solar system

nasa-will-soon-find-out-if-the-perseverance-rover-can-really-persevere-on-mars

NASA will soon find out if the Perseverance rover can really persevere on Mars


Engineers at JPL are certifying the Perseverance rover to drive up to 100 kilometers.

The Perseverance rover looks back on its tracks on the floor of Jezero Crater in 2022. Credit: NASA/JPL

When the Perseverance rover arrived on Mars nearly five years ago, NASA officials thought the next American lander to take aim on the red planet would be taking shape by now.

At the time, the leaders of the space agency expected this next lander could be ready for launch as soon as 2026—or more likely in 2028. Its mission would have been to retrieve Martian rock specimens collected by the Perseverance rover, then billed as the first leg of a multilaunch, multibillion-dollar Mars Sample Return campaign.

Here we are on the verge of 2026, and there’s no sample retrieval mission nearing the launch pad. In fact, no one is building such a lander at all. NASA’s strategy for a Mars Sample Return, or MSR, mission remains undecided after the projected cost of the original plan ballooned to $11 billion. If MSR happens at all, it’s now unlikely to launch until the 2030s.

That means the Perseverance rover, which might have to hand off the samples to a future retrieval lander in some circumstances, must continue weathering the harsh, cold, dusty environment of Mars. The good news is that the robot, about the size of a small SUV, is in excellent health, according to Steve Lee, Perseverance’s deputy project manager at NASA’s Jet Propulsion Laboratory (JPL).

“Perseverance is approaching five years of exploration on Mars,” Lee said in a press briefing Wednesday at the American Geophysical Union’s annual fall meeting. “Perseverance is really in excellent shape. All the systems onboard are operational and performing very, very well. All the redundant systems onboard are available still, and the rover is capable of supporting this mission for many, many years to come.”

The rover’s operators at JPL are counting on sustaining Perseverance’s good health. The rover’s six wheels have carried it a distance of about 25 miles, or 40 kilometers, since landing inside the 28-mile-wide (45-kilometer) Jezero Crater in February 2021. That is double the original certification for the rover’s mobility system and farther than any vehicle has traveled on the surface of another world.

This enhanced-color mosaic is made from three separate images taken on September 8, 2025, each of which was acquired using the Perseverance rover’s Mastcam-Z instrument. The images were processed to improve visual contrast and enhance color differences. The view shows a location known as “Mont Musard” and another region named “Lac de Charmes,” where the rover’s team will be looking for more rock core samples to collect in the year ahead. The mountains in the distance are approximately 52 miles (84 kilometers) away.

Going for 100

Now, engineers are asking Perseverance to perform well beyond expectations. An evaluation of the rover’s health concluded it can operate until at least 2031. The rover uses a radioactive plutonium power source, so it’s not in danger of running out of electricity or fuel any time soon. The Curiosity rover, which uses a similar design, has surpassed 13 years of operations on Mars.

There are two systems that are most likely to limit the rover’s useful lifetime. One is the robotic arm, which is necessary to collect samples, and the other is the rover’s six wheels and the drive train that powers them.

“To make sure we can continue operations and continue driving for a long, long way, up to 100 kilometers (62 miles), we are doing some additional testing,” Lee said. “We’ve successfully completed a rotary actuator life test that has now certified the rotary system to 100 kilometers for driving, and we have similar testing going on for the brakes. That is going well, and we should finish those early part of next year.”

Ars asked Lee why JPL decided on 100 kilometers, which is roughly the same distance as the average width of Lake Michigan. Since its arrival in 2021, Perseverance has climbed out of Jezero Crater and is currently exploring the crater’s rugged rim. If NASA sends a lander to pick up samples from Perseverance, the rover will have to drive back to a safe landing zone for a handoff.

“We actually had laid out a traverse path exploring the crater rim, much more of the crater rim than we have so far, and then be able to return to a rendezvous site,” Lee said. “So we did an estimate of the total mission drive duration to complete that mission, added margin for science exploration, added margin in case we need the rendezvous at a different site… and it just turned out to add up to a nice, even 100 kilometers.”

The time-lapse video embedded below shows the Perseverance rover’s record-breaking 1,351-foot (412-meter) drive on June 19, 2025.

Despite the disquiet on the future of MSR, the Perseverance rover has dutifully collected specimens and placed them in 33 titanium sample tubes since arriving on Mars. Perseverance deposited some of the sealed tubes on the surface of Mars in late 2022 and early 2023 and has held onto the remaining containers while continuing to drive toward the rim of Jezero.

The dual-depot approach preserves the option for future MSR mission planners to go after either batch of samples.

Scientists selected Jezero as the target for the Perseverance mission because they suspected it was the site of an ancient dried-up river delta with a surplus of clay-rich minerals. The rover’s instruments confirmed this hypothesis, finding sediments in the crater floor that were deposited at the bottom of a lake of liquid water billions of years ago, including sandstones and mudstones known to preserve fossilized life in comparable environments on Earth.

A research team published findings in the journal Nature in September describing the discovery of chemical signatures and structures in a rock that could have been formed by ancient microbial life. Perseverance lacks the bulky, sprawling instrumentation to know for sure, so ground teams ordered the rover to collect a pulverized specimen from the rock in question and seal it for eventual return to Earth.

Fill but don’t seal

Lee said Perseverance will continue filling sample tubes in the expectation that they will eventually come back to Earth.

“We do expect to continue some sampling,” Lee said. “We have six open sample tubes, unused sample tubes, onboard. We actually have two that we took samples and didn’t seal yet. So we have options of maybe replacing them if we’re finding that there’s even better areas that we want to collect from.”

The rover’s management team at JPL is finalizing the plan for Perseverance through 2028. Lee expects the rover will remain at Jezero’s rim for a while. “There are quite a number of very prime, juicy targets we would love to go explore,” he said.

In the meantime, if Perseverance runs across an alluring rock, scientists will break out the rover’s coring drill and fill more tubes.

“We certainly have more than enough to keep us busy, and we are not expecting a major perturbation to our science explorations in the next two and a half years as a result of sample return uncertainty,” Lee said.

Perseverance has its own suite of sophisticated instruments. The instruments can’t do what labs on Earth can, but the rover can scan rocks to determine what they’re made of, search for life-supporting organic molecules, map underground geology, and capture startling vistas that inspire and inform.

This photo montage shows sample tubes shortly after they were deposited onto the surface by NASA’s Perseverance Mars rover in late 2022 and early 2023. Credit: NASA/JPL-Caltech/MSSS

The rover’s sojourn along the Jezero Crater rim is taking it through different geological eras, from the time Jezero harbored a lake to its formation at an even earlier point in Martian history. Fundamentally, researchers are asking the question “What was it like if you were a microbe living on the surface of Mars?” said Briony Horgan, a mission scientist at Purdue University.

Along the way, the rover will stop and do a sample collection if something piques the science team’s interest.

“We are adopting a strategy, in many cases, to fill a tube, and we have the option to not seal it,” Lee said. “Most of our tubes are sealed, but we have the option to not seal it, and that gives us a flexibility downstream to replace the sample if there’s one that we find would make an even stronger representative of the diversity we are discovering.”

An indefinite wait

Planetary scientists have carefully curated the specimens cached by the Perseverance rover. The samples are sorted for their discovery potential, with an emphasis on the search for ancient microbial life. That’s why Perseverance was sent to Jezero in the first place.

China is preparing its own sample-return mission, Tianwen-3, for launch as early as 2028, aiming to deliver Mars rocks back to Earth by 2031. If the Tianwen-3 mission keeps to this scheduleand is successfulChina will almost certainly be first to pull off the achievement. Officials have not announced the landing site for Tianwen-3, so the jury is still out on the scientific value of the rocks China aims to bring back.

NASA’s original costly architecture for Mars Sample Return would have used a lander built by JPL and a small solid-fueled rocket to launch the rock samples back into space after collecting them from the Perseverance rover. The capsule containing the Mars rocks would then transfer them to another spacecraft in orbit around Mars. Once Earth and Mars reached the proper orbital alignment, the return spacecraft would begin the journey home. All told, the sample return campaign would last several years.

