spacex

pentagon-contract-figures-show-ula’s-vulcan-rocket-is-getting-more-expensive

Pentagon contract figures show ULA’s Vulcan rocket is getting more expensive

A SpaceX Falcon Heavy rocket with NASA’s Psyche spacecraft launches from NASA’s Kennedy Space Center in Florida on October 13, 2023. Credit: Chandan Khanna/AFP via Getty Images

The launch orders announced Friday comprise the second batch of NSSL Phase 3 missions the Space Force has awarded to SpaceX and ULA.

It’s important to remember that these prices aren’t what ULA or SpaceX would charge a commercial satellite customer. The US government pays a premium for access to space. The Space Force, the National Reconnaissance Office, and NASA don’t insure their launches like a commercial customer would do. Instead, government agencies have more insight into their launch contractors, including inspections, flight data reviews, risk assessments, and security checks. Government missions also typically get priority on ULA and SpaceX’s launch schedules. All of this adds up to more money.

A heavy burden

Four of the five launches awarded to SpaceX Friday will use the company’s larger Falcon Heavy rocket, according to Lt. Col. Kristina Stewart at Space Systems Command. One will fly on SpaceX’s workhorse Falcon 9. This is the first time a majority of the Space Force’s annual launch orders has required the lift capability of a Falcon Heavy, with three Falcon 9 booster cores combining to heave larger payloads into space.

All versions of ULA’s Vulcan rocket use a single core booster, with varying numbers of strap-on solid-fueled rocket motors to provide extra thrust off the launch pad.

Here’s a breakdown of the seven new missions assigned to SpaceX and ULA:

USSF-149: Classified payload on a SpaceX Falcon 9 from Florida

USSF-63: Classified payload on a SpaceX Falcon Heavy from Florida

USSF-155: Classified payload SpaceX Falcon Heavy from Florida

USSF-205: WGS-12 communications satellite on a SpaceX Falcon Heavy from Florida

NROL-86: Classified payload on a SpaceX Falcon Heavy from Florida

USSF-88: GPS IIIF-4 navigation satellite on a ULA Vulcan VC2S (two solid rocket boosters) from Florida

NROL-88: Classified payload on a ULA Vulcan VC4S (four solid rocket boosters) from Florida

Pentagon contract figures show ULA’s Vulcan rocket is getting more expensive Read More »

how-america-fell-behind-china-in-the-lunar-space-race—and-how-it-can-catch-back-up

How America fell behind China in the lunar space race—and how it can catch back up


Thanks to some recent reporting, we’ve found a potential solution to the Artemis blues.

A man in a suit speaks in front of a mural of the Moon landing.

NASA Administrator Jim Bridenstine says that competition is good for the Artemis Moon program. Credit: NASA

NASA Administrator Jim Bridenstine says that competition is good for the Artemis Moon program. Credit: NASA

For the last month, NASA’s interim administrator, Sean Duffy, has been giving interviews and speeches around the world, offering a singular message: “We are going to beat the Chinese to the Moon.”

This is certainly what the president who appointed Duffy to the NASA post wants to hear. Unfortunately, there is a very good chance that Duffy’s sentiment is false. Privately, many people within the space industry, and even at NASA, acknowledge that the US space agency appears to be holding a losing hand. Recently, some influential voices, such as former NASA Administrator Jim Bridenstine, have spoken out.

“Unless something changes, it is highly unlikely the United States will beat China’s projected timeline to the Moon’s surface,” Bridenstine said in early September.

As the debate about NASA potentially losing the “second” space race to China heats up in Washington, DC, everyone is pointing fingers. But no one is really offering answers for how to beat China’s ambitions to land taikonauts on the Moon as early as the year 2029. So I will. The purpose of this article is to articulate how NASA ended up falling behind China, and more importantly, how the Western world could realistically retake the lead.

But first, space policymakers must learn from their mistakes.

Begin at the beginning

Thousands of words could be written about the space policy created in the United States over the last two decades and all of the missteps. However, this article will only hit the highlights (lowlights). And the story begins in 2003, when two watershed events occurred.

The first of these was the loss of space shuttle Columbia in February, the second fatal shuttle accident, which signaled that the shuttle era was nearing its end, and it began a period of soul-searching at NASA and in Washington, DC, about what the space agency should do next.

