Science

national-academies-to-fast-track-a-new-climate-assessment

National Academies to fast-track a new climate assessment

The nation’s premier group of scientific advisers announced Thursday that it will conduct an independent, fast-track review of the latest climate science. It will do so with an eye to weighing in on the Trump administration’s planned repeal of the government’s 2009 determination that greenhouse gas emissions harm human health and the environment.

The move by the National Academies of Sciences, Engineering, and Medicine to self-fund the study is a departure from their typical practice of responding to requests by government agencies or Congress for advice. The Academies intend to publicly release it in September, in time to inform the Environmental Protection Agency’s decision on the so-called “endangerment finding,” they said in a prepared statement.

“It is critical that federal policymaking is informed by the best available scientific evidence,” said Marcia McNutt, president of the National Academy of Sciences. “Decades of climate research and data have yielded expanded understanding of how greenhouse gases affect the climate. We are undertaking this fresh examination of the latest climate science in order to provide the most up-to-date assessment to policymakers and the public.”

The Academies are private, nonprofit institutions that operate under an 1863 congressional charter, signed by President Abraham Lincoln, directing them to provide independent, objective analysis and advice to inform public policy decisions.

The Trump administration’s move to rescind the endangerment finding, announced last month, would eliminate the legal underpinning of the most important actions the federal government has taken on climate change—regulation of carbon pollution from motor vehicles and power plants under the Clean Air Act. Since assuming his role, EPA Administrator Lee Zeldin has made clear he intends to repeal the climate rules that were put in place under the Biden administration, but his job will be far easier with the elimination of the endangerment finding.

The EPA based its proposal mainly on a narrow interpretation of the agency’s legal authority, but the agency also cited uncertainties in the science, pointing to a report published the same day by the Department of Energy that was authored by a hand-picked quintet of well-known skeptics of the mainstream consensus on climate change. The administration has given a short window of opportunity—30 days—for the public to respond to its endangerment finding proposal and to the DOE report on climate science.

The EPA did not immediately respond to a request for comment on the announcement by the National Academies. Critics of the Trump administration’s approach applauded the decision by the scientific panel.

“I think the National Academies have identified a very fundamental need that is not being met, which is the need for independent, disinterested expert advice on what the science is telling us,” said Bob Sussman, who served as deputy administrator of the EPA in the Clinton administration and was a senior adviser in the agency during the Obama administration.

Earlier Thursday, before the National Academies announcement, Sussman posted a blog at the Environmental Law Institute website calling for a “blue-ribbon review” of the science around the endangerment finding. Sussman noted the review of the state of climate science that the National Academies conducted in 2001 at the request of President George W. Bush’s administration. Since then, the Academies have conducted numerous studies on aspects of climate change, including the development of a “climate-ready workforce,” how to power AI sustainably, and emerging technologies for removing carbon from the atmosphere, for example.

The National Academies announced in 2023 that they were developing a rapid response capacity to address the many emerging scientific policy issues the nation was facing. The first project they worked on was an assessment of the state of science around diagnostics for avian influenza.

Andrew Dessler, director of the Texas Center for Extreme Weather at Texas A&M University, said the new controversy that the Trump administration had stirred around climate science was a fitting subject for a fast-track effort by the National Academies.

“The National Academies [were] established exactly to do things like this—to answer questions of scientific importance for the government,” he said. “This is what the DOE should have done all along, rather than hire five people who represent a tiny minority of the scientific community and have views that virtually nobody else agrees with.”

Dessler is leading an effort to coordinate a response from the scientific community to the DOE report, which would also be submitted to the EPA. He said that he had heard from about 70 academics eager to participate after putting out a call on the social media network Bluesky. He said that work will continue because it seems to have a slightly different focus than the National Academies’ announced review, which does not mention the DOE report but talks about focusing on the scientific evidence on the harms of greenhouse gas emissions that has emerged since 2009, the year the endangerment finding was adopted by the EPA.

This story originally appeared on Inside Climate News.

National Academies to fast-track a new climate assessment Read More »

new-executive-order-puts-all-grants-under-political-control

New executive order puts all grants under political control

On Thursday, the Trump administration issued an executive order asserting political control over grant funding, including all federally supported research. The order requires that any announcement of funding opportunities be reviewed by the head of the agency or someone they designate, which means a political appointee will have the ultimate say over what areas of science the US funds. Individual grants will also require clearance from a political appointee and “must, where applicable, demonstrably advance the President’s policy priorities.”

The order also instructs agencies to formalize the ability to cancel previously awarded grants at any time if they’re considered to “no longer advance agency priorities.” Until a system is in place to enforce the new rules, agencies are forbidden from starting new funding programs.

In short, the new rules would mean that all federal science research would need to be approved by a political appointee who may have no expertise in the relevant areas, and the research can be canceled at any time if the political winds change. It would mark the end of a system that has enabled US scientific leadership for roughly 70 years.

We’re in control

The text of the executive order recycles prior accusations the administration has used to justify attacks on the US scientific endeavor: Too much money goes to pay for the facilities and administrative staff that universities provide researchers; grants have gone to efforts to diversify the scientific community; some studies can’t be replicated; and there have been instances of scientific fraud. Its “solution” to these problems (some of which are real), however, is greater control of the grant-making process by non-expert staff appointed by the president.

In general, the executive order inserts a layer of political control over both the announcement of new funding opportunities and the approval of individual grants. It orders the head of every agency that issues grants—meaning someone appointed by the president—to either make funding decisions themselves, or to designate another senior appointee to do it on their behalf. That individual will then exert control over whether any funding announcements or grants can move forward. Decisions will also require “continuation of existing coordination with OMB [Office of Management and Budget].” The head of OMB, Russell Vought, has been heavily involved in trying to cut science funding, including a recent attempt to block all grants made by the National Institutes of Health.

New executive order puts all grants under political control Read More »

stone-tools-may-hint-at-ancestors-of-homo-floresiensis

Stone tools may hint at ancestors of Homo floresiensis

Some stone tools found near a river on the Indonesian island of Sulawesi suggest that the first hominins had reached the islands by at least 1.04 million years ago. That’s around the same time that the ancestors of the infamously diminutive “Hobbits” may have reached the island of Flores.

Archaeologist Budianto Hakim of Indonesia’s National Research and Innovation Agency and his colleagues were the ones who recently unearthed the tools from a site on Sulawesi. Although a handful of stone flakes from that island don’t tell us who the ancestors of the small species were or how they reached remote islands like Flores and Luzon, the tools are one more piece in the puzzle. And this handful of stone flakes may eventually play a role in helping us understand how other hominin species conquered most of the world long before we came along. 

Crossing the ocean a million years ago

Sometimes the deep past leaves the smallest traces. At the Calio site, a sandstone outcrop in what’s now a cornfield outside the village of Ujung in southern Sulawesi, people left behind just a handful of sharp stone flakes roughly a million years ago. There are seven of them, ranging from 22 to 60 millimeters long, and they’re scratched, worn, and chipped from tumbling around at the bottom of a river. But it’s still clear that they were once shaped by skilled human—or at least human-like—hands that used hard stones as hammers to make sharp-edged chert flakes for cutting and scraping.

The oldest of these tools is likely to be between 1.04 and 1.48 million years old. Hakim and his colleagues dated teeth from a wild pig to around 1.26 million years ago. They were part of a jawbone archaeologists unearthed from a layer just above the oldest flake. Throw in some statistical modeling, and you get the range of likely dates for the stone flake buried in the deepest layer of soil.

Even the younger end of that estimate would make these tools the oldest evidence yet of hominins (of any species) in the islands of Indonesia and the Philippines. This area, sometimes called Wallacea, lies between the continents of Asia and Australia, separated from both by wide channels of deep ocean.

“But the Calio site has yet to yield any hominin fossils,” said Brumm, “so while we now know there were tool-makers on Sulawesi a million years ago, their identity remains a mystery.” But they may be related to the Hobbits, a short-statured group of hominins who lived hundreds of kilometers away on the island of Flores until around 50,000 years ago.

“The discovery of Early Pleistocene artifacts at Calio suggests that Sulawesi was populated by hominins at around the same time as Flores, if not earlier,” wrote Hakim and his colleagues in their recent paper. 

The Flores connection

The islands that now make up Indonesia and the Philippines have been a hominin hotspot for at least a million years. Our species wandered onto the scene sometime between 63,000 and 73,000 years ago, but at least one other hominin species had already been there for at least a million years. We’re just not sure exactly who they were, when they arrived, or how.

