Space

japan-becomes-the-fifth-nation-to-land-a-spacecraft-on-the-moon

Japan becomes the fifth nation to land a spacecraft on the Moon

Artist's illustration of the SLIM spacecraft on final descent to the Moon.

Enlarge / Artist’s illustration of the SLIM spacecraft on final descent to the Moon.

The Japanese space agency’s first lunar lander arrived on the the Moon’s surface Friday, but a power system problem threatens to cut short its mission.

Japan’s robotic Smart Lander for Investigating Moon (SLIM) mission began a 20-minute final descent using two hydrazine-fueled engines to drop out of orbit. After holding to hover at 500 meters and then 50 meters altitude, SLIM pulsed its engines to fine-tune its vertical descent before touching down at 10: 20 am EST (15: 20 UTC).

The Japan Aerospace Exploration Agency (JAXA), which manages the SLIM mission, streamed the landing live on YouTube. About two hours after the touchdown, JAXA officials held a press conference to confirm the spacecraft made a successful landing, apparently quite close to its target. SLIM aimed to settle onto the lunar surface adjacent to a nearly 900-foot (270-meter) crater named Shioli, located in a region called the Sea of Nectar on the near side of the Moon.

But ground controllers at JAXA’s Sagamihara Campus in the western suburbs of Tokyo soon discovered the lander was in trouble. Its solar array was not generating electricity after landing, and without power, officials expected SLIM to drain its battery within a few hours.

In what could be the mission’s final hours, engineers prioritized downloading data from SLIM, including imagery taken during its descent, and potentially new pictures captured from the lunar surface. Official reported good communications links between SLIM and ground stations on Earth.

“Minimum success”

Even if SLIM falls silent, the mission has achieved its minimum success criteria, JAXA said. The SLIM mission is a technology demonstrator developed to verify the performance of a new vision-based navigation system needed for precision Moon landings.

“First and foremost, landing was made and communication was established,” said Hiroshi Yamakawa, JAXA’s president. “So a minimum success was made in my view.”

One of the core goals of the SLIM mission was to land within 100 meters (about 330 feet) of its bullseye. This accomplishment would be a remarkable improvement in lunar landing precision, which typically is measured in miles or kilometers. It would also be an enabling capability for future Moon missions because it lays the foundation for future spacecraft to land closer to lunar resources, such as water ice.

Hitoshi Kuninaka, director general of JAXA’s Institute of Space and Astronautical Science, said it will take about a month for engineers to fully analyze data from SLIM and determine the precision of the landing.

“But as you saw on the real-time data livestream, SLIM did trace the expected course, so my personal impression is that we probably have been able to more or less achieve a high precision landing within 100-meter accuracy,” Kuninaka said. “So the solar cell state is unlikely to impact the full success criteria.”

Kuninaka said ground teams have seen no evidence of any damage to the solar array on SLIM. It’s possible the lander is sitting in an orientation with its solar cells facing away from the Sun. All other components of SLIM, including its propulsion, thermal, and communication systems, all appear to be functioning well.

SLIM launched September 6 on top of a Japanese H-IIA rocket, riding to orbit alongside an X-ray astronomy telescope. The spacecraft took a long route to get to the Moon, trading time for fuel to preserve propellant for Friday’s landing attempt. SLIM entered orbit around the Moon on December 25, then completed several maneuvers to settle into a low-altitude orbit in preparation for the descent to the surface.

A milestone moment for Japan

The landing of SLIM made Japan the fifth country to soft-land a spacecraft on the Moon, following the Soviet Union, the United States, China, and India. But landing on the Moon is a hazardous thing to do. Three commercial landers similar in scale to SLIM failed to safely reach the lunar surface over the last five years.

One of those was developed by a Japanese company called ispace. Most recently, the US company Astrobotic attempted to send its Peregrine lander to the Moon, but a propellant leak cut short the mission. After looping more than 200,000 miles into space, Peregrine reentered Earth’s atmosphere Wednesday, where it was expected to burn up 10 days after its launch.

A Russian lander crashed into the Moon in August, and India’s first lunar lander failed in 2019. India tried again last year and made history when Chandrayaan 3 safely landed.

This artist's illustration shows the SLIM spacecraft descending toward the Moon and ejecting two deployable robots onto the lunar surface.

Enlarge / This artist’s illustration shows the SLIM spacecraft descending toward the Moon and ejecting two deployable robots onto the lunar surface.

Japan’s SLIM mission was primarily designed to test out new guidance algorithms and sensors, rather than pursuing scientific objectives. The technologies riding to the Moon on SLIM could be used on future spacecraft bound for the Moon. SLIM cost the Japanese government approximately 18 billion yen ($121 million) to design, develop, and build, according to JAXA.

The spacecraft is modest in size, measuring nearly 8 feet (2.4 meters) tall and nearly 9 feet (2.7 meters) across. Without propellant in its tanks, SLIM has a mass of roughly 660 pounds (200 kilograms).

“The start of the deceleration to the landing on the Moon’s surface is expected to be a breathless, numbing 20 minutes of terror!” said Kushiki Kenji, sub-project manager for the SLIM mission, before the landing.

Japan becomes the fifth nation to land a spacecraft on the Moon Read More »

rocket-report:-a-new-estimate-of-starship-costs;-japan-launches-spy-satellite

Rocket Report: A new estimate of Starship costs; Japan launches spy satellite

A bigger tug —

One space tug company runs into financial problems; another says go big or go home.

An H-IIA rocket lifts off with the IGS Optical-8 spy satellite.

Enlarge / An H-IIA rocket lifts off with the IGS Optical-8 spy satellite.

