Space

rocket-report:-stoke-is-stoked;-sovereignty-is-the-buzzword-in-europe

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe


“The idea that we will be able to do it through America… I think is very, very doubtful.”

Stoke Space’s Andromeda upper stage engine is hot-fired on a test stand. Credit: Stoke Space

Welcome to Edition 7.37 of the Rocket Report! It’s been interesting to watch how quickly European officials have embraced ensuring they have a space launch capability independent of other countries. A few years ago, European government satellites regularly launched on Russian Soyuz rockets, and more recently on SpaceX Falcon 9 rockets from the United States. Russia is now non grata in European government circles, and the Trump administration is widening the trans-Atlantic rift. European leaders have cited the Trump administration and its close association with Elon Musk, CEO of SpaceX, as prime reasons to support sovereign access to space, a capability currently offered only by Arianespace. If European nations can reform how they treat their commercial space companies, there’s enough ambition, know-how, and money in Europe to foster a competitive launch industry.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Isar Aerospace aims for weekend launch. A German startup named Isar Aerospace will try to launch its first rocket Saturday, aiming to become the first in a wave of new European launch companies to reach orbit, Ars reports. The Spectrum rocket consists of two stages, stands about 92 feet (28 meters) tall, and can haul payloads up to 1 metric ton (2,200 pounds) into low-Earth orbit. Based in Munich, Isar was founded by three university graduate students in 2018. Isar scrubbed a launch attempt Monday due to unfavorable winds at the launch site in Norway.

From the Arctic … Notably, this will be the first orbital launch attempt from a launch pad in Western Europe. The French-run Guiana Space Center in South America is the primary spaceport for European rockets. Virgin Orbit staged an airborne launch attempt from an airport in the United Kingdom in 2023, and the Plesetsk Cosmodrome is located in European Russia. The launch site for Isar is named Andøya Spaceport, located about 650 miles (1,050 kilometers) north of Oslo, inside the Arctic Circle. (submitted by EllPeaTea)

A chance for competition in Europe. The European Space Agency is inviting proposals to inject competition into the European launch market, an important step toward fostering a dynamic multiplayer industry officials hope one day will mimic that of the United States, Ars reports. The near-term plan for the European Launcher Challenge is for ESA to select companies for service contracts to transport ESA and other European government payloads to orbit from 2026 through 2030. A second component of the challenge is for companies to perform at least one demonstration of an upgraded launch vehicle by 2028. The competition is open to any European company working in the launch business.

Challenging the status quo … This is a major change from how ESA has historically procured launch services. Arianespace has been the only European launch provider available to ESA and other European institutions for more than 40 years. But there are private companies across Europe at various stages of developing their own small launchers, and potentially larger rockets, in the years ahead. With the European Launcher Challenge, ESA will provide each of the winners up to 169 million euros ($182 million), a significant cash infusion that officials hope will shepherd Europe’s nascent private launch industry toward liftoff. Companies like Isar Aerospace, Rocket Factory Augsburg, MaiaSpace, and PLD Space are among the contenders for ESA contracts.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab launches eight satellites. Rocket Lab launched eight satellites Wednesday for a German company that is expanding its constellation to detect and track wildfires, Space News reports. An Electron rocket lifted off from New Zealand and completed deploying its payload of eight CubeSats for OroraTech about 55 minutes later, placing them into Sun-synchronous orbits at an altitude of about 341 miles (550 kilometers). This was Rocket Lab’s fifth launch of the year, and the third in less than two weeks.

Fire goggles … OroraTech launched three satellites before this mission, fusing data from those satellites and government missions to detect and track wildfires. The new satellites are designed to fill a gap in coverage in the afternoon, a peak time for wildfire formation and spread. OroraTech plans to launch eight more satellites later this year. Wildfire monitoring from space is becoming a new application for satellite technology. Last month, OroraTech partnered with Spire for a contract to build a CubeSat constellation called WildFireSat for the Canadian Space Agency. Google is backing FireSat, another constellation of more than 50 satellites to be deployed in the coming years to detect and track wildfires. (submitted by EllPeaTea)

Should Britain have a sovereign launch capability? A UK House of Lords special inquiry committee has heard from industry experts on the importance of fostering a sovereign launch capability, European Spaceflight reports. On Monday, witnesses from the UK space industry testified that the nation shouldn’t rely on others, particularly the United States, to put satellites into orbit. “The idea that we will be able to do it through America… certainly in today’s, you know, the last 50 days, I think is very, very doubtful. The UK needs access to space,” said Scott Hammond, deputy CEO of SaxaVord Spaceport in Scotland.

Looking inward … A representative from one of the most promising UK launch startups agreed. “Most people who are looking to launch are beholden to the United States solutions or services that are there,” said Alan Thompson, head of government affairs at Skyrora. “Without having our own home-based or UK-based service provider, we risk not having that voice and not being able to undertake all these experiments or be able to manifest ourselves better in space.” The UK is the only nation to abandon an independent launch capability after putting a satellite into orbit. The British government canceled the Black Arrow rocket in the early 1970s, citing financial reasons. A handful of companies, including Skyrora, is working to restore the orbital launch business to the UK.

This rocket engine CEO faces some salacious allegations. The Independent published what it described as an exclusive report Monday describing a lawsuit filed against the CEO of RocketStar, a New York-based company that says its mission is “improving upon the engines that power us to the stars.” Christopher Craddock is accused of plundering investor funds to underwrite pricey jaunts to Europe, jewelry for his wife, child support payments, and, according to the company’s largest investor, “airline tickets for international call girls to join him for clandestine weekends in Miami,” The Independent reports. Craddock established RocketStar in 2014 after financial regulators barred him from working on Wall Street over a raft of alleged violations.

Go big or go home … The $6 million lawsuit filed by former CEO Michael Mojtahedi alleges RocketStar “is nothing more than a Ponzi scheme… [that] has been predicated on Craddock’s ability to con new people each time the company has run out of money.” On its website, RocketStar says its work focuses on aerospike rocket engines and a “FireStar Fusion Drive, the world’s first electric propulsion device enhanced with nuclear fusion.” These are tantalizing technologies that have proven elusive for other rocket companies. RocketStar’s attorney told The Independent: “The company denies the allegations and looks forward to vindicating itself in court.”

Another record for SpaceX. Last Thursday, SpaceX launched a batch of clandestine SpaceX-built surveillance satellites for the National Reconnaissance Office from Vandenberg Space Force Base in California, Spaceflight Now reports. This was the latest in a series of flights populating the NRO’s constellation of low-Earth orbit reconnaissance satellites. What was unique about this mission was its use of a Falcon 9 first stage booster that flew to space just nine days prior with a NASA astronomy satellite. The successful launch broke the record for the shortest span between flights of the same Falcon 9 booster, besting a 13.5-day turnaround in November 2024.

A mind-boggling number of launches … This flight also marked the 450th launch of a Falcon 9 rocket since its debut in 2010, and the 139th within a 365-day period, despite suffering its first mission failure in nearly 10 years and a handful of other glitches. SpaceX’s launch pace is unprecedented in the history of the space industry. No one else is even close. In the last Rocket Report I authored, I wrote that SpaceX’s steamroller no longer seems to be rolling downhill. That may be the case as the growth in the Falcon 9 launch cadence has slowed, but it’s hard for me to see anyone else matching SpaceX’s launch rate until at least the 2030s.