NASA asked commercial companies to develop their own ideas for Mars Sample Return in 2024. SpaceX, Blue Origin, Lockheed Martin, and Rocket Lab submitted their lower-cost commercial concepts to NASA, but progress stalled there. NASA’s former administrator, Bill Nelson, punted on a decision on what to do next with Mars Sample Return in the final weeks of the Biden administration.

A few months later, the new Trump administration proposed outright canceling the Mars Sample Return mission. Mars Sample Return, known as MSR, was ranked as the top priority for planetary science in a National Academies decadal survey. Researchers say they could learn much more about Mars and the possibilities of past life there by bringing samples back to Earth for analysis.

Budget writers in the House of Representatives voted to restore funding for Mars Sample Return over the summer, but the Senate didn’t explicitly weigh in on the mission. NASA is now operating under a stopgap budget passed by Congress last month, and MSR remains in limbo.

There are good arguments for going with a commercial sample-return mission, using a similar approach to the one NASA used to buy commercial cargo and crew transportation services for the International Space Station. NASA might also offer prizes or decide to wait for a human expedition to Mars for astronauts to scoop up samples by hand.

Eric Berger, senior space editor at Ars, discussed these options a few months ago. After nearly a year of revolving-door leadership, NASA finally got a Senate-confirmed administrator this week. It will now be up to the new NASA chief, Jared Isaacman, to chart a new course for Mars Sample Return.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NASA will soon find out if the Perseverance rover can really persevere on Mars Read More »

nasa-just-lost-contact-with-a-mars-orbiter,-and-will-soon-lose-another-one

NASA just lost contact with a Mars orbiter, and will soon lose another one

Technicians work on the MAVEN spacecraft at NASA’s Kennedy Space Center in Florida ahead of its launch in 2013. Credit: NASA/Kim Shiflett

But NASA’s two other Mars orbiters have been in space for more than 20 years. The older of the two, named Mars Odyssey, has been at Mars since 2001 and will soon run out of fuel, probably sometime in the next couple of years. NASA’s Mars Reconnaissance Orbiter, which launched in 2005, is healthy for its age, with enough fuel to last into the 2030s. MRO is also important to NASA because it has the best camera at Mars, with the ability to map landing sites for future missions.

Two European spacecraft, Mars Express and the ExoMars Trace Gas Orbiter, have radios to relay data between mission controllers and NASA’s landers on the Martian surface. Mars Express, now 22 years old, suffers from the same aging concerns as Mars Odyssey and MRO. The ExoMars Trace Gas Orbiter is newer, having arrived at Mars in 2016, but is also operating beyond its original lifetime.

China and the United Arab Emirates also have orbiters circling Mars, but neither spacecraft is equipped to serve as a communications relay.

NASA’s Curiosity and Perseverance rovers have the capability for direct-to-Earth communications, but the orbiting relay network can support vastly higher data throughput. Without overhead satellites, much of the science data and many of the spectacular images collected by NASA’s rovers might never make it off the planet.

MAVEN’s unique orbit, stretching as far as 2,800 miles (4,500 kilometers) above Mars, has some advantages for data relay. In that orbit, MAVEN could relay science data from rovers on the surface for up to 30 minutes at a time, longer than the relay periods available through NASA’s lower-altitude orbiters. Because of this, MAVEN could support the largest data volumes of any of the other relay options.

NASA just lost contact with a Mars orbiter, and will soon lose another one Read More »

here’s-how-orbital-dynamics-wizardry-helped-save-nasa’s-next-mars-mission

Here’s how orbital dynamics wizardry helped save NASA’s next Mars mission


Blue Origin is counting down to launch of its second New Glenn rocket Sunday.

The New Glenn rocket rolls to Launch Complex-36 in preparation for liftoff this weekend. Credit: Blue Origin

CAPE CANAVERAL, FloridaThe field of astrodynamics isn’t a magical discipline, but sometimes it seems trajectory analysts can pull a solution out of a hat.

That’s what it took to save NASA’s ESCAPADE mission from a lengthy delay, and possible cancellation, after its rocket wasn’t ready to send it toward Mars during its appointed launch window last year. ESCAPADE, short for Escape and Plasma Acceleration and Dynamics Explorers, consists of two identical spacecraft setting off for the red planet as soon as Sunday with a launch aboard Blue Origin’s massive New Glenn rocket.

“ESCAPADE is pursuing a very unusual trajectory in getting to Mars,” said Rob Lillis, the mission’s principal investigator from the University of California, Berkeley. “We’re launching outside the typical Hohmann transfer windows, which occur every 25 or 26 months. We are using a very flexible mission design approach where we go into a loiter orbit around Earth in order to sort of wait until Earth and Mars are lined up correctly in November of next year to go to Mars.”

This wasn’t the original plan. When it was first designed, ESCAPADE was supposed to take a direct course from Earth to Mars, a transit that typically takes six to nine months. But ESCAPADE will now depart the Earth when Mars is more than 220 million miles away, on the opposite side of the Solar System.

The payload fairing of Blue Origin’s New Glenn rocket, containing NASA’s two Mars-bound science probes. Credit: Blue Origin

The most recent Mars launch window was last year, and the next one doesn’t come until the end of 2026. The planets are not currently in alignment, and the proverbial stars didn’t align to get the ESCAPADE satellites and their New Glenn rocket to the launch pad until this weekend.

This is fine

But there are several reasons this is perfectly OK to NASA. The New Glenn rocket is overkill for this mission. The two-stage launcher could send many tons of cargo to Mars, but NASA is only asking it to dispatch about a ton of payload, comprising a pair of identical science probes designed to study how the planet’s upper atmosphere interacts with the solar wind.

But NASA got a good deal from Blue Origin. The space agency is paying Jeff Bezos’ space company about $20 million for the launch, less than it would for a dedicated launch on any other rocket capable of sending the ESCAPADE mission to Mars. In exchange, NASA is accepting a greater than usual chance of a launch failure. This is, after all, just the second flight of the 321-foot-tall (98-meter) New Glenn rocket, which hasn’t yet been certified by NASA or the US Space Force.

The ESCAPADE mission, itself, was developed with a modest budget, at least by the standards of interplanetary exploration. The mission’s total cost amounts to less than $80 million, an order of magnitude lower than all of NASA’s recent Mars missions. NASA officials would not entrust the second flight of the New Glenn rocket to launch a billion-dollar spacecraft, but the risk calculation changes as costs go down.

NASA knew all of this in 2023 when it signed a launch contract with Blue Origin for the ESCAPADE mission. What officials didn’t know was that the New Glenn rocket wouldn’t be ready to fly when ESCAPADE needed to launch in late 2024. It turned out Blue Origin didn’t launch the first New Glenn test flight until January of this year. It was a success. It took another 10 months for engineers to get the second New Glenn vehicle to the launch pad.

The twin ESCAPADE spacecraft undergoing final preparations for launch. Each spacecraft is about a half-ton fully fueled. Credit: NASA/Kim Shiflett

Aiming high

That’s where the rocket sits this weekend at Cape Canaveral Space Force Station, Florida. If all goes according to plan, New Glenn will take off Sunday afternoon during an 88-minute launch window opening at 2: 45 pm EST (19: 45 UTC). There is a 65 percent chance of favorable weather, according to Blue Origin.

Blue Origin’s launch team, led by launch director Megan Lewis, will oversee the countdown Sunday. The rocket will be filled with super-cold liquid methane and liquid oxygen propellants beginning about four-and-a-half hours prior to liftoff. After some final technical and weather checks, the terminal countdown sequence will commence at T-minus 4 minutes, culminating in ignition of the rocket’s seven BE-4 main engines at T-minus 5.6 seconds.

The rocket’s flight computer will assess the health of each of the powerful engines, combining to generate more than 3.8 million pounds of thrust. If all looks good, hold-down restraints will release to allow the New Glenn rocket to begin its ascent from Florida’s Space Coast.

Heading east, the rocket will surpass the speed of sound in a little over a minute. After soaring through the stratosphere, New Glenn will shut down its seven booster engines and shed its first stage a little more than 3 minutes into the flight. Twin BE-3U engines, burning liquid hydrogen, will ignite to finish the job of sending the ESCAPADE satellites toward deep space. The rocket’s trajectory will send the satellites toward a gravitationally-stable location beyond the Moon, called the L2 Lagrange point, where it will swing into a loosely-bound loiter orbit to wait for the right time to head for Mars.