Mitsubishi Heavy Industries

Welcome to Edition 6.27 of the Rocket Report! This week, we discuss an intriguing new report looking at Starship. Most fascinating, the report covers SpaceX’s costs to build a Starship and how these costs will come down as the company ramps up its build and launch cadence. At the other end of the spectrum, former NASA Administrator Mike Griffin has a plan to get astronauts back to the Moon that would wholly ignore the opportunities afforded by Starship.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

The problem at America’s military spaceports. The Biden administration is requesting $1.3 billion over the next five years to revamp infrastructure at the Space Force’s ranges in Florida and California, Ars reports. This will help address things like roads, bridges, utilities, and airfields that, in many cases, haven’t seen an update in decades. But it’s not enough, according to the Space Force. Last year, Cape Canaveral was the departure point for 72 orbital rocket launches, and officials anticipate more than 100 this year. The infrastructure and workforce at the Florida spaceport could support about 150 launches in a year without any major changes, but launch activity is likely to exceed that number within a few years.

Higher fees incoming … Commercial launch companies operating from Cape Canaveral Space Force Station, Florida, or Vandenberg Space Force Base, California, pay fees to the Space Force to reimburse for direct costs related to rocket launches. These cover expenses like weather forecast services, surveillance to ensure airplanes and boats stay out of restricted areas, and range safety support. “What that typically meant was anything we did that was specifically dedicated to that launch,” said Col. James Horne, deputy commander of the Space Force’s assured access to space directorate. This is about to change after legislation passed by Congress in December allows the Space Force to charge indirect fees to commercial providers. This money will go into a fund to pay for maintenance and upgrades to infrastructure used by all launch companies at the spaceports.

Momentus is running out of money. Momentus, a company that specializes in “last mile” satellite delivery services, announced on January 12 that it is running out of money and does not have a financial lifeline, CNBC reports. The company was once valued at more than $1 billion before going public via a Special Purpose Acquisition Company (SPAC) in 2021 but now has a market capitalization of less than $10 million. Momentus has developed a space tug called Vigoride, designed to place small satellites into bespoke orbits after deploying from a larger rocket on a rideshare mission, such as a SpaceX Falcon 9. Now, Momentus is abandoning plans for its next mission that was due for launch in March. In December, the company laid off about 20 percent of its workforce to reduce costs.

Fatal blow? … Momentus may have received a potentially fatal blow after losing the US Space Development Agency’s recent competition for 18 so-called Tranche 2 satellites, Aviation Week reports. Instead, the SDA made recent satellite manufacturing contract awards to Rocket Lab, L3Harris, Lockheed Martin, and Sierra Space. On Wednesday, Momentus announced it closed a $4 million stock sale. This should keep Momentus afloat for a while longer but won’t provide the level of capital needed to undertake any significant manufacturing or technical development work. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Orbex may go bigger. UK-based launch startup Orbex hasn’t yet flown its small satellite launcher, called Prime, but is already looking at what’s next, according to reports by European Spaceflight and the Financial Times. New Orbex CEO Phil Chambers, who was officially appointed earlier this month, told the Financial Times that the company was already discussing the possibility of developing a larger vehicle. Speaking to European Spaceflight, Chambers described the business model to deliver orbital launch services with Prime as “robust.” Despite this, he admitted that the small launch industry was only a small sliver of the overall launch market.

Learning to walk before running … While future growth is on Orbex’s radar, its near-term focus is completing construction of a spaceport in Scotland, launching a maiden flight of Prime, and delivering on the six flights the company has already sold. The two-stage Prime rocket, fueled by “bio-propane,” will be capable of hauling a payload of approximately 180 kilograms (nearly 400 pounds) into low-Earth orbit. But Orbex has been shy about releasing updates on the progress of the Prime rocket’s development since unveiling a full-scale mock-up of the launch vehicle in 2022. Last year, the CEO who led Orbex since its founding resigned. Its most recent significant funding round was valued at 40.4 million pounds in late 2022. (submitted by Ken the Bin)

Rocket Report: A new estimate of Starship costs; Japan launches spy satellite Read More »

axiom,-spacex-launch-third-all-private-crew-mission-to-space-station

Axiom, SpaceX launch third all-private crew mission to space station

Flying private —

A US-Spanish dual citizen commands a crew of Italian, Swedish, and Turkish astronauts.

A Falcon 9 rocket lifts off from NASA's Kennedy Space Center to begin the Ax-3 commercial crew mission.

Enlarge / A Falcon 9 rocket lifts off from NASA’s Kennedy Space Center to begin the Ax-3 commercial crew mission.

Stephen Clark/Ars Technica

For the third time, an all-private crew is heading for the International Space Station. The four-man team lifted off from NASA’s Kennedy Space Center in Florida aboard a SpaceX Falcon 9 rocket Thursday, kicking off a 36-hour pursuit of the orbiting research laboratory. Docking is scheduled for Saturday morning.

This two-week mission is managed by Houston-based Axiom Space, which is conducting private astronaut missions to the ISS as a stepping stone toward building a fully commercial space station in low-Earth orbit by the end of this decade.

Axiom’s third mission, called Ax-3, launched at 4: 49 pm EST (21: 49 UTC) Thursday. The four astronauts were strapped into their seats inside SpaceX’s Dragon Freedom spacecraft atop the Falcon 9 rocket. This is the 12th time SpaceX has launched a human spaceflight mission, and could be the first of five Dragon crew missions this year.

The Falcon 9 steered northeast from the Kennedy Space Center to line up with the flight track of the International Space Station. After darting through cloud cover, the rocket’s reusable first stage detached two-and-a-half minutes after liftoff to begin a descent back to Cape Canaveral for landing. The upper stage ignited a single engine to carry the Dragon capsule into orbit.

No retirement party

In remarks radioed to the ground soon after the launch, Ax-3 commander Michael López-Alegría describe the sensations of launch as “acceleration, a little bit of vibration, just a sense that you’re going fast. Wow, what a thrill!”

