multimodal

openai’s-new-ai-image-generator-is-potent-and-bound-to-provoke

OpenAI’s new AI image generator is potent and bound to provoke


The visual apocalypse is probably nigh, but perhaps seeing was never believing.

A trio of AI-generated images created using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI

The arrival of OpenAI’s DALL-E 2 in the spring of 2022 marked a turning point in AI when text-to-image generation suddenly became accessible to a select group of users, creating a community of digital explorers who experienced wonder and controversy as the technology automated the act of visual creation.

But like many early AI systems, DALL-E 2 struggled with consistent text rendering, often producing garbled words and phrases within images. It also had limitations in following complex prompts with multiple elements, sometimes missing key details or misinterpreting instructions. These shortcomings left room for improvement that OpenAI would address in subsequent iterations, such as DALL-E 3 in 2023.

On Tuesday, OpenAI announced new multimodal image generation capabilities that are directly integrated into its GPT-4o AI language model, making it the default image generator within the ChatGPT interface. The integration, called “4o Image Generation” (which we’ll call “4o IG” for short), allows the model to follow prompts more accurately (with better text rendering than DALL-E 3) and respond to chat context for image modification instructions.

An AI-generated cat in a car drinking a can of beer created by OpenAI’s 4o Image Generation model. OpenAI

The new image generation feature began rolling out Tuesday to ChatGPT Free, Plus, Pro, and Team users, with Enterprise and Education access coming later. The capability is also available within OpenAI’s Sora video generation tool. OpenAI told Ars that the image generation when GPT-4.5 is selected calls upon the same 4o-based image generation model as when GPT-4o is selected in the ChatGPT interface.

Like DALL-E 2 before it, 4o IG is bound to provoke debate as it enables sophisticated media manipulation capabilities that were once the domain of sci-fi and skilled human creators into an accessible AI tool that people can use through simple text prompts. It will also likely ignite a new round of controversy over artistic styles and copyright—but more on that below.

Some users on social media initially reported confusion since there’s no UI indication of which image generator is active, but you’ll know it’s the new model if the generation is ultra slow and proceeds from top to bottom. The previous DALL-E model remains available through a dedicated “DALL-E GPT” interface, while API access to GPT-4o image generation is expected within weeks.

Truly multimodal output

4o IG represents a shift to “native multimodal image generation,” where the large language model processes and outputs image data directly as tokens. That’s a big deal, because it means image tokens and text tokens share the same neural network. It leads to new flexibility in image creation and modification.

Despite baking-in multimodal image generation capabilities when GPT-4o launched in May 2024—when the “o” in GPT-4o was touted as standing for “omni” to highlight its ability to both understand and generate text, images, and audio—OpenAI has taken over 10 months to deliver the functionality to users, despite OpenAI president Greg Brock teasing the feature on X last year.

OpenAI was likely goaded by the release of Google’s multimodal LLM-based image generator called “Gemini 2.0 Flash (Image Generation) Experimental,” last week. The tech giants continue their AI arms race, with each attempting to one-up the other.

And perhaps we know why OpenAI waited: At a reasonable resolution and level of detail, the new 4o IG process is extremely slow, taking anywhere from 30 seconds to one minute (or longer) for each image.

Even if it’s slow (for now), the ability to generate images using a purely autoregressive approach is arguably a major leap for OpenAI due to its flexibility. But it’s also very compute-intensive, since the model generates the image token by token, building it sequentially. This contrasts with diffusion-based methods like DALL-E 3, which start with random noise and gradually refine an entire image over many iterative steps.

Conversational image editing

In a blog post, OpenAI positions 4o Image Generation as moving beyond generating “surreal, breathtaking scenes” seen with earlier AI image generators and toward creating “workhorse imagery” like logos and diagrams used for communication.

The company particularly notes improved text rendering within images, a capability where previous text-to-image models often spectacularly failed, often turning “Happy Birthday” into something resembling alien hieroglyphics.

OpenAI claims several key improvements: users can refine images through conversation while maintaining visual consistency; the system can analyze uploaded images and incorporate their details into new generations; and it offers stronger photorealism—although what constitutes photorealism (for example, imitations of HDR camera features, detail level, and image contrast) can be subjective.

A screenshot of OpenAI's 4o Image Generation model in ChatGPT. We see an existing AI-generated image of a barbarian and a TV set, then a request to set the TV set on fire.

A screenshot of OpenAI’s 4o Image Generation model in ChatGPT. We see an existing AI-generated image of a barbarian and a TV set, then a request to set the TV set on fire. Credit: OpenAI / Benj Edwards

In its blog post, OpenAI provided examples of intended uses for the image generator, including creating diagrams, infographics, social media graphics using specific color codes, logos, instruction posters, business cards, custom stock photos with transparent backgrounds, editing user photos, or visualizing concepts discussed earlier in a chat conversation.