Meanwhile, the New Glenn booster, itself measuring nearly 20 stories tall, will begin maneuvers to head toward Blue Origin’s recovery ship floating a few hundred miles downrange in the Atlantic Ocean. The final part of the descent will include a landing burn using three of the BE-4 engines, then downshifting to a single engine to control the booster’s touchdown on the landing platform, dubbed “Jacklyn” in honor of Bezos’ late mother.

The launch timeline for New Glenn’s second mission. Credit: Blue Origin

New Glenn’s inaugural launch at the start of this year was a success, but the booster’s descent did not go well. The rocket was unable to restart its engines, and it crashed into the sea.

“We’ve incorporated a number of changes to our propellant management system, some minor hardware changes as well, to increase our likelihood of landing that booster on this mission,” said Laura Maginnis, Blue Origin’s vice president of New Glenn mission management. “That was the primary schedule driver that kind of took us from from January to where we are today.”

Blue Origin officials are hopeful they can land the booster this time. The company’s optimism is enough for officials to have penciled in a reflight of this particular booster on the very next New Glenn launch, slated for the early months of next year. That launch is due to send Blue Origin’s first Blue Moon cargo lander to the Moon.

“Our No. 1 objective is to deliver ESCAPADE safely and successfully on its way to L2, and then eventually on to Mars,” Maginnis said in a press conference Saturday. “We also are planning and wanting to land our booster. If we don’t land the booster, that’s OK. We have several more vehicles in production. We’re excited to see how the mission plays out tomorrow.”

Tracing a kidney bean

ESCAPADE’s path through space, relative to the Earth, has the peculiar shape of a kidney bean. In the world of astrodynamics, this is called a staging or libration orbit. It’s a way to keep the spacecraft on a stable trajectory to wait for the opportunity to go to Mars late next year.

“ESCAPADE has identified that this is the way that we want to fly, so we launch from Earth onto this kidney bean-shaped orbit,” said Jeff Parker, a mission designer from the Colorado-based company Advanced Space. “So, we can launch on virtually any day. What happens is that kidney bean just grows and shrinks based on how much time you need to spend in that orbit. So, we traverse that kidney been and at the very end there’s a final little loop-the-loop that brings us down to Earth.”

That’s when the two ESCAPADE spacecraft, known as Blue and Gold, will pass a few hundred miles above our planet. At the right moment, on November 7 and 9 of next year, the satellites will fire their engines to set off for Mars.

An illustration of ESCAPADE’s trajectory to wait for the opportunity to go to Mars. Credit: UC-Berkeley

There are some tradeoffs with this unique staging orbit. It is riskier than the original plan of sending ESCAPADE straight to Mars. The satellites will be exposed to more radiation, and will consume more of their fuel just to get to the red planet, eating into reserves originally set aside for science observations.

The satellites were built by Rocket Lab, which designed them with extra propulsion capacity in order to accommodate launches on a variety of different rockets. In the end, NASA “judged that the risk for the mission was acceptable, but it certainly is higher risk,” said Richard French, Rocket Lab’s vice president of business development and strategy.

The upside of the tradeoff is it will demonstrate an “exciting and flexible way to get to Mars,” Lillis said. “In the future, if we’d like to send hundreds of spacecraft to Mars at once, it will be difficult to do that from just the launch pads we have on Earth within that month [of the interplanetary launch window]. We could potentially queue up spacecraft using the approach that ESCAPADE is pioneering.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s how orbital dynamics wizardry helped save NASA’s next Mars mission Read More »

one-nasa-science-mission-saved-from-trump’s-cuts,-but-others-still-in-limbo

One NASA science mission saved from Trump’s cuts, but others still in limbo


“Damage is being done already. Even if funding is reinstated, we have already lost people.”

Artist’s illustration of the OSIRIS-APEX spacecraft at asteroid Apophis. Credit: NASA/Goddard Space Flight Center

NASA has thrown a lifeline to scientists working on a mission to visit an asteroid that will make an unusually close flyby of the Earth in 2029, reversing the Trump administration’s previous plan to shut it down.

This mission, named OSIRIS-APEX, was one of 19 operating NASA science missions the White House proposed canceling in a budget blueprint released earlier this year.

“We were called for cancellation as part to the president’s budget request, and we were reinstated and given a plan to move ahead in FY26 (Fiscal Year 2026) just two weeks ago,” said Dani DellaGiustina, principal investigator for OSIRIS-APEX at the University of Arizona. “Our spacecraft appears happy and healthy.”

OSIRIS-APEX repurposes the spacecraft from NASA’s OSIRIS-REx asteroid sample return mission, which deposited its extraterrestrial treasure back on Earth in 2023. The spacecraft was in good shape and still had plenty of fuel, so NASA decided to send it to explore another asteroid, named Apophis, due to pass about 20,000 miles (32,000 kilometers) from the Earth on April 13, 2029.

The flyby of Apophis offers scientists a golden opportunity to see a potential killer asteroid up close. Apophis has a lumpy shape with an average diameter of about 1,100 feet (340 meters), large enough to cause regional devastation if it impacted the Earth. The asteroid has no chance of striking us in 2029 or any other time for the next century, but it routinely crosses the Earth’s path as it circles the Sun, so the long-term risk is non-zero.

It pays to be specific

Everything was going well with OSIRIS-APEX until May, when White House officials signaled their intention to terminate the mission. The Trump administration’s proposed cancellation of 19 of NASA’s operating missions was part of a nearly 50 percent cut to the agency’s science budget in the White House budget request for fiscal year 2026, which began October 1.

Lawmakers in the House and Senate have moved to reject nearly all of the science cuts, with the Senate bill maintaining funding for NASA’s science division at $7.3 billion, the same as fiscal year 2025, while the House bill reduces it to $6 billion, still significantly more than the $3.9 billion for science in the White House budget proposal.

The Planetary Society released this chart showing the 19 operating missions tagged for termination under the White House’s budget proposal.

For a time this summer, Trump’s political appointees at NASA told managers to make plans for the next year assuming Trump’s cuts would be enacted. Finally, last month, those officials relented and instructed agency employees to abide by the House appropriations bill.

The House and Senate still have not agreed on any final budget numbers or sent an appropriations bill to the White House for President Trump’s signature. That’s why the federal government has been partially shut down for the last week. Despite the shutdown, ground teams are still operating NASA’s science missions because suspending them could result in irreparable damage.

Using the House’s proposed budget should salvage much of NASA’s portfolio, but it is still $1.3 billion short of the money the agency’s science program got last year. That means some things will inevitably get cut. Many of the other operating missions the Trump administration tagged for termination remain on the chopping block.

OSIRIS-APEX escaped this fate for a simple reason. Lawmakers earmarked $20 million for the mission in the House budget bill. Most other missions didn’t receive the same special treatment. It seems OSIRIS-APEX had a friend in Congress.

Budget-writers in the House of Representatives specified NASA should commit $20 million for the OSIRIS-APEX mission in fiscal year 2026. Credit: US House of Representatives

The only other operating mission the Trump administration wanted to cancel that got a similar earmark in the House budget bill was the Magnetospheric Multiscale Mission (MMS), a fleet of four probes in space since 2015 studying Earth’s magnetosphere. Lawmakers want to provide $20 million for MMS operations in 2026. Ars was unable to confirm the status of the MMS mission Wednesday.

The other 17 missions set to fall under Trump’s budget ax remain in a state of limbo. There are troubling signs the administration might go ahead and kill the missions. Earlier this year, NASA directed managers from all 19 of the missions at risk of cancellation to develop preliminary plans to wind down their missions.

A scientist on one of the projects told Ars that NASA recently asked for a more detailed “termination plan” to “passivate” their spacecraft by the end of this year. This goes a step beyond the closeout plans NASA requested in the summer. Passivation is a standard last rite for a spacecraft, when engineers command it to vent leftover fuel and drain its batteries, rendering it fully inert. This would make the mission unrecoverable if someone tried to contact it again.