López-Alegría is a Spanish-born astronaut and US Navy veteran. He is one of the most experienced astronauts in history, and Ax-3 marks his sixth flight to space. López-Alegría, 65, retired from NASA in 2012 after four space shuttle missions. He worked as a consultant and commercial spaceflight advocate, then joined Axiom in 2017, and commanded the company’s first private astronaut flight in 2022.

So why keep up a grueling training schedule at an age when most commercial airline pilots face mandated retirement?

“It never gets old,” López-Alegría said in a prelaunch press conference. “I think I have more appreciation with every launch that approaches … The first time you go, you’re just hanging on for dear life and and enjoying the ride. But I think you appreciate each one a little bit more, especially when you realize just how rare and opportunity it is, so I’m happy to keep doing this.”

He is alternating commands of Axiom missions with Peggy Whitson, another retired NASA astronaut.

“Axiom would definitely like to continue doing private astronaut missions. We’ll probably have other commanders in the future, but as long as they ask me to fly, my hand will be raised,” López-Alegría said. He’s the first astronaut to fly on SpaceX’s Dragon spacecraft twice.

“I think you’re demonstrating the ultimate in reuse—a reused commander, a reused Dragon, and a reused Falcon, or maybe flight-experienced is a better word,” joked Bill Gerstenmaier, a SpaceX executive serving as chief engineer for Thursday’s launch.

Pilot Walter Villadei sat to López-Alegría’s right during the climb into orbit. He is a colonel in the Italian Air Force. Turkey’s first astronaut, Alper Gezeravcı, and Swedish test pilot pilot Marcus Wandt round out the Ax-3 crew. They will temporarily join the long-duration residents living on the space station, including four crew members who flew on a Dragon to the complex in August to begin a six-month stay.

Cornering the government market

Villadei, Gezeravcı, and Wandt are flying to the space station through contracts between their governments and Axiom. The astronauts, all military officers, will perform scientific experiments developed by their nation’s researchers, and participate in education and outreach events from orbit.

More than 30 research investigations are flying on Ax-3, ranging from biology physiology experiments looking at how microgravity affects the human body, to technology demonstrations and Earth science. For example, the Italian Air Force developed a software tool it will test on Ax-3 to provide space debris and space weather warnings to the space station. Turkey is sending up experiments in the fields of genetics and metallurgy. Sweden and the European Space Agency sponsor experiments in brain research, remote control and AI, and stem cells.

Michael López-Alegría, Alper Gezeravcı, Marcus Wandt, and Walter Villadei pose inside SpaceX's crew access arm at Launch Complex 39A in Florida.

Enlarge / Michael López-Alegría, Alper Gezeravcı, Marcus Wandt, and Walter Villadei pose inside SpaceX’s crew access arm at Launch Complex 39A in Florida.

SpaceX

But there’s an unmistakable element of national pride intertwined with these scientific objectives.

Villadei is flying under the Italian flag through an agreement between the Italian government and Axiom, whereas most Italian astronauts have historically flown under the umbrella of the European Space Agency. He previously soared into space on a suborbital flight on Virgin Galactic’s spaceplane, logging a few minutes of microgravity. He was one of three Italian Air Force service members on the Virgin Galactic flight last June.

“This mission is very important for Italy,” Villadei said. “It’s a fundamental step in our national space strategy.”

Gezeravcı’s flight is historic in the sense that he is the first Turkish citizen to travel into space. “We have been long waiting for this mission to become real,” he said. “I’m really honored to take this role in this mission and to be able to make it real.”

Wandt’s mission was made possible through an agreement between ESA and the Swedish National Space Agency. ESA then finalized an agreement with Axiom to secure Wandt’s seat on Ax-3.

Wandt’s presence on the crew marks a first for ESA. It’s the first time the space agency has flown one of its astronauts to orbit with a commercial company, rather than an intergovernmental agreement with the United States or Russia. He was one of 17 astronauts ESA selected in 2022, but he joined ESA’s ranks as a reserve astronaut, meaning he would continue his career as a test pilot at Saab Aeronautics until his selection for a space mission.

He didn’t have to wait long. “This additional flight came up and Sweden was very decisive in this and came together quickly with industry, the armed forces, government, and together with ESA made this happen together with Axiom,” Wandt said.

ESA has six active astronauts who have flown in space, plus five new career astronauts and 12 reserves selected in 2022. Commercial flight opportunities like this one with Axiom enable more Europeans to access space. An ESA reserve astronaut from Poland could launch on an Axiom mission later this year.

“We have our astronaut corps, who represent the spine of our activities in human spaceflight,” said Daniel Neuenschwander, ESA’s director of human and robotic exploration, in an interview with Ars on Thursday. “But we selected also these reserves, which is a kind of pool of talent, where we seize the opportunities which come on top. It allows us to do more activities in human spaceflight.”

Axiom doesn’t publicize seat prices for its missions to the space station, but in the past, they have reportedly cost around $55 million. Swedish media last year reported Sweden expanded its investment in ESA by more than 400 million Swedish krona, or more than $38 million at current exchange rates, to enable Wandt’s spaceflight opportunity.

Axiom officials view flying government-backed astronauts as a lucrative market. It’s distinct from the conventional image of wealthy space tourists who pay their own way into orbit. There is, of course, an element of that in Axiom’s business, too. Axiom’s first mission in 2022 flew three self-paying private astronauts, and Ax-2 last year flew a mixed crew consisting of an Axiom commander, a US businessman, and two Saudi astronauts flying on a government-sponsored mission.

NASA is also supporting these private astronaut missions. The US space agency opened up the International Space Station to private visitors flying on all-commercial missions in 2019. It’s a cornerstone of NASA’s strategy to foster a commercial market for human spaceflight in low-Earth orbit, with an eye toward eventually building a business case for a privately-owned space station to replace the ISS after its planned retirement in 2030.