Notably absent: Any mention of the artists and graphic designers whose jobs might be affected by this technology. As we covered throughout 2022 and 2023, job impact is still a top concern among critics of AI-generated graphics.

Fluid media manipulation

Shortly after OpenAI launched 4o Image Generation, the AI community on X put the feature through its paces, finding that it is quite capable at inserting someone’s face into an existing image, creating fake screenshots, and converting meme photos into the style of Studio Ghibli, South Park, felt, Muppets, Rick and Morty, Family Guy, and much more.

It seems like we’re entering a completely fluid media “reality” courtesy of a tool that can effortlessly convert visual media between styles. The styles also potentially encroach upon protected intellectual property. Given what Studio Ghibli co-founder Hayao Miyazaki has previously said about AI-generated artwork (“I strongly feel that this is an insult to life itself.”), it seems he’d be unlikely to appreciate the current AI-generated Ghibli fad on X at the moment.

To get a sense of what 4o IG can do ourselves, we ran some informal tests, including some of the usual CRT barbarians, queens of the universe, and beer-drinking cats, which you’ve already seen above (and of course, the plate of pickles.)

The ChatGPT interface with the new 4o image model is conversational (like before with DALL-E 3), but you can suggest changes over time. For example, we took the author’s EGA pixel bio (as we did with Google’s model last week) and attempted to give it a full body. Arguably, Google’s more limited image model did a far better job than 4o IG.

Giving the author's pixel avatar a body using OpenAI's 4o Image Generation model in ChatGPT.

Giving the author’s pixel avatar a body using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

While my pixel avatar was commissioned from the very human (and talented) Julia Minamata in 2020, I also tried to convert the inspiration image for my avatar (which features me and legendary video game engineer Ed Smith) into EGA pixel style to see what would happen. In my opinion, the result proves the continued superiority of human artistry and attention to detail.

Converting a photo of Benj Edwards and video game legend Ed Smith into “EGA pixel art” using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

We also tried to see how many objects 4o Image Generation could cram into an image, inspired by a 2023 tweet by Nathan Shipley when he was evaluating DALL-E 3 shortly after its release. We did not account for every object, but it looks like most of them are there.

Generating an image of a surfer holding tons of items, inspired by a 2023 Twitter post from Nathan Shipley.

Generating an image of a surfer holding tons of items, inspired by a 2023 Twitter post from Nathan Shipley. Credit: OpenAI / Benj Edwards

On social media, other people have manipulated images using 4o IG (like Simon Willison’s bear selfie), so we tried changing an AI-generated note featured in an article last year. It worked fairly well, though it did not really imitate the handwriting style as requested.

Modifying text in an image using OpenAI's 4o Image Generation model in ChatGPT.

Modifying text in an image using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

To take text generation a little further, we generated a poem about barbarians using ChatGPT, then fed it into an image prompt. The result feels roughly equivalent to diffusion-based Flux in capability—maybe slightly better—but there are still some obvious mistakes here and there, such as repeated letters.

Testing text generation using OpenAI's 4o Image Generation model in ChatGPT.

Testing text generation using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

We also tested the model’s ability to create logos featuring our favorite fictional Moonshark brand. One of the logos not pictured here was delivered as a transparent PNG file with an alpha channel. This may be a useful capability for some people in a pinch, but to the extent that the model may produce “good enough” (not exceptional, but looks OK at a glance) logos for the price of $o (not including an OpenAI subscription), it may end up competing with some human logo designers, and that will likely cause some consternation among professional artists.

Generating a

Generating a “Moonshark Moon Pies” logo using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

Frankly, this model is so slow we didn’t have time to test everything before we needed to get this article out the door. It can do much more than we have shown here—such as adding items to scenes or removing them. We may explore more capabilities in a future article.

Limitations

By now, you’ve seen that, like previous AI image generators, 4o IG is not perfect in quality: It consistently renders the author’s nose at an incorrect size.

Other than that, while this is one of the most capable AI image generators ever created, OpenAI openly acknowledges significant limitations of the model. For example, 4o IG sometimes crops images too tightly or includes inaccurate information (confabulations) with vague prompts or when rendering topics it hasn’t encountered in its training data.

The model also tends to fail when rendering more than 10–20 objects or concepts simultaneously (making tasks like generating an accurate periodic table currently impossible) and struggles with non-Latin text fonts. Image editing is currently unreliable over many multiple passes, with a specific bug affecting face editing consistency that OpenAI says it plans to fix soon. And it’s not great with dense charts or accurately rendering graphs or technical diagrams. In our testing, 4o Image Generation produced mostly accurate but flawed electronic circuit schematics.

Move fast and break everything

Even with those limitations, multimodal image generators are an early step into a much larger world of completely plastic media reality where any pixel can be manipulated on demand with no particular photo editing skill required. That brings with it potential benefits, ethical pitfalls, and the potential for terrible abuse.

