openai

sam-altman-accused-of-being-shady-about-openai’s-safety-efforts

Sam Altman accused of being shady about OpenAI’s safety efforts

Sam Altman, chief executive officer of OpenAI, during an interview at Bloomberg House on the opening day of the World Economic Forum (WEF) in Davos, Switzerland, on Tuesday, Jan. 16, 2024.

Enlarge / Sam Altman, chief executive officer of OpenAI, during an interview at Bloomberg House on the opening day of the World Economic Forum (WEF) in Davos, Switzerland, on Tuesday, Jan. 16, 2024.

OpenAI is facing increasing pressure to prove it’s not hiding AI risks after whistleblowers alleged to the US Securities and Exchange Commission (SEC) that the AI company’s non-disclosure agreements had illegally silenced employees from disclosing major safety concerns to lawmakers.

In a letter to OpenAI yesterday, Senator Chuck Grassley (R-Iowa) demanded evidence that OpenAI is no longer requiring agreements that could be “stifling” its “employees from making protected disclosures to government regulators.”

Specifically, Grassley asked OpenAI to produce current employment, severance, non-disparagement, and non-disclosure agreements to reassure Congress that contracts don’t discourage disclosures. That’s critical, Grassley said, so that it will be possible to rely on whistleblowers exposing emerging threats to help shape effective AI policies safeguarding against existential AI risks as technologies advance.

Grassley has apparently twice requested these records without a response from OpenAI, his letter said. And so far, OpenAI has not responded to the most recent request to send documents, Grassley’s spokesperson, Clare Slattery, told The Washington Post.

“It’s not enough to simply claim you’ve made ‘updates,’” Grassley said in a statement provided to Ars. “The proof is in the pudding. Altman needs to provide records and responses to my oversight requests so Congress can accurately assess whether OpenAI is adequately protecting its employees and users.”

In addition to requesting OpenAI’s recently updated employee agreements, Grassley pushed OpenAI to be more transparent about the total number of requests it has received from employees seeking to make federal disclosures since 2023. The senator wants to know what information employees wanted to disclose to officials and whether OpenAI actually approved their requests.

Along the same lines, Grassley asked OpenAI to confirm how many investigations the SEC has opened into OpenAI since 2023.

Together, these documents would shed light on whether OpenAI employees are potentially still being silenced from making federal disclosures, what kinds of disclosures OpenAI denies, and how closely the SEC is monitoring OpenAI’s seeming efforts to hide safety risks.

“It is crucial OpenAI ensure its employees can provide protected disclosures without illegal restrictions,” Grassley wrote in his letter.

He has requested a response from OpenAI by August 15 so that “Congress may conduct objective and independent oversight on OpenAI’s safety protocols and NDAs.”

OpenAI did not immediately respond to Ars’ request for comment.

On X, Altman wrote that OpenAI has taken steps to increase transparency, including “working with the US AI Safety Institute on an agreement where we would provide early access to our next foundation model so that we can work together to push forward the science of AI evaluations.” He also confirmed that OpenAI wants “current and former employees to be able to raise concerns and feel comfortable doing so.”

“This is crucial for any company, but for us especially and an important part of our safety plan,” Altman wrote. “In May, we voided non-disparagement terms for current and former employees and provisions that gave OpenAI the right (although it was never used) to cancel vested equity. We’ve worked hard to make it right.”

In July, whistleblowers told the SEC that OpenAI should be required to produce not just current employee contracts, but all contracts that contained a non-disclosure agreement to ensure that OpenAI hasn’t been obscuring a history or current practice of obscuring AI safety risks. They want all current and former employees to be notified of any contract that included an illegal NDA and for OpenAI to be fined for every illegal contract.

Sam Altman accused of being shady about OpenAI’s safety efforts Read More »

chatgpt-advanced-voice-mode-impresses-testers-with-sound-effects,-catching-its-breath

ChatGPT Advanced Voice Mode impresses testers with sound effects, catching its breath

I Am the Very Model of a Modern Major-General —

AVM allows uncanny real-time voice conversations with ChatGPT that you can interrupt.

Stock Photo: AI Cyborg Robot Whispering Secret Or Interesting Gossip

Enlarge / A stock photo of a robot whispering to a man.

On Tuesday, OpenAI began rolling out an alpha version of its new Advanced Voice Mode to a small group of ChatGPT Plus subscribers. This feature, which OpenAI previewed in May with the launch of GPT-4o, aims to make conversations with the AI more natural and responsive. In May, the feature triggered criticism of its simulated emotional expressiveness and prompted a public dispute with actress Scarlett Johansson over accusations that OpenAI copied her voice. Even so, early tests of the new feature shared by users on social media have been largely enthusiastic.

In early tests reported by users with access, Advanced Voice Mode allows them to have real-time conversations with ChatGPT, including the ability to interrupt the AI mid-sentence almost instantly. It can sense and respond to a user’s emotional cues through vocal tone and delivery, and provide sound effects while telling stories.

But what has caught many people off-guard initially is how the voices simulate taking a breath while speaking.

“ChatGPT Advanced Voice Mode counting as fast as it can to 10, then to 50 (this blew my mind—it stopped to catch its breath like a human would),” wrote tech writer Cristiano Giardina on X.

Advanced Voice Mode simulates audible pauses for breath because it was trained on audio samples of humans speaking that included the same feature. The model has learned to simulate inhalations at seemingly appropriate times after being exposed to hundreds of thousands, if not millions, of examples of human speech. Large language models (LLMs) like GPT-4o are master imitators, and that skill has now extended to the audio domain.

Giardina shared his other impressions about Advanced Voice Mode on X, including observations about accents in other languages and sound effects.