Rocket Lab and Stoke Space find an on-ramp. Space Systems Command announced Thursday that it selected Rocket Lab and Stoke Space to join the Space Force’s National Security Space Launch (NSSL) program. The contracts have a maximum value of $5.6 billion, and the Space Force will dole out “task orders” for individual missions as they near launch. Rocket Lab and Stoke Space join SpaceX, ULA, and Blue Origin as eligible launch providers for lower-priority national security satellites, a segment of missions known as Phase 3 Lane 1 in the parlance of the Space Force. For these missions, the Space Force won’t require certification of the rockets, as the military does for higher-value missions in the so-called “Lane 2” segment. However, Rocket Lab and Stoke Space must complete at least one successful flight of their new Neutron and Nova rockets before they are cleared to launch national security payloads.

Stoked at Stoke … This is a big win for Rocket Lab and Stoke. For Rocket Lab, it bolsters the business case for the medium-class Neutron rocket it is developing for flights from Wallops Island, Virginia. Neutron will be partially reusable with a recoverable first stage. But Rocket Lab already has a proven track record with its smaller Electron launch vehicle. Stoke hasn’t launched anything, and it has lofty ambitions for a fully reusable two-stage rocket called Nova. This is a huge vote of confidence in Stoke. When the Space Force released its invitation for an on-ramp to the NSSL program last year, it said bidders must show a “credible plan for a first launch by December 2025.” Smart money is that neither company will launch its rockets by the end of this year, but I’d love to be proven wrong.

Falcon 9 deploys spy satellite. Monday afternoon, a SpaceX Falcon 9 took flight from Florida’s Space Coast and delivered a national security payload designed, built, and operated by the National Reconnaissance Office into orbit, Florida Today reports. Like almost all NRO missions, details about the payload are classified. The mission codename was NROL-69, and the launch came three-and-a-half days after SpaceX launched another NRO mission from California. While we have some idea of what SpaceX launched from California last week, the payload for the NROL-69 mission is a mystery.

Space sleuthing … There’s an online community of dedicated skywatchers who regularly track satellites as they sail overhead around dawn and dusk. The US government doesn’t publish the exact orbital parameters for its classified spy satellites (they used to), but civilian trackers coordinate with one another, and through a series of observations, they can produce a pretty good estimate of a spacecraft’s orbit. Marco Langbroek, a Dutch archeologist and university lecturer on space situational awareness, is one of the best at this, using publicly available information about the flight path of a launch to estimate when the satellite will fly overhead. He and three other observers in Europe managed to locate the NROL-69 payload just two days after the launch, plotting the object in an orbit between 700 and 1,500 kilometers at an inclination of 64.1 degrees to the equator. Analysts speculated this mission might carry a pair of naval surveillance spacecraft, but this orbit doesn’t match up well with any known constellations of NRO satellites.

NASA continues with Artemis II preps. Late Saturday night, technicians at Kennedy Space Center in Florida moved the core stage for NASA’s second Space Launch System rocket into position between the vehicle’s two solid-fueled boosters, Ars reports. Working inside the iconic 52-story-tall Vehicle Assembly Building, ground teams used heavy-duty cranes to first lift the butterscotch orange core stage from its cradle, then rotate it to a vertical orientation and lift it into a high bay, where it was lowered into position on a mobile launch platform. The 212-foot-tall (65-meter) core stage is the largest single hardware element for the Artemis II mission, which will send a team of four astronauts around the far side of the Moon and back to Earth as soon as next year.

Looking like a go … With this milestone, the slow march toward launch continues. A few months ago, some well-informed people in the space community thought there was a real possibility the Trump administration could quickly cancel NASA’s Space Launch System, the high-priced heavy-lifter designed to send astronauts from the Earth to the Moon. The most immediate possibility involved terminating the SLS program before it flies with Artemis II. This possibility appears to have been overcome by circumstances. The rockets most often mentioned as stand-ins for the Space Launch System—SpaceX’s Starship and Blue Origin’s New Glenn—aren’t likely to be cleared for crew missions for at least several years. The long-term future of the Space Launch System remains in doubt.

Space Force says Vulcan is good to go. The US Space Force on Wednesday announced that it has certified United Launch Alliance’s Vulcan rocket to conduct national security missions, Ars reports. “Assured access to space is a core function of the Space Force and a critical element of national security,” said Brig. Gen. Kristin Panzenhagen, program executive officer for Assured Access to Space, in a news release. “Vulcan certification adds launch capacity, resiliency, and flexibility needed by our nation’s most critical space-based systems.” The formal announcement closes a yearslong process that has seen multiple delays in the development of the Vulcan rocket, as well as two anomalies in recent years that were a further setback to certification.

Multiple options … This certification allows ULA’s Vulcan to launch the military’s most sensitive national security missions, a separate lot from those Rocket Lab and Stoke Space are now eligible for (as we report in a separate Rocket Report entry). It elevates Vulcan to launch these missions alongside SpaceX’s Falcon 9 and Falcon Heavy rockets. Vulcan will not be the next rocket that the company launches, however. First up is one of the company’s remaining Atlas V boosters, carrying Project Kuiper broadband satellites for Amazon. This launch could occur in April, although ULA has not set a date. This will be followed by the first Vulcan national security launch, which the Space Force says could occur during the coming “summer.”

Next three launches

March 29: Spectrum | “Going Full Spectrum” | Andøya Spaceport, Norway | 11: 30 UTC

March 29: Long March 7A | Unknown Payload | Wenchang Space Launch Site, China | 16: 05 UTC

March 30: Alpha | LM-400 | Vandenberg Space Force Base, California | 13: 37 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe Read More »

as-nasa-faces-cuts,-china-reveals-ambitious-plans-for-planetary-exploration

As NASA faces cuts, China reveals ambitious plans for planetary exploration

All of these grand Chinese plans come as NASA faces budget cuts. Although nothing is final, Ars reported earlier this year that some officials in the Trump administration want to cut science programs at the US space agency by as much as 50 percent, and that would include significant reductions for planetary science. Such cuts, one planetary officials told Ars, would represent an “extinction level” event for space science and exploration in the United States.

This raises the prospect that the United States could cede the lead in space exploration to China in the coming decades.

So what will happen?

To date, the majority of China’s space science objectives have been successful, bringing credibility to a government that sees space exploration as a projection of its soft power. By becoming a major actor in space and surpassing the United States in some areas, China can both please its own population and become a more attractive partner to other countries around the world.

However, if there are high-profile (and to some in China’s leadership, embarrassing) failures, would China be so willing to fund such an ambitious program? With the objectives listed above, China would be attempting some unprecedented and technically demanding missions. Some of them, certainly, will face setbacks.

Additionally, China is also investing in a human lunar program, seeking to land its own astronauts on the surface of the Moon by 2030. Simultaneously funding ambitious human and robotic programs would very likely require significantly more resources than the government has invested to date. How deep are China’s pockets?

It’s probably safe to say, therefore, that some of these mission concepts and time frames are aspirational.

At the same time, the US Congress is likely to block some of the deepest cuts in planetary exploration, should they be proposed by the Trump administration. So NASA still has a meaningful future in planetary exploration. And if companies like K2 are successful in lowering the cost of satellite buses, the combination of lower-cost launch and planetary missions would allow NASA to do more with less in deep space.

