same alacrity and commitment that returned human spaceflight capability to America under NASA’s Commercial Crew program.”

An artist’s illustration of multiple Starships on the lunar surface, with a Moon base in the background. Credit: SpaceX

SpaceX has built a reputation for doing things quickly. One example has been the rapid-fire launch cadence of the company’s workhorse Falcon 9 rocket. SpaceX is setting up launch pads and factories to manufacture and launch Super Heavy and Starshipcombining together to make the largest rocket ever built—at an even faster rate than Falcon 9.

The company has launched 11 full-scale test flights of Starship/Super Heavy since April 2023. “This campaign has quickly matured the core Starship and has produced numerous feats,” SpaceX said. The company listed some of them:

  • Multiple successful ascents of the world’s most powerful rocket
  • The launch, return, catch, and reuse of that rocket to unlock the high launch rate cadence needed for lunar missions
  • The transfer of approximately 5 metric tons of cryogenic propellant between tanks while in space
  • Successful in-space relights of the Raptor engines that are critical for the maneuvers that will send Starship to the Moon
  • Multiple controlled reentries through Earth’s atmosphere

It’s true that these feats have come fast. Many more remain on the road ahead before SpaceX can make good on its commitment to NASA.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX teases simplified Starship as alarms sound over Moon landing delays Read More »

nasa’s-next-moonship-reaches-last-stop-before-launch-pad

NASA’s next Moonship reaches last stop before launch pad

The Orion spacecraft, which will fly four people around the Moon, arrived inside the cavernous Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida late Thursday night, ready to be stacked on top of its rocket for launch early next year.

The late-night transfer covered about 6 miles (10 kilometers) from one facility to another at the Florida spaceport. NASA and its contractors are continuing preparations for the Artemis II mission after the White House approved the program as an exception to work through the ongoing government shutdown, which began on October 1.

The sustained work could set up Artemis II for a launch opportunity as soon as February 5 of next year. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will be the first humans to fly on the Orion spacecraft, a vehicle that has been in development for nearly two decades. The Artemis II crew will make history on their 10-day flight by becoming the first people to travel to the vicinity of the Moon since 1972.

Where things stand

The Orion spacecraft, developed by Lockheed Martin, has made several stops at Kennedy over the last few months since leaving its factory in May.

First, the capsule moved to a fueling facility, where technicians filled it with hydrazine and nitrogen tetroxide propellants, which will feed Orion’s main engine and maneuvering thrusters on the flight to the Moon and back. In the same facility, teams loaded high-pressure helium and ammonia coolant into Orion propulsion and thermal control systems.

The next stop was a nearby building where the Launch Abort System was installed on the Orion spacecraft. The tower-like abort system would pull the capsule away from its rocket in the event of a launch failure. Orion stands roughly 67 feet (20 meters) tall with its service module, crew module, and abort tower integrated together.

Teams at Kennedy also installed four ogive panels to serve as an aerodynamic shield over the Orion crew capsule during the first few minutes of launch.

The Orion spacecraft, with its Launch Abort System and ogive panels installed, is seen last month inside the Launch Abort System Facility at Kennedy Space Center, Florida. Credit: NASA/Frank Michaux

It was then time to move Orion to the Vehicle Assembly Building (VAB), where a separate team has worked all year to stack the elements of NASA’s Space Launch System rocket. In the coming days, cranes will lift the spacecraft, weighing 78,000 pounds (35 metric tons), dozens of stories above the VAB’s center aisle, then up and over the transom into the building’s northeast high bay to be lowered atop the SLS heavy-lift rocket.

NASA’s next Moonship reaches last stop before launch pad Read More »

blue-origin-aims-to-land-next-new-glenn-booster,-then-reuse-it-for-moon-mission

Blue Origin aims to land next New Glenn booster, then reuse it for Moon mission


“We fully intend to recover the New Glenn first stage on this next launch.”

New Glenn lifts off on its debut flight on January 16, 2025. Credit: Blue Origin

There’s a good bit riding on the second launch of Blue Origin’s New Glenn rocket.

Most directly, the fate of a NASA science mission to study Mars’ upper atmosphere hinges on a successful launch. The second flight of Blue Origin’s heavy-lifter will send two NASA-funded satellites toward the red planet to study the processes that drove Mars’ evolution from a warmer, wetter world to the cold, dry planet of today.