Axiom, SpaceX launch third all-private crew mission to space station Read More »

axiom-and-spacex-are-disrupting-europe’s-traditional-pathway-to-space

Axiom and SpaceX are disrupting Europe’s traditional pathway to space

Image of a rocket clearing the tower during liftoff.

Enlarge / A Falcon 9 rocket launches the Axiom-2 mission on May 21, 2023.

SpaceX

The European Space Agency’s (ESA) has a deal with Axiom Space to get more Europeans in orbit. But does the partnership benefit European taxpayers who fund the agency’s operations?

On Wednesday, January 17, the third privately funded mission by US commercial spaceflight company Axiom Space is set to lift off from Kennedy Space Center in Florida on SpaceX’s Falcon 9 rocket. Inside the Crew Dragon capsule will be a quartet of space travelers, including Swedish fighter pilot Marcus Wandt.

Wandt will be flying under the European Space Agency (ESA) flag, although he is not exactly an ESA astronaut. In the 2022 European astronaut recruitment round, Wandt didn’t make the final five of Europe’s “proper” astronaut class, who became ESA staff members and started their astronaut training in 2023. Instead, he was selected as a member of ESA’s first astronaut reserve pool, a novelty developed by ESA with an apparent goal of encouraging its member states to pay for national missions in addition to their regular contributions to ESA’s budget. Sweden was the first to jump at the opportunity in April last year and is paying for Wandt’s two-week space trip through a contract brokered by ESA as part of a Memorandum of Understanding the agency signed with the American commercial company Axiom Space in October 2023.

Ticket to ride

Wandt is the first but not the only reserve astronaut with his ticket to space while his seemingly more successful colleagues who made the proper astronaut corps are still in training. Poland, too, has signed up and expects to fly its reservist, Sławosz Uznański, on another Axiom mission later this year.

Compared to their overall investment in space activities, the price these countries pay to see their nationals float in microgravity is not negligible. At the November 2022 ESA ministerial council—the triennial member state summit that decides the agency’s budget for the following three-year period—Sweden pledged 317 million euros ($355 million).

According to a 2018 announcement, Axiom Space sells 10-day space trips for $55 million a seat. The overall cost of each mission is likely to be quite a bit higher. Last year, Hungary signed a contract directly with Axiom to send a Hungarian national to the International Space Station independently of ESA. Hungary discussed plans for a national mission back in 2022 and, at that time, estimated the project to cost about $100 million. Based on that estimate, Sweden may be easily paying an equivalent of its annual contribution into the ESA budget to get Wandt to space.

In addition to Wandt and Uznański, the ESA astronaut reserve pool includes nine other candidates, none of them officially employed by ESA. By filling this astronaut reserve pool, ESA seems to have created a market for Axiom Space, a move that might raise questions given the agency’s purpose is to promote the European space sector. In fact, the ESA’s founding Convention enshrines the principle of geo-return, which grants member states at least an 80 percent return on their contributions into ESA’s budget in the form of research and development contracts. Although the cost of the Axiom missions is paid through ESA, most of this money goes to the Texas-headquartered Axiom Space and its launch provider, SpaceX.

Secret contracts

ESA refused to disclose details of the arrangement between Axiom Space and Sweden, calling it “proprietary data as this is implemented through a confidential commercial contract.” The Swedish National Space Agency didn’t respond to Ars Technica’s request for comment.

Poland’s announcement of a national mission for Uznański arrived in August last year, accompanied by a jaw-dropping increase of the country’s contribution to ESA’s budget. At the 2022 ministerial council, Poland earmarked 197 million euros for the agency’s activities in the 2023 to 2025 period. In August, the Polish Space Agency more than doubled this contribution, committing an additional 295 million euros ($322 million). It is not clear how much of this money will go toward Uznański’s space trip.

In the months following the announcement of the astronaut reserve pool, Axiom Space began actively approaching home countries of the reservists with offers to fly those men and women to space, according to media in the Czech Republic, which has recently declined the offer.

In addition to Sweden and Poland, the UK also intends to use Axiom’s services and conduct a British-only mission that will be headed by semi-retired ESA astronaut Tim Peake. It will also include the UK’s Rosemary Coogan, newly named as one of ESA’s career astronauts, as well as reservist Meganne Christian and para-astronaut John McFall. Unlike the Swedish and Polish mission, the British mission will be funded by the private industry in the UK rather than by taxpayers, according to the BBC.

Axiom and SpaceX are disrupting Europe’s traditional pathway to space Read More »

daily-telescope:-life-on-earth,-and-maybe-in-the-heavens-above,-in-a-single-photo

Daily Telescope: Life on Earth, and maybe in the heavens above, in a single photo

Life finds a way —

It is fun to contemplate all of the life on display in this image.

The Milky Way over the sea.

Enlarge / The Milky Way over the sea.

Alfonso Tamés

Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.

Good morning. It’s January 15, and today’s image comes to us from Playa Grande, Mexico.

I realize that some readers may be tiring of seeing the Milky Way Galaxy, but not me! I love photos of our galaxy and so they are regularly featured in the Daily Telescope. However, this photo is truly special, as it highlights not just the heavens above, but one of the wonders here on Earth.

Alfonso Tamés sent me this image, and I can’t get enough of it. The photo showcases both our galaxy and a bit of the Orion Nebula in the sky and bioluminescence in the ocean—that is light being emitted by marine life in the sea. One of the most amazing nights I’ve ever had is kayaking in a bioluminescent bay in Puerto Rico, such an eerie and otherworldly experience.

It is fun to contemplate all of the life on display in this image, both what is known in the ocean and what may exist around all those stars above. Have a great week, everyone.