It’s very fast, there’s virtually no latency from when you stop speaking to when it responds,” he wrote. “When you ask it to make noises it always has the voice “perform” the noises (with funny results). It can do accents, but when speaking other languages it always has an American accent. (In the video, ChatGPT is acting as a soccer match commentator)

Speaking of sound effects, X user Kesku, who is a moderator of OpenAI’s Discord server, shared an example of ChatGPT playing multiple parts with different voices and another of a voice recounting an audiobook-sounding sci-fi story from the prompt, “Tell me an exciting action story with sci-fi elements and create atmosphere by making appropriate noises of the things happening using onomatopoeia.”

Kesku also ran a few example prompts for us, including a story about the Ars Technica mascot “Moonshark.”

He also asked it to sing the “Major-General’s Song” from Gilbert and Sullivan’s 1879 comic opera The Pirates of Penzance:

Frequent AI advocate Manuel Sainsily posted a video of Advanced Voice Mode reacting to camera input, giving advice about how to care for a kitten. “It feels like face-timing a super knowledgeable friend, which in this case was super helpful—reassuring us with our new kitten,” he wrote. “It can answer questions in real-time and use the camera as input too!”

Of course, being based on an LLM, it may occasionally confabulate incorrect responses on topics or in situations where its “knowledge” (which comes from GPT-4o’s training data set) is lacking. But if considered a tech demo or an AI-powered amusement and you’re aware of the limitations, Advanced Voice Mode seems to successfully execute many of the tasks shown by OpenAI’s demo in May.

Safety

An OpenAI spokesperson told Ars Technica that the company worked with more than 100 external testers on the Advanced Voice Mode release, collectively speaking 45 different languages and representing 29 geographical areas. The system is reportedly designed to prevent impersonation of individuals or public figures by blocking outputs that differ from OpenAI’s four chosen preset voices.

OpenAI has also added filters to recognize and block requests to generate music or other copyrighted audio, which has gotten other AI companies in trouble. Giardina reported audio “leakage” in some audio outputs that have unintentional music in the background, showing that OpenAI trained the AVM voice model on a wide variety of audio sources, likely both from licensed material and audio scraped from online video platforms.

Availability

OpenAI plans to expand access to more ChatGPT Plus users in the coming weeks, with a full launch to all Plus subscribers expected this fall. A company spokesperson told Ars that users in the alpha test group will receive a notice in the ChatGPT app and an email with usage instructions.

Since the initial preview of GPT-4o voice in May, OpenAI claims to have enhanced the model’s ability to support millions of simultaneous, real-time voice conversations while maintaining low latency and high quality. In other words, they are gearing up for a rush that will take a lot of back-end computation to accommodate.

ChatGPT Advanced Voice Mode impresses testers with sound effects, catching its breath Read More »

openai-hits-google-where-it-hurts-with-new-searchgpt-prototype

OpenAI hits Google where it hurts with new SearchGPT prototype

Cutting through the sludge —

New tool may solve a web-search problem partially caused by AI-generated junk online.

The OpenAI logo on a blue newsprint background.

Benj Edwards / OpenAI

Arguably, few companies have unintentionally contributed more to the increase of AI-generated noise online than OpenAI. Despite its best intentions—and against its terms of service—its AI language models are often used to compose spam, and its pioneering research has inspired others to build AI models that can potentially do the same. This influx of AI-generated content has further reduced the effectiveness of SEO-driven search engines like Google. In 2024, web search is in a sorry state indeed.

It’s interesting, then, that OpenAI is now offering a potential solution to that problem. On Thursday, OpenAI revealed a prototype AI-powered search engine called SearchGPT that aims to provide users with quick, accurate answers sourced from the web. It’s also a direct challenge to Google, which also has tried to apply generative AI to web search (but with little success).

The company says it plans to integrate the most useful aspects of the temporary prototype into ChatGPT in the future. ChatGPT can already perform web searches using Bing, but SearchGPT seems to be a purpose-built interface for AI-assisted web searching.

SearchGPT attempts to streamline the process of finding information online by combining OpenAI’s AI models (like GPT-4o) with real-time web data. Like ChatGPT, users can reportedly ask SearchGPT follow-up questions, with the AI model maintaining context throughout the conversation.

Perhaps most importantly from an accuracy standpoint, the SearchGPT prototype (which we have not tested ourselves) reportedly includes features that attribute web-based sources prominently. Responses include in-line citations and links, while a sidebar displays additional source links.

OpenAI has not yet said how it is obtaining its real-time web data and whether it’s partnering with an existing search engine provider (like it does currently with Bing for ChatGPT) or building its own web-crawling and indexing system.

A way around publishers blocking OpenAI

ChatGPT can already perform web searches using Bing, but since last August when OpenAI revealed a way to block its web crawler, that feature hasn’t been nearly as useful as it could be. Many sites, such as Ars Technica (which blocks the OpenAI crawler as part of our parent company’s policy), won’t show up as results in ChatGPT because of this.

SearchGPT appears to untangle the association between OpenAI’s web crawler for scraping training data and the desire for OpenAI chatbot users to search the web. Notably, in the new SearchGPT announcement, OpenAI says, “Sites can be surfaced in search results even if they opt out of generative AI training.”

Even so, OpenAI says it is working on a way for publishers to manage how they appear in SearchGPT results so that “publishers have more choices.” And the company says that SearchGPT’s ability to browse the web is separate from training OpenAI’s AI models.

An uncertain future for AI-powered search

OpenAI claims SearchGPT will make web searches faster and easier. However, the effectiveness of AI-powered search compared to traditional methods is unknown, as the tech is still in its early stages. But let’s be frank: The most prominent web-search engine right now is pretty terrible.

Over the past year, we’ve seen Perplexity.ai take off as a potential AI-powered Google search replacement, but the service has been hounded by issues with confabulations and accusations of plagiarism among publishers, including Ars Technica parent Condé Nast.

Unlike Perplexity, OpenAI has many content deals lined up with publishers, and it emphasizes that it wants to work with content creators in particular. “We are committed to a thriving ecosystem of publishers and creators,” says OpenAI in its news release. “We hope to help users discover publisher sites and experiences, while bringing more choice to search.”