A successful launch would also nudge Blue Origin closer to winning certification from the Space Force to begin launching national security satellites.

But there’s more on the line. If Blue Origin plans to launch its first robotic Moon lander early next year—as currently envisioned—the company needs to recover the New Glenn rocket’s first stage booster. Crews will again dispatch Blue Origin’s landing platform into the Atlantic Ocean, just as they did for the first New Glenn flight in January.

The debut launch of New Glenn successfully reached orbit, a difficult feat for the inaugural flight of any rocket. But the booster fell into the Atlantic Ocean after three of the rocket’s engines failed to reignite to slow down for landing. Engineers identified seven changes to resolve the problem, focusing on what Blue Origin calls “propellant management and engine bleed control improvements.”

Relying on reuse

Pat Remias, Blue Origin’s vice president of space systems development, said Thursday that the company is confident in nailing the landing on the second flight of New Glenn. That launch, with NASA’s next set of Mars probes, is likely to occur no earlier than November from Cape Canaveral Space Force Station, Florida.

“We fully intend to recover the New Glenn first stage on this next launch,” Remias said in a presentation at the International Astronautical Congress in Sydney. “Fully intend to do it.”

Blue Origin, owned by billionaire Jeff Bezos, nicknamed the booster stage for the next flight “Never Tell Me The Odds.” It’s not quite fair to say the company’s leadership has gone all-in with their bet that the next launch will result in a successful booster landing. But the difference between a smooth touchdown and another crash landing will have a significant effect on Bezos’ Moon program.

That’s because the third New Glenn launch, penciled in for no earlier than January of next year, will reuse the same booster flown on the upcoming second flight. The payload on that launch will be Blue Origin’s first Blue Moon lander, aiming to become the largest spacecraft to reach the lunar surface. Ars has published a lengthy feature on the Blue Moon lander’s role in NASA’s effort to return astronauts to the Moon.

“We will use that first stage on the next New Glenn launch,” Remias said. “That is the intent. We’re pretty confident this time. We knew it was going to be a long shot [to land the booster] on the first launch.”

A long shot, indeed. It took SpaceX 20 launches of its Falcon 9 rocket over five years before pulling off the first landing of a booster. It was another 15 months before SpaceX launched a previously flown Falcon 9 booster for the first time.

With New Glenn, Blue’s engineers hope to drastically shorten the learning curve. Going into the second launch, the company’s managers anticipate refurbishing the first recovered New Glenn booster to launch again within 90 days. That would be a remarkable accomplishment.

Dave Limp, Blue Origin’s CEO, wrote earlier this year on social media that recovering the booster on the second New Glenn flight will “take a little bit of luck and a lot of excellent execution.”

On September 26, Blue Origin shared this photo of the second New Glenn booster on social media.

Blue Origin’s production of second stages for the New Glenn rocket has far outpaced manufacturing of booster stages. The second stage for the second flight was test-fired in April, and Blue completed a similar static-fire test for the third second stage in August. Meanwhile, according to a social media post written by Limp last week, the body of the second New Glenn booster is assembled, and installation of its seven BE-4 engines is “well underway” at the company’s rocket factory in Florida.

The lagging production of New Glenn boosters, known as GS1s (Glenn Stage 1s), is partly by design. Blue Origin’s strategy with New Glenn has been to build a small number of GS1s, each of which is more expensive and labor-intensive than SpaceX’s Falcon 9. This approach counts on routine recoveries and rapid refurbishment of boosters between missions.

However, this strategy comes with risks, as it puts the booster landings in the critical path for ramping up New Glenn’s launch rate. At one time, Blue aimed to launch eight New Glenn flights this year; it will probably end the year with two.

Laura Maginnis, Blue Origin’s vice president of New Glenn mission management, said last month that the company was building a fleet of “several boosters” and had eight upper stages in storage. That would bode well for a quick ramp-up in launch cadence next year.

However, Blue’s engineers haven’t had a chance to inspect or test a recovered New Glenn booster. Even if the next launch concludes with a successful landing, the rocket could come back to Earth with some surprises. SpaceX’s initial development of Falcon 9 and Starship was richer in hardware, with many boosters in production to decouple successful landings from forward progress.