“Precisely when hominins first crossed to Sulawesi remains an open question, as does the taxonomic affinity of the colonizing population,” the authors note. 

map of Wallacean islands

This map shows the islands of Wallacea. The large one just east of Java is Sulawesi. Credit: Darren O’Connell

That’s why the handful of stone tools the team recently unearthed at Calio matter: They’re another piece of that puzzle, albeit a small one. Every slightly older date is one step closer to the first hominin tools, bones, or footprints in these islands, and another pin on the map of who was where and when.

And that map is accumulating quite a lot of pins, representing an ever-increasing number of species. Once the first hominins made it across the Makassar Strait, they found themselves in isolated groups on islands cut off from the mainland—and each other—so the hominin family tree started branching very quickly. On at least two islands, Flores and Luzon, those original hominin settlers eventually gave rise to local species, Homo floresiensis and Homo luzonensis. And University of Wollongong paleoanthropologist Richard Roberts, a co-discoverer of Homo floresiensis, thinks there are probably more isolated island hominin species.

In 2019, when Homo luzonensis was first described, Roberts told Ars, “These new fossils, and the assignation of them to a new species (Homo luzonensis), fulfills one of the predictions Mike Morwood and others (myself included) made when we first reported (15 years ago!) the discovery of Homo floresiensis: that other unknown species of hominins would be found in the islands of Southeast Asia.”

Both Homo floresiensis (the original “Hobbits”) and Homo luzonensis were short, clocking in at just over a meter tall. Their bones and teeth are different enough from each other to set them apart as a unique species, but they have enough in common that they probably share a common ancestor—one they don’t share with us. They’re more like our distant cousins, and the islands of Wallacea may have been home to many other such cousins, if Roberts and his colleagues are correct. 

Complicated family history

But who was the common ancestor of all these hominin cousins? That’s where things get complicated (as if they weren’t already). Most paleoanthropologists lean toward Homo erectus, but there’s a chance—along with some tantalizing hints, and no direct evidence—that much more ancient human relatives called Australopithecines may have made the journey a million (or two) years before Homo erectus.

Finger and toe bones from Homo luzonensis are curved, as if they spent as much of their lives climbing trees as walking. That’s more like Australopithecines than any member of our genus Homo. But their teeth are smaller and shaped more like ours. Anthropologists call this mix of features a mosaic, and it can make it tough to figure out how hominin species are related. That’s part of why the question of when the ancestors of the Hobbits arrived on their respective islands is so important.

Illusstrated chart of bones and teeth from three hominins

Compare the teeth and phalanx of Homo luzonensis to those of Homo sapiens (right) and Australopithecus afarensis (left). Credit: Tocheri 2019

We don’t know the answer yet, but we do know that someone was making stone tools on Flores by 1.02 million years ago. Those toolmakers may have been Homo erectus, Australopithecines, or something already recognizable as tiny Homo floresiensis. The Hobbits (or their ancestors) were distinctly “Hobbity” by around 700,000 years ago; fossil teeth and bones from a handful of hominins at a site called Mata Menge make that clear. The Hobbits discovered at Liang Bua Cave on Flores date to somewhere between 50,000 and 100,000 years ago.

Meanwhile, 2,800 kilometers away on the island of Luzon, the oldest stone tools, along with their obvious cut marks left behind on animal bones, date back to 700,000 years ago. That’s as old as the Mata Menge Hobbits on Flores. The oldest Homo luzonensis fossils are between 50,000 and 67,000 years old. It’s entirely possible that older evidence, of the island’s original settlers and of Homo luzonensis, may eventually be found, but until then, we’re left with a lot of blank space and a lot of questions.

And now we know that the oldest traces of hominin presence on Sulawesi is at least 1.04 million years old. But might Sulawesi have its own diminutive hominins?

So are there more Hobbits out there?

“Sulawesi is a wild card—it’s like a mini-continent in itself,” said Brumm. “If hominins were cut off on this huge and ecologically rich island for a million years, would they have undergone the same evolutionary changes as the Flores hobbits? Or would something totally different have happened?”

Reconstruction of Homo floresiensis by Atelier Elisabeth Daynes. Credit: Kinez Riza

A phenomenon called island dwarfism played a role in Homo floresiensis‘ evolution; species that live in relative isolation on small islands tend to evolve into either much larger or much smaller versions of their ancestors (which is why the Hobbits shared their island home with pygmy elephants and giant moas). But how small does an island need to be before island dwarfism kicks in? Sulawesi is about 12 times as large as Flores, for example. So what might the descendants of the Calio toolmakers have looked like by 100,000 years ago?

That’s something that we’ll only know if archaeologists on Sulawesi, like Hakim and his team, find fossil remains of those hominins.

Seafarers or tsunami survivors?

Understanding exactly when hominins first set foot on the island of Sulawesi might eventually help us figure out how they got there. These islands are thousands of kilometers from the Southeast Asian mainland and from each other, so getting there would have meant crossing vast stretches of deep, open ocean.

Archaeologists haven’t found any evidence that anyone who came before our species built boats or rafts, although those watercraft would have been made of materials that tend to decay pretty quickly, so even scraps of ancient wood and rope are extremely rare and lucky finds. But some ancient hominins did have a decent grasp of all the basic skills they’d need for at least a simple raft: woodworking and rope-making. 

Another possibility is that hominins living on the coast of mainland Southeast Asia could have been swept out to sea by a tsunami, and some of them could have been lucky enough to survive the misadventure and wash ashore someplace like Sulawesi, Flores, or Luzon (RIP to any others). But for that scenario to work, enough hominins would have had to reach each island to create a lasting population, and it probably had to happen more than once to end up with hominin groups on at least three distant islands.

Either way, it’s no small feat, even for a Hobbit with small feet.

Nature, 2025 DOI: 10.1038/s41586-025-09348-6 (About DOIs).

Stone tools may hint at ancestors of Homo floresiensis Read More »

some-ai-tools-don’t-understand-biology-yet

Some AI tools don’t understand biology yet


A collection of new studies on gene activity shows that AI tools aren’t very good.

Gene activity appears to remain beyond the abilities of AI at the moment. Credit: BSIP

Biology is an area of science where AI and machine-learning approaches have seen some spectacular successes, such as designing enzymes to digest plastics and proteins to block snake venom. But in an era of seemingly endless AI hype, it might be easy to think that we could just set AI loose on the mounds of data we’ve already generated and end up with a good understanding of most areas of biology, allowing us to skip a lot of messy experiments and the unpleasantness of research on animals.

But biology involves a whole lot more than just protein structures. And it’s extremely premature to suggest that AI can be equally effective at handling all aspects of biology. So we were intrigued to see a study comparing a set of AI software packages designed to predict how active genes will be in cells exposed to different conditions. As it turns out, the AI systems couldn’t manage to do any better than a deliberately simplified method of predicting.

The results serve as a useful caution that biology is incredibly complex, and developing AI systems that work for one aspect of it is not an indication that they can work for biology generally.

AI and gene activity

The study was conducted by a trio of researchers based in Heidelberg: Constantin Ahlmann-Eltze, Wolfgang Huber, and Simon Anders. They note that a handful of additional studies have been released while their work was on a pre-print server, all of them coming to roughly the same conclusions. But these authors’ approach is pretty easy to understand, so we’ll use it as an example.

The AI software they examined attempts to predict changes in gene activity. While every cell carries copies of the roughly 20,000 genes in the human genome, not all of them are active in a given cell—”active” in this case meaning they are producing messenger RNAs. Some provide an essential function and are active at high levels at all times. Others are only active in specific cell types, like nerves or skin. Still others are activated under specific conditions, like low oxygen or high temperatures.

Over the years, we’ve done many studies examining the activity of every gene in a given cell type under different conditions. These studies can range from using gene chips to determine which messenger RNAs are present in a population of cells to sequencing the RNAs isolated from single cells and using that data to identify which genes are active. But collectively, they can provide a broad, if incomplete, picture that links the activity of genes with different biological circumstances. It’s a picture you could potentially use to train an AI that would make predictions about gene activity under conditions that haven’t been tested.

Ahlmann-Eltze, Huber, and Anders tested a set of what are called single-cell foundation models that have been trained on this sort of gene activity data. The “single cell” portion indicates that these models have been trained on gene activity obtained from individual cells rather than a population average of a cell type. Foundation models mean that they have been trained on a broad range of data but will require additional training before they’re deployed for a specific task.