This scientist said none of the missions up for termination will be out of the woods until there’s a budget that restores NASA funding close to last year’s levels and includes language protecting the missions from cancellation.

Damage already done

Although OSIRIS-APEX is again go for Apophis, DellaGiustina said a declining budget has forced some difficult choices. The mission’s science team is “basically on hiatus” until sometime in 2027, meaning they won’t be able to participate in any planning for at least the next year and a half.

This has an outsize effect on younger scientists who were brought on to the mission to train for what the spacecraft will find at Apophis, DellaGiustina said in a meeting Tuesday of the National Academies’ Committee on Astrobiology and Planetary Sciences.

“We are not anticipating we will have to cut any science at Apophis,” she said. But the cuts do affect things like recalibrating the science instruments on the spacecraft, which got dirty and dusty from the mission’s brief landing to capture samples from asteroid Bennu in 2020.

“We are definitely undermining our readiness,” DellaGiustina said. “Nonetheless, we’re happy to be reinstated, so it’s about as good as can be expected, I think, for this particular point in time.”

At its closest approach, asteroid Apophis will be closer to Earth than the ring of geostationary satellites over the equator. Credit: NASA/JPL

The other consequence of the budget reduction has been a drain in expertise with operating the spacecraft. OSIRIS-APEX (formerly OSIRIS-REx) was built by Lockheed Martin, which also commands and receives telemetry from the probe as it flies through the Solar System. The cuts have caused some engineers at Lockheed to move off of planetary science missions to other fields, such as military space programs.

The other active missions waiting for word from NASA include the Chandra X-ray Observatory, the New Horizons probe heading toward interstellar space, the MAVEN spacecraft studying the atmosphere of Mars, and several satellites monitoring Earth’s climate.

The future of those missions remains murky. A senior official on one of the projects said they’ve been given “no direction at all” other than “to continue operating until advised otherwise.”

Another mission the White House wanted to cancel was THEMIS, a pair of spacecraft orbiting the Moon to map the lunar magnetic field. The lead scientist for that mission, Vassilis Angelopoulos from the University of California, Los Angeles, said his team will get “partial funding” for fiscal year 2026.

“This is good, but in the meantime, it means that science personnel is being defunded,” Angelopoulos told Ars. “The effect is the US is not achieving the scientific return it can from its multi-billion dollar investments it has made in technology.”

Artist’s concept of NASA’s MAVEN spacecraft, which has orbited Mars since 2014 studying the planet’s upper atmosphere.

To put a number on it, the missions already in space that the Trump administration wants to cancel represent a cumulative investment of $12 billion to design and build, according to the Planetary Society, a science advocacy group. An assessment by Ars concluded the operating missions slated for cancellation cost taxpayers less than $300 million per year, or between 1 and 2 percent of NASA’s annual budget.

Advocates for NASA’s science program met at the US Capitol this week to highlight the threat. Angelopoulos said the outcry from scientists and the public seems to be working.

“I take the implementation of the House budget as indication that the constituents’ pressure is having an effect,” he said. “Unfortunately, damage is being done already. Even if funding is reinstated, we have already lost people.”

Some scientists worry that the Trump administration may try to withhold funding for certain programs, even if Congress provides a budget for them. That would likely trigger a fight in the courts.

Bruce Jakosky, former principal investigator of the MAVEN Mars mission, raised this concern. He said it’s a “positive step” that NASA is now making plans under the assumption the agency will receive the budget outlined by the House. But there’s a catch.

“Even if the budget that comes out of Congress gets signed into law, the president has shown no reluctance to not spend money that has been legally obligated,” Jakosky wrote in an email to Ars. “That means that having a budget isn’t the end; and having the money get distributed to the MAVEN science and ops team isn’t the end—only when the money is actually spent can we be assured that it won’t be clawed back.

“That means that the uncertainty lives with us throughout the entire fiscal year,” he said. “That uncertainty is sure to drive morale problems.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

One NASA science mission saved from Trump’s cuts, but others still in limbo Read More »

scientists:-it’s-do-or-die-time-for-america’s-primacy-exploring-the-solar-system

Scientists: It’s do or die time for America’s primacy exploring the Solar System


“When you turn off those spacecraft’s radio receivers, there’s no way to turn them back on.”

A life-size replica of the New Horizons spacecraft on display at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center near Washington Dulles International Airport in Northern Virginia. Credit: Johns Hopkins University Applied Physics Laboratory

Federal funding is about to run out for 19 active space missions studying Earth’s climate, exploring the Solar System, and probing mysteries of the Universe.

This year’s budget expires at the end of this month, and Congress must act before October 1 to avert a government shutdown. If Congress passes a budget before then, it will most likely be in the form of a continuing resolution, an extension of this year’s funding levels into the first few weeks or months of fiscal year 2026.

The White House’s budget request for fiscal year 2026 calls for a 25 percent cut to NASA’s overall budget, and a nearly 50 percent reduction in funding for the agency’s Science Mission Directorate. These cuts would cut off money for at least 41 missions, including 19 already in space and many more far along in development.

Normally, a president’s budget request isn’t the final say on matters. Lawmakers in the House and Senate have written their own budget bills in the last several months. There are differences between each appropriations bill, but they broadly reject most of the Trump administration’s proposed cuts.

Still, this hasn’t quelled the anxieties of anyone with a professional or layman’s interest in space science. The 19 active robotic missions chosen for cancellation are operating beyond their original design lifetime. However, in many cases, they are in pursuit of scientific data that no other mission has a chance of collecting for decades or longer.

A “tragic capitulation”

Some of the mission names are recognizable to anyone with a passing interest in NASA’s work. They include the agency’s two Orbiting Carbon Observatory missions monitoring data signatures related to climate change, the Chandra X-ray Observatory, which survived a budget scare last year, and two of NASA’s three active satellites orbiting Mars.

And there’s New Horizons, a spacecraft that made front-page headlines in 2015 when it beamed home the first up-close pictures of Pluto. Another mission on the chopping block is Juno, the world’s only spacecraft currently at Jupiter.

Both spacecraft have more to offer, according to the scientists leading the missions.

“New Horizons is perfectly healthy,” said Alan Stern, the mission’s principal investigator at Southwest Research Institute (SWRI). “Everything on the spacecraft is working. All the spacecraft subsystems are performing perfectly, as close to perfectly as one could ever hope. And all the instruments are, too. The spacecraft has the fuel and power to run into the late 2040s or maybe 2050.”

New Horizons is a decade and more than 2.5 billion miles (4.1 billion kilometers) beyond Pluto. The probe flew by a frozen object named Arrokoth on New Year’s Day 2019, returning images of the most distant world ever explored by a spacecraft. Since then, the mission has continued its speedy departure from the Solar System and could become the third spacecraft to return data from interstellar space.

Alan Stern, leader of NASA’s New Horizons mission, speaks during the Tencent WE Summit at Beijing Exhibition Theater on November 6, 2016, in China. Credit: Visual China Group via Getty Images

New Horizons cost taxpayers $780 million from the start of development through the end of its primary mission after exploring Pluto. The project received $9.7 million from NASA to cover operations costs in 2024, the most recent year with full budget data.

It’s unlikely New Horizons will be able to make another close flyby of an object like it did with Pluto and Arrokoth. But the science results keep rolling in. Just last year, scientists announced the news that New Horizons found the Kuiper Belt—a vast outer zone of hundreds of thousands of small, icy worlds beyond the orbit of Neptune—might extend much farther out than previously thought.

“We’re waiting for government, in the form of Congress, the administration, to come up with a funding bill for FY26, which will tell us if our mission is on the chopping block or not,” Stern said. “The administration’s proposal is to cancel essentially every extended mission … So, we’re not being singled out, but we would get caught in that.”

Stern, who served as head of NASA’s science division in 2007 and 2008, said the surest way to prevent the White House’s cuts is for Congress to pass a budget with specific instructions for the Trump administration.

“The administration ultimately will make some decision based on what Congress does,” Stern said. “If Congress passes a continuing resolution, then that opens a whole lot of other possibilities where the administration could do something without express direction from Congress. We’re just going to have to see where we end up at the end of September and then in the fall.”

Stern said shutting down so many of NASA’s science missions would be a “tragic capitulation of US leadership” and “fiscally irresponsible.”