Blue Moon

All of this means a lot is riding on an on-target landing of the New Glenn booster on the next flight. Separate from Blue Origin’s ambitions to fly many more New Glenn rockets next year, a good recovery would also mean an earlier demonstration of the company’s first lunar lander.

The lander set to launch on the third New Glenn mission is known as Blue Moon Mark 1, an unpiloted vehicle designed to robotically deliver up to 3 metric tons (about 6,600 pounds) of cargo to the lunar surface. The spacecraft will have a height of about 26 feet (8 meters), taller than the lunar lander used for NASA’s Apollo astronaut missions.

The first Blue Moon Mark 1 is funded from Blue Origin’s coffers. It is now fully assembled and will soon ship to NASA’s Johnson Space Center in Houston for vacuum chamber testing. Then, it will travel to Florida’s Space Coast for final launch preparations.

“We are building a series, not a singular lander, but multiple types and sizes and scales of landers to go to the Moon,” Remias said.

The second Mark 1 lander will carry NASA’s VIPER rover to prospect for water ice at the Moon’s south pole in late 2027. Around the same time, Blue will use a Mark 1 lander to deploy two small satellites to orbit the Moon, flying as low as a few miles above the surface to scout for resources like water, precious metals, rare Earth elements, and helium-3 that could be extracted and exploited by future explorers.

A larger lander, Blue Moon Mark 2, is in an earlier stage of development. It will be human-rated to land astronauts on the Moon for NASA’s Artemis program.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship. Credit: Blue Origin

NASA’s other crew-rated lander will be derived from SpaceX’s Starship rocket. But Starship and Blue Moon Mark 2 are years away from being ready to accommodate a human crew, and both require orbital cryogenic refueling—something never before attempted in space—to transit out to the Moon.

This has led to a bit of a dilemma at NASA. China is also working on a lunar program, eyeing a crew landing on the Moon by 2030. Many experts say that, as of today, China is on pace to land astronauts on the Moon before the United States.

Of course, 12 US astronauts walked on the Moon in the Apollo program. But no one has gone back since 1972, and NASA and China are each planning to return to the Moon to stay.

One way to speed up a US landing on the Moon might be to use a modified version of Blue Origin’s Mark 1 lander, Ars reported Thursday.

If this is the path NASA takes, the stakes for the next New Glenn launch and landing will soar even higher.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin aims to land next New Glenn booster, then reuse it for Moon mission Read More »

in-their-own-words:-the-artemis-ii-crew-on-the-frenetic-first-hours-of-their-flight

In their own words: The Artemis II crew on the frenetic first hours of their flight

No one will be able to sleep when the launch window opens, however.

Wiseman: About seven seconds prior to liftoff, the four main engines light, and they come up to full power. And then the solids light, and that’s when you’re going. What’s crazy to me is that it’s six and a half seconds into flight before the solids clear the top of the tower. Five million pounds of machinery going straight uphill. Six and a half seconds to clear the tower. As a human, I can’t wait to feel that force.

A little more than two minutes into flight, the powerful side-mounted boosters will separate. They will have done the vast majority of lifting to that point, with the rocket already reaching a velocity of 3,100 mph (5,000 kph) and an altitude of 30 miles (48 km), well on its way to space. As payload specialists, Koch and Hansen will largely be along for the ride. Wiseman, the commander, and Glover, the pilot, will be tracking the launch, although the rocket’s flight will be fully automated unless something goes wrong.

Wiseman: Victor and I, we have a lot of work. We have a lot of systems to monitor. Hopefully, everything goes great, and if it doesn’t, we’re very well-trained on what to do next.

After 8 minutes and 3 seconds, the rocket’s core stage will shut down, and the upper stage and Orion spacecraft will separate about 10 seconds later. They will be in space, with about 40 minutes to prepare for their next major maneuver.

In orbit

Koch: The wildest thing in this mission is that literally, right after main-engine cutoff, the first thing Jeremy and I do is get up and start working. I don’t know of a single other mission, certainly not in my memory, where that has been the case in terms of physical movement in the vehicle, setting things up.

Koch, Wiseman, and Glover have all flown to space before, either on a SpaceX Dragon or Russian Soyuz vehicle, and spent several months on the International Space Station. So they know how their bodies will react to weightlessness. Nearly half of all astronauts experience “space adaptation syndrome” during their first flight to orbit, and there is really no way to predict who it will afflict beforehand. This is a real concern for Hansen, a first-time flier, who is expected to hop out of his seat and start working.