In a statement for the OpenAI press release, Nicholas Thompson, CEO of The Atlantic (which has a content deal with OpenAI), expressed optimism about the potential of AI search: “AI search is going to become one of the key ways that people navigate the internet, and it’s crucial, in these early days, that the technology is built in a way that values, respects, and protects journalism and publishers,” he said. “We look forward to partnering with OpenAI in the process, and creating a new way for readers to discover The Atlantic.”

OpenAI has experimented with other offshoots of its AI language model technology that haven’t become blockbuster hits (most notably, GPTs come to mind), so time will tell if the techniques behind SearchGPT have staying power—and if it can deliver accurate results without hallucinating. But the current state of web search is inviting new experiments to separate the signal from the noise, and it looks like OpenAI is throwing its hat in the ring.

OpenAI is currently rolling out SearchGPT to a small group of users and publishers for testing and feedback. Those interested in trying the prototype can sign up for a waitlist on the company’s website.

OpenAI hits Google where it hurts with new SearchGPT prototype Read More »

the-first-gpt-4-class-ai-model-anyone-can-download-has-arrived:-llama-405b

The first GPT-4-class AI model anyone can download has arrived: Llama 405B

A new llama emerges —

“Open source AI is the path forward,” says Mark Zuckerberg, misusing the term.

A red llama in a blue desert illustration based on a photo.

In the AI world, there’s a buzz in the air about a new AI language model released Tuesday by Meta: Llama 3.1 405B. The reason? It’s potentially the first time anyone can download a GPT-4-class large language model (LLM) for free and run it on their own hardware. You’ll still need some beefy hardware: Meta says it can run on a “single server node,” which isn’t desktop PC-grade equipment. But it’s a provocative shot across the bow of “closed” AI model vendors such as OpenAI and Anthropic.

“Llama 3.1 405B is the first openly available model that rivals the top AI models when it comes to state-of-the-art capabilities in general knowledge, steerability, math, tool use, and multilingual translation,” says Meta. Company CEO Mark Zuckerberg calls 405B “the first frontier-level open source AI model.”

In the AI industry, “frontier model” is a term for an AI system designed to push the boundaries of current capabilities. In this case, Meta is positioning 405B among the likes of the industry’s top AI models, such as OpenAI’s GPT-4o, Claude’s 3.5 Sonnet, and Google Gemini 1.5 Pro.

A chart published by Meta suggests that 405B gets very close to matching the performance of GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

But as we’ve noted many times since March, these benchmarks aren’t necessarily scientifically sound or translate to the subjective experience of interacting with AI language models. In fact, this traditional slate of AI benchmarks is so generally useless to laypeople that even Meta’s PR department now just posts a few images of charts and doesn’t even try to explain them in any detail.

A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

Enlarge / A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

We’ve instead found that measuring the subjective experience of using a conversational AI model (through what might be called “vibemarking”) on A/B leaderboards like Chatbot Arena is a better way to judge new LLMs. In the absence of Chatbot Arena data, Meta has provided the results of its own human evaluations of 405B’s outputs that seem to show Meta’s new model holding its own against GPT-4 Turbo and Claude 3.5 Sonnet.

A Meta-provided chart that shows how humans rated Llama 3.1 405B's outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Enlarge / A Meta-provided chart that shows how humans rated Llama 3.1 405B’s outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Whatever the benchmarks, early word on the street (after the model leaked on 4chan yesterday) seems to match the claim that 405B is roughly equivalent to GPT-4. It took a lot of expensive computer training time to get there—and money, of which the social media giant has plenty to burn. Meta trained the 405B model on over 15 trillion tokens of training data scraped from the web (then parsed, filtered, and annotated by Llama 2), using more than 16,000 H100 GPUs.

So what’s with the 405B name? In this case, “405B” means 405 billion parameters, and parameters are numerical values that store trained information in a neural network. More parameters translate to a larger neural network powering the AI model, which generally (but not always) means more capability, such as better ability to make contextual connections between concepts. But larger-parameter models have a tradeoff in needing more computing power (AKA “compute”) to run.

We’ve been expecting the release of a 400 billion-plus parameter model of the Llama 3 family since Meta gave word that it was training one in April, and today’s announcement isn’t just about the biggest member of the Llama 3 family: There’s an entirely new iteration of improved Llama models with the designation “Llama 3.1.” That includes upgraded versions of its smaller 8B and 70B models, which now feature multilingual support and an extended context length of 128,000 tokens (the “context length” is roughly the working memory capacity of the model, and “tokens” are chunks of data used by LLMs to process information).

Meta says that 405B is useful for long-form text summarization, multilingual conversational agents, and coding assistants and for creating synthetic data used to train future AI language models. Notably, that last use-case—allowing developers to use outputs from Llama models to improve other AI models—is now officially supported by Meta’s Llama 3.1 license for the first time.

Abusing the term “open source”

Llama 3.1 405B is an open-weights model, which means anyone can download the trained neural network files and run them or fine-tune them. That directly challenges a business model where companies like OpenAI keep the weights to themselves and instead monetize the model through subscription wrappers like ChatGPT or charge for access by the token through an API.

Fighting the “closed” AI model is a big deal to Mark Zuckerberg, who simultaneously released a 2,300-word manifesto today on why the company believes in open releases of AI models, titled, “Open Source AI Is the Path Forward.” More on the terminology in a minute. But briefly, he writes about the need for customizable AI models that offer user control and encourage better data security, higher cost-efficiency, and better future-proofing, as opposed to vendor-locked solutions.

All that sounds reasonable, but undermining your competitors using a model subsidized by a social media war chest is also an efficient way to play spoiler in a market where you might not always win with the most cutting-edge tech. That benefits Meta, Zuckerberg says, because he doesn’t want to get locked into a system where companies like his have to pay a toll to access AI capabilities, drawing comparisons to “taxes” Apple levies on developers through its App Store.