“We’re pretty undeniably the frontrunner, and have been for decades, in space sciences,” Stern said. “There’s much more money in overruns than there is in what it costs to run these missions—I mean, dramatically. And yet, by cutting overruns, you don’t affect our leadership position. Turning off spacecraft would put us in third or fourth place, depending on who you talk to, behind the Chinese and the Europeans at least, and maybe behind others.”

Stern resigned his job as NASA’s science chief in 2008 after taking a similar stance arguing against cuts to healthy projects and research grants to cover overruns in other programs, according to a report in Science Magazine.

An unforeseen contribution from Juno

Juno, meanwhile, has been orbiting Jupiter since 2016, collecting information on the giant planet’s internal structure, magnetic field, and atmosphere.

“Everything is functional,” said Scott Bolton, the lead scientist on Juno, also from SWRI. “There’s been some degradation, things that we saw many years ago, but those haven’t changed. Actually, some of them improved, to be honest.”

The only caveat with Juno is some radiation damage to its camera, called JunoCam. Juno orbits Jupiter once every 33 days, and the trajectory brings the spacecraft through intense radiation belts trapped by the planet’s powerful magnetic field. Juno’s primary mission ended in 2021, and it’s now operating in an extended mission approved through the end of this month. The additional time exposed to harsh radiation is, not surprisingly, corrupting JunoCam’s images.

NASA’s Juno mission observed the glow from a bolt of lightning in this view from December 30, 2020, of a vortex near Jupiter’s north pole. Citizen scientist Kevin M. Gill processed the image from raw data from the JunoCam instrument aboard the spacecraft. Credit: NASA/JPL-Caltech/SwRI/MSSS Image processing by Kevin M. Gill © CC BY

In an interview with Ars, Bolton suggested the radiation issue creates another opportunity for NASA to learn from the Juno mission. Ground teams are attempting to repair the JunoCam imager through annealing, a self-healing process that involves heating the instrument’s electronics and then allowing them to cool. Engineers sparingly tried annealing hardware space, so Juno’s experience could be instructive for future missions.

“Even satellites at Earth experience this [radiation damage], but there’s very little done or known about it,” Bolton said. “In fact, what we’re learning with Juno has benefits for Earth satellites, both commercial and national security.”

Juno’s passages through Jupiter’s harsh radiation belts provide a real-world laboratory to experiment with annealing in space. “We can’t really produce the natural radiation environment at Earth or Jupiter in a lab,” Bolton said.

Lessons learned from Juno could soon be applied to NASA’s next probe traveling to Jupiter. Europa Clipper launched last year and is on course to enter orbit around Jupiter in 2030, when it will begin regular low-altitude flybys of the planet’s icy moon Europa. Before Clipper’s launch, engineers discovered a flaw that could make the spacecraft’s transistors more susceptible to radiation damage. NASA managers decided to proceed with the mission because they determined the damage could be repaired at Jupiter with annealing.

“So, we have rationale to hopefully continue Juno because of science, national security, and it sort of fits in the goals of exploration as well, because you have high radiation even in these translunar orbits [heading to the Moon],” Bolton said. “Learning about how to deal with that and how to build spacecraft better to survive that, and how to repair them, is really an interesting twist that we came by on accident, but nevertheless, turns out to be really important.”

It cost $28.4 million to operate Juno in 2024, compared to NASA’s $1.13 billion investment to build, launch, and fly the spacecraft to Jupiter.

On May 19, 2010, technicians oversee the installation of the large radiation vault onto NASA’s Juno spacecraft propulsion module. This protects the spacecraft’s vital flight and science computers from the harsh radiation at Jupiter. Credit: Lockheed Martin

“We’re hoping everything’s going to keep going,” Bolton said. “We put in a proposal for three years. The science is potentially very good. … But it’s sort of unknown. We just are waiting to hear and waiting for direction from NASA, and we’re watching all of the budget scenarios, just like everybody else, in the news.”

NASA headquarters earlier this year asked Stern and Bolton, along with teams leading other science missions coming under the ax, for an outline of what it would take and what it would cost to “close out” their projects. “We sent something that was that was a sketch of what it might look like,” Bolton said.

A “closeout” would be irreversible for at least some of the 19 missions at risk of termination.

“Termination doesn’t just mean shutting down the contract and sending everybody away, but it’s also turning the spacecraft off,” Stern said. “And when you turn off those spacecraft’s radio receivers, there’s no way to turn them back on because they’re off. They can never get a command in.

“So, if we change our mind, we’ve had another election, or had some congressional action, anything like that, it’s really terminating the spacecraft, and there’s no going back.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Scientists: It’s do or die time for America’s primacy exploring the Solar System Read More »

congress-moves-to-reject-bulk-of-white-house’s-proposed-nasa-cuts

Congress moves to reject bulk of White House’s proposed NASA cuts

Fewer robots, more humans

The House version of NASA’s fiscal year 2026 budget includes $9.7 billion for exploration programs, a roughly 25 percent boost over NASA’s exploration budget for 2025, and 17 percent more than the Trump administration’s request in May. The text of the House bill released publicly doesn’t include any language explicitly rejecting the White House’s plan to terminate the SLS and Orion programs after two more missions.

Instead, it directs NASA to submit a five-year budget profile for SLS, Orion, and associated ground systems to “ensure a crewed launch as early as possible.” A five-year planning budget seems to imply that the House committee wants SLS and Orion to stick around. The White House budget forecast zeros out funding for both programs after 2028.

The House also seeks to provide more than $4.1 billion for NASA’s space operations account, a slight cut from 2025 but well above the White House’s number. Space operations covers programs like the International Space Station, NASA’s Commercial Crew Program, and funding for new privately owned space stations to replace the ISS.

Many of NASA’s space technology programs would also be salvaged in the House budget, which allocates $913 million for tech development, a reduction from the 2025 budget but still an increase over the Trump administration’s request.

The House bill’s cuts to science and space technology, though more modest than those proposed by the White House, would still likely result in cancellations and delays for some of NASA’s robotic space missions.

Rep. Grace Meng (D-NY), the senior Democrat on the House subcommittee responsible for writing NASA’s budget, called out the bill’s cut to the agency’s science portfolio.

“As other countries are racing forward in space exploration and climate science, this bill would cause the US to fall behind by cutting NASA’s account by over $1.3 billion,” she said Tuesday.

Lawmakers reported the Senate spending bill to the full Senate Appropriations Committee last week by voice vote. Members of the House subcommittee advanced their bill to the full committee Tuesday afternoon by a vote of 9-6.

The budget bills will next be sent to the full appropriations committees of each chamber for a vote and an opportunity for amendments, before moving on to the floor for a vote by all members.

It’s still early in the annual appropriations process, and a final budget bill is likely months away from passing both houses of Congress and heading to President Donald Trump’s desk for signature. There’s no guarantee Trump will sign any congressional budget bill, or that Congress will finish the appropriations process before this year’s budget runs out on September 30.

Congress moves to reject bulk of White House’s proposed NASA cuts Read More »

we-saw-the-heart-of-pluto-10-years-ago—it’ll-be-a-long-wait-to-see-the-rest

We saw the heart of Pluto 10 years ago—it’ll be a long wait to see the rest


A 50-year wait for a second mission wouldn’t be surprising. Just ask Uranus and Neptune.

Four images from New Horizons’ Long Range Reconnaissance Imager (LORRI) were combined with color data from the spacecraft’s Ralph instrument to create this enhanced color global view of Pluto. Credit: NASA/Johns Hopkins University/SWRI

NASA’s New Horizons spacecraft got a fleeting glimpse of Pluto 10 years ago, revealing a distant world with a picturesque landscape that, paradoxically, appears to be refreshing itself in the cold depths of our Solar System.

The mission answered numerous questions about Pluto that have lingered since its discovery by astronomer Clyde Tombaugh in 1930. As is often the case with planetary exploration, the results from New Horizons’ flyby of Pluto on July 14, 2015, posed countless more questions. First and foremost, how did such a dynamic world come to be so far from the Sun?

For at least the next few decades, the only resources available for scientists to try to answer these questions will be either the New Horizons mission’s archive of more than 50 gigabits of data recorded during the flyby, or observations from billions of miles away with powerful telescopes on the ground or space-based observatories like Hubble and James Webb.