Canadian Astronaut Jeremy Hansen is a first-time flier on Artemis II.

Credit: NASA

Canadian Astronaut Jeremy Hansen is a first-time flier on Artemis II. Credit: NASA

Hansen: I’m definitely worried about that, just from a space motion sickness point of view. So I’ll just be really intentional. I won’t move my head around a lot. Obviously, I’m gonna have to get up and move. And I’ll just be very intentional in those first few hours while I’m moving around. And the other thing that I’ll do—it’s very different from Space Station—is I just have everything memorized, so I don’t have to read the procedure on those first few things. So I’m not constantly going down to the [tablet] and reading, and then up. And I’ll just try to minimize what I do.

Koch and Hansen will set up and test essential life support systems on the spacecraft because if the bathroom does not work, they’re not going to the Moon.

Hansen: We kind of split the vehicle by side. So Christina is on the side of the toilet. She’s taking care of all that stuff. I’m on the side of the water dispenser, which is something they want to know: Can we dispense water? It’s not a very complicated system. We just got to get up, get the stuff out of storage, hook it up. I’ll have some camera equipment that I’ll pull out of there. I’ve got the masks we use if we have a fire and we’re trying to purge the smoke. I’ve got to get those set up and make sure they’re good to go. So it’s just little jobs, little odds and ends.

Unlike a conventional rocket mission, Artemis II vehicle’s upper stage, known as the Interim Cryogenic Propulsion Stage, will not fire right away. Rather, after separating from the core stage, Orion will be in an elliptical orbit that will take it out to an apogee of 1,200 nautical miles, nearly five times higher than the International Space Station. There, the crew will be further from Earth than anyone since the Apollo program.

In their own words: The Artemis II crew on the frenetic first hours of their flight Read More »

rocket-report:-keeping-up-with-kuiper;-new-glenn’s-second-flight-slips

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips


Amazon plans to conduct two launches of Kuiper broadband satellites just days apart.

An unarmed Trident II D5 Life Extension (D5LE) missile launches from an Ohio-class ballistic missile submarine off the coast of Florida. Credit: US Navy

Welcome to Edition 8.12 of the Rocket Report! We often hear from satellite operators—from the military to venture-backed startups—about their appetite for more launch capacity. With so many rocket launches happening around the world, some might want to dismiss these statements as a corporate plea for more competition, and therefore lower prices. SpaceX is on pace to launch more than 150 times this year. China could end the year with more than 70 orbital launches. These are staggering numbers compared to global launch rates just a few years ago. But I’m convinced there’s room for more alternatives for reliable (and reusable) rockets. All of the world’s planned mega-constellations will need immense launch capacity just to get off the ground, and if successful, they’ll go into regular replacement and replenishment cycles. Throw in the still-undefined Golden Dome missile shield and many nations’ desire for a sovereign launch capability, and it’s easy to see the demand curve going up.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sharp words from Astra’s Chris Kemp. Chris Kemp, the chief executive officer of Astra, apparently didn’t get the memo about playing nice with his competitors in the launch business. Kemp made some spicy remarks at the Berkeley Space Symposium 2025 earlier this month, billed as the largest undergraduate aerospace event at the university (see video of the talk). During the speech, Kemp periodically deviated from building up Astra to hurling insults at several of his competitors in the launch industry, Ars reports. To be fair to Kemp, some of his criticisms are not without a kernel of truth. But they are uncharacteristically rough all the same, especially given Astra’s uneven-at-best launch record and financial solvency to date.

Wait, what?! … Kemp is generally laudatory in his comments about SpaceX, but his most crass statement took aim at the quality of life of SpaceX employees at Starbase, Texas. He said life at Astra is “more fun than SpaceX because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn.” For the record, no SpaceX employees have been beheaded. “And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day.” Kemp also accused Firefly Aerospace of sending Astra “garbage” rocket engines as part of the companies’ partnership on propulsion for Astra’s next-generation rocket.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

A step forward for Europe’s reusable rocket program. No one could accuse the European Space Agency and its various contractors of moving swiftly when it comes to the development of reusable rockets. However, it appears that Europe is finally making some credible progress, Ars reports. Last week, the France-based ArianeGroup aerospace company announced that it completed the integration of the Themis vehicle, a prototype rocket that will test various landing technologies, on a launch pad in Sweden. Low-altitude hop tests, a precursor for developing a rocket’s first stage that can vertically land after an orbital launch, could start late this year or early next.