Underwhelming performance

The task in this case is predicting how gene activity might change when genes are altered. When an individual gene is lost or activated, it’s possible that the only messenger RNA that is altered is the one made by that gene. But some genes encode proteins that regulate a collection of other genes, in which case you might see changes in the activity of dozens of genes. In other cases, the loss or activation of a gene could affect a cell’s metabolism, resulting in widespread alterations of gene activity.

Things get even more complicated when two genes are involved. In many cases, the genes will do unrelated things, and you get a simple additive effect: the changes caused by the loss of one, plus the changes caused by the loss of others. But if there’s some overlap between the functions, you can get an enhancement of some changes, suppression of others, and other unexpected changes.

To start exploring these effects, researchers have intentionally altered the activity of one or more genes using the CRISPR DNA editing technology, then sequenced every RNA in the cell afterward to see what sorts of changes took place. This approach (termed Perturb-seq) is useful because it can give us a sense of what the altered gene does in a cell. But for Ahlmann-Eltze, Huber, and Anders, it provides the data they need to determine if these foundation models can be trained to predict the ensuing changes in the activity of other genes.

Starting with the foundation models, the researchers conducted additional training using data from an experiment where either one or two genes were activated using CRISPR. This training used the data from 100 individual gene activations and another 62 where two genes were activated. Then, the AI packages were asked to predict the results for another 62 pairs of genes that were activated. For comparison, the researchers also made predictions using two extremely simple models: one that always predicted that nothing would change and a second that always predicted an additive effect (meaning that activating genes A and B would produce the changes caused by activating A plus the changes caused by activating B).

They didn’t work. “All models had a prediction error substantially higher than the additive baseline,” the researchers concluded. The result held when the researchers used alternative measurements of the accuracy of the AI’s predictions.

The gist of the problem seemed to be that the trained foundation models weren’t very good at predicting when the alterations of pairs of genes would produce complex patterns of changes—when the alteration of one gene synergized with the alteration of a second. “The deep learning models rarely predicted synergistic interactions, and it was even rarer that those predictions were correct,” the researchers concluded. In a separate test that looked specifically at these synergies between genes, it turned out that none of the models were better than the simplified system that always predicted no changes.

Not there yet

The overall conclusions from the work are pretty clear. “As our deliberately simple baselines are incapable of representing realistic biological complexity yet were not outperformed by the foundation models,” the researchers write, “we conclude that the latter’s goal of providing a generalizable representation of cellular states and predicting the outcome of not-yet-performed experiments is still elusive.”

It’s important to emphasize that “still elusive” doesn’t mean we’re incapable of ever developing an AI that can help with this problem. It also doesn’t mean that this applies to all cellular states (the results are specific to gene activity), much less all of biology. At the same time, the work provides a valuable caution at a time when there’s a lot of enthusiasm for the idea that AI’s success in a couple of areas means we’re on the cusp of a world where it can be applied to anything.

Nature Methods, 2025. DOI: 10.1038/s41592-025-02772-6  (About DOIs).

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Some AI tools don’t understand biology yet Read More »

titan-sub-implosion-caused-by-absolutely-bonkers-“toxic-workplace-environment”

Titan sub implosion caused by absolutely bonkers “toxic workplace environment”

In a 300-plus page final report released today, the US Coast Guard analyzed the 2023 Titan sub implosion from every conceivable angle and came to a clear conclusion: OceanGate CEO Stockton Rush was a dangerous and deeply unpleasant boss.

His company used “intimidation tactics” to sidestep regulatory scrutiny, it was a “toxic” workplace, and its safety culture was “critically flawed.” The Titan itself was “undocumented, unregistered, non-certificated, [and] unclassed.” As for Rush, he managed to “completely ignore vital inspections, data analyses, and preventative maintenance procedures.” The result was a “catastrophic event” that occurred when 4,930 pounds per square inch of water pressure cracked the sub open and crushed its five occupants during a dive to the Titanic wreckage site.

Had Rush somehow survived, the report says, he would have been referred for prosecution.

Stockton Rush shows David Pogue the game controller that pilots the OceanGate Titan sub during a CBS Sunday Morning segment broadcast in November 2022.

OceanGate CEO Stockton Rush shows David Pogue the 2010-era game controller used to pilot the Titan sub during a CBS Sunday Morning segment broadcast in November 2022. Credit: CBS Sunday Morning

Throwing the controller

One small story about a video game controller shows what Rush was like to work for. You may remember Rush from an infamous 2022 CBS Sunday Morning segment, where Rush showed journalist David Pogue around the Titan sub. “We run the whole thing with this game controller,” Rush said, holding up a Logitech F710 controller with 3D-printed thumbstick extensions. Pogue chuckled, saying, “Come on!” as he covered his face with his hand.

The game controller had been used in OceanGate subs for years by that point; a 2014 video showed one being used to control the company’s earlier Cyclops I submersible. In 2016, OceanGate took the Cyclops I to dive the wreck of the Andrea Doria outside of Nantucket, Massachusetts. (Seinfeld fans will remember that an entire episode is taken up with George’s quest to get an apartment that was about to go to an Andrea Doria survivor.)

The OceanGate team spent two days at the site, running 2D and 3D scans of the sunken ship, until Rush got the Cyclops I “stuck under the bow of the Andrea Doria wreckage”—and he couldn’t get the sub free. According to the report, Rush then “experienced a ‘meltdown’ and refused to let [the assistant pilot] assist in resolving the situation. When a mission specialist suggested that Mr. Rush hand over the controller to the assistant pilot, the assistant pilot reported that the controller was thrown at him. Upon obtaining the controller, the assistant pilot was able to free the Cyclops I from the wreckage.”

Titan sub implosion caused by absolutely bonkers “toxic workplace environment” Read More »

analysis:-the-trump-administration’s-assault-on-climate-action

Analysis: The Trump administration’s assault on climate action


Official actions don’t challenge science, while unofficial docs muddy the waters.

Last week, the Environmental Protection Agency made lots of headlines by rejecting the document that establishes its ability to regulate the greenhouse gases that are warming our climate. While the legal assault on regulations grabbed most of the attention, it was paired with two other actions that targeted other aspects of climate change: the science underlying our current understanding of the dramatic warming the Earth is experiencing, and the renewable energy that represents our best chance of limiting this warming.

Collectively, these actions illuminate the administration’s strategy for dealing with a problem that it would prefer to believe doesn’t exist, despite our extensive documentation of its reality. They also show how the administration is tailoring its approach to different audiences, including the audience of one who is demanding inaction.

When in doubt, make something up

The simplest thing to understand is an action by the Department of the Interior, which handles permitting for energy projects on federal land—including wind and solar, both onshore and off. That has placed the Interior in an awkward position. Wind and solar are now generally the cheapest ways to generate electricity and are currently in the process of a spectacular boom, with solar now accounting for over 80 percent of the newly installed capacity in the US.

Yet, when Trump issued an executive order declaring an energy emergency, wind and solar were notably excluded as potential solutions. Language from Trump and other administration officials has also made it clear that renewable energy is viewed as an impediment to the administration’s pro-fossil fuel agenda.

But shutting down federal permitting for renewable energy with little more than “we don’t like it” as justification could run afoul of rules that forbid government decisions from being “arbitrary and capricious.” This may explain why the government gave up on its attempts to block the ongoing construction of an offshore wind farm in New York waters.

On Friday, the Interior announced that it had settled on a less arbitrary justification for blocking renewable energy on public land: energy density. Given a metric of land use per megawatt, wind and solar are less efficient than nuclear plants we can’t manage to build on time or budget, and therefore “environmentally damaging” and an inefficient use of federal land, according to the new logic. “The Department will now consider proposed energy project’s capacity density when assessing the project’s potential energy benefits to the nation and impacts to the environment and wildlife,” Interior declared.

This is only marginally more reasonable than Interior Secretary Doug Burgum’s apparent inability to recognize that solar power can be stored in batteries. But it has three features that will be recurring themes. There’s at least a token attempt to provide a justification that might survive the inevitable lawsuits, while at the same time providing fodder for the culture war that many in the administration demand. And it avoids directly attacking the science that initially motivated the push toward renewables.

Energy vs. the climate

That’s not to say that climate change isn’t in for attack. It’s just that the attacks are being strategically separated from the decisions that might produce a lawsuit. Last week, the burden of taking on extremely well-understood and supported science fell to the Department of Energy, which released a report on climate “science” to coincide with the EPA’s decision to give up on attempts to regulate greenhouse gases.