That fact is becoming abundantly clear. Ten years after the New Horizons encounter, there are no missions on the books to go back to Pluto and no real prospects for one.

A mission spanning generations

In normal times, with a stable NASA budget, scientists might get a chance to start developing another Pluto mission in perhaps 10 or 20 years, after higher-priority missions like Mars Sample Return, a spacecraft to orbit Uranus, and a probe to orbit and land on Saturn’s icy moon Enceladus. In that scenario, perhaps a new mission could reach Pluto and enter orbit before the end of the 2050s.

But these aren’t normal times. The Trump administration has proposed cutting NASA’s science budget in half, jeopardizing not only future missions to explore the Solar System but also threatening to shut down numerous operating spacecraft, including New Horizons itself as it speeds through an uncharted section of the Kuiper Belt toward interstellar space.

The proposed cuts are sapping morale within NASA and the broader space science community. If implemented, the budget reductions would affect more than NASA’s actual missions. They would also slash NASA’s funding available for research, eliminating grants that could pay for scientists to analyze existing data stored in the New Horizons archive or telescopic observations to peer at Pluto from afar.

The White House maintains funding for newly launched missions like Europa Clipper and an exciting mission called Dragonfly to soar through the skies of Saturn’s moon Titan. Instead, the Trump administration’s proposed budget, which still must be approved by Congress, suggests a reluctance to fund new missions exploring anything beyond the Moon or Mars, where NASA would focus efforts on human exploration and bankroll an assortment of commercial projects.

NASA’s New Horizons spacecraft undergoing launch preparations at Kennedy Space Center, Florida, in September 2005. Credit: NASA

In this environment, it’s difficult to imagine the development of a new Pluto mission to begin any time in the next 20 years. Even if Congress or a future presidential administration restores NASA’s planetary science budget, a Pluto mission wouldn’t be near the top of the agency’s to-do list.

The National Academies’ most recent decadal survey prioritized Mars Sample Return, a Uranus orbiter, and an Enceladus “Orbilander” mission in their recommendations to NASA’s planetary science program through 2032. None of these missions has a realistic chance to launch by 2032, and it seems more likely than not that none of them will be in any kind of advanced stage of development by then.

The panel of scientists participating in the latest decadal survey—released in 2022—determined that a second mission to Pluto did not merit a technical risk and cost evaluation report, meaning it wasn’t even shortlisted for consideration as a science priority for NASA.

There’s a broad consensus in the scientific community that a follow-up mission to Pluto should be an orbiter, and not a second flyby. New Horizons zipped by Pluto at a relative velocity of nearly 31,000 mph (14 kilometers per second), flying as close as 7,750 miles (12,500 kilometers).

At that range and velocity, the spacecraft’s best camera was close enough to resolve something the size of a football field for less than an hour. Pluto was there, then it was gone. New Horizons only glimpsed half of Pluto at decent resolution, but what it saw revealed a heart-shaped sheet of frozen nitrogen and methane with scattered mountains of water ice, all floating on what scientists believe is likely a buried ocean of liquid water.

Pluto must harbor a wellspring of internal heat to keep from freezing solid, something researchers didn’t anticipate before the arrival of New Horizons.

New Horizons revealed Pluto as a mysterious world with icy mountains and very smooth plains. Credit: NASA

So, what is Pluto’s ocean like? How thick are Pluto’s ice sheets? Are any of Pluto’s suspected cryovolcanoes still active today? And, what secrets are hidden on the other half of Pluto?

These questions, and more, could be answered by an orbiter. Some of the scientists who worked on New Horizons have developed an outline for a conceptual mission to orbit Pluto. This mission, named Persephone for the wife of Pluto in classical mythology, hasn’t been submitted to NASA as a real proposal, but it’s worth illustrating the difficulties in not just reaching Pluto, but maneuvering into orbit around a dwarf planet so far from the Earth.

Nuclear is the answer

The initial outline for Persephone released in 2020 called for a launch in 2031 on NASA’s Space Launch System Block 2 rocket with an added Centaur kick stage. Again, this isn’t a realistic timeline for such an ambitious mission, and the rocket selected for this concept doesn’t exist. But if you assume Persephone could launch on a souped-up super heavy-lift SLS rocket in 2031, it would take more than 27 years for the spacecraft to reach Pluto before sliding into orbit in 2058.

Another concept study led by Alan Stern, also the principal investigator on the New Horizons mission, shows how a future Pluto orbiter could reach its destination by the late 2050s, assuming a launch on an SLS rocket around 2030. Stern’s concept, called the Gold Standard, would reserve enough propellant to leave Pluto and go on to fly by another more distant object.

Persephone and Gold Standard both assume a Pluto-bound spacecraft can get a gravitational boost from Jupiter. But Jupiter moves out of alignment from 2032 until the early 2040s, adding a decade or more to the travel time for any mission leaving Earth in those years.

It took nine years for New Horizons to make the trip from Earth to Pluto, but the spacecraft was significantly smaller than an orbiter would need to be. That’s because an orbiter has to carry enough power and fuel to slow down on approach to Pluto, allowing the dwarf planet’s weak gravity to capture it into orbit. A spacecraft traveling too fast, without enough fuel, would zoom past Pluto just like New Horizons.

The Persephone concept would use five nuclear radioisotope power generators and conventional electric thrusters, putting it within reach of existing technology. A 2020 white paper authored by John Casani, a longtime project manager at the Jet Propulsion Laboratory who died last month, showed the long-term promise of next-generation nuclear electric propulsion.

A relatively modest 10-kilowatt nuclear reactor to power electric thrusters would reduce the flight time to Pluto by 25 to 30 percent, while also providing enough electricity to power a radio transmitter to send science data back to Earth at a rate four times faster, according to the mission study report on the Persephone concept.

However, nuclear electric propulsion technologies are still early in the development phase, and Trump’s budget proposal also eliminates any funding for nuclear rocket research.

A concept for a nuclear electric propulsion system to power a spacecraft toward the outer Solar System. Credit: NASA/JPL-Caltech

A rocket like SpaceX’s Starship might eventually be capable of accelerating a probe into the outer Solar System, but detailed studies of Starship’s potential for a Pluto mission haven’t been published yet. A Starship-launched Pluto probe would have its own unique challenges, and it’s unclear whether it would have any advantages over nuclear electric propulsion.

How much would all of this cost? It’s anyone’s guess at this point. Scientists estimated the Persephone concept would cost $3 billion, excluding launch costs, which might cost $1 billion or more if a Pluto mission requires a bespoke launch solution. Development of a nuclear electric propulsion system would almost certainly cost billions of dollars, too.

All of this suggests 50 years or more might elapse between the first and second explorations of Pluto. That is in line with the span of time between the first flybys of Uranus and Neptune by NASA’s Voyager spacecraft in 1986 and 1989, and the earliest possible timeline for a mission to revisit those two ice giants.

So, it’s no surprise scientists are girding for a long wait—and perhaps taking a renewed interest in their own life expectancies—until they get a second look at one of the most seductive worlds in our Solar System.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

We saw the heart of Pluto 10 years ago—it’ll be a long wait to see the rest Read More »

psyche-keeps-its-date-with-an-asteroid,-but-now-it’s-running-in-backup-mode

Psyche keeps its date with an asteroid, but now it’s running in backup mode

The spacecraft, built by Maxar Space Systems, will operate its electric thrusters for the equivalent of three months between now and November to keep the mission on track for arrival at asteroid Psyche in 2029.

“Through comprehensive testing and analysis, the team narrowed down the potential causes to a valve that may have malfunctioned in the primary line,” NASA said in a statement Friday. “The switch to the identical backup propellant line in late May restored full functionality to the propulsion system.”

The next waypoint on Psyche’s voyage will be a flyby of Mars in May 2026. Officials expect Psyche to keep that date, which is critical for using Mars’ gravity to slingshot the spacecraft deeper into the Solar System, eventually reaching the asteroid belt about four years from now.