Hopping into the future … “This milestone marks the beginning of the ‘combined tests,’ during which the interface between Themis and the launch pad’s mechanical, electrical, and fluid systems will be thoroughly trialed, with the aim of completing a test under cryogenic conditions,” ArianeGroup said. This particular rocket will likely undergo only short hops, initially about 100 meters. A follow-up vehicle, Themis T1E, is intended to fly medium-altitude tests at a later date. Some of the learnings from these prototypes will feed into a smaller, reusable rocket intended to lift 500 kilograms to low-Earth orbit. This is under development by MaiaSpace, a subsidiary of ArianeGroup. Eventually, the European Space Agency would like to use technology developed as part of Themis to develop a new line of reusable rockets that will succeed the Ariane 6 rocket.

Navy conducts Trident missile drills. The US Navy carried out four scheduled missile tests of a nuclear-capable weapons system off the coast of Florida within the last week, Defense News reports. The service’s Strategic Systems Programs conducted flights of unarmed Trident II D5 Life Extension missiles from a submerged Ohio-class ballistic missile submarine from September 17 to September 21 as part of an ongoing scheduled event meant to test the reliability of the system. “The missile tests were not conducted in response to any ongoing world events,” a Navy release said.

Secret with high visibility … The Navy periodically performs these Trident missile tests off the coasts of Florida and California, taking advantage of support infrastructure and range support from the two busiest US spaceports. The military doesn’t announce the exact timing of the tests, but warnings issued for pilots to stay out of the area give a general idea of when they might occur. One of the launch events Sunday was visible from Puerto Rico, illuminating the night sky in photos published on social media. The missiles fell in the Atlantic Ocean as intended, the Navy said. The Trident II D5 missiles were developed in the 1980s and are expected to remain in service on the Navy’s ballistic missile submarines into the 2040s. The Trident system is one leg of the US military’s nuclear triad, alongside land-based Minuteman ballistic missiles and nuclear-capable strategic bombers. (submitted by EllPeaTea)

Firefly plans for Alpha’s return to flight. Firefly Aerospace expects to resume Alpha launches in the “coming weeks,” with two flights planned before the end of the year, Space News reports. These will be the first flights of Firefly’s one-ton-class Alpha rocket since a failure in April destroyed a Lockheed Martin tech demo satellite after liftoff from California. In a quarterly earnings call, Firefly shared a photo showing its next two Alpha rockets awaiting shipment from the company’s Texas factory.

Righting the ship … These next two launches really need to go well for Firefly. The Alpha rocket has, at best, a mixed record with only two fully successful flights in six attempts. Two other missions put their payloads into off-target orbits, and two Alpha launches failed to reach orbit at all. Firefly went public on the NASDAQ stock exchange last month, raising nearly $900 million in the initial public offering to help fund the company’s future programs, namely the medium-lift Eclipse rocket developed in partnership with Northrop Grumman. There’s a lot to like about Firefly. The company achieved the first fully successful landing of a commercial spacecraft on the Moon in March. NASA has selected Firefly for three more commercial landings on the Moon, and Firefly reported this week it has an agreement with an unnamed commercial customer for an additional dedicated mission. But the Alpha program hasn’t had the same level of success. We’ll see if Firefly can get the rocket on track soon. (submitted by EllPeaTea)

Avio wins contract to launch “extra-European” mission. Italian rocket builder Avio has signed a launch services agreement with US-based launch aggregator SpaceLaunch for a Vega C launch carrying an Earth observation satellite for an “extra-European institutional customer” in 2027, European Spaceflight reports. Avio announced that it had secured the launch contract on September 18. According to the company, the contract was awarded through an open international competition, with Vega C chosen for its “versatility and cost-effectiveness.” While Avio did not reveal the identity of the “extra-European” customer, it said that it would do so later this year.