“There’s a crucial year after the Columbia accident,” said eminent NASA historian John Logsdon. “President George W. Bush said we should go back to the Moon. And the result of the assessment after Columbia is NASA should get back to doing great things.” For NASA, this meant creating a new deep space exploration program for astronauts, be it the Moon, Mars, or both.

The other key milestone in 2003 came in October, when Yang Liwei flew into space and China became the third country capable of human spaceflight. After his 21-hour spaceflight, Chinese leaders began to more deeply appreciate the soft power that came with spaceflight and started to commit more resources to related programs. Long-term, the Asian nation sought to catch up to the United States in terms of spaceflight capabilities and eventually surpass the superpower.

It was not much of a competition then. China would not take its first tentative steps into deep space for another four years, with the Chang’e 1 lunar orbiter. NASA had already walked on the Moon and sent spacecraft across the Solar System and even beyond.

So how did the United States squander such a massive lead?

Mistakes were made

SpaceX and its complex Starship lander are getting the lion’s share of the blame today for delays to NASA’s Artemis Program. But the company and its lunar lander version of Starship are just the final steps on a long, winding path that got the United States where it is today.

After Columbia, the Bush White House, with its NASA Administrator Mike Griffin, looked at a variety of options (see, for example, the Exploration Systems Architecture Study in 2005). But Griffin had a clear plan in his mind that he dubbed “Apollo on Steroids,” and he sought to develop a large rocket (Ares V), spacecraft (later to be named Orion), and a lunar lander to accomplish a lunar landing by 2020. Collectively, this became known as the Constellation Program.

It was a mess. Congress did not provide NASA the funding it needed, and the rocket and spacecraft programs quickly ran behind schedule. At one point, to pay for surging Constellation costs, NASA absurdly mulled canceling the just-completed International Space Station. By the end of the first decade of the 2000s, two things were clear: NASA was going nowhere fast, and the program’s only achievement was to enrich the legacy space contractors.

By early 2010, after spending a year assessing the state of play, the Obama administration sought to cancel Constellation. It ran into serious congressional pushback, powered by lobbying from Boeing, Lockheed Martin, Northrop Grumman, and other key legacy contractors.

The Space Launch System was created as part of a political compromise between Sen. Bill Nelson (D-Fla.) and senators from Alabama and Texas.

Credit: Chip Somodevilla/Getty Images

The Space Launch System was created as part of a political compromise between Sen. Bill Nelson (D-Fla.) and senators from Alabama and Texas. Credit: Chip Somodevilla/Getty Images

The Obama White House wanted to cancel both the rocket and the spacecraft and hold a competition for the private sector to develop a heavy lift vehicle. Their thinking: Only with lower-cost access to space could the nation afford to have a sustainable deep space exploration plan. In retrospect, it was the smart idea, but Congress was not having it. In 2011, Congress saved Orion and ordered a slightly modified rocket—it would still be based on space shuttle architecture to protect key contractors—that became the Space Launch System.

Then the Obama administration, with its NASA leader Charles Bolden, cast about for something to do with this hardware. They started talking about a “Journey to Mars.” But it was all nonsense. There was never any there there. Essentially, NASA lost a decade, spending billions of dollars a year developing “exploration” systems for humans and talking about fanciful missions to the red planet.

There were critics of this approach, myself included. In 2014, I authored a seven-part series at the Houston Chronicle called Adrift, the title referring to the direction of NASA’s deep space ambitions. The fundamental problem is that NASA, at the direction of Congress, was spending all of its exploration funds developing Orion, the SLS rocket, and ground systems for some future mission. This made the big contractors happy, but their cost-plus contracts gobbled up so much funding that NASA had no money to spend on payloads or things to actually fly on this hardware.

This is why doubters called the SLS the “rocket to nowhere.” They were, sadly, correct.

The Moon, finally

Fairly early on in the first Trump administration, the new leader of NASA, Jim Bridenstine, managed to ditch the Journey to Mars and establish a lunar program. However, any efforts to consider alternatives to the SLS rocket were quickly rebuffed by the US Senate.

During his tenure, Bridenstine established the Artemis Program to return humans to the Moon. But Congress was slow to open its purse for elements of the program that would not clearly benefit a traditional contractor or NASA field center. Consequently, the space agency did not select a lunar lander until April 2021, after Bridenstine had left office. And NASA did not begin funding work on this until late 2021 due to a protest by Blue Origin. The space agency did not support a lunar spacesuit program for another year.