The future, therefore, has yet to be won. But when it comes to deep space planetary exploration, NASA, for the first time since the 1960s, has a credible challenger.

As NASA faces cuts, China reveals ambitious plans for planetary exploration Read More »

after-a-spacecraft-was-damaged-en-route-to-launch,-nasa-says-it-won’t-launch

After a spacecraft was damaged en route to launch, NASA says it won’t launch

Three weeks ago, NASA revealed that a shipping container protecting a Cygnus spacecraft sustained “damage” while traveling to the launch site in Florida.

Built by Northrop Grumman, Cygnus is one of two Western spacecraft currently capable of delivering food, water, experiments, and other supplies to the International Space Station. This particular Cygnus mission, NG-22, had been scheduled for June. As part of its statement in early March, the space agency said it was evaluating the NG-22 Cygnus cargo supply mission along with Northrop.

On Wednesday, after a query from Ars Technica, the space agency acknowledged that the Cygnus spacecraft designated for NG-22 is too damaged to fly, at least in the nearterm.

Loading up Dragon

“Following initial evaluation, there also is damage to the cargo module,” the agency said in a statement. “The International Space Station Program will continue working with Northrop Grumman to assess whether the Cygnus cargo module is able to safely fly to the space station on a future flight.” That future flight, NG-23, will launch no earlier than this fall.

As a result, NASA is modifying the cargo on its next cargo flight to the space station, the 32nd SpaceX Cargo Dragon mission, due to launch in April. The agency says it will “add more consumable supplies and food to help ensure sufficient reserves of supplies aboard the station” to the Dragon vehicle.

As it mulls stopgap measures, one option available to NASA may be to try to slot in a cargo mission on Boeing’s Starliner spacecraft. After the propulsion issues experienced on Starliner’s first crew flight to the space station last June, NASA is still evaluating whether the vehicle can be certified for an operational crew mission, or whether it would be better to perform an uncrewed test flight.

After a spacecraft was damaged en route to launch, NASA says it won’t launch Read More »

with-vulcan’s-certification,-space-force-is-no-longer-solely-reliant-on-spacex

With Vulcan’s certification, Space Force is no longer solely reliant on SpaceX

The US Space Force on Wednesday announced that it has certified United Launch Alliance’s Vulcan rocket to conduct national security missions.

“Assured access to space is a core function of the Space Force and a critical element of national security,” said Brig. Gen. Panzenhagen, program executive officer for Assured Access to Space, in a news release. “Vulcan certification adds launch capacity, resiliency, and flexibility needed by our nation’s most critical space-based systems.”

The formal announcement closes a yearslong process that has seen multiple delays in the development of the Vulcan rocket, as well as two anomalies in recent years that were a further setback to certification.

The first of these, an explosion on a test stand in northern Alabama during the spring of 2023, delayed the first test flight of Vulcan by several months. Then, in October 2024, during the second test flight of the rocket, a nozzle on one of the Vulcan’s two side-mounted boosters failed.

A cumbersome process

This nozzle issue, more than five months ago, compounded the extensive paperwork needed to certify Vulcan for the US Department of Defense’s most sensitive missions. The military has several options for companies to certify their rockets depending on the number of flights completed, which could be two, three, or more. The fewer the flights, the more paperwork and review that must be done. For Vulcan, this process entailed:

  • 52 certification criteria
  • more than 180 discrete tasks
  • 2 certification flight demonstrations
  • 60 payload interface requirement verifications
  • 18 subsystem design and test reviews
  • 114 hardware and software audits

That sounds like a lot of work, but at least the military’s rules and regulations are straightforward and simple to navigate, right? Anyway, the certification process is complete, elevating United Launch Alliance to fly national security missions alongside SpaceX with its fleet of Falcon 9 and Falcon Heavy rockets.

With Vulcan’s certification, Space Force is no longer solely reliant on SpaceX Read More »

firm-wins-space-force-funding-to-provide-an-“aircraft-carrier”-in-orbit

Firm wins Space Force funding to provide an “aircraft carrier” in orbit

In recent years the US military has made much of a concept known as tactically responsive launch. This essentially means that if there is some rapidly developing threat in space—say an adversary takes out a key national defense satellite—the military would like the capability to rapidly fuel a satellite on Earth, mate it to a rocket, and launch it into space.

The US Space Force first demonstrated this tactically responsive capability with a launch on Firefly’s Alpha rocket in 2023. As part of this “Victus Nox” test flight, a satellite was encapsulated into a payload fairing and mated to the rocket and completed all final launch preparations within 27 hours.

But what if there were an even faster way to respond? That’s the vision behind a new, $60 million federal award to a new space company named Gravitics for a concept called an orbital carrier.

“In many ways it’s kind of like what an aircraft carrier does,” said Jon Goff, director of advanced concepts for the Seattle-based company.

Shielding satellites

In interviews about the concept with Ars, company officials were fairly vague about specific details of what orbital carriers will be able to do. A news release published on Wednesday morning, highlighting the Strategic Funding Increase, or STRATFI grant from the United States Space Force, also lacks specifics. The Space Force would prefer to keep the vehicle’s operational capabilities under wraps.

But in general, the idea is to provide an unpressurized module in which one or more satellites can be pre-positioned in orbit.

Such a module would isolate the satellites from the space environment, sparing their batteries and sensitive electronics from harsh thermal cycles every 90 minutes, and provide some shielding from radiation. In addition the orbital carrier would obfuscate the satellites inside from observation by other nations or hostile actors in space. Then, when a satellite is needed, it can be deployed into multiple orbits by the carrier.

Firm wins Space Force funding to provide an “aircraft carrier” in orbit Read More »

esa-finally-has-a-commercial-launch-strategy,-but-will-member-states-pay?

ESA finally has a commercial launch strategy, but will member states pay?


Late this year, European governments will have the opportunity to pay up or shut up.

The European Space Agency is inviting proposals to inject competition into the European launch market, an important step toward fostering a dynamic multiplayer industry officials hope, one day, will mimic that of the United States.

The near-term plan for the European Launcher Challenge is for ESA to select companies for service contracts to transport ESA and other European government payloads to orbit from 2026 through 2030. A second component of the challenge is for companies to perform at least one demonstration of an upgraded launch vehicle by 2028. The competition is open to any European company working in the launch business.

“What we expect is that these companies will make a step in improving and upgrading their capacity with respect to what they’re presently working on,” said Toni Tolker-Nielsen, ESA’s acting director of space transportation. “In terms of economics and physics, it’s better to have a bigger launcher than a smaller launcher in terms of price per kilogram to orbit.”

“The ultimate goal is, we should be establishing privately developed competitive launch services in Europe, which will allow us to procure launch services in open competition,” Tolker-Nielsen said in an interview with Ars.

From one to many?

ESA and other European institutions currently have just one European provider, Arianespace, to award launch contracts for the continent’s scientific, Earth observation, navigation, and military satellites. Arianespace operates the Ariane 6 and Vega C rockets. Vega C operations will soon be taken over by Italian aerospace company Avio. Both rockets were developed with ESA funding.

The launcher challenge is modeled on NASA’s use of commercial contracting methods beginning nearly 20 years ago with the agency’s commercial cargo program, which kickstarted the development of SpaceX’s Dragon and Northrop Grumman’s Cygnus resupply freighters for the International Space Station. NASA later applied the same model to commercial crew, and most recently for commercial lunar landers.