A screenshot of Mark Zuckerberg's essay,

Enlarge / A screenshot of Mark Zuckerberg’s essay, “Open Source AI Is the Path Forward,” published on July 23, 2024.

So, about that “open source” term. As we first wrote in an update to our Llama 2 launch article a year ago, “open source” has a very particular meaning that has traditionally been defined by the Open Source Initiative. The AI industry has not yet settled on terminology for AI model releases that ship either code or weights with restrictions (such as Llama 3.1) or that ship without providing training data. We’ve been calling these releases “open weights” instead.

Unfortunately for terminology sticklers, Zuckerberg has now baked the erroneous “open source” label into the title of his potentially historic aforementioned essay on open AI releases, so fighting for the correct term in AI may be a losing battle. Still, his usage annoys people like independent AI researcher Simon Willison, who likes Zuckerberg’s essay otherwise.

“I see Zuck’s prominent misuse of ‘open source’ as a small-scale act of cultural vandalism,” Willison told Ars Technica. “Open source should have an agreed meaning. Abusing the term weakens that meaning which makes the term less generally useful, because if someone says ‘it’s open source,’ that no longer tells me anything useful. I have to then dig in and figure out what they’re actually talking about.”

The Llama 3.1 models are available for download through Meta’s own website and on Hugging Face. They both require providing contact information and agreeing to a license and an acceptable use policy, which means that Meta can technically legally pull the rug out from under your use of Llama 3.1 or its outputs at any time.

The first GPT-4-class AI model anyone can download has arrived: Llama 405B Read More »

microsoft-cto-kevin-scott-thinks-llm-“scaling-laws”-will-hold-despite-criticism

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism

As the word turns —

Will LLMs keep improving if we throw more compute at them? OpenAI dealmaker thinks so.

Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media's 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

Enlarge / Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media’s 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

During an interview with Sequoia Capital’s Training Data podcast published last Tuesday, Microsoft CTO Kevin Scott doubled down on his belief that so-called large language model (LLM) “scaling laws” will continue to drive AI progress, despite some skepticism in the field that progress has leveled out. Scott played a key role in forging a $13 billion technology-sharing deal between Microsoft and OpenAI.

“Despite what other people think, we’re not at diminishing marginal returns on scale-up,” Scott said. “And I try to help people understand there is an exponential here, and the unfortunate thing is you only get to sample it every couple of years because it just takes a while to build supercomputers and then train models on top of them.”

LLM scaling laws refer to patterns explored by OpenAI researchers in 2020 showing that the performance of language models tends to improve predictably as the models get larger (more parameters), are trained on more data, and have access to more computational power (compute). The laws suggest that simply scaling up model size and training data can lead to significant improvements in AI capabilities without necessarily requiring fundamental algorithmic breakthroughs.

Since then, other researchers have challenged the idea of persisting scaling laws over time, but the concept is still a cornerstone of OpenAI’s AI development philosophy.

You can see Scott’s comments in the video below beginning around 46: 05:

Microsoft CTO Kevin Scott on how far scaling laws will extend

Scott’s optimism contrasts with a narrative among some critics in the AI community that progress in LLMs has plateaued around GPT-4 class models. The perception has been fueled by largely informal observations—and some benchmark results—about recent models like Google’s Gemini 1.5 Pro, Anthropic’s Claude Opus, and even OpenAI’s GPT-4o, which some argue haven’t shown the dramatic leaps in capability seen in earlier generations, and that LLM development may be approaching diminishing returns.

“We all know that GPT-3 was vastly better than GPT-2. And we all know that GPT-4 (released thirteen months ago) was vastly better than GPT-3,” wrote AI critic Gary Marcus in April. “But what has happened since?”

The perception of plateau

Scott’s stance suggests that tech giants like Microsoft still feel justified in investing heavily in larger AI models, betting on continued breakthroughs rather than hitting a capability plateau. Given Microsoft’s investment in OpenAI and strong marketing of its own Microsoft Copilot AI features, the company has a strong interest in maintaining the perception of continued progress, even if the tech stalls.

Frequent AI critic Ed Zitron recently wrote in a post on his blog that one defense of continued investment into generative AI is that “OpenAI has something we don’t know about. A big, sexy, secret technology that will eternally break the bones of every hater,” he wrote. “Yet, I have a counterpoint: no it doesn’t.”

Some perceptions of slowing progress in LLM capabilities and benchmarking may be due to the rapid onset of AI in the public eye when, in fact, LLMs have been developing for years prior. OpenAI continued to develop LLMs during a roughly three-year gap between the release of GPT-3 in 2020 and GPT-4 in 2023. Many people likely perceived a rapid jump in capability with GPT-4’s launch in 2023 because they had only become recently aware of GPT-3-class models with the launch of ChatGPT in late November 2022, which used GPT-3.5.

In the podcast interview, the Microsoft CTO pushed back against the idea that AI progress has stalled, but he acknowledged the challenge of infrequent data points in this field, as new models often take years to develop. Despite this, Scott expressed confidence that future iterations will show improvements, particularly in areas where current models struggle.

“The next sample is coming, and I can’t tell you when, and I can’t predict exactly how good it’s going to be, but it will almost certainly be better at the things that are brittle right now, where you’re like, oh my god, this is a little too expensive, or a little too fragile, for me to use,” Scott said in the interview. “All of that gets better. It’ll get cheaper, and things will become less fragile. And then more complicated things will become possible. That is the story of each generation of these models as we’ve scaled up.”

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism Read More »

openai-reportedly-nears-breakthrough-with-“reasoning”-ai,-reveals-progress-framework

OpenAI reportedly nears breakthrough with “reasoning” AI, reveals progress framework

studies in hype-otheticals —

Five-level AI classification system probably best seen as a marketing exercise.

Illustration of a robot with many arms.

OpenAI recently unveiled a five-tier system to gauge its advancement toward developing artificial general intelligence (AGI), according to an OpenAI spokesperson who spoke with Bloomberg. The company shared this new classification system on Tuesday with employees during an all-hands meeting, aiming to provide a clear framework for understanding AI advancement. However, the system describes hypothetical technology that does not yet exist and is possibly best interpreted as a marketing move to garner investment dollars.