Much has been made about the selection of SpaceX as the sole provider of a lunar lander. Was it shady? Was the decision rushed before Bill Nelson was confirmed as NASA administrator? In truth, SpaceX was the only company that bid a value that NASA could afford with its paltry budget for a lunar lander (again, Congress prioritized SLS funding), and which had the capability the agency required.

To be clear, for a decade, NASA spent in excess of $3 billion a year on the development of the SLS rocket and its ground systems. That’s every year for a rocket that used main engines from the space shuttle, a similar version of its solid rocket boosters, and had a core stage the same diameter as the shuttle’s external tank. Thirty billion bucks for a rocket highly derivative of a vehicle NASA flew for three decades. SpaceX was awarded less than a single year of this funding, $2.9 billion, for the entire development of a Human Landing System version of Starship, plus two missions.

So yes, after 20 years, Orion appears to be ready to carry NASA astronauts out to the Moon. After 15 years, the shuttle-derived rocket appears to work. And after four years (and less than a tenth of the funding), Starship is not ready to land humans on the Moon.

When will Starship be ready?

Probably not any time soon.

For SpaceX and its founder, Elon Musk, the Artemis Program is a sidequest to the company’s real mission of sending humans to Mars. It simply is not a priority (and frankly, the limited funding from NASA does not compel prioritization). Due to its incredible ambition, the Starship program has also understandably hit some technical snags.

Unfortunately for NASA and the country, Starship still has a long way to go to land humans on the Moon. It must begin flying frequently (this could happen next year, finally). It must demonstrate the capability to transfer and store large amounts of cryogenic propellant in space. It must land on the Moon, a real challenge for such a tall vehicle, necessitating a flat surface that is difficult to find near the poles. And then it must demonstrate the ability to launch from the Moon, which would be unprecedented for cryogenic propellants.

Perhaps the biggest hurdle is the complexity of the mission. To fully fuel a Starship in low-Earth orbit to land on the Moon and take off would require multiple Starship “tanker” launches from Earth. No one can quite say how many because SpaceX is still working to increase the payload capacity of Starship, and no one has real-world data on transfer efficiency and propellant boiloff. But the number is probably at least a dozen missions. One senior source recently suggested to Ars that it may be as many as 20 to 40 launches.

The bottom line: It’s a lot. SpaceX is far and away the highest-performing space company in the Solar System. But putting all of the pieces together for a lunar landing will require time. Privately, SpaceX officials are telling NASA it can meet a 2028 timeline for Starship readiness for Artemis astronauts.

But that seems very optimistic. Very. It’s not something I would feel comfortable betting on, especially if China plans to land on the Moon “before” 2030, and the country continues to make credible progress toward this date.

What are the alternatives?

Duffy’s continued public insistence that he will not let China beat the United States back to the Moon rings hollow. The shrewd people in the industry I’ve spoken with say Duffy is an intelligent person and is starting to realize that betting the entire farm on SpaceX at this point would be a mistake. It would be nice to have a plan B.

But please, stop gaslighting us. Stop blustering about how we’re going to beat China while losing a quarter of NASA’s workforce and watching your key contractors struggle with growing pains. Let’s have an honest discussion about the challenges and how we’ll solve them.

What few people have done is offer solutions to Duffy’s conundrum. Fortunately, we’re here to help. As I have conducted interviews in recent weeks, I have always closed by asking this question: “You’re named NASA administrator tomorrow. You have one job: get NASA astronauts safely back to the Moon before China. What do you do?”

I’ve received a number of responses, which I’ll boil down into the following buckets. None of these strike me as particularly practical solutions, which underscores the desperation of NASA’s predicament. However, recent reporting has uncovered one solution that probably would work. I’ll address that last. First, the other ideas:

  • Stubby Starship: Multiple people have suggested this option. Tim Dodd has even spoken about it publicly. Two of the biggest issues with Starship are the need for many refuelings and its height, making it difficult to land on uneven terrain. NASA does not need Starship’s incredible capability to land 100–200 metric tons on the lunar surface. It needs fewer than 10 tons for initial human missions. So shorten Starship, reduce its capability, and get it down to a handful of refuelings. It’s not clear how feasible this would be beyond armchair engineering. But the larger problem is that Musk wants Starship to get taller, not shorter, so SpaceX would probably not be willing to do this.
  • Surge CLPS funding: Since 2019, NASA has been awarding relatively small amounts of funding to private companies to land a few hundred kilograms of cargo on the Moon. NASA could dramatically increase funding to this program, say up to $10 billion, and offer prizes for the first and second companies to land two humans on the Moon. This would open the competition to other companies beyond SpaceX and Blue Origin, such as Firefly, Intuitive Machines, and Astrobotic. The problem is that time is running short, and scaling up from 100 kilograms to 10 metric tons is an extraordinary challenge.
  • Build the Lunar Module: NASA already landed humans on the Moon in the 1960s with a Lunar Module built by Grumman. Why not just build something similar again? In fact, some traditional contractors have been telling NASA and Trump officials this is the best option, that such a solution, with enough funding and cost-plus guarantees, could be built in two or three years. The problem with this is that, sorry, the traditional space industry just isn’t up to the task. It took more than a decade to build a relatively simple rocket based on the space shuttle. The idea that a traditional contractor will complete a Lunar Module in five years or less is not supported by any evidence in the last 20 years. The flimsy Lunar Module would also likely not pass NASA’s present-day safety standards.
  • Distract China: I include this only for completeness. As for how to distract China, use your imagination. But I would submit that ULA snipers or starting a war in the South China Sea is not the best way to go about winning the space race.

OK, I read this far. What’s the answer?

The answer is Blue Origin’s Mark 1 lander.

The company has finished assembly of the first Mark 1 lander and will soon ship it from Florida to Johnson Space Center in Houston for vacuum chamber testing. A pathfinder mission is scheduled to launch in early 2026. It will be the largest vehicle to ever land on the Moon. It is not rated for humans, however. It was designed as a cargo lander.

There have been some key recent developments, though. About two weeks ago, NASA announced that a second mission of Mark 1 will carry the VIPER rover to the Moon’s surface in 2027. This means that Blue Origin intends to start a production line of Mark 1 landers.

At the same time, Blue Origin already has a contract with NASA to develop the much larger Mark 2 lander, which is intended to carry humans to the lunar surface. Realistically, though, this will not be ready until sometime in the 2030s. Like SpaceX’s Starship, it will require multiple refueling launches. As part of this contract, Blue has worked extensively with NASA on a crew cabin for the Mark 2 lander.

A full-size mock-up of the Blue Origin Mk. 1 lunar lander.

Credit: Eric Berger

A full-size mock-up of the Blue Origin Mk. 1 lunar lander. Credit: Eric Berger

Here comes the important part. Ars can now report, based on government sources, that Blue Origin has begun preliminary work on a modified version of the Mark 1 lander—leveraging learnings from Mark 2 crew development—that could be part of an architecture to land humans on the Moon this decade. NASA has not formally requested Blue Origin to work on this technology, but according to a space agency official, the company recognizes the urgency of the need.

How would it work? Blue Origin is still architecting the mission, but it would involve “multiple” Mark 1 landers to carry crew down to the lunar surface and then ascend back up to lunar orbit to rendezvous with the Orion spacecraft. Enough work has been done, according to the official, that Blue Origin engineers are confident the approach could work. Critically, it would not require any refueling.

It is unclear whether this solution has reached Duffy, but he would be smart to listen. According to sources, Blue Origin founder Jeff Bezos is intrigued by the idea. And why wouldn’t he be? For a quarter of a century, he has been hearing about how Musk has been kicking his ass in spaceflight. Bezos also loves the Apollo program and could now play an essential role in serving his country in an hour of need. He could beat SpaceX to the Moon and stamp his name in the history of spaceflight.

Jeff and Sean? Y’all need to talk.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

How America fell behind China in the lunar space race—and how it can catch back up Read More »

rocket-report:-keeping-up-with-kuiper;-new-glenn’s-second-flight-slips

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips


Amazon plans to conduct two launches of Kuiper broadband satellites just days apart.