Source: Alfonso Tamés

Do you want to submit a photo for the Daily Telescope? Reach out and say hello.

Daily Telescope: Life on Earth, and maybe in the heavens above, in a single photo Read More »

the-space-force-is-changing-the-way-it-thinks-about-spaceports

The Space Force is changing the way it thinks about spaceports

Demanding —

There’s not much available real estate to grow Cape Canaveral’s launch capacity.

The Morrell Operations Center at Cape Canaveral Space Force Station, Florida.

Enlarge / The Morrell Operations Center at Cape Canaveral Space Force Station, Florida.

A lot goes into a successful rocket launch. It’s not just reliable engines, computers, and sophisticated guidance algorithms. There’s also the launch pad, and perhaps even more of an afterthought to casual observers, the roads, bridges, pipelines, and electrical infrastructure required to keep a spaceport humming.

Brig. Gen. Kristin Panzenhagen, commander of the Space Force’s Eastern Range at Cape Canaveral Space Force Station in Florida, calls this the “non-sexy stuff that we can’t launch without.” Much of the ground infrastructure at Cape Canaveral and Vandenberg Space Force Base in California, the military’s other launch range, is antiquated and needs upgrades or expansion.

“Things like roads, bridges, even just the entry into the base, the gate, communications infrastructure, power, we’re looking at overhauling and modernizing all of that because we really haven’t done a tech refresh on all of that in a very long time, at least 20 years, if not more,” said Col. James Horne, deputy director for the Space Force’s assured access to space directorate.

Getting a congressional appropriation for new rocket or spacecraft development, research into advanced technology, or military pay raises has generally been easier than securing funds for military construction projects.

“Trying to do all those upgrades on just our annual budget is not possible,” Panzenhagen said earlier his week in a presentation to the National Space Club Florida Committee.

Charging ahead

The Biden administration is requesting $1.3 billion over the next five years to revamp infrastructure at the Space Force’s ranges in Florida and California. According to Panzenhagen, one of the first projects will be an upgrade to the airfield at Cape Canaveral, where the military regularly delivers satellites and other equipment to the launch site.

But this funding won’t be enough for Cape Canaveral and Vandenberg to meet the Space Force’s projected launch demand fully. Last year, there were 72 orbital launch attempts from Florida and 30 launches from California.

“I would anticipate we’re going to do over 100 launches from the Cape this year,” Panzenhagen said. “And that puts a strain on a lot of our workforce, so we are doing process things to try to operate more smartly.”

SpaceX will launch most of these missions, with Falcon 9 launch demand driven by expanding the company’s Starlink broadband network. United Launch Alliance plans as many as 16 rocket launches this year, all from Cape Canaveral, and Blue Origin could launch its first heavy-lift New Glenn rocket from Florida by the end of 2024. SpaceX plans to launch around 50 missions from California next year; Firefly Aerospace could launch a handful of flights there, too.

This long exposure photo shows a SpaceX Falcon Heavy rocket streaking into space from NASA's Kennedy Space Center in Florida. A few minutes later, the rocket's side boosters returned to land at Cape Canaveral Space Force Station a few miles away.

Enlarge / This long exposure photo shows a SpaceX Falcon Heavy rocket streaking into space from NASA’s Kennedy Space Center in Florida. A few minutes later, the rocket’s side boosters returned to land at Cape Canaveral Space Force Station a few miles away.

There has been a significant uptick in launch cadence at Cape Canaveral. In 2008, there were only seven launches from the Florida spaceport. Since SpaceX started launching its Falcon 9 rocket in 2010, the launch cadence in Florida has been on a steady rise.

“This is not a hard limit, but I think at the Cape, we could probably push through somewhere on the order of 150 launches per year if we did nothing,” Horne told Ars in a recent interview. “And then probably 75 or so per year from Vandenberg. Everything we’re doing is continuing to improve that ability so that we’re not in the way. So whenever they say they need to go, we say yes.”

The Space Force provides security, weather forecasting, telemetry, and safety oversight services for all launches from Cape Canaveral and Vandenberg. The launch ranges in Florida and California are primarily responsible for ensuring the US military has an always-on capability to launch critical national security satellites. But the majority of launches from the military ranges are commercial missions.

The Space Force is changing the way it thinks about spaceports Read More »

rocket-report:-a-chinese-launch-you-must-see;-vulcan’s-stunning-debut

Rocket Report: A Chinese launch you must see; Vulcan’s stunning debut

A great start —

“I am so proud of this team. Oh my gosh, this has been years of hard work.”

Vulcan launches from Cape Canaveral Space Force Station on Monday.

Enlarge / Vulcan launches from Cape Canaveral Space Force Station on Monday.

United Launch Alliance

Welcome to Edition 6.26 of the Rocket Report! We’re just 11 days into the new year, and we’ve already had two stunning rocket debuts. Vulcan soared into space on Monday morning, and then a medium-lift rocket from China, Gravity-1, made a picture-perfect launch from a mobile pad in the Yellow Sea. It feels like this could be a great year for lift.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Vega C return-to-flight mission gets a date. The European Space Agency said it is targeting November 15 for the return to flight of the grounded Avio-built Vega C launch vehicle, European Spaceflight reports. I’ll be honest. I had to double-check the calendar to make sure that it is in fact January, because that’s an oddly specific date for a launch 10 months from now. But it appears there is some, ahem, flexibility in that date. ESA director of space transportation Toni Tolker-Nielsen says: “The nominal date is 15 November. There is a very detailed plan that is leading to this.”