NASA’s Psyche spacecraft takes a spiral path to the asteroid Psyche, as depicted in this graphic that shows the path from above the plane of the planets, labeled with key milestones of the prime mission. Credit: NASA/JPL-Caltech

At Psyche, the spacecraft will enter orbit and progressively move closer to the asteroid, using a suite of sensors to map its surface, measure its shape, mass, and gravity field, and determine its elemental composition. Observations through telescopes suggest Psyche is roughly 140 miles (226 kilometers) in diameter, or about the width of Massachusetts. But it’s likely not spherical in shape. Scientists describe its shape as more akin to a potato.

Potatoes come in lots of shapes, and researchers won’t know exactly what Psyche looks like until NASA’s asteroid explorer arrives in 2029. Psyche will be the first metallic, or M-type, asteroid visited by any spacecraft, and scientists are eager to study an object that’s largely made of metals—probably iron, nickel, and perhaps some rarer elements instead of rocky minerals.

With the Psyche spacecraft’s plasma thrusters back in action, these goals of NASA’s billion-dollar science mission remain achievable.

“The mission team’s dedication and systematic approach to this investigation exemplifies the best of NASA engineering,” said Bob Mase, Psyche project manager at  JPL, in a statement. “Their thorough diagnosis and recovery, using the backup system, demonstrates the value of robust spacecraft design and exceptional teamwork.”

But there’s still a lingering concern whatever problem caused the valve to malfunction in the primary fuel line might also eventually affect the same kind of valve in the backup line.

“We are doing a lot of good proactive work around that possible issue,” wrote Lindy Elkins-Tanton, Psyche’s principal investigator at Arizona State University, in a post on X.

Psyche keeps its date with an asteroid, but now it’s running in backup mode Read More »

5-things-in-trump’s-budget-that-won’t-make-nasa-great-again

5 things in Trump’s budget that won’t make NASA great again

If signed into law as written, the White House’s proposal to slash nearly 25 percent from NASA’s budget would have some dire consequences.

It would cut the agency’s budget from $24.8 billion to $18.8 billion. Adjusted for inflation, this would be the smallest NASA budget since 1961, when the first American launched into space.

The proposed funding plan would halve NASA’s funding for robotic science missions and technology development next year, scale back research on the International Space Station, turn off spacecraft already exploring the Solar System, and cancel NASA’s Space Launch System rocket and Orion spacecraft after two more missions in favor of procuring lower-cost commercial transportation to the Moon and Mars.

The SLS rocket and Orion spacecraft have been targets for proponents of commercial spaceflight for several years. They are single-use, and their costs are exorbitant, with Moon missions on SLS and Orion projected to cost more than $4 billion per flight. That price raises questions about whether these vehicles will ever be able to support a lunar space station or Moon base where astronauts can routinely rotate in and out on long-term expeditions, like researchers do in Antarctica today.

Reusable rockets and spaceships offer a better long-term solution, but they won’t be ready to ferry people to the Moon for a while longer. The Trump administration proposes flying SLS and Orion two more times on NASA’s Artemis II and Artemis III missions, then retiring the vehicles. Artemis II’s rocket is currently being assembled at Kennedy Space Center in Florida for liftoff next year, carrying a crew of four around the far side of the Moon. Artemis III would follow with the first attempt to land humans on the Moon since 1972.

The cuts are far from law

Every part of Trump’s budget proposal for fiscal year 2026 remains tentative. Lawmakers in each house of Congress will write their own budget bills, which must go to the White House for Trump’s signature. A Senate bill released last week includes language that would claw back funding for SLS and Orion to support the Artemis IV and Artemis V missions.

5 things in Trump’s budget that won’t make NASA great again Read More »

china-extends-its-reach-into-the-solar-system-with-launch-of-asteroid-mission

China extends its reach into the Solar System with launch of asteroid mission

Comet 311P/PanSTARRS was observed by the Hubble Space Telescope in 2013 with a set of six comet-like tails radiating from its main body. This object, also called P/2013 P5, is known as an active asteroid. Credit: NASA, ESA, and D. Jewitt (UCLA)

Tianwen-2’s mothership, with 11 scientific instruments, will commence the second phase of its mission after dropping off the asteroid specimens at Earth. The probe’s next journey will bring it near an enigma in the asteroid belt, named 311P/PanSTARRS, in the mid-2030s. This object is one in a rare class of objects known as active asteroids or main-belt comets, small worlds that have tails and comas like comets but loiter in orbits most commonly associated with asteroids. Tianwen-2 will be the first mission to see such an object up close.

Stepping into the Solar System

Until the last few years, China’s space program has primarily centered on the Moon as a destination for scientific exploration. The Moon remains the main target for China’s ambitions in space, with the goal of accomplishing a human lunar landing by 2030. But the country is looking farther afield, too.

With the Tianwen-1 mission in 2021, China became the second country to achieve a soft landing on Mars. After Tianwen-2, China will again go to Mars with the Tianwen-3 sample return mission, slated for launch in 2028.

Tianwen, which means “questions to heaven,” is the name given to China’s program of robotic Solar System exploration. Tianwen-3 has a chance to become the first mission to return pristine samples from Mars to Earth. At the same time, NASA’s plans for a Mars Sample Return mission are faltering.

China is looking at launching Tianwen-4 around 2029 to travel to Jupiter and enter orbit around Callisto, one of its four largest moons. In the 2030s, China’s roadmap includes a mission to return atmospheric samples from Venus to Earth, a Mars research station, and a probe to Neptune.

Meanwhile, NASA has sent spacecraft to study every planet in the Solar System and currently has spacecraft at or on the way to the Moon, Mars, Jupiter, a metal asteroid, and to interstellar space. Another US science mission, Dragonfly, is scheduled for launch in 2028 on a daring expedition to Saturn’s moon Titan.

But NASA’s science division is bracing for severe budget cuts proposed by President Donald Trump. In planetary science, the White House’s budget blueprint calls for canceling a joint US-European Mars Sample Return mission and several other projects, including the DAVINCI mission to Venus.

China extends its reach into the Solar System with launch of asteroid mission Read More »

nasa’s-psyche-spacecraft-hits-a-speed-bump-on-the-way-to-a-metal-asteroid

NASA’s Psyche spacecraft hits a speed bump on the way to a metal asteroid

An illustration depicts a NASA spacecraft approaching the metal-rich asteroid Psyche. Though there are no plans to mine Psyche, such asteroids are being eyed for their valuable resources. Credit: NASA/JPL-Caltech/ASU

Each electric thruster on Psyche generates just 250 milli-newtons of thrust, roughly equivalent to the weight of three quarters. But they can operate for months at a time, and over the course of a multi-year cruise, these thrusters provide a more efficient means of propulsion than conventional rockets.

The plasma thrusters are reshaping the Psyche spacecraft’s path toward its destination, a metal-rich asteroid also named Psyche. The spacecraft’s four electric engines, known as Hall effect thrusters, were supplied by a Russian company named Fakel. Most of the other components in Psyche’s propulsion system—controllers, xenon fuel tanks, propellant lines, and valves—come from other companies or the spacecraft’s primary manufacturer, Maxar Space Systems, in California.

The Psyche mission is heading first for Mars, where the spacecraft will use the planet’s gravity next year to slingshot itself into the asteroid belt, setting up for arrival and orbit insertion around the asteroid Psyche in August 2029.

Psyche launched in October 2023 aboard a SpaceX Falcon Heavy rocket on the opening leg of a six-year sojourn through the Solar System. The mission’s total cost adds up to more than $1.4 billion, including development of the spacecraft and its instruments, the launch, operations, and an experimental laser communications package hitching a ride to deep space with Psyche.

Psyche, the asteroid, is the size of Massachusetts and circles the Sun in between the orbits of Mars and Jupiter. No spacecraft has visited Psyche before. Of the approximately 1 million asteroids discovered so far, scientists say only nine have a metal-rich signature like Psyche. The team of scientists who put together the Psyche mission have little idea of what to expect when the spacecraft gets there in 2029.

Metallic asteroids like Psyche are a mystery. Most of Psyche’s properties are unknown other than estimates of its density and composition. Predictions about the look of Psyche’s craters, cliffs, and color have inspired artists to create a cacophony of illustrations, often showing sharp spikes and grooves alien to rocky worlds.