For those who have followed public debates over climate change, looking at the author list—John Christy, Judith Curry, Steven Koonin, Ross McKitrick, and Roy Spencer—will give you a very clear picture of what to expect. Spencer is a creationist, raising questions about his ability to evaluate any science free from his personal biases. (He has also said, “My job has helped save our economy from the economic ravages of out-of-control environmental extremism,” so it’s not just biology where he’s got these issues.) McKitrick is an economist who engaged in a multi-year attempt to raise doubt about the prominent “hockey stick” reconstruction of past climates, even as scientists were replicating the results. Etc.

The report is a master class in arbitrary and capricious decision-making applied to science. Sometimes the authors rely on the peer-reviewed literature. Other times they perform their own analysis for this document, in some cases coming up with almost comically random metrics for data. (Example: “We examine occurrences of 5-day deluges as follows. Taking the Pacific coast as an example, a 130-year span contains 26 5-year intervals. At each location we computed the 5-day precipitation totals throughout the year and selected the 26 highest values across the sample.” Why five days? Five-year intervals? Who knows.)

This is especially striking in a few cases where the authors choose references that were published a few years ago, and thus neatly avoid the dramatic temperature records that have been set over the past couple of years. Similarly, they sometimes use regional measures and sometimes use global ones. They demand long-term data in some contexts, while getting excited about two years of coral growth in the Great Barrier Reef. The authors highlight the fact that US tide gauges don’t show any indication of an acceleration in the rate of sea level rise while ignoring the fact that global satellite measures clearly do.

That’s not to say that there aren’t other problems. There’s some blatant misinformation, like claims that urbanization could be distorting the warming, which has already been tested extensively. (Notably, warming is most intense in the sparsely populated Arctic.) There’s also some creative use of language, like referring to the ocean acidification caused by CO2 as “neutralizing ocean alkalinity.”

But the biggest bit of misinformation comes in the introduction, where the secretary of energy, Chris Wright, said of the authors, “I chose them for their rigor, honesty, and willingness to elevate the debate.” There is no reason to choose this group of marginal contrarians except the knowledge that they’d produce a report like this, thus providing a justification for those in the administration who want to believe it’s all a scam.

No science needed

The critical feature of the Department of Energy report is that it contains no policy actions; it’s purely about trying to undercut well-understood climate science. This means the questionable analyses in the report shouldn’t ever end up being tested in court.

That’s in contrast to the decision to withdraw the EPA’s endangerment finding regarding greenhouse gases. There’s quite an extensive history to the endangerment finding, but briefly, it’s the product of a Supreme Court decision (Massachusetts v. EPA), which compelled the EPA to evaluate whether greenhouse gases posed a threat to the US population as defined in the Clean Air Act. Both the Bush and Obama EPAs did so, thus enabling the regulation of greenhouse gases, including carbon dioxide.

Despite the claims in the Department of Energy report, there is comprehensive evidence that greenhouse gases are causing problems in the US, ranging from extreme weather to sea level rise. So while the EPA mentions the Department of Energy’s work a number of times, the actual action being taken skips over the science and focuses on legal issues. In doing so, it creates a false history where the endangerment finding had no legal foundation.

To re-recap, the Supreme Court determined that this evaluation was required by the Clean Air Act. George W. Bush’s administration performed the analysis and reached the exact same conclusion as the Obama administration (though the former chose to ignore those conclusions). Yet Trump’s EPA is calling the endangerment finding “an unprecedented move” by the Obama administration that involved “mental leaps” and “ignored Congress’ clear intent.” And the EPA presents the findings as strategic, “the only way the Obama-Biden Administration could access EPA’s authority to regulate,” rather than compelled by scientific evidence.

Fundamentally, it’s an ahistorical presentation; the EPA is counting on nobody remembering what actually happened.

The announcement doesn’t get much better when it comes to the future. The only immediate change will be an end to any attempts to regulate carbon emissions from motor vehicles, since regulations for power plants had been on hold due to court challenges. Yet somehow, the EPA’s statement claims that this absence of regulation imposed costs on people. “The Endangerment Finding has also played a significant role in EPA’s justification of regulations of other sources beyond cars and trucks, resulting in additional costly burdens on American families and businesses,” it said.

We’re still endangered

Overall, the announcements made last week provide a clear picture of how the administration intends to avoid addressing climate change and cripple the responses started by previous administrations. Outside of the policy arena, it will question the science and use partisan misinformation to rally its supporters for the fight. But it recognizes that these approaches aren’t flying when it comes to the courts.

So it will separately pursue a legal approach that seeks to undercut the ability of anyone, including private businesses, to address climate change, crafting “reasons” for its decisions in a way that might survive legal challenge—because these actions are almost certain to be challenged in court. And that may be the ultimate goal. The current court has shown a near-complete disinterest in respecting precedent and has issued a string of decisions that severely limit the EPA. It’s quite possible that the court will simply throw out the prior decision that compelled the government to issue an endangerment finding in the first place.

If that’s left in place, then any ensuing administrations can simply issue a new endangerment finding. If anything, the effects of climate change on the US population have become more obvious, and the scientific understanding of human-driven warming has solidified since the Bush administration first acknowledged them.

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Analysis: The Trump administration’s assault on climate action Read More »

four-radioactive-wasp-nests-found-on-south-carolina-nuclear-facility

Four radioactive wasp nests found on South Carolina nuclear facility

According to the DOE, the site produced 165 million gallons of radioactive liquid waste, which has been evaporated to 34 million gallons. The site has 51 waste tanks, eight of which have been operationally closed, with the remaining 43 in various states of the closure process.

Outside experts have been quick to point out critical information missing from the DOE’s nest report, including the absolute level of radioactivity found in the nest, the specific isotopes that were found, and the type of wasps that built the nest. Some wasps build their nests from mud, while others might use chewed-up pulp from wood.

Timothy Mousseau, a biologist at the University of South Carolina who studies organisms and ecosystems in radioactive regions, told the Times that the DOE’s explanation that the wasps gathered legacy contamination for their homes is not unreasonable. “There’s some legacy radioactive contamination sitting around in the mud in the bottom of the lakes, or, you know, here and there,” he said.

“The main concern relates to whether or not there are large areas of significant contamination that have escaped surveillance in the past,” Mousseau said. “Alternatively, this could indicate that there is some new or old radioactive contamination that is coming to the surface that was unexpected.”

The DOE report of the first wasp nest said that the nest was sprayed to kill wasps, then bagged as radioactive waste. The ground and area around where the nest had been did not have any further contamination.

In a statement to the Aiken Standard, officials working at the DOE site noted that the wasps themselves pose little risk to the community—they likely have lower contamination on them and generally don’t stray more than a few hundred yards from their nests.

However, the Times pointed out a report from 2017, when officials at SRS found radioactive bird droppings on the roof of a building at the site. Birds can carry radioactive material long distances, Mousseau said.

Four radioactive wasp nests found on South Carolina nuclear facility Read More »

with-trump’s-cutbacks,-crew-heads-for-iss-unsure-of-when-they’ll-come-back

With Trump’s cutbacks, crew heads for ISS unsure of when they’ll come back


“We are looking at the potential to extend this current flight, Crew-11.”

NASA astronaut Zena Cardman departs crew quarters at Kennedy Space Center, Florida, for the ride to SpaceX’s launch pad. Credit: Miguel J. Rodriguez Carrillo/Getty Images

The next four-person team to live and work aboard the International Space Station departed from NASA’s Kennedy Space Center in Florida on Friday, taking aim at the massive orbiting research complex for a planned stay of six to eight months.

Spacecraft commander Zena Cardman leads the mission, designated Crew-11, that lifted off from Florida’s Space Coast at 11: 43 am EDT (15: 43 UTC) on Friday. Sitting to her right inside SpaceX’s Crew Dragon Endeavour capsule was veteran NASA astronaut Mike Fincke, serving as the vehicle pilot. Flanking the commander and pilot were two mission specialists: Kimiya Yui of Japan and Oleg Platonov of Russia.

Cardman and her crewmates rode a Falcon 9 rocket off the launch pad and headed northeast over the Atlantic Ocean, lining up with the space station’s orbit to set the stage for an automated docking at the complex early Saturday.

Goodbye LZ-1

The Falcon 9’s reusable first stage booster detached and returned to a propulsive touchdown at Landing Zone 1 (LZ-1) at Cape Canaveral Space Force Station, a few miles south of the launch site. This was the 53rd and final rocket landing at LZ-1 since SpaceX aced the first intact recovery of a Falcon 9 booster there on December 21, 2015.