OpenAI has previously stated that AGI—a nebulous term for a hypothetical concept that means an AI system that can perform novel tasks like a human without specialized training—is currently the primary goal of the company. The pursuit of technology that can replace humans at most intellectual work drives most of the enduring hype over the firm, even though such a technology would likely be wildly disruptive to society.

OpenAI CEO Sam Altman has previously stated his belief that AGI could be achieved within this decade, and a large part of the CEO’s public messaging has been related to how the company (and society in general) might handle the disruption that AGI may bring. Along those lines, a ranking system to communicate AI milestones achieved internally on the path to AGI makes sense.

OpenAI’s five levels—which it plans to share with investors—range from current AI capabilities to systems that could potentially manage entire organizations. The company believes its technology (such as GPT-4o that powers ChatGPT) currently sits at Level 1, which encompasses AI that can engage in conversational interactions. However, OpenAI executives reportedly told staff they’re on the verge of reaching Level 2, dubbed “Reasoners.”

Bloomberg lists OpenAI’s five “Stages of Artificial Intelligence” as follows:

  • Level 1: Chatbots, AI with conversational language
  • Level 2: Reasoners, human-level problem solving
  • Level 3: Agents, systems that can take actions
  • Level 4: Innovators, AI that can aid in invention
  • Level 5: Organizations, AI that can do the work of an organization

A Level 2 AI system would reportedly be capable of basic problem-solving on par with a human who holds a doctorate degree but lacks access to external tools. During the all-hands meeting, OpenAI leadership reportedly demonstrated a research project using their GPT-4 model that the researchers believe shows signs of approaching this human-like reasoning ability, according to someone familiar with the discussion who spoke with Bloomberg.

The upper levels of OpenAI’s classification describe increasingly potent hypothetical AI capabilities. Level 3 “Agents” could work autonomously on tasks for days. Level 4 systems would generate novel innovations. The pinnacle, Level 5, envisions AI managing entire organizations.

This classification system is still a work in progress. OpenAI plans to gather feedback from employees, investors, and board members, potentially refining the levels over time.

Ars Technica asked OpenAI about the ranking system and the accuracy of the Bloomberg report, and a company spokesperson said they had “nothing to add.”

The problem with ranking AI capabilities

OpenAI isn’t alone in attempting to quantify levels of AI capabilities. As Bloomberg notes, OpenAI’s system feels similar to levels of autonomous driving mapped out by automakers. And in November 2023, researchers at Google DeepMind proposed their own five-level framework for assessing AI advancement, showing that other AI labs have also been trying to figure out how to rank things that don’t yet exist.

OpenAI’s classification system also somewhat resembles Anthropic’s “AI Safety Levels” (ASLs) first published by the maker of the Claude AI assistant in September 2023. Both systems aim to categorize AI capabilities, though they focus on different aspects. Anthropic’s ASLs are more explicitly focused on safety and catastrophic risks (such as ASL-2, which refers to “systems that show early signs of dangerous capabilities”), while OpenAI’s levels track general capabilities.

However, any AI classification system raises questions about whether it’s possible to meaningfully quantify AI progress and what constitutes an advancement (or even what constitutes a “dangerous” AI system, as in the case of Anthropic). The tech industry so far has a history of overpromising AI capabilities, and linear progression models like OpenAI’s potentially risk fueling unrealistic expectations.

There is currently no consensus in the AI research community on how to measure progress toward AGI or even if AGI is a well-defined or achievable goal. As such, OpenAI’s five-tier system should likely be viewed as a communications tool to entice investors that shows the company’s aspirational goals rather than a scientific or even technical measurement of progress.

OpenAI reportedly nears breakthrough with “reasoning” AI, reveals progress framework Read More »

chatgpt’s-much-heralded-mac-app-was-storing-conversations-as-plain-text

ChatGPT’s much-heralded Mac app was storing conversations as plain text

Seriously? —

The app was updated to address the issue after it gained public attention.

A message field for ChatGPT pops up over a Mac desktop

Enlarge / The app lets you invoke ChatGPT from anywhere in the system with a keyboard shortcut, Spotlight-style.

Samuel Axon

OpenAI announced its Mac desktop app for ChatGPT with a lot of fanfare a few weeks ago, but it turns out it had a rather serious security issue: user chats were stored in plain text, where any bad actor could find them if they gained access to your machine.

As Threads user Pedro José Pereira Vieito noted earlier this week, “the OpenAI ChatGPT app on macOS is not sandboxed and stores all the conversations in plain-text in a non-protected location,” meaning “any other running app / process / malware can read all your ChatGPT conversations without any permission prompt.”

He added:

macOS has blocked access to any user private data since macOS Mojave 10.14 (6 years ago!). Any app accessing private user data (Calendar, Contacts, Mail, Photos, any third-party app sandbox, etc.) now requires explicit user access.

OpenAI chose to opt-out of the sandbox and store the conversations in plain text in a non-protected location, disabling all of these built-in defenses.

OpenAI has now updated the app, and the local chats are now encrypted, though they are still not sandboxed. (The app is only available as a direct download from OpenAI’s website and is not available through Apple’s App Store where more stringent security is required.)

Many people now use ChatGPT like they might use Google: to ask important questions, sort through issues, and so on. Often, sensitive personal data could be shared in those conversations.

It’s not a great look for OpenAI, which recently entered into a partnership with Apple to offer chat bot services built into Siri queries in Apple operating systems. Apple detailed some of the security around those queries at WWDC last month, though, and they’re more stringent than what OpenAI did (or to be more precise, didn’t do) with its Mac app, which is a separate initiative from the partnership.

If you’ve been using the app recently, be sure to update it as soon as possible.