In a little more than five years, assuming NASA gets past Psyche’s propulsion problem, scientists will supplant speculation with solid data.

NASA’s Psyche spacecraft hits a speed bump on the way to a metal asteroid Read More »

don’t-panic,-but-an-asteroid-has-a-1.9%-chance-of-hitting-earth-in-2032

Don’t panic, but an asteroid has a 1.9% chance of hitting Earth in 2032


More data will likely reduce the chance of an impact to zero. If not, we have options.

Discovery images of asteroid 2024 YR4. Credit: ATLAS

Something in the sky captured the attention of astronomers in the final days of 2024. A telescope in Chile scanning the night sky detected a faint point of light, and it didn’t correspond to any of the thousands of known stars, comets, and asteroids in astronomers’ all-sky catalog.

The detection on December 27 came from one of a network of telescopes managed by the Asteroid Terrestrial-impact Last Alert System (ATLAS), a NASA-funded project to provide warning of asteroids on a collision course with Earth.

Within a few days, scientists gathered enough information on the asteroid—officially designated 2024 YR4—to determine that its orbit will bring it quite close to Earth in 2028, and then again in 2032. Astronomers ruled out any chance of an impact with Earth in 2028, but there’s a small chance the asteroid might hit our planet on December 22, 2032.

How small? The probability has fluctuated in recent days, but as of Thursday, NASA’s Center for Near Earth Object Studies estimated a 1.9 percent chance of an impact with Earth in 2032. The European Space Agency (ESA) put the probability at 1.8 percent. So as of now, NASA believes there’s a 1-in-53 chance of 2024 YR4 striking Earth. That’s about twice as likely as the lifetime risk of dying in a motor vehicle crash, according to the National Safety Council.

These numbers are slightly higher than the probabilities published last month, when ESA estimated a 1.2 percent chance of an impact. In a matter of weeks or months, the number will likely drop to zero.

No surprise here, according to ESA.

“It is important to remember that an asteroid’s impact probability often rises at first before quickly dropping to zero after additional observations,” ESA said in a press release. The agency released a short explainer video, embedded below, showing how an asteroid’s cone of uncertainty shrinks as scientists get a better idea of its trajectory.

Refining the risk

Scientists estimate that 2024 YR4 is between 130 to 300 feet (40 and 90 meters) wide, large enough to cause localized devastation near the impact site. The asteroid responsible for the Tunguska event of 1908, which leveled some 500 square miles (1,287 square kilometers) of forest in remote Siberia, was probably about the same size. The meteor that broke apart in the sky over Chelyabinsk, Russia, in 2013 was about 20 meters wide.

Astronomers use the Torino scale for measuring the risk of potential asteroid impacts. Asteroid 2024 YR4 is now rated at Level 3 on this scale, meaning it merits close attention from astronomers, the public, and government officials. This is the second time an asteroid has reached this level since the scale’s adoption in 1999. The other case happened in 2004, when asteroid Apophis briefly reached a Level 4 rating until further observations of the asteroid eliminated any chance of an impact with the Earth in 2029.

In the unlikely event that it impacts the Earth, an asteroid the size of 2024 YR4 could cause blast damage as far as 30 miles (50 kilometers) from the location of the impact or airburst if the object breaks apart in the atmosphere, according to the International Asteroid Warning Network (IAWN), established in the aftermath of the Chelyabinsk event.

The asteroid warning network is affiliated with the United Nations. Officials activate the IAWN when an asteroid bigger than 10 meters has a greater than 1 percent chance of striking Earth within the next 20 years. The risk of 2024 YR4 meets this threshold.

The red points on this image show the possible locations of asteroid 2024 YR4 on December 22, 2032, as projected by a Monte Carlo simulation. As this image shows, most of the simulations project the asteroid missing the Earth. Credit: ESA/Planetary Defense Office

Determining the asteroid’s exact size will be difficult. Scientists would need deep space radar observations, thermal infrared observations, or imagery from a spacecraft that could closely approach the asteroid, according to the IAWN. The asteroid won’t come close enough to Earth for deep space radar observations until shortly before its closest approach in 2032.

Astronomers need numerous observations to precisely plot an asteroid’s motion through the Solar System. Over time, these observations will reduce uncertainty and narrow the corridor the asteroid will follow as it comes near Earth.

Scientists already know a little about asteroid 2024 YR4’s orbit, which follows an elliptical path around the Sun. The orbit brings the asteroid inside of Earth’s orbit at its closest point to the Sun and then into the outer part of the asteroid belt when it is farthest from the Sun.

But there’s a complication in astronomers’ attempts to nail down the asteroid’s path. The object is currently moving away from Earth in almost a straight line. This makes it difficult to accurately determine its orbit by studying how its trajectory curves over time, according to ESA.

It also means observers will need to use larger telescopes to see the asteroid before it becomes too distant to see it from Earth in April. By the end of this year’s observing window, the asteroid warning network says the impact probability could increase to a couple tens of percent, or it could more likely drop back below the notification threshold (1 percent impact probability).

“It is possible that asteroid 2024 YR4 will fade from view before we are able to entirely rule out any chance of impact in 2032,” ESA said. “In this case, the asteroid will likely remain on ESA’s risk list until it becomes observable again in 2028.”

Planetary defenders

This means that public officials might need to start planning what to do later this year.

For the first time, an international board called the Space Mission Planning Advisory Group met this week to discuss what we can do to respond to the risk of an asteroid impact. This group, known as SMPAG, coordinates planning among representatives from the world’s space agencies, including NASA, ESA, China, and Russia.

The group decided on Monday to give astronomers a few more months to refine their estimates of the asteroid’s orbit before taking action. They will meet again in late April or early May or earlier if the impact risk increases significantly. If there’s still a greater than 1 percent probability of 2024 YR4 hitting the Earth, the group will issue a recommendation for further action to the United Nations Office for Outer Space Affairs.

So what are the options? If the data in a few months still shows that the asteroid poses a hazard to Earth, it will be time for the world’s space agencies to consider a deflection mission. NASA demonstrated its ability to alter the orbit of an asteroid in 2022 with a first-of-its-kind experiment in space. The mission, called DART, put a small spacecraft on a collision course with an asteroid two to four times larger than 2024 YR4.

The kinetic energy from the spacecraft’s death dive into the asteroid was enough to slightly nudge the object off its natural orbit around a nearby larger asteroid. This proved that an asteroid deflection mission could work if scientists have enough time to design and build it, an undertaking that took about five years for DART.

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA

A deflection mission is most effective well ahead of an asteroid’s potential encounter with the Earth, so it’s important not to wait until the last minute.

Fans of Hollywood movies know there’s a nuclear option for dealing with an asteroid coming toward us. The drawback of using a nuclear warhead is that it could shatter one large asteroid into many smaller objects, although recent research suggests a more distant nuclear explosion could produce enough X-ray radiation to push an asteroid off a collision course.

Waiting for additional observations in 2028 would leave little time to develop a deflection mission. Therefore, in the unlikely event that the risk of an impact rises over the next few months, it will be time for officials to start seriously considering the possibility of an intervention.

Even without a deflection, there’s plenty of time for government officials to do something here on Earth. It should be possible for authorities to evacuate any populations that might be affected by the asteroid.

The asteroid could devastate an area the size of a large city, but any impact is most likely to happen in a remote region or in the ocean. The risk corridor for 2024 YR4 extends from the eastern Pacific Ocean to northern South America, the Atlantic Ocean, Africa, the Arabian Sea, and South Asia.

There’s an old joke that dinosaurs went extinct because they didn’t have a space program. Whatever happens in 2032, we’re not at risk of extinction. However, occasions like this are exactly why most Americans think we should have a space program. A 2019 poll showed that 68 percent of Americans considered it very or extremely important for the space program to monitor asteroids, comets, or other objects from space that could strike the planet.

In contrast, about a quarter of those polled placed such importance on returning astronauts to the Moon or sending people to Mars. The cost of monitoring and deflecting asteroids is modest compared to the expensive undertakings of human missions to the Moon and Mars.

From taxpayers’ point of view, it seems this part of NASA offers the greatest bang for their buck.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Don’t panic, but an asteroid has a 1.9% chance of hitting Earth in 2032 Read More »