Plenty of peculiarities … There are several questions to unpack here, and Andrew Parsonson of European Spaceflight goes through them all. Presumably, extra-European means the customer is based outside of Europe. Avio’s statement suggests we’ll find out the answer to that question soon. Details about the US-based launch broker SpaceLaunch are harder to find. SpaceLaunch appears to have been founded in January 2025 by two former Firefly Aerospace employees with a combined 40 years of experience in the industry. On its website, the company claims to provide end-to-end satellite launch integration, mission management, and launch procurement services with a “portfolio of launch vehicle capacity around the globe.” SpaceLaunch boasts it has supported the launch of more than 150 satellites on 12 different launch vehicles. However, according to public records, it does not appear that the company itself has supported a single launch. Instead, the claim seems to credit SpaceLaunch with launches that were actually carried out during the two founders’ previous tenures at Spaceflight, Firefly Aerospace, Northrop Grumman, and the US Air Force. (submitted by EllPeaTea)

Falcon 9 launches three missions for NASA and NOAA. Scientists loaded three missions worth nearly $1.6 billion on a SpaceX Falcon 9 rocket for launch Wednesday, toward an orbit nearly a million miles from Earth, to measure the supersonic stream of charged particles emanating from the Sun, Ars reports. One of the missions, from the National Oceanic and Atmospheric Administration (NOAA), will beam back real-time observations of the solar wind to provide advance warning of geomagnetic storms that could affect power grids, radio communications, GPS navigation, air travel, and satellite operations. The other two missions come from NASA, with research objectives that include studying the boundary between the Solar System and interstellar space and observing the rarely seen outermost layer of our own planet’s atmosphere.

Immense value …All three spacecraft will operate in orbit around the L1 Lagrange point, a gravitational balance point located more than 900,000 miles (1.5 million kilometers) from Earth. Bundling these three missions onto the same rocket saved at least tens of millions of dollars in launch costs. Normally, they would have needed three different rockets. Rideshare missions to low-Earth orbit are becoming more common, but spacecraft departing for more distant destinations like the L1 Lagrange point are rare. Getting all three missions on the same launch required extensive planning, a stroke of luck, and fortuitous timing. “This is the ultimate cosmic carpool,” said Joe Westlake, director of NASA’s heliophysics division. “These three missions heading out to the Sun-Earth L1 point riding along together provide immense value for the American taxpayer.”

US officials concerned about China mastering reusable launch. SpaceX’s dominance in reusable rocketry is one of the most important advantages the United States has over China as competition between the two nations extends into space, US Space Force officials said Monday. But several Chinese companies are getting close to fielding their own reusable rockets, Ars reports. “It’s concerning how fast they’re going,” said Brig. Gen. Brian Sidari, the Space Force’s deputy chief of space operations for intelligence. “I’m concerned about when the Chinese figure out how to do reusable lift that allows them to put more capability on orbit at a quicker cadence than currently exists.”

By the numbers … China has used 14 different types of rockets on its 56 orbital-class missions this year, and none have flown more than 11 times. Eight US rocket types have cumulatively flown 145 times, with 122 of those using SpaceX’s workhorse Falcon 9. Without a reusable rocket, China must maintain more rocket companies to sustain a launch rate of just one-third to one-half that of the United States. This contrasts with the situation just four years ago, when China outpaced the United States in orbital rocket launches. The growth in US launches has been a direct result of SpaceX’s improvements to launch at a higher rate, an achievement primarily driven by the recovery and reuse of Falcon 9 boosters and payload fairings.

Atlas V launches more Kuiper satellites. Roughly an hour past sunrise Thursday, an Atlas V rocket from United Launch Alliance took flight from Cape Canaveral Space Force Station, Florida. Onboard the rocket, flying in its most powerful configuration, were the next 27 Project Kuiper broadband satellites from Amazon, Spaceflight Now reports. This is the third batch of production satellites launched by ULA and the fifth overall for the growing low-Earth orbit constellation. The Atlas V rocket released the 27 Kuiper satellites about 280 miles (450 kilometers) above Earth. The satellites will use onboard propulsion to boost themselves to their assigned orbit at 392 miles (630 kilometers).