But then there are the caveats … The director of space transportation did, however, add that there was a month of schedule risks that may affect the launch date, summarizing that the launch “should be at least before the end of the year.” Tolker-Nielsen’s final word on the matter was not all that convincing. “We’re pretty sure of that,” he concluded. Vega C was grounded following a failed flight in late 2022. The flight is expected to carry the Sentinel 1C Earth observation satellite to orbit, which will replace the failed Sentinel 1B satellite, plugging a significant data gap. (submitted by Ken the Bin)

China completes commercial launch pad.  A newly completed launch pad on China’s Hainan Island could increase China’s access to space, boosting national constellation projects and commercial launch plans, Space News reports. The first launch pad at Hainan Commercial Launch Site was finished in late December. It is the first of two pads that will host liquid propellant launch vehicles.

Fewer rockets falling into villages … The development is intended to ease a bottleneck of access to launch facilities for both national and commercial launch service providers and allow Chinese entities to speed up plans to launch a range of constellations. It should also increase China’s ability to deploy and maintain space assets, including remote sensing, communications, and other systems for civil and military purposes. Finally, it may help reduce incidents of booster debris falling around inhabited areas following launches from the country’s inland spaceports of Jiuquan, Taiyuan, and Xichang. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Will spaceport make Australia a military target? Space company Equatorial Launch Australia has proposed a massive expansion of its space center near Nhulunbuy, around 1,000 km east of Darwin, which saw the launch of three NASA suborbital rockets in mid-2022. If approved, the plans would see the Arnhem Space Centre grow from one launchpad to 14, with the goal of launching dozens of rockets a year, the Australian Broadcast Corporation reports. The goal is to launch its first orbital rocket by 2025, said the launch site chief executive, Michael Jones.

But there’s a catch … While the plans have been welcomed by the local government and local businesses, they have drawn concerns from some, including a politician and Yolŋu traditional owner Yiŋiya Guyula. The Yolŋu are Aboriginal people who live in the Northern Territory of Australia. Guyula voiced fears that the Arnhem Space Centre could lead to missile testing and development on Yolŋu land. Other local officials have said the spaceport could result in the area becoming a potential military target. (submitted by ZygP)

Rocket Report: A Chinese launch you must see; Vulcan’s stunning debut Read More »

daily-telescope:-a-monster-protostar-in-a-distant-nebula

Daily Telescope: A monster protostar in a distant nebula

Hi H —

Even as astronomical objects go, that’s a gargantuan protostar.

A great view of NGC 7538.

Enlarge / A great view of NGC 7538.

Paul Buckley

Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.

Good morning. It’s January 11, and today’s image showcases a diffuse nebula known as NGC 7538, found in the constellation Cepheus.

Located some 9,000 light-years from Earth, the nebula is a region of active star formation and produces a large amount of hydrogen—which shows up in this image. The nebula contains a shockingly large protostar that is, astronomers estimate, some 300 times larger than our Solar System and has a mass of 2,000 Suns. Even as astronomical objects go, that’s gargantuan.

Paul Buckley submitted today’s photo, which he captured from his backyard in Elma, New York, located not far from Buffalo. He took the image over the first three days of last September. This image represents 100 six-minute narrowband images and 50 two-minute RGB images using his Celestron 9.25-inch Edge HD telescope.

I think it’s lovely.

Source: Paul Buckley

Do you want to submit a photo for the Daily Telescope? Reach out and say hello.

Daily Telescope: A monster protostar in a distant nebula Read More »

after-its-impressive-first-flight,-here’s-what’s-next-for-the-vulcan-rocket

After its impressive first flight, here’s what’s next for the Vulcan rocket

The business end of the Vulcan rocket performed flawlessly during its debut launch.

Enlarge / The business end of the Vulcan rocket performed flawlessly during its debut launch.

United Launch Alliance

Early Monday morning, the hefty Vulcan rocket streaked into orbit for the first time, nailing its performance targets and delivering a substantial success to United Launch Alliance on the vehicle’s first test flight.

Unfortunately for the mission’s primary customer, Astrobotic, there was subsequently an issue with the lunar lander’s propulsion system. However, Astrobotic was quick to clear Vulcan of any blame, saying the payload was delivered into the planned lunar trajectory without issue. “There is no indication that the propulsion anomaly occurred as a result of the launch,” Astrobotic said.

Vulcan’s debut was much-anticipated in the US launch community because the rocket provides a potentially viable competitor to the Falcon 9 and Falcon Heavy rockets flown by SpaceX. The US Space Force, in particular, has been waiting on Vulcan to fly dozens of payloads into orbit.

So now that Vulcan has flown once, what’s next?

Next up, Dream Chaser

Just ahead of the launch, two vice presidents with United Launch Alliance, Mark Peller and Gary Wentz, held a teleconference with reporters to address the future of Vulcan.

United Launch Alliance, or ULA, has set aside the next 60 days to review data from the “Cert-1” certification mission that launched on Monday morning, they said. If the data looks good from that flight, the company will move into preparations for the next launch. Wentz said the earliest opportunity to launch this Cert-2 mission is “April-ish.”

The BE-4 rocket engines that will power this Vulcan are in final acceptance testing at Blue Origin’s facilities in West Texas, the officials said. The Vulcan core stage and Centaur upper stage are also in final assembly in ULA’s main factory in Decatur, Alabama. The hardware readiness should be capable of supporting an April launch.

The second Vulcan launch will carry the Dream Chaser spacecraft into orbit for Sierra Space. The winged vehicle will fly a cargo mission that carries supplies to the International Space Station for NASA. After more than a decade of development, Dream Chaser is undergoing final tests. However, there remain some questions about when it will be ready for its debut launch.

The Dream Chaser mission does not have a specific launch date on NASA’s internal schedule, but it shows a potential docking with the International Space Station for 45 days during a period between early April and mid-June. The docking port for the mission will not be needed by other spacecraft this year, so ULA and Sierra Space have some flexibility with the launch date.