ChatGPT’s much-heralded Mac app was storing conversations as plain text Read More »

brussels-explores-antitrust-probe-into-microsoft’s-partnership-with-openai

Brussels explores antitrust probe into Microsoft’s partnership with OpenAI

still asking questions —

EU executive arm drops merger review into US tech companies’ alliance.

EU competition chief Margrethe Vestager said the bloc was looking into practices that could in effect lead to a company controlling a greater share of the AI market.

Enlarge / EU competition chief Margrethe Vestager said the bloc was looking into practices that could in effect lead to a company controlling a greater share of the AI market.

Brussels is preparing for an antitrust investigation into Microsoft’s $13 billion investment into OpenAI, after the European Union decided not to proceed with a merger review into the most powerful alliance in the artificial intelligence industry.

The European Commission, the EU’s executive arm, began to explore a review under merger control rules in January, but on Friday announced that it would not proceed due to a lack of evidence that Microsoft controls OpenAI.

However, the commission said it was now exploring the possibility of a traditional antitrust investigation into whether the tie-up between the world’s most valuable listed company and the best-funded AI start-up was harming competition in the fast-growing market.

The commission has also made inquiries about Google’s deal with Samsung to install a modified version of its Gemini AI system in the South Korean manufacturer’s smartphones, it revealed on Friday.

Margrethe Vestager, the bloc’s competition chief, said in a speech on Friday: “The key question was whether Microsoft had acquired control on a lasting basis over OpenAI. After a thorough review we concluded that such was not the case. So we are closing this chapter, but the story is not over.”

She said the EU had sent a new set of questions to understand whether “certain exclusivity clauses” in the agreement between Microsoft and OpenAI “could have a negative effect on competitors.” The move is seen as a key step toward a formal antitrust probe.

The bloc had already sent questions to Microsoft and other tech companies in March to determine whether market concentration in AI could potentially block new companies from entering the market, Vestager said.

Microsoft said: “We appreciate the European Commission’s thorough review and its conclusion that Microsoft’s investment and partnership with OpenAI does not give Microsoft control over the company.”

Brussels began examining Microsoft’s relationship with the ChatGPT maker after OpenAI’s board abruptly dismissed its chief executive Sam Altman in November 2023, only to be rehired a few days later. He briefly joined Microsoft as the head of a new AI research unit, highlighting the close relationship between the two companies.

Regulators in the US and UK are also scrutinizing the alliance. Microsoft is the biggest backer of OpenAI, although its investment of up to $13 billion, which was expanded in January 2023, does not involve acquiring conventional equity due to the startup’s unusual corporate structure. Microsoft has a minority interest in OpenAI’s commercial subsidiary, which is owned by a not-for-profit organization.

Antitrust investigations tend to last years, compared with a much shorter period for merger reviews, and they focus on conduct that could be undermining rivals. Companies that are eventually found to be breaking the law, for example by bundling products or blocking competitors from access to key technology, risk hefty fines and legal obligations to change their behavior.

Vestager said the EU was looking into practices that could in effect lead to a company controlling a greater share of the AI market. She pointed to a practice called “acqui-hires,” where a company buys another one mainly to get its talent. For example, Microsoft recently struck a deal to hire most of the top team from AI start-up Inflection, in which it had previously invested. Inflection remains an independent company, however, complicating any traditional merger investigation.

The EU’s competition chief said regulators were also looking into the way big tech companies may be preventing smaller AI models from reaching users.

“This is why we are also sending requests for information to better understand the effects of Google’s arrangement with Samsung to pre-install its small model ‘Gemini nano’ on certain Samsung devices,” said Vestager.

Jonathan Kanter, the top US antitrust enforcer, told the Financial Times earlier this month that he was also examining “monopoly choke points and the competitive landscape” in AI. The UK’s Competition and Markets Authority said in December that it had “decided to investigate” the Microsoft-OpenAI deal when it invited comments from customers and rivals.

© 2024 The Financial Times Ltd. All rights reserved. Please do not copy and paste FT articles and redistribute by email or post to the web.

Brussels explores antitrust probe into Microsoft’s partnership with OpenAI Read More »

openai’s-new-“criticgpt”-model-is-trained-to-criticize-gpt-4-outputs

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs

automated critic —

Research model catches bugs in AI-generated code, improving human oversight of AI.

An illustration created by OpenAI.

Enlarge / An illustration created by OpenAI.

On Thursday, OpenAI researchers unveiled CriticGPT, a new AI model designed to identify mistakes in code generated by ChatGPT. It aims to enhance the process of making AI systems behave in ways humans want (called “alignment”) through Reinforcement Learning from Human Feedback (RLHF), which helps human reviewers make large language model (LLM) outputs more accurate.

As outlined in a new research paper called “LLM Critics Help Catch LLM Bugs,” OpenAI created CriticGPT to act as an AI assistant to human trainers who review programming code generated by the ChatGPT AI assistant. CriticGPT—based on the GPT-4 family of LLMS—analyzes the code and points out potential errors, making it easier for humans to spot mistakes that might otherwise go unnoticed. The researchers trained CriticGPT on a dataset of code samples with intentionally inserted bugs, teaching it to recognize and flag various coding errors.

The researchers found that CriticGPT’s critiques were preferred by annotators over human critiques in 63 percent of cases involving naturally occurring LLM errors and that human-machine teams using CriticGPT wrote more comprehensive critiques than humans alone while reducing confabulation (hallucination) rates compared to AI-only critiques.

Developing an automated critic

The development of CriticGPT involved training the model on a large number of inputs containing deliberately inserted mistakes. Human trainers were asked to modify code written by ChatGPT, introducing errors and then providing example feedback as if they had discovered these bugs. This process allowed the model to learn how to identify and critique various types of coding errors.

In experiments, CriticGPT demonstrated its ability to catch both inserted bugs and naturally occurring errors in ChatGPT’s output. The new model’s critiques were preferred by trainers over those generated by ChatGPT itself in 63 percent of cases involving natural bugs (the aforementioned statistic). This preference was partly due to CriticGPT producing fewer unhelpful “nitpicks” and generating fewer false positives, or hallucinated problems.