Uncharacteristically for ESA, the agency is taking a hands-off approach for the launcher challenge. One of the few major requirements is that the winners should offer a “European launch service” that flies from European territory, which includes the French-run Guiana Space Center in South America.

Europe’s second Ariane 6 rocket lifted off March 6 with a French military spy satellite. Credit: European Space Agency

“We are trying something different, where they are completely free to organize themselves,” Tolker-Nielsen said. “We are not pushing anything. We are in a complete service-oriented model here. That’s the principal difference between the new approach and the old approach.”

ESA also isn’t setting requirements on launcher performance, reusability, or the exact number of companies it will select in the challenge. But ESA would like to limit the number of challengers “to a minimum” to ensure the agency’s support is meaningful, without spreading its funding too thin, Tolker-Nielsen said.

“For the ESA-developed launchers, which are Ariane 6 and Vega C, we own the launch system,” Tolker-Nielsen said. “We finished the development, and the deliverables were the launch systems that we own at ESA, and we make it available to an operator—Arianespace, and Avio soon for Vega C—to exploit.”

These ESA-led launcher projects were expensive. The development of Ariane 6 cost European governments more than $4 billion. Ariane 6 is now flying, but none of the up-and-coming European alternatives is operational.

Next steps

It has taken a while to set up the European Launcher Challenge, which won preliminary approval from ESA’s 23 member states at a ministerial-level meeting in 2023. ESA released an “invitation to tender,” soliciting proposals from European launch companies Monday, with submissions due by May 5. This summer, ESA expects to select the top proposals and prepare a funding package for consideration by its member states at the next ministerial meeting in November.

The top factors ESA will consider in this first phase of the challenge are each proposer’s business plan, technical credibility, and financial credibility.

In a statement, ESA said it has allotted up to 169 million euros ($182 million at today’s exchange rates) per challenger. This is significant funding for Europe’s crop of cash-hungry launch startups, each of which has raised no more than a few hundred million euros. But this allotment comes with a catch. ESA’s leaders and the winners of the launch challenge must persuade their home governments to pay up.

Let’s take a moment to compare Europe’s launch industry with that of the United States.

There are multiple viable US commercial launch companies. In the United States, it’s easier to attract venture capital, the government has been a more reliable proponent of commercial spaceflight, and billionaires are part of the launch landscape. SpaceX, led by Elon Musk, dominates the market. Jeff Bezos’s space company, Blue Origin, and United Launch Alliance are also big players with heavy-lift rockets.

Rocket Lab and Firefly Aerospace fly smaller, privately developed launchers. Northrop Grumman’s medium-class launch division is currently in between rockets, although it still occasionally launches small US military satellites on Minotaur rockets derived from decommissioned ICBMs.

Of course, it’s not surprising the sum of US launch companies is higher than in Europe. According to the World Bank, the US economy is about 50 percent larger than the European Union’s. But six American companies with operational orbital rockets, compared to one in Europe today? That is woefully out of proportion.

European officials would like to regain a leading position in the global commercial launch market. With SpaceX’s dominance, that’s a tall hill to climb. At the very least, European politicians don’t want to rely on other countries for access to space. In the last three years, they’ve seen their access to Russian launchers dry up after Russia’s invasion of Ukraine, and after signing a few launch contracts with SpaceX to bridge the gap before the first flight of Ariane 6, they now view the US government and Elon Musk as unreliable partners.

Open your checkbook, please

ESA’s governance structure isn’t favorable for taking quick action. On one hand, ESA member states approve the agency’s budget in multiyear increments, giving its projects a sense of stability over time. However, it takes time to get new projects approved, and ESA’s member states expect to receive benefits—jobs, investment, and infrastructure—commensurate with their spending on European space programs. This policy is known as geographical return, or geo-return.

For example, France has placed a high strategic importance on fielding an independent European launch capability for more than 60 years. The administration of French President Charles de Gaulle made this determination during the Cold War, around the same time he decided France should have a nuclear deterrent fully independent of the United States and NATO.

In order to match this policy, France has been more willing than other European nations to invest in launchers. This means the Ariane rocket family, developed and funded through ESA contracts, has been largely a French enterprise since the first Ariane launch in 1979.

This model is becoming antiquated in the era of commercial spaceflight. Startups across Europe, primarily in France, Germany, the United Kingdom, and Spain, are developing small launchers designed to carry up to 1.5 metric tons of payload to low-Earth orbit. This is too small to directly compete with the Ariane 6 rocket, but eventually, these companies would like to develop larger launchers.

Some European officials, including the former head of the French space agency, blamed geo-return as a reason the Ariane 6 rocket missed its price target.

Toni Tolker-Nielsen, ESA’s acting director of space transportation, speaks at an event in 2021. Credit: ESA/V. Stefanelli

With the European Launcher Challenge, ESA will experiment with a new funding model for the first time. This new “fair contribution” approach will see ESA leadership put forward a plan to its member states at the next big ministerial conference in November. The space agency will ask the countries that benefit most from the winners of the launcher challenge to provide the bulk of the funding for the challengers’ contracts.

So, let’s say Isar Aerospace, which is set to launch its first rocket as soon as this week, is one of the challenge winners. Isar is headquartered in Munich, and its current launch site is in Norway. In this case, expect ESA to ask the governments of Germany and Norway to contribute the most money to pay for Isar’s contract.

MaiaSpace, a French subsidiary of ArianeGroup, the parent company of Arianespace, is also a contender in the launcher challenge. MaiaSpace plans to launch from French Guiana. Therefore, if MaiaSpace gets a contract, France would be on the hook for the lion’s share of the deal’s funding.

Tolker-Nielsen said he anticipates a “number” of the launch challengers will win the backing of their home countries in November, but “maybe not all.”

“So, first there is this criteria that they have to be eligible, and then they have to be funded as well,” he said. “We don’t want to propose funding for companies that we don’t see as credible.”

Assuming the challengers’ contracts get funded, ESA will then work with the European Commission to assign specific satellites to launch on the new commercial rockets.

“The way I look at this is we are not going to choose winners,” Tolker-Nielsen said. “The challenge is not the competition we are doing right now. It is to deliver on the contract. That’s the challenge.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

ESA finally has a commercial launch strategy, but will member states pay? Read More »

momentum-seems-to-be-building-for-jared-isaacman-to-become-nasa-administrator

Momentum seems to be building for Jared Isaacman to become NASA administrator

With the vast majority of President Donald Trump’s cabinet members now approved by the US Senate, focus is turning to senior positions within the administration that are just below the cabinet level.

The administrator of NASA is among the most high-profile of these positions. Nearly four months ago Trump nominated private astronaut Jared Isaacman to become chief of the space agency, but he has yet to receive a hearing before the Senate Committee on Commerce, Science, and Transportation.

Almost immediately after his nomination, much of the space community fell in behind Isaacman, who has flown to space twice on private Crew Dragon missions, raised charitable funds, and is generally well-liked. Since then, Isaacman has worked to build support for his candidacy through conversations with people in the space community and officeholders.

However, publicly, not much has happened. This has raised questions within the space community about whether the nomination has stalled. Although some people have expressed concern about financial ties between Isaacman and SpaceX, according to multiple sources, the primary obstacle has been Ted Cruz, the Texas Republican who chairs the Senate committee.