In a notable shift from DALL-E, OpenAI now allows 4o IG to generate adult public figures (not children) with certain safeguards, while letting public figures opt out if desired. Like DALL-E, the model still blocks policy-violating content requests (such as graphic violence, nudity, and sex).

The ability for 4o Image Generation to imitate celebrity likenesses, brand logos, and Studio Ghibli films reinforces and reminds us how GPT-4o is partly (aside from some licensed content) a product of a massive scrape of the Internet without regard to copyright or consent from artists. That mass-scraping practice has resulted in lawsuits against OpenAI in the past, and we would not be surprised to see more lawsuits or at least public complaints from celebrities (or their estates) about their likenesses potentially being misused.

On X, OpenAI CEO Sam Altman wrote about the company’s somewhat devil-may-care position about 4o IG: “This represents a new high-water mark for us in allowing creative freedom. People are going to create some really amazing stuff and some stuff that may offend people; what we’d like to aim for is that the tool doesn’t create offensive stuff unless you want it to, in which case within reason it does.”

An original photo of the author beside AI-generated images created by OpenAI's 4o Image Generation model. From left to right: Studio Ghibli style, Muppet style, and pasta style.

An original photo of the author beside AI-generated images created by OpenAI’s 4o Image Generation model. From second left to right: Studio Ghibli style, Muppet style, and pasta style. Credit: OpenAI / Benj Edwards

Zooming out, GPT-4o’s image generation model (and the technology behind it, once open source) feels like it further erodes trust in remotely produced media. While we’ve always needed to verify important media through context and trusted sources, these new tools may further expand the “deep doubt” media skepticism that’s become necessary in the age of AI. By opening up photorealistic image manipulation to the masses, more people than ever can create or alter visual media without specialized skills.

While OpenAI includes C2PA metadata in all generated images, that data can be stripped away and might not matter much in the context of a deceptive social media post. But 4o IG doesn’t change what has always been true: We judge information primarily by the reputation of its messenger, not by the pixels themselves. Forgery existed long before AI. It reinforces that everyone needs media literacy skills—understanding that context and source verification have always been the best arbiters of media authenticity.

For now, Altman is ready to take on the risks of releasing the technology into the world. “As we talk about in our model spec, we think putting this intellectual freedom and control in the hands of users is the right thing to do, but we will observe how it goes and listen to society,” Altman wrote on X. “We think respecting the very wide bounds society will eventually choose to set for AI is the right thing to do, and increasingly important as we get closer to AGI. Thanks in advance for the understanding as we work through this.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

OpenAI’s new AI image generator is potent and bound to provoke Read More »

cheap-ai-“video-scraping”-can-now-extract-data-from-any-screen-recording

Cheap AI “video scraping” can now extract data from any screen recording


Researcher feeds screen recordings into Gemini to extract accurate information with ease.

Abstract 3d background with different cubes

Recently, AI researcher Simon Willison wanted to add up his charges from using a cloud service, but the payment values and dates he needed were scattered among a dozen separate emails. Inputting them manually would have been tedious, so he turned to a technique he calls “video scraping,” which involves feeding a screen recording video into an AI model, similar to ChatGPT, for data extraction purposes.

What he discovered seems simple on its surface, but the quality of the result has deeper implications for the future of AI assistants, which may soon be able to see and interact with what we’re doing on our computer screens.

“The other day I found myself needing to add up some numeric values that were scattered across twelve different emails,” Willison wrote in a detailed post on his blog. He recorded a 35-second video scrolling through the relevant emails, then fed that video into Google’s AI Studio tool, which allows people to experiment with several versions of Google’s Gemini 1.5 Pro and Gemini 1.5 Flash AI models.

Willison then asked Gemini to pull the price data from the video and arrange it into a special data format called JSON (JavaScript Object Notation) that included dates and dollar amounts. The AI model successfully extracted the data, which Willison then formatted as CSV (comma-separated values) table for spreadsheet use. After double-checking for errors as part of his experiment, the accuracy of the results—and what the video analysis cost to run—surprised him.

A screenshot of Simon Willison using Google Gemini to extract data from a screen capture video.

A screenshot of Simon Willison using Google Gemini to extract data from a screen capture video.

A screenshot of Simon Willison using Google Gemini to extract data from a screen capture video. Credit: Simon Willison

“The cost [of running the video model] is so low that I had to re-run my calculations three times to make sure I hadn’t made a mistake,” he wrote. Willison says the entire video analysis process ostensibly cost less than one-tenth of a cent, using just 11,018 tokens on the Gemini 1.5 Flash 002 model. In the end, he actually paid nothing because Google AI Studio is currently free for some types of use.