The researchers also created a new technique they call Force Sampling Beam Search (FSBS). This method helps CriticGPT write more detailed reviews of code. It lets the researchers adjust how thorough CriticGPT is in looking for problems, while also controlling how often it might make up issues that don’t really exist. They can tweak this balance depending on what they need for different AI training tasks.

Interestingly, the researchers found that CriticGPT’s capabilities extend beyond just code review. In their experiments, they applied the model to a subset of ChatGPT training data that had previously been rated as flawless by human annotators. Surprisingly, CriticGPT identified errors in 24 percent of these cases—errors that were subsequently confirmed by human reviewers. OpenAI thinks this demonstrates the model’s potential to generalize to non-code tasks and highlights its ability to catch subtle mistakes that even careful human evaluation might miss.

Despite its promising results, like all AI models, CriticGPT has limitations. The model was trained on relatively short ChatGPT answers, which may not fully prepare it for evaluating longer, more complex tasks that future AI systems might tackle. Additionally, while CriticGPT reduces confabulations, it doesn’t eliminate them entirely, and human trainers can still make labeling mistakes based on these false outputs.

The research team acknowledges that CriticGPT is most effective at identifying errors that can be pinpointed in one specific location within the code. However, real-world mistakes in AI outputs can often be spread across multiple parts of an answer, presenting a challenge for future iterations of the model.

OpenAI plans to integrate CriticGPT-like models into its RLHF labeling pipeline, providing its trainers with AI assistance. For OpenAI, it’s a step toward developing better tools for evaluating outputs from LLM systems that may be difficult for humans to rate without additional support. However, the researchers caution that even with tools like CriticGPT, extremely complex tasks or responses may still prove challenging for human evaluators—even those assisted by AI.

OpenAI’s new “CriticGPT” model is trained to criticize GPT-4 outputs Read More »

music-industry-giants-allege-mass-copyright-violation-by-ai-firms

Music industry giants allege mass copyright violation by AI firms

No one wants to be defeated —

Suno and Udio could face damages of up to $150,000 per song allegedly infringed.

Michael Jackson in concert, 1986. Sony Music owns a large portion of publishing rights to Jackson's music.

Enlarge / Michael Jackson in concert, 1986. Sony Music owns a large portion of publishing rights to Jackson’s music.

Universal Music Group, Sony Music, and Warner Records have sued AI music-synthesis companies Udio and Suno for allegedly committing mass copyright infringement by using recordings owned by the labels to train music-generating AI models, reports Reuters. Udio and Suno can generate novel song recordings based on text-based descriptions of music (i.e., “a dubstep song about Linus Torvalds”).

The lawsuits, filed in federal courts in New York and Massachusetts, claim that the AI companies’ use of copyrighted material to train their systems could lead to AI-generated music that directly competes with and potentially devalues the work of human artists.

Like other generative AI models, both Udio and Suno (which we covered separately in April) rely on a broad selection of existing human-created artworks that teach a neural network the relationship between words in a written prompt and styles of music. The record labels correctly note that these companies have been deliberately vague about the sources of their training data.

Until generative AI models hit the mainstream in 2022, it was common practice in machine learning to scrape and use copyrighted information without seeking permission to do so. But now that the applications of those technologies have become commercial products themselves, rightsholders have come knocking to collect. In the case of Udio and Suno, the record labels are seeking statutory damages of up to $150,000 per song used in training.

In the lawsuit, the record labels cite specific examples of AI-generated content that allegedly re-creates elements of well-known songs, including The Temptations’ “My Girl,” Mariah Carey’s “All I Want for Christmas Is You,” and James Brown’s “I Got You (I Feel Good).” It also claims the music-synthesis models can produce vocals resembling those of famous artists, such as Michael Jackson and Bruce Springsteen.

Reuters claims it’s the first instance of lawsuits specifically targeting music-generating AI, but music companies and artists alike have been gearing up to deal with challenges the technology may pose for some time.

In May, Sony Music sent warning letters to over 700 AI companies (including OpenAI, Microsoft, Google, Suno, and Udio) and music-streaming services that prohibited any AI researchers from using its music to train AI models. In April, over 200 musical artists signed an open letter that called on AI companies to stop using AI to “devalue the rights of human artists.” And last November, Universal Music filed a copyright infringement lawsuit against Anthropic for allegedly including artists’ lyrics in its Claude LLM training data.

Similar to The New York Times’ lawsuit against OpenAI over the use of training data, the outcome of the record labels’ new suit could have deep implications for the future development of generative AI in creative fields, including requiring companies to license all musical training data used in creating music-synthesis models.

Compulsory licenses for AI training data could make AI model development economically impractical for small startups like Udio and Suno—and judging by the aforementioned open letter, many musical artists may applaud that potential outcome. But such a development would not preclude major labels from eventually developing their own AI music generators themselves, allowing only large corporations with deep pockets to control generative music tools for the foreseeable future.

Music industry giants allege mass copyright violation by AI firms Read More »

anthropic-introduces-claude-3.5-sonnet,-matching-gpt-4o-on-benchmarks

Anthropic introduces Claude 3.5 Sonnet, matching GPT-4o on benchmarks

The Anthropic Claude 3 logo, jazzed up by Benj Edwards.

Anthropic / Benj Edwards

On Thursday, Anthropic announced Claude 3.5 Sonnet, its latest AI language model and the first in a new series of “3.5” models that build upon Claude 3, launched in March. Claude 3.5 can compose text, analyze data, and write code. It features a 200,000 token context window and is available now on the Claude website and through an API. Anthropic also introduced Artifacts, a new feature in the Claude interface that shows related work documents in a dedicated window.

So far, people outside of Anthropic seem impressed. “This model is really, really good,” wrote independent AI researcher Simon Willison on X. “I think this is the new best overall model (and both faster and half the price of Opus, similar to the GPT-4 Turbo to GPT-4o jump).”