Cruz is not happy that Isaacman has donated to Democrats in the past, and he is concerned that the private astronaut is more interested in Mars exploration than the Moon. Cruz also did not appreciate Elon Musk’s call to end the life of the International Space Station early. The station is operated by NASA’s field center, Johnson Space Center, in Houston, where Cruz lives.

Nomination on track

Nevertheless, despite the slower pace, people familiar with the nomination process say Isaacman’s candidacy remains on track. And recently, there have been some public announcements that support this notion.

In early March, the governors of several southern US states, including Florida and Texas, sent a letter to Cruz expressing “strong support” for the swift confirmation of Isaacman. A notable absence from this letter was the governor of Alabama, Kay Ivey, where NASA’s Marshall Space Flight Center is located. However, she also recently sent Cruz a letter praising Isaacman, calling him an “exceptional selection” to lead NASA. It is notable that the governors of all the US states with major human spaceflight activities have now lined up behind Isaacman.

Momentum seems to be building for Jared Isaacman to become NASA administrator Read More »

as-preps-continue,-it’s-looking-more-likely-nasa-will-fly-the-artemis-ii-mission

As preps continue, it’s looking more likely NASA will fly the Artemis II mission

NASA’s existing architecture still has a limited shelf life, and the agency will probably have multiple options for transporting astronauts to and from the Moon in the 2030s. A decision on the long-term future of SLS and Orion isn’t expected until the Trump administration’s nominee for NASA administrator, Jared Isaacman, takes office after confirmation by the Senate.

So, what is the plan for SLS?

There are different degrees of cancellation options. The most draconian would be an immediate order to stop work on Artemis II preparations. This is looking less likely than it did a few months ago and would come with its own costs. It would cost untold millions of dollars to disassemble and dispose of parts of Artemis II’s SLS rocket and Orion spacecraft. Canceling multibillion-dollar contracts with Boeing, Northrop Grumman, and Lockheed Martin would put NASA on the hook for significant termination costs.

Of course, these liabilities would be less than the $4.1 billion NASA’s inspector general estimates each of the first four Artemis missions will cost. Most of that money has already been spent for Artemis II, but if NASA spends several billion dollars on each Artemis mission, there won’t be much money left over to do other cool things.

Other options for NASA might be to set a transition point when the Artemis program would move off of the Space Launch System rocket, and perhaps even the Orion spacecraft, and switch to new vehicles.

Looking down on the Space Launch System for Artemis II. Credit: NASA/Frank Michaux

Another possibility, which seems to be low-hanging fruit for Artemis decision-makers, could be to cancel the development of a larger Exploration Upper Stage for the SLS rocket. If there are a finite number of SLS flights on NASA’s schedule, it’s difficult to justify the projected $5.7 billion cost of developing the upgraded Block 1B version of the Space Launch System. There are commercial options available to replace the rocket’s Boeing-built Exploration Upper Stage, as my colleague Eric Berger aptly described in a feature story last year.

For now, it looks like NASA’s orange behemoth has a little life left in it. All the hardware for the Artemis II mission has arrived at the launch site in Florida.

The Trump administration will release its fiscal-year 2026 budget request in the coming weeks. Maybe then NASA will also have a permanent administrator, and the veil will lift over the White House’s plans for Artemis.

As preps continue, it’s looking more likely NASA will fly the Artemis II mission Read More »

this-launcher-is-about-to-displace-the-v-2-as-germany’s-largest-rocket

This launcher is about to displace the V-2 as Germany’s largest rocket


Isar Aerospace’s first Spectrum rocket will launch from Andøya Spaceport in Norway.

Seven years ago, three classmates at the Technical University of Munich believed their student engineering project might hold some promise in the private sector.

At the time, Daniel Metzler led a team of 40 students working on rocket engines and launching sounding rockets. Josef Fleischmann was on the team that won the first SpaceX Hyperloop competition. Together with another classmate, Markus Brandl, they crafted rocket parts in a campus workshop before taking the leap and establishing Isar Aerospace, named for the river running through the Bavarian capital.

Now, Isar’s big moment has arrived. The company’s orbital-class first rocket, named Spectrum, is set to lift off from a shoreline launch pad in Norway as soon as Monday.

The three-hour launch window opens at 12: 30 pm local time in Norway, or 7: 30 am EDT in the United States. “The launch date remains subject to weather, safety and range infrastructure,” Isar said in a statement.

Isar’s Spectrum rocket rolls out to its launch pad in Norway. Credit: Isar Aerospace

Isar said it received a launch license from the Norwegian Civil Aviation Authority on March 14, following the final qualification test on the Spectrum rocket in February to validate its readiness for flight.

Notably, this will be the first orbital launch attempt from a launch pad in Western Europe. The French-run Guiana Space Center in South America is the primary spaceport for European rockets. Virgin Orbit staged an airborne launch attempt from an airport in the United Kingdom in 2023, and the Plesetsk Cosmodrome is located in European Russia.

No guarantees

Success is never assured on the inaugural launch of a new rocket. Isar is the first in a wave of European launch startups to arrive at this point. The company developed the Spectrum rocket with mostly private funding, although Isar received multimillion-euro investments from the European Space Agency, the German government, and the NATO Innovation Fund.

All told, Isar says it has raised more than 400 million euros, or $435 million at today’s currency exchange rate, more than any other European launch startup.

“We are approaching the most important moment of our journey so far, and I would like to thank all our team, partners, customers and investors who have been accompanying and trusting us,” said Daniel Metzler, Isar’s co-founder and CEO, in a statement.

Most privately developed rockets have failed to reach orbit on the first try. Several US launch companies that evolved in a similar mold as Isar—such as Rocket Lab, Firefly Aerospace, and Astra—faltered on the way to orbit on their rockets’ first flights.

“With this mission, Isar Aerospace aims to collect as much data and experience as possible on its in-house-developed launch vehicle. It is the first integrated test of all systems,” said Alexandre Dalloneau, Isar’s vice president of mission and launch operations.

“The test results will feed into the iterations and development of future Spectrum vehicles, which are being built and tested in parallel,” Isar said in a statement.

Look familiar? Isar Aerospace’s Spectrum rocket is powered by nine first-stage engines arranged in an “octaweb” configuration patterned on SpaceX’s Falcon 9 rocket. Credit: Isar Aerospace/Wingmen Media

Europe has struggled to regain its footing after SpaceX took over the dominant position in the global commercial launch market, a segment led for three decades by Europe’s Ariane rocket family before SpaceX proved the reliability of the lower-cost, partially reusable Falcon 9 launcher. The continent’s new Ariane 6 rocket, funded by ESA and built by a consortium owned by multinational firms Airbus and Safran, is more expensive than the Falcon 9 and years behind schedule. It finally debuted last year.

One ton to LEO

Isar’s Spectrum rocket is not as powerful as SpaceX’s Falcon 9 or Arianespace’s Ariane 6. But even SpaceX had to start somewhere. Its small Falcon 1 rocket failed three times before tasting success. Spectrum is somewhat larger and more capable than Falcon 1, with performance in line with Firefly’s Alpha rocket.

The fully assembled Spectrum rocket stands about 92 feet (28 meters) tall and measures more than 6 feet (2 meters) in diameter. The expendable launcher is designed to haul payloads up to 1 metric ton (2,200 pounds) into low-Earth orbit. Spectrum is powered by nine Aquila engines on its first stage, and one engine on the second stage, burning a mixture of propane and liquid oxygen propellants.