Another Kuiper launch on tap … With this deployment, Amazon now has 129 satellites in orbit. This is a small fraction of the network’s planned total of 3,232 satellites, but Amazon has enjoyed a steep ramp-up in the Kuiper launch cadence as the company’s satellite assembly line in Kirkland, Washington, continues churning out spacecraft. Another 24 Kuiper satellites are slated to launch September 30 on a SpaceX Falcon 9 rocket, and Amazon has delivered enough satellites to Florida for an additional launch later this fall. (submitted by EllPeaTea)

German military will fly with Ariane 6. Airbus Defense and Space has awarded Arianespace a contract to launch a pair of SATCOMBw-3 communications satellites for the German Armed Forces, European Spaceflight reports. Airbus is the prime contractor for the nearly $2.5 billion (2.1 billion euro) SATCOMBw-3 program, which will take over from the two-satellite SATCOMBw-2 constellation currently providing secure communications for the German military. Arianespace announced Wednesday that it had been awarded the contract to launch the satellites aboard two Ariane 6 rockets. “By signing this new strategic contract for the German Armed Forces, Arianespace accomplishes its core mission of guaranteeing autonomous access to space for European sovereign satellites,” said Arianespace CEO David Cavaillolès.

Running home to Europe … The chief goal of the Ariane 6 program is to provide Europe with independent access to space, something many European governments see as a strategic requirement. Several European military, national security, and scientific satellites have launched on SpaceX Falcon 9 rockets in the last few years as officials waited for the debut of the Ariane 6 rocket. With three successful Ariane 6 flights now in the books, European customers seem to now have the confidence to commit to flying their satellites on Ariane 6. (submitted by EllPeaTea)

Artemis II launch targeted for February. NASA is pressing ahead with preparations for the first launch of humans beyond low-Earth orbit in more than five decades, and officials said Tuesday that the Artemis II mission could take flight early next year, Ars reports. Although work remains to be done, the space agency is now pushing toward a launch window that opens on February 5, 2026, officials said during a news conference on Tuesday at Johnson Space Center. The Artemis II mission represents a major step forward for NASA and seeks to send four astronauts—Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen—around the Moon and back. The 10-day mission will be the first time astronauts have left low-Earth orbit since the Apollo 17 mission in December 1972.

Orion named Integrity The first astronauts set to fly to the Moon in more than 50 years will do so in Integrity, Ars reports. NASA’s Artemis II crew revealed Integrity as the name of their Orion spacecraft during a news conference on Wednesday at the Johnson Space Center in Houston. “We thought, as a crew, we need to name this spacecraft. We need to have a name for the Orion spacecraft that we’re going to ride this magical mission on,” said Wiseman, commander of the Artemis II mission.

FAA reveals new Starship trajectories. Sometime soon, perhaps next year, SpaceX will attempt to fly one of its enormous Starship rockets from low-Earth orbit back to its launch pad in South Texas. A successful return and catch at the launch tower would demonstrate a key capability underpinning Elon Musk’s hopes for a fully reusable rocket. In order for this to happen, SpaceX must overcome the tyranny of geography. A new document released by the Federal Aviation Administration shows the narrow corridors Starship will fly to space and back when SpaceX tries to recover them, Ars reports.

Flying over people It was always evident that flying a Starship from low-Earth orbit back to Starbase would require the rocket to fly over Mexico and portions of South Texas. The rocket launches to the east over the Gulf of Mexico, so it must approach Starbase from the west when it comes in for a landing. The new maps show SpaceX will launch Starships to the southeast over the Gulf and the Caribbean Sea, and directly over Jamaica, or to the northeast over the Gulf and the Florida peninsula. On reentry, the ship will fly over Baja California and Mexico’s interior near the cities of Hermosillo and Chihuahua, each with a population of roughly a million people. The trajectory would bring Starship well north of the Monterrey metro area and its 5.3 million residents, then over the Rio Grande Valley near the Texas cities of McAllen and Brownsville.

New Glenn’s second flight at least a month away. The second launch of Blue Origin’s New Glenn rocket, carrying a NASA smallsat mission to Mars, is now expected in late October or early November, Space News reports. Tim Dunn, NASA’s senior launch director at Kennedy Space Center, provided an updated schedule for the second flight of New Glenn in comments after a NASA-sponsored launch on a Falcon 9 rocket Wednesday. Previously, the official schedule from NASA showed the launch date as no earlier than September 29.

No surprise … It was already apparent that this launch wouldn’t happen September 29. Blue Origin has test-fired the second stage for the upcoming flight of the New Glenn rocket but hasn’t rolled the first stage to the launch pad for its static fire. Seeing the rocket emerge from Blue’s factory in Florida will be an indication that the launch date is finally near. Blue Origin will launch NASA’s ESCAPADE mission, a pair of small satellites to study how the solar wind interacts with the Martian upper atmosphere.