On most of SpaceX’s missions, Falcon 9 boosters land on the company’s offshore drone ships hundreds of miles downrange from the launch site. For launches with enough fuel margin, the first stage can return to an onshore landing. But the Space Force, which leases out the landing zones to SpaceX, wants to convert the site of LZ-1 into a launch site for another rocket company.

SpaceX will move onshore rocket landings to new landing zones to be constructed next to the two Falcon 9 launch pads at the Florida spaceport. Landing Zone 2, located adjacent to Landing Zone 1, will also be decommissioned and handed back over to the Space Force once SpaceX activates the new landing sites.

“We’re working with the Cape and with the Kennedy Space Center folks to figure out the right time to make that transition from Landing Zone 2 in the future,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability. “But I think we’ll stay with Landing Zone 2 at least near-term, for a little while, and then look at the right time to move to the other areas.”

The Falcon 9 booster returns to Landing Zone 1 after the launch of the Crew-11 mission on Friday, August 1, 2025. Credit: SpaceX

Meanwhile, the Falcon 9’s second stage fired its single engine to accelerate the Crew Dragon spacecraft into low-Earth orbit. Less than 10 minutes after liftoff, the capsule separated from the second stage to wrap up the 159th consecutive successful launch of a Falcon 9 rocket.

“I have no emotions but joy right now,” Cardman said moments after arriving in orbit. “That was absolutely transcendent, the ride of a lifetime.”

This is the first trip to space for Cardman, a 37-year-old geobiologist and Antarctic explorer selected as a NASA astronaut in 2017. She was assigned to command a Dragon flight to the ISS last year, but NASA bumped her and another astronaut from the mission to make room for the spacecraft to return the two astronauts left behind on the station by Boeing’s troubled Starliner capsule.

Mike Fincke, 58, is beginning his fourth spaceflight after previous launches on Russian Soyuz spacecraft and NASA’s space shuttle. He was previously training to fly on the Starliner spacecraft’s first long-duration mission, but NASA moved him to Dragon as the Boeing program faced more delays.

“Boy, it’s great to be back in orbit!” Fincke said. “Thank you to SpaceX and NASA for getting us here. What a ride!”

Yui is on his second flight to orbit. The 55-year-old former fighter pilot in the Japanese Air Self-Defense Force spent 141 days in space in 2015. Platonov, a 39-year-old spaceflight rookie, was a fighter pilot in the Russian Air Force before training to become a cosmonaut.

A matter of money

There’s some unexpected uncertainty going into this mission about how long the foursome will be in space. Missions sometimes get extended for technical reasons, or because of poor weather in recovery zones on Earth, but there’s something different in play with Crew-11. For the first time, there’s a decent chance that NASA will stretch out this expedition due to money issues.

The Trump administration has proposed across-the-board cuts to most NASA programs, including the International Space Station. The White House’s budget request for NASA in fiscal year 2026, which begins on October 1, calls for an overall cut in agency funding of nearly 25 percent.

The White House proposes a slightly higher reduction by percentage for the International Space Station and crew and cargo transportation to and from the research outpost. The cuts to the ISS would keep the station going through 2030, but with a smaller crew and a reduced capacity for research. Effectively, the ISS would limp toward retirement after more than 30 years in orbit.

Steve Stich, NASA’s commercial crew program manager, said the agency’s engineers are working with SpaceX to ensure the Dragon spacecraft can stay in orbit for at least eight months. The current certification limit is seven months, although officials waived the limit for one Dragon mission that lasted longer.

“When we launch, we have a mission duration that’s baseline,” Stich said in a July 10 press conference. “And then we can extend [the] mission in real-time, as needed, as we better understand… the reconciliation bill and the appropriations process and what that means relative to the overall station manifest.”

An update this week provided by Dana Weigel, NASA’s ISS program manager, indicated that officials are still planning for Crew-11 to stay in space a little longer than usual.

“We are looking at the potential to extend this current flight, Crew-11,” Weigel said Wednesday. “There are a few more months worth of work to do first.”

This photo of the International Space Station was captured by a crew member on a Soyuz spacecraft. Credit: NASA/Roscosmos

Budget bills advanced in the Senate and House of Representatives in July would maintain funding for most NASA programs, including the ISS and transportation, close to this year’s levels. But it’s no guarantee that Congress will pass an appropriations bill for NASA before the deadline of midnight on October 1. It’s also unknown whether President Donald Trump would sign a budget bill into law that rejects his administration’s cuts.

If Congress doesn’t act, lawmakers must pass a continuing resolution as a temporary stopgap measure or accept a government shutdown. Some members of Congress are also concerned that the Trump administration might simply refuse to spend money allotted to NASA and other federal agencies in any budget bill. This move, called impoundment, would be controversial, and its legality would likely have to be adjudicated in the courts.

A separate amendment added in Congress to a so-called reconciliation bill and signed into law by Trump on July 4 also adds $1.25 billion for ISS operations through 2029. “We’re still evaluating how that’s going to affect operations going forward, but it’s a positive step,” said Ken Bowersox, NASA’s associate administrator for space operations.

Suffice it to say that while Congress has signaled its intention to keep funding the ISS and many other NASA programs, the amount of money the space agency will actually receive remains uncertain. Trump appointees have directed NASA managers to prepare to operate as if the White House’s proposed cuts will become reality.

For officials in charge of the International Space Station, this means planning for fewer astronauts, reductions in research output, and longer-duration missions to minimize the number of crew rotation flights NASA must pay for. SpaceX is NASA’s primary contractor for crew rotation missions, using its Dragon spacecraft. NASA has a similar contract with Boeing, but that company’s Starliner spacecraft has not been certified for any operational flights to the station.

SpaceX’s next crew mission to the space station, Crew-12, is scheduled to launch early next year. Weigel said NASA is looking at the “entire spectrum” of options to cut back on the space station’s operations and transportation costs. One of those options would be to launch three crew members on Crew-12 instead of the regular four-person complement.

“We don’t have to answer that right now,” Weigel said. “We can actually wait pretty late to make the crew size smaller if we need to. In terms of cargo vehicles, we’re well-supplied through this fall, so in the short term, I’d say, through the end of this year and the beginning of ’26, things look pretty normal in terms of what we have planned for the program.

“But we’re evaluating things, and we’ll be ready to adjust when the budget is passed and when we figure out where we really land.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With Trump’s cutbacks, crew heads for ISS unsure of when they’ll come back Read More »

research-roundup:-7-cool-science-stories-we-almost-missed

Research roundup: 7 cool science stories we almost missed


Other July stories: Solving a 150-year-old fossil mystery and the physics of tacking a sailboat.

150-year-old fossil of Palaeocampa anthrax isn’t a sea worm after all. Credit: Christian McCall

It’s a regrettable reality that there is never enough time to cover all the interesting scientific stories we come across each month. In the past, we’ve featured year-end roundups of cool science stories we (almost) missed. This year, we’re experimenting with a monthly collection. July’s list includes the discovery of the tomb of the first Maya king of Caracol in Belize, the fluid dynamics of tacking a sailboat, how to determine how fast blood was traveling when it stained cotton fabric, and how the structure of elephant ears could lead to more efficient indoor temperature control in future building designs, among other fun stories.

Tomb of first king of Caracol found

University of Houston provost and archeologist Diane Chase in newly discovered tomb of the first ruler of the ancient Maya city Caracol and the founder of its royal dynasty.

Credit: Caracol Archeological Project/University of Houston

Archaeologists Arlen and Diane Chase are the foremost experts on the ancient Maya city of Caracol in Belize and are helping to pioneer the use of airborne LiDAR to locate hidden structures in dense jungle, including a web of interconnected roadways and a cremation site in the center of the city’s Northeast Acropolis plaza. They have been painstakingly excavating the site since the mid-1980s. Their latest discovery is the tomb of Te K’ab Chaak, Caracol’s first ruler, who took the throne in 331 CE and founded a dynasty that lasted more than 460 years.

This is the first royal tomb the husband-and-wife team has found in their 40+ years of excavating the Caracol site. Te K’ab Chaak’s tomb (containing his skeleton) was found at the base of a royal family shrine, along with pottery vessels, carved bone artifacts, jadeite jewelry, and a mosaic jadeite death mask. The Chases estimate that the ruler likely stood about 5’7″ tall and was probably quite old when he died, given his lack of teeth. The Chases are in the process of reconstructing the death mask and conducting DNA and stable isotope analysis of the skeleton.