There are no customer satellites aboard the first Spectrum test flight. The rocket will climb into a polar orbit from Andøya Spaceport in northern Norway, but Isar hasn’t published a launch timeline or the exact parameters of the target orbit.

While modest in size next to Europe’s Ariane launcher family, Isar’s Spectrum is the largest German rocket since the V-2, the World War II weapon of terror launched by Nazi Germany against targets in Great Britain, Belgium, and other places. In the 80 years since the war, German industry developed a handful of small sounding rockets and manufactured upper stages for Ariane rockets.

But German governments have long shunned spending on launchers at levels commensurate with the nation’s place as a top contributor to ESA. France took the lead in the continent’s postwar rocket industry, providing the lion’s share of funding for Ariane and taking responsibility for building engines and booster stages.

Now, 80 years to the week since the last V-2 launch of World War II, Germany again has a homegrown liquid-fueled rocket on the launch pad. This time, it’s for a much different purpose.

As a first step, Isar and other companies in Europe are vying to inject competition with Arianespace into the European launch market. This will begin with small government-funded satellites that otherwise would have likely launched on rideshare flights by SpaceX or Arianespace.

In 2022, the German space agency (known as DLR) announced the selection of research and demo payloads slated to fly on Spectrum’s second launch. The Norwegian Space Agency revealed a contract earlier this month for Isar to launch a pair of satellites for the country’s Arctic Ocean Surveillance program.

Within the next few days, ESA is expected to release an “invitation to tender” for European industry to submit proposals for the European Launcher Challenge. This summer, ESA will select winners from Europe’s crop of launch startups to demonstrate that their rockets can deliver the agency’s scientific satellites to orbit. This is the first time ESA has experimented with a fully commercial business model, with launch service contracts to private companies. Isar is a leading contender to win the launcher challenge, alongside other European companies like Rocket Factory Augsburg, HyImpulse, MaiaSpace, and others.

Previously, ESA has provided billions of euros to Europe’s big incumbent rocket companies for development of new generations of Ariane rockets. Now, ESA wants to follow the path of NASA, which has used fixed-price service contracts to foster commercial cargo and crew transportation to the International Space Station, and most recently, privately owned landers on the Moon.

“Whatever the outcome, Isar Aerospace’s upcoming Spectrum launch will be historic: the first commercial orbital launch from mainland Europe,” Josef Aschbacher, ESA’s director general, posted on X. “The support and co-funding the European Space Agency has given Isar Aerospace and other launch service provider startups is paying off for increased autonomy in Europe. Wishing Isar Aerospace a great launch day with fair weather and most importantly, that the data they receive from the liftoff will speed next iterations of their rockets.”

Toni Tolker-Nielsen, ESA’s acting director of space transportation, called this moment a “paradigm shift” for Europe’s launcher strategy.

“In the last 40 years, we have had these ESA-developed launchers that we have been relying on,” Tolker-Nielsen told Ars in an interview. “So we started with Ariane 1 up to Ariane 6. Vega C came onboard. And it’s been working like that for the last 40 years. Now, we are moving into in the ’30s, and the next decades, to have privately developed launchers.”

Isar Aerospace’s first Spectrum rocket will lift off from the remote Andøya Spaceport in Norway, a gorgeous location that might be the world’s most picturesque launch site. Nestled on the western coast of an island inside the Arctic Circle, Andøya offers an open path over the Norwegian Sea for rockets to fly north, where they can place satellites into polar orbit.

The spaceport is operated by Andøya Space, a company 90 percent owned by the Norwegian government through the Ministry for Trade, Industry, and Fisheries. Until now, Andøya Spaceport has been used for launches of suborbital sounding rockets.

The geography of Norway permits northerly launches from Andøya Spaceport. Credit: Andøya Space

No better time than now

Isar’s first launch comes amid an abrupt turn in European strategic policy as the continent’s leaders struggle with how to respond to moves by President Donald Trump in his first two months in office. In recent weeks, the Trump administration put European leaders on their heels with sudden policy reversals and unpredictable statements on Ukraine, NATO, and the US government’s long-term backstopping of European security.

Friedrich Merz, set to become Germany’s next chancellor, said last month that Europe should strive to “achieve independence” from the United States. “It is clear that the Americans, at least this part of the Americans, this administration, are largely indifferent to the fate of Europe.”

Last week, Merz shepherded a bill through German parliament to amend the country’s constitution, allowing for a significant increase in German defense spending. The incoming chancellor said the change is “nothing less than the first major step towards a new European defense community.”

The erosion of Europe’s trust in the Trump administration prompted rumors that the US government could trigger a “kill switch” to turn off combat capabilities of F-35 fighter jets sold to US allies. This would have previously seemed like a far-fetched conspiracy theory, but some European officials felt compelled to make statements denying the kill switch reports. Still, the recent turbulence in trans-Atlantic relations has some US allies rethinking their plans to buy more US-made fighter jets and weapons systems.

“Reliable and predictable orders should go to European manufacturers whenever possible,” Merz said.

Robert Habeck, Germany’s vice chancellor and economics minister, tours Isar Aerospace in Ottobrunn, Germany, in 2023. Credit: Marijan Murat/picture alliance via Getty Images

This uncertainty extends to space, where it is most apparent in the launch industry. SpaceX, founded and led by Trump ally Elon Musk, dominates the global commercial launch business. European governments have repeatedly turned to SpaceX to launch multiple defense and scientific satellites over the last several years, while Europe encountered delays with its homegrown Ariane 6 and Vega rockets.

Until 2022, Europe and Russia jointly operated Soyuz rockets from the Guiana Space Center in South America to deploy government and commercial payloads to orbit. The partnership ended with Russia’s invasion of Ukraine.

Europe’s flagship Ariane 5 rocket retired in 2023, a year before its replacement—the Ariane 6—debuted on its first test flight from the Guiana Space Center. The first operational flight of the Ariane 6 delivered a French military spy satellite to orbit March 6. The smaller Vega C rocket successfully launched in December, two years after officials grounded the vehicle due to an in-flight failure.

ESA funded development of the Ariane 6 and Vega C in partnership with ArianeGroup, a joint venture between Airbus and Safran, and the Italian defense contractor Avio.

For the moment, Europe’s launcher program is back on track to provide autonomous access to space, a capability European officials consider a strategic imperative. Philippe Baptiste, France’s minister for research and higher education, said after the Ariane 6 flight earlier this month that the launch was “proof” of European space sovereignty.

“The return of Donald Trump to the White House, with Elon Musk at his side, already has significant consequences on our research partnerships, on our commercial partnerships,” Baptiste said in his remarkably pointed prepared remarks. “If we want to maintain our independence, ensure our security, and preserve our sovereignty, we must equip ourselves with the means for strategic autonomy, and space is an essential part of this.”

The problem? Ariane 6 and Vega C are costly, lack a path to reusability, and aren’t geared to match SpaceX’s blistering launch cadence. If Europe wants autonomous access to space, European taxpayers will have to pay a premium. Isar’s Spectrum also isn’t reusable, but European officials hope competition from new startups will produce fresh launch options, and perhaps stimulate an inspired response from Europe’s entrenched launch companies.