After its impressive first flight, here’s what’s next for the Vulcan rocket Read More »

“we-are-worried,”-says-european-rocket-chief-at-prospect-of-launch-competition

“We are worried,” says European rocket chief at prospect of launch competition

Emulating NASA —

On the continent, Ariane 6 may be the last launcher with a monopoly.

Artist's view of the configuration of Ariane 6 using four boosters on the ELA-4 launch pad together with its mobile gantry.

Enlarge / Artist’s view of the configuration of Ariane 6 using four boosters on the ELA-4 launch pad together with its mobile gantry.

ESA-D. Ducros

There is “no guarantee” France’s ArianeGroup will continue to be Europe’s rocket launch company of choice, according to the head of the European Space Agency, after ESA member states agreed to introduce more competition to the market.

Josef Aschbacher, the agency’s director-general, told the Financial Times that the decision at its space summit in Seville last November to open the European launcher market to competition was a “game-changer.”

The next generation of launch would be done “in a very different way,” he said, acknowledging that this would put pressure on ArianeGroup’s owners, Airbus and Safran. “If they have a very competitive launcher, then they are in the race. But there is no guarantee.”

Martin Sion, chief executive of ArianeGroup, which since 2017 has lost its dominance of the commercial launch market to Elon Musk’s SpaceX, said the company was ready for the challenge. “The rules are changing, we will adapt,” he said. “We are used to competition.”

However, Aschbacher’s comments, made in an interview late last year, are a clear warning to ArianeGroup, which has suffered serial delays on its latest launcher, Ariane 6, now expected to be four years late.

As a result of the delays, and problems with the smaller Vega-C, which is manufactured by Italy’s Avio, Europe has had to use SpaceX to send some of its most important satellites into orbit.

In November, France, Germany, and Italy agreed to inject new funds into the Ariane 6 program, but the rocket is not reusable and will still be more expensive than SpaceX’s workhorse Falcon 9 when it finally launches around the middle of the year.

Guillaume Faury, Airbus chief executive, said in a separate interview that competition posed a serious challenge to ArianeGroup. “As one of the two shareholders, we are worried, as Ariane is today the incumbent,” he said. “The way to take our share is to make sure Ariane 6 will be a success.”

He acknowledged that Europe needed to find a more “market-driven” way to compete with lower-cost providers such as SpaceX but suggested it should not give up on Ariane in favor of a range of competing programs. Fragmentation would be “a disaster,” he said.

If the “result [of competition] is a different way being united around a small number of programs, where states put their efforts together to compete against the real competitors, which are . . . mainly SpaceX and the Chinese to come, that is OK,” he told the FT. “But the jury is out. For the moment what we observe is further fragmentation.”

Yet the ESA is determined to shake up the European commercial space sector by emulating the approach of NASA. Over the past two decades, the US space agency has shifted from buying rockets from incumbents such as Boeing and Lockheed’s United Launch Alliance to booking flight services.

By giving contracts to disruptive newcomers such as SpaceX, NASA has ensured the success of Elon Musk’s rocket company, and the cost of launching into space has fallen significantly.

“Competition is certainly the solution. It is a way of reducing cost and this is what we are planning to do in the next generation,” Aschbacher said. ESA has also challenged the private sector to develop a cargo vehicle that might eventually carry crew to the International Space Station by 2028, reducing its reliance on US providers.

Germany in particular is keen on more competition in the launcher market, as the home of some of Europe’s most advanced rocket start-ups such as Isar Aerospace and Rocket Factory Augsburg.

Although ArianeGroup was currently Europe’s only producer of heavy lift rockets, it was possible that new rivals could upset its monopoly for the generation after Ariane 6, said Caleb Henry, director of research at consultancy Quilty Space.

SpaceX “had a smaller rocket and reached space. That was enough to get . . . a significant chunk of the Department of Defense market,” he said. “So it is not at all a stretch to say someone developing a smaller rocket today could be making an Ariane-sized rocket tomorrow.”

© 2024 The Financial Times Ltd. All rights reserved. Not to be redistributed, copied, or modified in any way.

“We are worried,” says European rocket chief at prospect of launch competition Read More »

the-situation-with-astrobotic’s-lunar-lander-appears-to-be-quite-dire

The situation with Astrobotic’s lunar lander appears to be quite dire

Pointing problems —

“We do not expect every launch and landing to be successful.”

Updated

Astrobotic's Peregrine lander is seen recently encapsulated inside the Vulcan rocket's payload fairing.

Enlarge / Astrobotic’s Peregrine lander is seen recently encapsulated inside the Vulcan rocket’s payload fairing.

On Monday morning, the new Vulcan rocket made a smashing debut, launching from Cape Canaveral Space Force Station in Florida and performing flawlessly. After 50 minutes of flight, the rocket’s upper stage deployed its primary payload—the Peregrine lunar lander—into a Moon-bound trajectory. United Launch Alliance declared complete success with its new rocket.

After the deployment of the spacecraft, its developer, Pittsburgh-based Astrobotic, also said its ground controllers had successfully established contact with Peregrine. All seemed well as the spacecraft entered a highly elliptical orbit that will bring it toward the Moon in the coming weeks.

However, later on Monday morning, about six hours after liftoff, Astrobotic released an updated statement. While the vehicle’s avionics systems, including the primary command and data handling unit and the thermal, propulsion, and power controllers, had all powered on and performed as expected, there was a problem.

“After successful propulsion systems activation, Peregrine entered a safe operational state,” the company said. “Unfortunately, an anomaly then occurred, which prevented Astrobotic from achieving a stable sun-pointing orientation. The team is responding in real time as the situation unfolds and will be providing updates as more data is obtained and analyzed.”

Batteries are draining

Less than an hour after its initial statement on the anomaly, Astrobotic issued a second update that sounded fairly ominous.