As we’ve written before, benchmarks for large language models (LLMs) are troublesome because they can be cherry-picked and often do not capture the feel and nuance of using a machine to generate outputs on almost any conceivable topic. But according to Anthropic, Claude 3.5 Sonnet matches or outperforms competitor models like GPT-4o and Gemini 1.5 Pro on certain benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

Claude 3.5 Sonnet benchmarks provided by Anthropic.

Enlarge / Claude 3.5 Sonnet benchmarks provided by Anthropic.

If all that makes your eyes glaze over, that’s OK; it’s meaningful to researchers but mostly marketing to everyone else. A more useful performance metric comes from what we might call “vibemarks” (coined here first!) which are subjective, non-rigorous aggregate feelings measured by competitive usage on sites like LMSYS’s Chatbot Arena. The Claude 3.5 Sonnet model is currently under evaluation there, and it’s too soon to say how well it will fare.

Claude 3.5 Sonnet also outperforms Anthropic’s previous-best model (Claude 3 Opus) on benchmarks measuring “reasoning,” math skills, general knowledge, and coding abilities. For example, the model demonstrated strong performance in an internal coding evaluation, solving 64 percent of problems compared to 38 percent for Claude 3 Opus.

Claude 3.5 Sonnet is also a multimodal AI model that accepts visual input in the form of images, and the new model is reportedly excellent at a battery of visual comprehension tests.

Claude 3.5 Sonnet benchmarks provided by Anthropic.

Enlarge / Claude 3.5 Sonnet benchmarks provided by Anthropic.

Roughly speaking, the visual benchmarks mean that 3.5 Sonnet is better at pulling information from images than previous models. For example, you can show it a picture of a rabbit wearing a football helmet, and the model knows it’s a rabbit wearing a football helmet and can talk about it. That’s fun for tech demos, but the tech is still not accurate enough for applications of the tech where reliability is mission critical.

Anthropic introduces Claude 3.5 Sonnet, matching GPT-4o on benchmarks Read More »

runway’s-latest-ai-video-generator-brings-giant-cotton-candy-monsters-to-life

Runway’s latest AI video generator brings giant cotton candy monsters to life

Screen capture of a Runway Gen-3 Alpha video generated with the prompt

Enlarge / Screen capture of a Runway Gen-3 Alpha video generated with the prompt “A giant humanoid, made of fluffy blue cotton candy, stomping on the ground, and roaring to the sky, clear blue sky behind them.”

On Sunday, Runway announced a new AI video synthesis model called Gen-3 Alpha that’s still under development, but it appears to create video of similar quality to OpenAI’s Sora, which debuted earlier this year (and has also not yet been released). It can generate novel, high-definition video from text prompts that range from realistic humans to surrealistic monsters stomping the countryside.

Unlike Runway’s previous best model from June 2023, which could only create two-second-long clips, Gen-3 Alpha can reportedly create 10-second-long video segments of people, places, and things that have a consistency and coherency that easily surpasses Gen-2. If 10 seconds sounds short compared to Sora’s full minute of video, consider that the company is working with a shoestring budget of compute compared to more lavishly funded OpenAI—and actually has a history of shipping video generation capability to commercial users.

Gen-3 Alpha does not generate audio to accompany the video clips, and it’s highly likely that temporally coherent generations (those that keep a character consistent over time) are dependent on similar high-quality training material. But Runway’s improvement in visual fidelity over the past year is difficult to ignore.

AI video heats up

It’s been a busy couple of weeks for AI video synthesis in the AI research community, including the launch of the Chinese model Kling, created by Beijing-based Kuaishou Technology (sometimes called “Kwai”). Kling can generate two minutes of 1080p HD video at 30 frames per second with a level of detail and coherency that reportedly matches Sora.

Gen-3 Alpha prompt: “Subtle reflections of a woman on the window of a train moving at hyper-speed in a Japanese city.”

Not long after Kling debuted, people on social media began creating surreal AI videos using Luma AI’s Luma Dream Machine. These videos were novel and weird but generally lacked coherency; we tested out Dream Machine and were not impressed by anything we saw.

Meanwhile, one of the original text-to-video pioneers, New York City-based Runway—founded in 2018—recently found itself the butt of memes that showed its Gen-2 tech falling out of favor compared to newer video synthesis models. That may have spurred the announcement of Gen-3 Alpha.

Gen-3 Alpha prompt: “An astronaut running through an alley in Rio de Janeiro.”

Generating realistic humans has always been tricky for video synthesis models, so Runway specifically shows off Gen-3 Alpha’s ability to create what its developers call “expressive” human characters with a range of actions, gestures, and emotions. However, the company’s provided examples weren’t particularly expressive—mostly people just slowly staring and blinking—but they do look realistic.

Provided human examples include generated videos of a woman on a train, an astronaut running through a street, a man with his face lit by the glow of a TV set, a woman driving a car, and a woman running, among others.

Gen-3 Alpha prompt: “A close-up shot of a young woman driving a car, looking thoughtful, blurred green forest visible through the rainy car window.”

The generated demo videos also include more surreal video synthesis examples, including a giant creature walking in a rundown city, a man made of rocks walking in a forest, and the giant cotton candy monster seen below, which is probably the best video on the entire page.

Gen-3 Alpha prompt: “A giant humanoid, made of fluffy blue cotton candy, stomping on the ground, and roaring to the sky, clear blue sky behind them.”

Gen-3 will power various Runway AI editing tools (one of the company’s most notable claims to fame), including Multi Motion Brush, Advanced Camera Controls, and Director Mode. It can create videos from text or image prompts.

Runway says that Gen-3 Alpha is the first in a series of models trained on a new infrastructure designed for large-scale multimodal training, taking a step toward the development of what it calls “General World Models,” which are hypothetical AI systems that build internal representations of environments and use them to simulate future events within those environments.

Runway’s latest AI video generator brings giant cotton candy monsters to life Read More »