“In today’s geopolitical climate, our first test flight is about much more than a rocket launch: Space is one of the most critical platforms for our security, resilience, and technological advancement,” Metzler said. “In the next days, Isar Aerospace will lay the foundations to regain much needed independent and competitive access to space from Europe.”

Tolker-Nielsen, in charge of ESA’s space transportation division, said this is the first of many steps for Europe to develop a thriving commercial launch sector.

“This launch is a milestone, which is very important,” he said. “It’s the first conclusion of all this work, so I will be looking carefully on that. I cross my fingers that it goes well.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

This launcher is about to displace the V-2 as Germany’s largest rocket Read More »

trump-white-house-drops-diversity-plan-for-moon-landing-it-created-back-in-2019

Trump White House drops diversity plan for Moon landing it created back in 2019

That was then. NASA’s landing page for the First Woman comic series, where young readers could download or listen to the comic, no longer exists. Callie and her crew survived the airless, radiation-bathed surface of the Moon, only to be wiped out by President Trump’s Diversity, Equity, and Inclusion executive order, signed two months ago.

Another casualty is the “first woman” language within the Artemis Program. For years, NASA’s main Artemis page, an archived version of which is linked here, included the following language: “With the Artemis campaign, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before.”

Artemis website changes

The current landing page for the Artemis program has excised this paragraph. It is not clear how recently the change was made. It was first noticed by British science journalist Oliver Morton.

The removal is perhaps more striking than Callie’s downfall since it was the first Trump administration that both created Artemis and highlighted its differences from Apollo by stating that the Artemis III lunar landing would fly the first woman and person of color to the lunar surface.

How NASA’s Artemis website appeared before recent changes.

Credit: NASA

How NASA’s Artemis website appeared before recent changes. Credit: NASA

For its part, NASA says it is simply complying with the White House executive order by making the changes.

“In keeping with the President’s Executive Order, we’re updating our language regarding plans to send crew to the lunar surface as part of NASA’s Artemis campaign,” an agency spokesperson said. “We look forward to learning more from about the Trump Administration’s plans for our agency and expanding exploration at the Moon and Mars for the benefit of all.”

The nominal date for the Artemis III landing is 2027, but few in the industry expect NASA to be able to hold to that date. With further delays likely, the space agency will probably not name a crew anytime soon.

Trump White House drops diversity plan for Moon landing it created back in 2019 Read More »

rocket-report:-falcon-9-may-smash-reuse-record;-relativity-roving-to-texas?

Rocket Report: Falcon 9 may smash reuse record; Relativity roving to Texas?


All the news that’s fit to lift

“It is what he has always dreamt of.”

The Falcon 9 booster that launched Crew 10 is seen shortly after landing near its launch site in Florida. Credit: SpaceX

Welcome to Edition 7.36 of the Rocket Report! Well, after nine months, NASA astronauts Butch Wilmore and Suni Williams are finally back on Earth, safe and sound. This brings to conclusion one of the stranger and more dramatic human spaceflight stories in years. We’re glad they’re finally home, soon to be reunited with their families.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Summary of 2024 launch activity. In its annual launch report, released earlier this month, Bryce Tech analyzed the 259 orbital launches conducted last year. Among the major trends the analysts found were: Nearly 60 percent of all launches were conducted by US providers, Commercial providers accounted for about 70 percent of launches, and Small satellites, primarily for communications, represented the majority of all spacecraft launched at 97 percent.

Trends dominated by Starlink launches … SpaceX conducted more than half of the launches last year (134), putting 2,390 spacecraft into orbit (the vast majority of which were Starlink satellites). The next closest competitor was China, with 48 launches and 186 spacecraft. The nearest US competitor to SpaceX was Rocket Lab, with 14 launches and 33 spacecraft. The competition in “upmass,” that is total kg lofted into orbit, was less close still. SpaceX put 1.86 million kg into space, followed by China (164,000 kg) and Roscosmos (76,000). The closest US competitor was United Launch Alliance, at 29,000 kg. Put another way, for every kilogram ULA put into orbit, SpaceX lofted 66.

MaiaSpace inks first commercial customer. MaiaSpace, a French subsidiary of ArianeGroup founded in 2022, signed an agreement to fly multiple missions for Exotrail’s SpaceVan orbital transfer vehicle beginning in 2027. The partnership with Exotrail provides an early vote of confidence that the reusable Maia rocket can increase Europe’s sovereign launch capabilities, Payload reports. This is one of several launch agreements signed recently by Exotrail.

Hitting the trail … Exotrail flew its first SpaceVan mission on SpaceX’s Transporter-9 flight in November 2023 and deployed the Endurosat-built “EXO-0” cubesat in LEO after three months in orbit. In November, the company signed a deal with Arianespace to launch Exotrail’s first SpaceVan mission to geostationary transfer orbit in the latter half of 2026. After leaving Ariane 64, SpaceVan will tow a customer satellite to GEO, demonstrating its ability to deliver satellites to the full range of orbital trajectories. (submitted by gma)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Electron launches twice in three days. Rocket Lab completed the deployment of a constellation of Internet of Things satellites for French company Kinéis with an Electron launch on Monday. The launch was the fifth and final mission under a contract signed by the companies in 2021. Each launch carried five satellites, weighing 28 kilograms each, to complete a 25-satellite constellation.

Continuing to steadily increase cadence … For Rocket Lab, this was the second launch in a little more than 72 hours, after another Electron launched a radar imaging satellite for Japanese company iQPS March 14. It was the fourth launch so far this year for Rocket Lab, which previously stated it expects to perform more than 20 Electron launches, including the HASTE suborbital version, this year.

Pangea raises Series A funding. The Spanish startup announced this week that it has raised 23 million euros ($25 million) in Series A funding, European Spaceflight reports. This funding includes contributions from former ArianeGroup CEO André-Hubert Roussel. Founded in 2018, Pangea Aerospace initially aimed to develop Meso, a small rocket designed to deliver 400 kilograms to low-Earth orbit. The rocket was to be powered by a unique, in-house-developed methalox aerospike engine.

Twice the size … However, in early 2023, the company announced it had abandoned the development of Meso to focus on providing propulsion systems for rockets and in-orbit applications. Pangea is currently in the process of developing ARCOS, an aerospike engine designed for use aboard the booster and/or upper stage of a rocket. According to Pangea, the funding will be used to “accelerate its expansion in the European market,” aiming to grow its customer base. It will look to double its workforce and scale up its manufacturing, integration, and testing capabilities.

Relativity Space eyeing move to Texas. As he consolidates control over Relativity Space, new owner and chief executive Eric Schmidt is planning significant changes at the launch company, including a likely move to the Lone Star State, Ars reports. The company faces several major challenges as it seeks to bring the Terran R rocket to market, particularly in logistics. This is because Terran R is a large launch vehicle, too large to move across the country by highway.

Watching for Baytown … The company’s initial plan was to manufacture first stages at its massive factory in Long Beach, California, and ship them through the Panama Canal to a test site at the Stennis Space Center in southern Mississippi. From there, they would be moved by barge again to the launch site in Florida. But this was expensive and time-consuming. Two sources have indicated that Relativity Space will likely move a significant portion of its Terran R manufacturing to Baytown, Texas, which is near Houston. Such a location would provide water access on the right side of the Panama Canal. Relativity has not made a formal announcement.