How blood splatters on clothing

Cast-off blood stain pattern

Credit: Jimmy Brown/CC BY 2.0

Analyzing blood splatter patterns is a key focus in forensic science, and physicists have been offering their expertise for several years now, including in two 2019 studies on splatter patterns from gunshot wounds. The latest insights gleaned from physics concern the distinct ways in which blood stains cotton fabrics, according to a paper published in Forensic Science International.

Blood is a surprisingly complicated fluid, in part because the red blood cells in human blood can form long chains, giving it the consistency of sludge. And blood starts to coagulate immediately once it leaves the body. Blood is also viscoelastic: not only does it deform slowly when exposed to an external force, but once that force has been removed, it will return to its original configuration. Add in coagulation and the type of surface on which it lands, and correctly interpreting the resulting spatter patterns becomes incredibly difficult.

The co-authors of the July study splashed five different fabric surfaces with pig’s blood at varying velocities, capturing the action with high-speed cameras. They found that when a blood stain has “fingers” spreading out from the center, the more fingers there are, the faster the blood was traveling when it struck the fabric. And the faster the blood was moving, the more “satellite droplets” there will be—tiny stains surrounding the central stain. Finally, it’s much easier to estimate the velocity of blood splatter on plain-woven cotton than on other fabrics like twill. The researchers plan to extend future work to include a wider variety of fabrics, weaves, and yarns.

DOI: Forensic Science International, 2025. 10.1016/j.forsciint.2025.112543  (About DOIs).

Offshore asset practices of the uber-rich

The uber-rich aren’t like the rest of us in so many ways, including their canny exploitation of highly secretive offshore financial systems to conceal their assets and/or identities. Researchers at Dartmouth have used machine learning to analyze two public databases and identified distinct patterns in the strategies oligarchs and billionaires in 65 different countries employ when squirreling away offshore assets, according to a paper published in the journal PLoS ONE.

One database tracks offshore finance, while the other rates different countries on their “rule of law.” This enabled the team to study key metrics like how much of their assets elites move offshore, how much they diversify, and how much they make use of “blacklisted” offshore centers that are not part of the mainstream financial system. The researchers found three distinct patterns, all tied to where an oligarch comes from.

Billionaires from authoritarian countries are more likely to diversify their hidden assets across many different centers—a “confetti strategy”—perhaps because these are countries likely to exact political retribution. Others, from countries with effective government regulations—or where there is a pronounced lack of civil rights—are more likely to employ a “concealment strategy” that includes more blacklisted jurisdictions, relying more on bearer shares that protect their anonymity. Those elites most concerned about corruption and/or having their assets seized typically employ a hybrid strategy.

The work builds on an earlier 2023 study concluding that issuing sanctions on individual oligarchs in Russia, China, the US, and Hong Kong is less effective than targeting the small, secretive network of financial experts who manage that wealth on behalf of the oligarchs. That’s because sanctioning just one wealth manager effectively takes out several oligarchs at once, per the authors.

DOI: PLoS ONE, 2025. 10.1371/journal.pone.0326228  (About DOIs).

Medieval remedies similar to TikTok trends

Medieval manuscripts like the Cotton MS Vitellius C III highlight uses for herbs that reflect modern-day wellness trends.

Credit: The British Library

The Middle Ages are stereotypically described as the “Dark Ages,” with a culture driven by superstition—including its medical practices. But a perusal of the hundreds of medical manuscripts collected in the online Corpus of Early Medieval Latin Medicine (CEMLM) reveals that in many respects, medical practices were much more sophisticated; some of the remedies are not much different from alternative medicine remedies touted by TikTok influencers today. That certainly doesn’t make them medically sound, but it does suggest we should perhaps not be too hasty in who we choose to call backward and superstitious.

Per Binghamton University historian Meg Leja, medievalists were not “anti-science.” In fact, they were often quite keen on learning from the natural world. And their health practices, however dubious they might appear to us—lizard shampoo, anyone?—were largely based on the best knowledge available at the time. There are detox cleanses and topical ointments, such as crushing the stone of a peach, mixing it with rose oil, and smearing it on one’s forehead to relieve migraine pain. (Rose oil may actually be an effective migraine pain reliever.) The collection is well worth perusing; pair it with the Wellcome-funded Curious Cures in Cambridge Libraries to learn even more about medieval medical recipes.

Physics of tacking a sailboat

The Courant Institute's Christiana Mavroyiakoumou, above at Central Park's Conservatory Water with model sailboats

Credit: Jonathan King/NYU

Possibly the most challenging basic move for beginner sailors is learning how to tack to sail upwind. Done correctly, the sail will flip around into a mirror image of its previous shape. And in competitive sailboat racing, a bad tack can lose the race. So physicists at the University of Michigan decided to investigate the complex fluid dynamics at play to shed more light on the tricky maneuver, according to a paper published in the journal Physical Review Fluids.

After modeling the maneuver and conducting numerical simulations, the physicists concluded that there are three primary factors that determine a successful tack: the stiffness of the sail, its tension before the wind hits, and the final sail angle in relation to the direction of the wind. Ideally, one wants a less flexible, less curved sail with high tension prior to hitting the wind and to end up with a 20-degree final sail angle. Other findings: It’s harder to flip a slack sail when tacking, and how fast one manages to flip the sail depends on the sail’s mass and the speed and acceleration of the turn.

DOI: Physical Review Fluids, 2025. 10.1103/37xg-vcff  (About DOIs).

Elephant ears inspire building design

African bush elephant with ears spread in a threat or attentive position and visible blood vessels

Maintaining a comfortable indoor temperature constitutes the largest fraction of energy usage for most buildings, with the surfaces of walls, windows, and ceilings contributing to roughly 63 percent of energy loss. Engineers at Drexel University have figured out how to make surfaces that help rather than hamper efforts to maintain indoor temperatures: using so-called phase-change materials that can absorb and release thermal energy as needed as they shift between liquid and solid states. They described the breakthrough in a paper published in the Journal of Building Engineering.

The Drexel group previously developed a self-warming concrete using a paraffin-based material, similar to the stuff used to make candles. The trick this time around, they found, was to create the equivalent of a vascular network within cement-based building materials. They used a printed polymer matrix to create a grid of channels in the surface of concrete and filled those channels with the same paraffin-based material. When temperatures drop, the material turns into a solid and releases heat energy; as temperatures rise, it shifts its phase to a liquid and absorbs heat energy.

The group tested several different configurations and found that the most effective combination of strength and thermal regulation was realized with a diamond-shaped grid, which boasted the most vasculature surface area. This configuration successfully slowed the cooling and heating of its surface to between 1 and 1.2 degrees Celsius per hour, while holding up against stretching and compression tests. The structure is similar to that of jackrabbit and elephant ears, which have extensive vascular networks to help regulate body temperature.

DOI: Journal of Building Engineering, 2025. 10.1016/j.jobe.2025.112878  (About DOIs).

ID-ing a century-old museum specimen

Neotype of Palaeocampa anthrax from the Mazon Creek Lagerstätte and rediscovered in the Invertebrate Paleontology collection of the MCZ.

Credit: Richard J. Knecht

Natural history museums have lots of old specimens in storage, and revisiting those specimens can sometimes lead to new discoveries. That’s what happened to University of Michigan evolutionary biologist Richard J. Knecht as he was poring over a collection at Harvard’s Museum of Comparative Zoology while a grad student there. One of the fossils, originally discovered in 1865, was labeled a millipede. But Knecht immediately recognized it as a type of lobopod, according to a paper published in the journal Communications Biology. It’s the earliest lobopod yet found, and this particular species also marks an evolutionary leap since it’s the first known lobopod to be non-marine.

Lobopods are the evolutionary ancestors to arthropods (insects, spiders, and crustaceans), and their fossils are common along Paleozoic sea beds. Apart from tardigrades and velvet worms, however, they were thought to be confined to oceans. But Palaeocampa anthrax has legs on every trunk, as well as almost 1,000 bristly spines covering its body with orange halos at their tips. Infrared spectroscopy revealed traces of fossilized molecules—likely a chemical that emanated from the spinal tips. Since any chemical defense would just disperse in water, limiting its effectiveness, Knecht concluded that Palaeocampa anthrax was most likely amphibious rather than being solely aquatic.

DOI: Communications Biology, 2025. 10.1038/s42003-025-08483-0  (About DOIs).