Blue Origin will launch a NASA rover to the Moon. NASA has awarded Blue Origin a task order worth up to $190 million to deliver its Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon’s surface, Aviation Week & Space Technology reports. Blue Origin, one of 13 currently active Commercial Lunar Payload Services (CLPS) providers, submitted the only bid to carry VIPER to the Moon after NASA requested offers from industry last month. NASA canceled the VIPER mission last year, citing cost overruns with the rover and delays in its planned ride to the Moon aboard a lander provided by Astrobotic. But engineers had already completed assembly of the rover, and scientists protested NASA’s decision to terminate the mission.

Some caveats … Blue Origin will deliver VIPER to a location near the Moon’s south pole in late 2027 using a robotic Blue Moon MK1 lander, a massive craft larger than the Apollo lunar landing module. The company’s first Blue Moon MK1 lander is scheduled to fly to the Moon next year. NASA’s contract for the VIPER delivery calls for Blue Origin to design accommodations for the rover on the Blue Moon lander. The agency said it will decide whether to proceed with the actual launch on a New Glenn rocket and delivery of VIPER to the Moon based partially on the outcome of the first Blue Moon test flight next year.

Next three launches

Sept. 26: Long March 4C | Unknown Payload | Jiuquan Satellite Launch Center, China | 19: 20 UTC

Sept. 27: Long March 6A | Unknown Payload | Taiyuan Satellite Launch Center, China | 12: 39 UTC

Sept. 28: Falcon 9 | Starlink 11-20 | Vandenberg Space Force Base, California | 23: 32 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips Read More »

the-crew-of-artemis-ii-will-fly-on-integrity-during-mission-to-the-moon

The crew of Artemis II will fly on Integrity during mission to the Moon

Three men and one woman, all in orange pressure suits, stand in front of a silver-coated space capsule in an overhead view

The Artemis II crew (from the right): Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen pose in front of their Orion spacecraft, which they have named Integrity. Credit: NASA/Rad Sinyak

Whole and undivided

Ultimately, Integrity was inspired by something one of their instructors said while on a team-building trip to Iceland.

“He coined this for us, and we held on to it,” said Hansen, who, unlike his NASA crewmates, is a Canadian Space Agency astronaut. “It was this idea that you’re not a person who has integrity, you’re a person who strives to be in integrity. Sometimes you’re out of integrity, and sometimes you’re in your integrity. That was profound for all of us.”

For Glover, it boiled down to the definition.

“The Latin root means ‘whole.’ It’s a very simple concept, and it’s about being whole. This crew comes together as pieces—the four of us and our backups—but the six of us make up a whole team. The vehicle, the pieces come together and make up a whole spacecraft,” he said.

“What people anecdotally say is that integrity is what you do when no one’s watching. That, and truth, honor, and integrity matter,” said Glover. “There are so many layers to that name and what it means and what it inspires.”

Integrating Integrity

Integrity is one of the tenets of the Astronaut Code of Professional Responsibility. It is also one of the Canadian Space Agency’s core values.

“We all strive to be in integrity all of the time, but integrity isn’t an absolute that you either have or don’t have,” said Koch. “So this helps us give grace and build trust with each other.”

“I hope that people hearing [the name] over the 10 days of the mission appreciate all of the different things that it means, from a whole ship, a whole crew, to a wholeness and wellness that I think humanity just needs. We need to hear more of that togetherness and wholeness,” said Glover.

Three men and a woman, all in blue flight suits, pose for a photograph backdropped by images of the moon and Mars

NASA’s Artemis II crew (from the left) Victor Glover, Reid Wiseman, Christina Koch, and Jeremy Hansen at the Johnson Space Center in Houston on Wednesday, September 24, 2025. Credit: collectSPACE.com

Now that it has been announced, next up is for Integrity to be used as the crew’s possible call sign.

“We waited to make sure the whole enterprise was ready for us to announce it before we even used it,” said Glover. “I think we’ll start using it in sims: ‘Houston, Integrity. Integrity, Houston.’ That’s the plan.

“But if someone doesn’t like that, then we won’t, and we can say Orion,” he said.

The crew of Artemis II will fly on Integrity during mission to the Moon Read More »