Crew-10 launches to ISS. A Falcon 9 rocket launched four astronauts safely into orbit on Friday evening, marking the official beginning of the Crew-10 mission to the International Space Station. Friday’s launch came two days after an initial attempt was scrubbed on Wednesday evening, Ars reports. This was due to a hydraulic issue with the ground systems that handle the Falcon 9 rocket at Launch Complex 39A in Florida.

Smooth ride to orbit … There were no technical issues on Friday, and with clear skies, NASA astronauts Anne McClain and Nichole Ayers, Japanese astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov rocketed smoothly into orbit. Although any crew launch into orbit is notable, this mission came with an added bit of importance as its success cleared the way for two NASA astronauts, Butch Wilmore and Suni Williams, to finally return home from space after a saga spanning nine months. They did so on Tuesday evening.

SpaceX pushes Falcon 9 booster reuse record. On March 12 a Falcon 9 rocket first stage made its third launch, lofting the SPHEREx and PUNCH missions into low-Earth orbit for NASA. Following the successful launch, the first stage landed near the launch site at Vandenberg Space Force Base in California. Now, this same stage could launch again on Thursday night from Vandenberg, carrying the NROL-57 mission for the US Space Force.

Rapid reuse is a thing … The launch is scheduled for 06: 49 UTC, and if it takes place it would be just nine days and four hours since the SPHEREx mission. This would shatter the company’s previous booster turnaround, set in November, of a little more than 13 days. The fast turnaround was no doubt enabled by landing the booster back near the launch site, speeding the process of inspecting and refurbishing the rocket. It’s also impressive that the Space Force greenlit such a fast turnaround time for a national security payload.

And launch pad turnaround, too. SpaceX launched its latest batch of Starlink satellites from Cape Canaveral Space Force Station at sunrise Saturday morning. The mission marked a record-breaking turnaround for launch operations at Space Launch Complex 40, Spaceflight Now reports. The launch of 23 Starlink Version 2 Mini satellites came two days, eight hours, 59 minutes, and 40 seconds after the launch of the Starlink 12-21 mission. This beat SpaceX’s previous turnaround time at that pad by nearly six hours.

Ever pushing forward … Recently, Ars covered a recent string of issues with the Falcon 9 rocket, notably with its upper stage. The principal reason is that SpaceX continues to push the envelope with even its mature products like the Falcon 9 rocket, which is now nearly 15 years old. While we can take note of issues, it’s also worth celebrating the incredibly hard work that goes into pushing cadence and turnaround times. Moreover, success with the Falcon 9 rocket supports the notion that, one day, SpaceX will be able to reach a high cadence of operations with Starship.

The Jeff and the Donald. Over the past year, Amazon and Blue Origin founder Bezos has executed a sharp public reversal in his relationship with President Trump—whom he previously criticized as a “threat to democracy”—that has surprised even longtime associates. An article in the Financial Times explores this change, and finds that it is likely due, at least in part, to Bezos’ interest in his space company. There are some spicy, and to my sense of things, accurate comments that explain why Bezos has sought to curry favor with Trump.

One longtime adviser cautions … “He cares most about Blue Origin. His chance of being the player he wants to become in space could be destroyed” if the world’s richest man (Elon Musk) and most powerful politician united against him. “The growth trajectory for the entire enterprise depends on the federal contract… otherwise Blue is dead in the water.” Another close associate says that any move by Trump to deprioritize lunar missions in favor of Musk’s aspirations to reach Mars would have a significant impact on the company’s viability and success. “It is what he has always dreamt of. Nothing will hurt Jeff financially—Blue is a money loser. It is more the opportunity to be involved.”

Next three launches

March 21: Falcon 9 | NROL-57 | Vandenberg Space Force Base, Calif. | 06: 49 UTC

March 23: Spectrum | Demo flight | Andøya Rocket Range, Norway | 11: 30 UTC

March 24: Falcon 9 | NROL-69 | Cape Canaveral Space Force Station, Florida | 17: 42 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: Falcon 9 may smash reuse record; Relativity roving to Texas? Read More »

the-ax-has-become-an-important-part-of-the-space-force’s-arsenal

The ax has become an important part of the Space Force’s arsenal

“All those traditional primes opted out of this event, every single one,” Hammett said. “We’re cultivating an A-team who’s willing to work with us, who’s hungry, who wants to bring affordability and speed, and it’s not the existing industry base.”

Hammett’s office didn’t set out to banish the big defense contractors. Simply put, he said they haven’t performed or aren’t interested in going in the direction Space RCO wants to go.

“I’ve terminated 11 major contracts in less than three years,” Hammett said. “Eighty-five percent of those were with traditional defense primes.” Most of these programs are classified, so it doesn’t become news when a contract is canceled.

“We try to fix the programs,” Hammett said. “We work with the performers, but if they can’t get right, and if we have program baselines where they’re now exceeding it by 100 percent in cost or schedule… we’re going to fire them and start again.”

At the same time, venture-backed companies seem to emerge every day from the ether of Silicon Valley or one of the nation’s other tech corridors.

“There’s a lot of opportunity to bring other performers into the portfolio, but there are lots of barriers,” Hammett said. One of those barriers is that leadership at many startups don’t have a security clearance. Many small companies don’t use the certified accounting systems the government usually requires for federal contracts. 

“You have to be willing to modify your approach, your acquisition strategies, those types of things, so I have directed my team to open the aperture, to find the A-team, wherever the A-team lives, because it doesn’t seem to be in our current portfolio,” Hammett said.

The Space Force has launched three generations of GPS satellites capable of broadcasting a jam-resistant military-grade navigation signal, but ground system delays have kept US forces from fully adopting it. This image shows a GPS III satellite at Lockheed Martin. Credit: Lockheed Martin

There’s still a place for the Pentagon’s incumbent contractors, according to Hammett. Small companies like the ones at Space RCO’s pitch lack the national, or even global, footprint to execute the military’s most expensive programs.

“We’re trying to build the first of something new, different, at a price point that we can accept,” Hammett said. “That’s what these types of companies are trying to do. And we’re not having to pay the lion’s share of the cost for that because VC [venture capital] firms and others are kick-starting them.”

Executives at Lockheed Martin, Northrop Grumman, Boeing, and other traditional defense companies have become warier of bidding on government programs, especially fixed-price contracts where financial risk is transferred from the government to the contractor.

The CEO of L3Harris, another established defense contractor, said in 2023 that his company has also declined to bid on fixed-price development contracts. L3Harris leads development of a software system called ATLAS to manage data from a network of sensors tracking rocket launches and objects in orbit. The program is over budget and was supposed to be ready for action in 2022, but it still isn’t operational.

RTX is in charge of another troubled military space program. The Next-Generation Operational Control System, known as OCX, is designed to allow military forces, including airplanes, ships, and ground vehicles, to access a jam-resistant GPS signal that satellites have been beaming from space since 2005. Twenty years later, the military’s weapons systems still haven’t widely adopted this M-code signal because of OCX delays.

Both programs are managed by Space Systems Command, the unit that has traditionally been responsible for buying hardware and software for military space programs. SSC, too, hasn’t shied away recently from taking the hatchet to some problem projects. Last year, SSC confirmed it kicked RTX off a program to develop three next-generation missile warning satellites because it was over budget, behind schedule, and faced “unresolved design challenges.”

The ax has become an important part of the Space Force’s arsenal Read More »