Video scraping is just one of many new tricks possible when the latest large language models (LLMs), such as Google’s Gemini and GPT-4o, are actually “multimodal” models, allowing audio, video, image, and text input. These models translate any multimedia input into tokens (chunks of data), which they use to make predictions about which tokens should come next in a sequence.

A term like “token prediction model” (TPM) might be more accurate than “LLM” these days for AI models with multimodal inputs and outputs, but a generalized alternative term hasn’t really taken off yet. But no matter what you call it, having an AI model that can take video inputs has interesting implications, both good and potentially bad.

Breaking down input barriers

Willison is far from the first person to feed video into AI models to achieve interesting results (more on that below, and here’s a 2015 paper that uses the “video scraping” term), but as soon as Gemini launched its video input capability, he began to experiment with it in earnest.

In February, Willison demonstrated another early application of AI video scraping on his blog, where he took a seven-second video of the books on his bookshelves, then got Gemini 1.5 Pro to extract all of the book titles it saw in the video and put them in a structured, or organized, list.

Converting unstructured data into structured data is important to Willison, because he’s also a data journalist. Willison has created tools for data journalists in the past, such as the Datasette project, which lets anyone publish data as an interactive website.

To every data journalist’s frustration, some sources of data prove resistant to scraping (capturing data for analysis) due to how the data is formatted, stored, or presented. In these cases, Willison delights in the potential for AI video scraping because it bypasses these traditional barriers to data extraction.

“There’s no level of website authentication or anti-scraping technology that can stop me from recording a video of my screen while I manually click around inside a web application,” Willison noted on his blog. His method works for any visible on-screen content.

Video is the new text

An illustration of a cybernetic eyeball.

An illustration of a cybernetic eyeball.

An illustration of a cybernetic eyeball. Credit: Getty Images

The ease and effectiveness of Willison’s technique reflect a noteworthy shift now underway in how some users will interact with token prediction models. Rather than requiring a user to manually paste or type in data in a chat dialog—or detail every scenario to a chatbot as text—some AI applications increasingly work with visual data captured directly on the screen. For example, if you’re having trouble navigating a pizza website’s terrible interface, an AI model could step in and perform the necessary mouse clicks to order the pizza for you.

In fact, video scraping is already on the radar of every major AI lab, although they are not likely to call it that at the moment. Instead, tech companies typically refer to these techniques as “video understanding” or simply “vision.”

In May, OpenAI demonstrated a prototype version of its ChatGPT Mac App with an option that allowed ChatGPT to see and interact with what is on your screen, but that feature has not yet shipped. Microsoft demonstrated a similar “Copilot Vision” prototype concept earlier this month (based on OpenAI’s technology) that will be able to “watch” your screen and help you extract data and interact with applications you’re running.

Despite these research previews, OpenAI’s ChatGPT and Anthropic’s Claude have not yet implemented a public video input feature for their models, possibly because it is relatively computationally expensive for them to process the extra tokens from a “tokenized” video stream.

For the moment, Google is heavily subsidizing user AI costs with its war chest from Search revenue and a massive fleet of data centers (to be fair, OpenAI is subsidizing, too, but with investor dollars and help from Microsoft). But costs of AI compute in general are dropping by the day, which will open up new capabilities of the technology to a broader user base over time.

Countering privacy issues

As you might imagine, having an AI model see what you do on your computer screen can have downsides. For now, video scraping is great for Willison, who will undoubtedly use the captured data in positive and helpful ways. But it’s also a preview of a capability that could later be used to invade privacy or autonomously spy on computer users on a scale that was once impossible.

A different form of video scraping caused a massive wave of controversy recently for that exact reason. Apps such as the third-party Rewind AI on the Mac and Microsoft’s Recall, which is being built into Windows 11, operate by feeding on-screen video into an AI model that stores extracted data into a database for later AI recall. Unfortunately, that approach also introduces potential privacy issues because it records everything you do on your machine and puts it in a single place that could later be hacked.

To that point, although Willison’s technique currently involves uploading a video of his data to Google for processing, he is pleased that he can still decide what the AI model sees and when.

“The great thing about this video scraping technique is that it works with anything that you can see on your screen… and it puts you in total control of what you end up exposing to the AI model,” Willison explained in his blog post.

It’s also possible in the future that a locally run open-weights AI model could pull off the same video analysis method without the need for a cloud connection at all. Microsoft Recall runs locally on supported devices, but it still demands a great deal of unearned trust. For now, Willison is perfectly content to selectively feed video data to AI models when the need arises.

“I expect I’ll be using this technique a whole lot more in the future,” he wrote, and perhaps many others will, too, in different forms. If the past is any indication, Willison—who coined the term “prompt injection” in 2022—seems to always be a few steps ahead in exploring novel applications of AI tools. Right now, his attention is on the new implications of AI and video, and yours probably should be, too.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a widely-cited tech historian. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Cheap AI “video scraping” can now extract data from any screen recording Read More »