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Research roundup: 7 cool science stories we almost missed Read More »

the-military’s-squad-of-satellite-trackers-is-now-routinely-going-on-alert

The military’s squad of satellite trackers is now routinely going on alert


“I hope this blows your mind because it blows my mind.”

A Long March 3B rocket carrying a new Chinese Beidou navigation satellite lifts off from the Xichang Satellite Launch Center on May 17, 2023. Credit: VCG/VCG via Getty Images

This is Part 2 of our interview with Col. Raj Agrawal, the former commander of the Space Force’s Space Mission Delta 2.

If it seems like there’s a satellite launch almost every day, the numbers will back you up.

The US Space Force’s Mission Delta 2 is a unit that reports to Space Operations Command, with the job of sorting out the nearly 50,000 trackable objects humans have launched into orbit.

Dozens of satellites are being launched each week, primarily by SpaceX to continue deploying the Starlink broadband network. The US military has advance notice of these launches—most of them originate from Space Force property—and knows exactly where they’re going and what they’re doing.

That’s usually not the case when China or Russia (and occasionally Iran or North Korea) launches something into orbit. With rare exceptions, like human spaceflight missions, Chinese and Russian officials don’t publish any specifics about what their rockets are carrying or what altitude they’re going to.

That creates a problem for military operators tasked with monitoring traffic in orbit and breeds anxiety among US forces responsible for making sure potential adversaries don’t gain an edge in space. Will this launch deploy something that can destroy or disable a US satellite? Will this new satellite have a new capability to surveil allied forces on the ground or at sea?

Of course, this is precisely the point of keeping launch details under wraps. The US government doesn’t publish orbital data on its most sensitive satellites, such as spy craft collecting intelligence on foreign governments.

But you can’t hide in low-Earth orbit, a region extending hundreds of miles into space. Col. Raj Agrawal, who commanded Mission Delta 2 until earlier this month, knows this all too well. Agrawal handed over command to Col. Barry Croker as planned after a two-year tour of duty at Mission Delta 2.

Col. Raj Agrawal, then-Mission Delta 2 commander, delivers remarks to audience members during the Mission Delta 2 redesignation ceremony in Colorado Springs, Colorado, on October 31, 2024. Credit: US Space Force

Some space enthusiasts have made a hobby of tracking US and foreign military satellites as they fly overhead, stringing together a series of observations over time to create fairly precise estimates of an object’s altitude and inclination.

Commercial companies are also getting in on the game of space domain awareness. But most are based in the United States or allied nations and have close partnerships with the US government. Therefore, they only release information on satellites owned by China and Russia. This is how Ars learned of interesting maneuvers underway with a Chinese refueling satellite and suspected Russian satellite killers.

Theoretically, there’s nothing to stop a Chinese company, for example, from taking a similar tack on revealing classified maneuvers conducted by US military satellites.

The Space Force has an array of sensors scattered around the world to detect and track satellites and space debris. The 18th and 19th Space Defense Squadrons, which were both under Agrawal’s command at Mission Delta 2, are the units responsible for this work.

Preparing for the worst

One of the most dynamic times in the life of a Space Force satellite tracker is when China or Russia launches something new, according to Agrawal. His command pulls together open source information, such as airspace and maritime warning notices, to know when a launch might be scheduled.

This is not unlike how outside observers, like hobbyist trackers and space reporters, get a heads-up that something is about to happen. These notices tell you when a launch might occur, where it will take off from, and which direction it will go. What’s different for the Space Force is access to top-secret intelligence that might clue military officials in on what the rocket is actually carrying. China, in particular, often declares that its satellites are experimental, when Western analysts believe they are designed to support military activities.

That’s when US forces swing into action. Sometimes, military forces go on alert. Commanders develop plans to detect, track, and target the objects associated with a new launch, just in case they are “hostile,” Agrawal said.

We asked Agrawal to take us through the process his team uses to prepare for and respond to one of these unannounced, or “non-cooperative,” launches. This portion of our interview is published below, lightly edited for brevity and clarity.

Ars: Let’s say there’s a Russian or Chinese launch. How do you find out there’s a launch coming? Do you watch for NOTAMs (Notices to Airmen), like I do, and try to go from there?

Agrawal: I think the conversation starts the same way that it probably starts with you and any other technology-interested American. We begin with what’s available. We certainly have insight through intelligence means to be able to get ahead of some of that, but we’re using a lot of the same sources to refine our understanding of what may happen, and then we have access to other intel.

The good thing is that the Space Force is a part of the Intelligence Community. We’re plugged into an entire Intelligence Community focused on anything that might be of national security interest. So we’re able to get ahead. Maybe we can narrow down NOTAMs; maybe we can anticipate behavior. Maybe we have other activities going on in other domains or on the Internet, the cyber domain, and so on, that begin to tip off activity.

Certainly, we’ve begun to understand patterns of behavior. But no matter what, it’s not the same level of understanding as those who just cooperate and work together as allies and friends. And if there’s a launch that does occur, we’re not communicating with that launch control center. We’re certainly not communicating with the folks that are determining whether or not the launch will be safe, if it’ll be nominal, how many payloads are going to deploy, where they’re going to deploy to.

I certainly understand why a nation might feel that they want to protect that. But when you’re fielding into LEO [low-Earth orbit] in particular, you’re not really going to hide there. You’re really just creating uncertainty, and now we’re having to deal with that uncertainty. We eventually know where everything is, but in that meantime, you’re creating a lot of risk for all the other nations and organizations that have fielded capability in LEO as well.

Find, fix, track, target

Ars: Can you take me through what it’s like for you and your team during one of these launches? When one comes to your attention, through a NOTAM or something else, how do you prepare for it? What are you looking for as you get ready for it? How often are you surprised by something with one of these launches?

Agrawal: Those are good questions. Some of it, I’ll be more philosophical on, and others I can be specific on. But on a routine basis, our formation is briefed on all of the launches we’re aware of, to varying degrees, with the varying levels of confidence, and at what classifications have we derived that information.

In fact, we also have a weekly briefing where we go into depth on how we have planned against some of what we believe to be potentially higher threats. How many organizations are involved in that mission plan? Those mission plans are done at a very tactical level by captains and NCOs [non-commissioned officers] that are part of the combat squadrons that are most often presented to US Space Command…

That integrated mission planning involves not just Mission Delta 2 forces but also presented forces by our intelligence delta [Space Force units are called deltas], by our missile warning and missile tracking delta, by our SATCOM [satellite communications] delta, and so on—from what we think is on the launch pad, what we think might be deployed, what those capabilities are. But also what might be held at risk as a result of those deployments, not just in terms of maneuver but also what might these even experimental—advertised “experimental”—capabilities be capable of, and what harm might be caused, and how do we mission-plan against those potential unprofessional or hostile behaviors?

As you can imagine, that’s a very sophisticated mission plan for some of these launches based on what we know about them. Certainly, I can’t, in this environment, confirm or deny any of the specific launches… because I get access to more fidelity and more confidence on those launches, the timing and what’s on them, but the precursor for the vast majority of all these launches is that mission plan.

That happens at a very tactical level. That is now posturing the force. And it’s a joint force. It’s not just us, Space Force forces, but it’s other services’ capabilities as well that are posturing to respond to that. And the truth is that we even have partners, other nations, other agencies, intel agencies, that have capability that have now postured against some of these launches to now be committed to understanding, did we anticipate this properly? Did we not?

And then, what are our branch plans in case it behaves in a way that we didn’t anticipate? How do we react to it? What do we need to task, posture, notify, and so on to then get observations, find, fix, track, target? So we’re fulfilling the preponderance of what we call the kill chain, for what we consider to be a non-cooperative launch, with a hope that it behaves peacefully but anticipating that it’ll behave in a way that’s unprofessional or hostile… We have multiple chat rooms at multiple classifications that are communicating in terms of “All right, is it launching the way we expected it to, or did it deviate? If it deviated, whose forces are now at risk as a result of that?”

A spectator takes photos before the launch of the Long March 7A rocket carrying the ChinaSat 3B satellite from the Wenchang Space Launch Site in China on May 20, 2025. Credit: Meng Zhongde/VCG via Getty Images

Now, we even have down to the fidelity of what forces on the ground or on the ocean may not have capability… because of maneuvers or protective measures that the US Space Force has to take in order to deviate from its mission because of that behavior. The conversation, the way it was five years ago and the way it is today, is very, very different in terms of just a launch because now that launch, in many cases, is presenting a risk to the joint force.