“We continue to gather data and report our best assessment of what we see,” the company said. “The team believes that the likely cause of the unstable sun-pointing is a propulsion anomaly that, if proven true, threatens the ability of the spacecraft to soft land on the Moon.”

Peregrine will need its main engine to control the spacecraft’s descent down to the lunar surface. Based on additional information provided by the company, it appears that time is running out to fix the problem.

“As the team fights to troubleshoot the issue, the spacecraft battery is reaching operationally low levels,” Astrobotic said. “Just before entering a known period of communication outage, the team developed and executed an improvised maneuver to reorient the solar panels toward the Sun. Shortly after this maneuver, the spacecraft entered an expected period of communication loss.”

According to NASA’s Deep Space Network website, Peregrine reestablished communication with the controllers on Earth by around 11: 30 am ET. The communication then stopped again about 15 minutes later.

Taking shots on goal

If engineers can address the pointing problem and get Peregrine powered back up, there is time to work on the propulsion issue. Due to the spacecraft’s circuitous route to the Moon, Peregrine is not due to land there until February 23.

The spacecraft was privately built and largely funded by NASA through its Commercial Lunar Payload Services Program. The US space agency paid $108 million for the delivery of several science experiments to the Moon, including a radiation sensor, spectrometers, and a laser retroreflector array on board Peregrine. Astrobotic has also sold some payload space to private companies.

With this commercial program, NASA chose to procure a lunar delivery service rather than building a lander on its own. This cost the agency significantly less but entailed more risk. The agency also has funded a lander built by another company, Intuitive Machines, that could launch next month on a Falcon 9 rocket. About 10 more commercial lunar payload missions are in the pipeline.

The former leader of NASA’s scientific programs, Thomas Zurbuchen, has previously said this innovative lunar program was designed with speed in mind and that the agency would tolerate some failures as it takes “shots on goal” in attempting to land on the Moon. “We do not expect every launch and landing to be successful.”

This story has been updated to reflect the issuance of a second statement by Astrobotic.

The situation with Astrobotic’s lunar lander appears to be quite dire Read More »

ula’s-vulcan-rocket-shot-for-the-moon-on-debut-launch—and-hit-a-bullseye

ULA’s Vulcan rocket shot for the Moon on debut launch—and hit a bullseye

The first Vulcan rocket fires off its launch pad in Florida.

Enlarge / The first Vulcan rocket fires off its launch pad in Florida.

United Launch Alliance

CAPE CANAVERAL, Florida—Right out of the gate, United Launch Alliance’s new Vulcan rocket chased perfection.

The Vulcan launcher hit its marks after lifting off from Florida’s Space Coast for the first time early Monday, successfully deploying a commercial robotic lander on a journey to the Moon and keeping ULA’s unblemished success record intact.

“Yeehaw! I am so thrilled, I can’t tell you how much!” exclaimed Tory Bruno, ULA’s president and CEO, shortly after Vulcan’s departure from Cape Canaveral. “I am so proud of this team. Oh my gosh, this has been years of hard work. So far, this has been an absolutely beautiful mission.”

This was a pivotal moment for ULA, a 50-50 joint venture between Boeing and Lockheed Martin. The Vulcan rocket will replace ULA’s mainstay rockets, the Atlas V and Delta IV, with lineages dating back to the dawn of the Space Age. ULA has contracts for more than 70 Vulcan missions in its backlog, primarily for the US military and Amazon’s Project Kuiper broadband network.

The Vulcan rocket lived up to the moment Monday. It took nearly a decade for ULA to develop it, some four years longer than anticipated, but the first flight took off at the opening of the launch window on the first launch attempt.

Standing 202 feet (61.6 meters) tall, the Vulcan rocket ignited its two BE-4 main engines in the final seconds of a smooth countdown. A few moments later, two strap-on solid rocket boosters flashed to life to propel the Vulcan rocket off its launch pad at 2: 18 am EST (07: 18 UTC).

On the money

The BE-4 engines and solid-fueled boosters combined to generate more than 2 million pounds of thrust, vaulting Vulcan off the launch pad and through a thin cloud layer. A little over a minute after launch, Vulcan accelerated faster than the speed of sound, then jettisoned its strap-on boosters to fall into the Atlantic Ocean.

Then it was all BE-4. Each of these engines can produce more than a half-million pounds of thrust, consuming a mixture of liquified natural gas—essentially methane—and liquid oxygen. They are built by Blue Origin, the space company founded by billionaire Jeff Bezos. This was the first time BE-4s have flown on a rocket.

Rob Gagnon, ULA’s telemetry commentator, calmly called out mission milestones. “BE-4s continue to operate nominally… Vehicle is continuing to fly down the center of the range track, everything looking good… Nice and smooth operation of the booster.”

The BE-4s fired for five minutes, then shut down to allow Vulcan’s first stage booster to fall away from the rocket’s hydrogen-fueled Centaur upper stage. Two RL10 engines ignited to continue the push into orbit, then switched off as the upper stage coasted over the Atlantic and Africa. A restart of the Centaur upper stage 43 minutes into the flight gave the rocket enough velocity to send Astrobotic’s Peregrine lunar lander toward the Moon.

The nearly 1.5-ton spacecraft separated from Vulcan’s Centaur upper stage around 50 minutes after liftoff. “We have spacecraft separation, right on time,” Gagnon announced.

With Astrobotic’s lander deployed, a third engine firing on the Centaur upper stage moved the rocket off its Moon-bound trajectory and onto a course into heliocentric orbit. “We have now achieved Earth escape,” Gagnon said.

The spent rocket stage will become a human-made artificial satellite of the Sun. A plate on the side of the Centaur upper stage contains small capsules holding the cremated remains of more than 200 people, a “memorial spaceflight” arranged by a Houston-based private company named Celestis.

ULA’s Vulcan rocket shot for the Moon on debut launch—and hit a bullseye Read More »