We’re acting like a joint force. So that Marine, that sailor, that special operator on the ground who was expecting that capability now is notified in advance of losing that capability, and we have measures in place to mitigate those outages. And if not, then we let them know that “Hey, you’re not going to have the space capability for some period of time. We’ll let you know when we’re back. You have to go back to legacy operations for some period of time until we’re back into nominal configuration.”

I hope this blows your mind because it blows my mind in the way that we now do even just launch processing. It’s very different than what we used to do.

Ars: So you’re communicating as a team in advance of a launch and communicating down to the tactical level, saying that this launch is happening, this is what it may be doing, so watch out?

Agrawal: Yeah. It’s not as simple as a ballistic missile warning attack, where it’s duck and cover. Now, it’s “Hey, we’ve anticipated the things that could occur that could affect your ability to do your mission as a result of this particular launch with its expected payload, and what we believe it may do.” So it’s not just a general warning. It’s a very scoped warning.

As that launch continues, we’re able to then communicate more specifically on which forces may lose what, at what time, and for how long. And it’s getting better and better as the rest of the US Space Force, as they present capability trained to that level of understanding as well… We train this together. We operate together and we communicate together so that the tactical user—sometimes it’s us at US Space Force, but many times it’s somebody on the surface of the Earth that has to understand how their environment, their capability, has changed as a result of what’s happening in, to, and from space.

Ars: The types of launches where you don’t know exactly what’s coming are getting more common now. Is it normal for you to be on this alert posture for all of the launches out of China or Russia?

Agrawal: Yeah. You see it now. The launch manifest is just ridiculous, never mind the ones we know about. The ones that we have to reach out into the intelligence world and learn about, that’s getting ridiculous, too. We don’t have to have this whole machine postured this way for cooperative launches. So the amount of energy we’re expending for a non-cooperative launch is immense. We can do it. We can keep doing it, but you’re just putting us on alert… and you’re putting us in a position where we’re getting ready for bad behavior with the entire general force, as opposed to a cooperative launch, where we can anticipate. If there’s an anomaly, we can anticipate those and work through them. But we’re working through it with friends, and we’re communicating.

We’re not having to put tactical warfighters on alert every time … but for those payloads that we have more concern about. But still, it’s a very different approach, and that’s why we are actively working with as many nations as possible in Mission Delta 2 to get folks to sign on with Space Command’s space situational awareness sharing agreements, to go at space operations as friends, as allies, as partners, working together. So that way, we’re not posturing for something higher-end as a result of the launch, but we’re doing this together. So, with every nation we can, we’re getting out there—South America, Africa, every nation that will meet with us, we want to meet with them and help them get on the path with US Space Command to share data, to work as friends, and use space responsibly.”

A Long March 3B carrier rocket carrying the Shijian 21 satellite lifts off from the Xichang Satellite Launch Center on October 24, 2021. Credit: Li Jieyi/VCG via Getty Images

Ars: How long does it take you to sort out and get a track on all of the objects for an uncooperative launch?

Agrawal: That question is a tough one to answer. We can move very, very quickly, but there are times when we have made a determination of what we think something is, what it is and where it’s going, and intent; there might be some lag to get it into a public catalog due to a number of factors, to include decisions being made by combatant commanders, because, again, our primary objective is not the public-facing catalog. The primary objective is, do we have a risk or not?

If we have a risk, let’s understand, let’s figure out to what degree do we think we have to manage this within the Department of Defense. And to what degree do we believe, “Oh, no, this can go in the public catalog. This is a predictable elset (element set)”? What we focus on with (the public catalog) are things that help with predictability, with spaceflight safety, with security, spaceflight security. So you sometimes might see a lag there, but that’s because we’re wrestling with the security aspect of the degree to which we need to manage this internally before we believe it’s predictable. But once we believe it’s predictable, we put it in the catalog, and we put it on space-track.org. There’s some nuance in there that isn’t relative to technology or process but more on national security.

On the flip side, what used to take hours and days is now getting down to seconds and minutes. We’ve overhauled—not 100 percent, but to a large degree—and got high-speed satellite communications from sensors to the centers of SDA (Space Domain Awareness) processing. We’re getting higher-end processing. We’re now duplicating the ability to process, duplicating that capability across multiple units. So what used to just be human labor intensive, and also kind of dial-up speed of transmission, we’ve now gone to high-speed transport. You’re seeing a lot of innovation occur, and a lot of data fusion occur, that’s getting us to seconds and minutes.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The military’s squad of satellite trackers is now routinely going on alert Read More »

vast-majority-of-new-us-power-plants-generate-solar-or-wind-power

Vast majority of new US power plants generate solar or wind power

But Victor views this as more of a slowdown than a reversal of momentum. One reason is that demand for electricity continues to rise to serve data centers and other large power users. The main beneficiaries are energy technologies that are the easiest to build and most cost effective, including solar, batteries, and gas.

In the first half of this year, the United States added 341 new power plants or utility-scale battery systems, with a total of 22,332 megawatts of summer generating capacity, according to EIA.

Chart showing how solar and wind have dominated new power generation capability.

Credit: Inside Climate News

More than half the total was utility-scale solar, with 12,034 megawatts, followed by battery systems, with 5,900 megawatts, onshore wind, with 2,697 megawatts, and natural gas, with 1,691 megawatts, which includes several types of natural gas plants.

The largest new plant by capacity was the 600-megawatt Hornet Solar in Swisher County, Texas, which went online in April.

“Hornet Solar is a testament to how large-scale energy projects can deliver reliable, domestic power to American homes and businesses,” said Juan Suarez, co-CEO of the developer, Vesper Energy of the Dallas area, in a statement from the ribbon-cutting ceremony.

The plants being completed now are special in part because of what they have endured, said Ric O’Connell, executive director of GridLab, a nonprofit that does technical analysis for regulators and renewable power advocates. Power plants take years to plan and build, and current projects likely began development during the COVID-19 pandemic. They stayed on track despite high inflation, parts shortages, and challenges in getting approval for grid connections, he said.

“It’s been a rocky road for a lot of these projects, so it’s exciting to see them online,” O’Connell said.

Chart showing mix of planned new power plants in the US

Credit: Inside Climate News

Looking ahead to the rest of this year and through 2030, the country has 254,126 megawatts of planned power plants, according to EIA. (To appear on this list, a project must meet three of four benchmarks: land acquisition, permits obtained, financing received, and a contract completed for selling electricity.)

Solar is the leader with 120,269 megawatts, followed by batteries, with 65,051 megawatts, and natural gas, with 35,081 megawatts.

Vast majority of new US power plants generate solar or wind power Read More »

peacock-feathers-can-emit-laser-beams

Peacock feathers can emit laser beams

Peacock feathers are greatly admired for their bright iridescent colors, but it turns out they can also emit laser light when dyed multiple times, according to a paper published in the journal Scientific Reports. Per the authors, it’s the first example of a biolaser cavity within the animal kingdom.

As previously reported, the bright iridescent colors in things like peacock feathers and butterfly wings don’t come from any pigment molecules but from how they are structured. The scales of chitin (a polysaccharide common to insects) in butterfly wings, for example, are arranged like roof tiles. Essentially, they form a diffraction grating, except photonic crystals only produce certain colors, or wavelengths, of light, while a diffraction grating will produce the entire spectrum, much like a prism.

In the case of peacock feathers, it’s the regular, periodic nanostructures of the barbules—fiber-like components composed of ordered melanin rods coated in keratin—that produce the iridescent colors. Different colors correspond to different spacing of the barbules.

Both are naturally occurring examples of what physicists call photonic crystals. Also known as photonic bandgap materials, photonic crystals are “tunable,” which means they are precisely ordered in such a way as to block certain wavelengths of light while letting others through. Alter the structure by changing the size of the tiles, and the crystals become sensitive to a different wavelength. (In fact, the rainbow weevil can control both the size of its scales and how much chitin is used to fine-tune those colors as needed.)

Even better (from an applications standpoint), the perception of color doesn’t depend on the viewing angle. And the scales are not just for aesthetics; they help shield the insect from the elements. There are several types of manmade photonic crystals, but gaining a better and more detailed understanding of how these structures grow in nature could help scientists design new materials with similar qualities, such as iridescent windows, self-cleaning surfaces for cars and buildings, or even waterproof textiles. Paper currency could incorporate encrypted iridescent patterns to foil counterfeiters.

Peacock feathers can emit laser beams Read More »