An unarmed Trident II D5 Life Extension (D5LE) missile launches from an Ohio-class ballistic missile submarine off the coast of Florida. Credit: US Navy

Welcome to Edition 8.12 of the Rocket Report! We often hear from satellite operators—from the military to venture-backed startups—about their appetite for more launch capacity. With so many rocket launches happening around the world, some might want to dismiss these statements as a corporate plea for more competition, and therefore lower prices. SpaceX is on pace to launch more than 150 times this year. China could end the year with more than 70 orbital launches. These are staggering numbers compared to global launch rates just a few years ago. But I’m convinced there’s room for more alternatives for reliable (and reusable) rockets. All of the world’s planned mega-constellations will need immense launch capacity just to get off the ground, and if successful, they’ll go into regular replacement and replenishment cycles. Throw in the still-undefined Golden Dome missile shield and many nations’ desire for a sovereign launch capability, and it’s easy to see the demand curve going up.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sharp words from Astra’s Chris Kemp. Chris Kemp, the chief executive officer of Astra, apparently didn’t get the memo about playing nice with his competitors in the launch business. Kemp made some spicy remarks at the Berkeley Space Symposium 2025 earlier this month, billed as the largest undergraduate aerospace event at the university (see video of the talk). During the speech, Kemp periodically deviated from building up Astra to hurling insults at several of his competitors in the launch industry, Ars reports. To be fair to Kemp, some of his criticisms are not without a kernel of truth. But they are uncharacteristically rough all the same, especially given Astra’s uneven-at-best launch record and financial solvency to date.

Wait, what?! … Kemp is generally laudatory in his comments about SpaceX, but his most crass statement took aim at the quality of life of SpaceX employees at Starbase, Texas. He said life at Astra is “more fun than SpaceX because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn.” For the record, no SpaceX employees have been beheaded. “And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day.” Kemp also accused Firefly Aerospace of sending Astra “garbage” rocket engines as part of the companies’ partnership on propulsion for Astra’s next-generation rocket.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

A step forward for Europe’s reusable rocket program. No one could accuse the European Space Agency and its various contractors of moving swiftly when it comes to the development of reusable rockets. However, it appears that Europe is finally making some credible progress, Ars reports. Last week, the France-based ArianeGroup aerospace company announced that it completed the integration of the Themis vehicle, a prototype rocket that will test various landing technologies, on a launch pad in Sweden. Low-altitude hop tests, a precursor for developing a rocket’s first stage that can vertically land after an orbital launch, could start late this year or early next.

Hopping into the future … “This milestone marks the beginning of the ‘combined tests,’ during which the interface between Themis and the launch pad’s mechanical, electrical, and fluid systems will be thoroughly trialed, with the aim of completing a test under cryogenic conditions,” ArianeGroup said. This particular rocket will likely undergo only short hops, initially about 100 meters. A follow-up vehicle, Themis T1E, is intended to fly medium-altitude tests at a later date. Some of the learnings from these prototypes will feed into a smaller, reusable rocket intended to lift 500 kilograms to low-Earth orbit. This is under development by MaiaSpace, a subsidiary of ArianeGroup. Eventually, the European Space Agency would like to use technology developed as part of Themis to develop a new line of reusable rockets that will succeed the Ariane 6 rocket.

Navy conducts Trident missile drills. The US Navy carried out four scheduled missile tests of a nuclear-capable weapons system off the coast of Florida within the last week, Defense News reports. The service’s Strategic Systems Programs conducted flights of unarmed Trident II D5 Life Extension missiles from a submerged Ohio-class ballistic missile submarine from September 17 to September 21 as part of an ongoing scheduled event meant to test the reliability of the system. “The missile tests were not conducted in response to any ongoing world events,” a Navy release said.

Secret with high visibility … The Navy periodically performs these Trident missile tests off the coasts of Florida and California, taking advantage of support infrastructure and range support from the two busiest US spaceports. The military doesn’t announce the exact timing of the tests, but warnings issued for pilots to stay out of the area give a general idea of when they might occur. One of the launch events Sunday was visible from Puerto Rico, illuminating the night sky in photos published on social media. The missiles fell in the Atlantic Ocean as intended, the Navy said. The Trident II D5 missiles were developed in the 1980s and are expected to remain in service on the Navy’s ballistic missile submarines into the 2040s. The Trident system is one leg of the US military’s nuclear triad, alongside land-based Minuteman ballistic missiles and nuclear-capable strategic bombers. (submitted by EllPeaTea)

Firefly plans for Alpha’s return to flight. Firefly Aerospace expects to resume Alpha launches in the “coming weeks,” with two flights planned before the end of the year, Space News reports. These will be the first flights of Firefly’s one-ton-class Alpha rocket since a failure in April destroyed a Lockheed Martin tech demo satellite after liftoff from California. In a quarterly earnings call, Firefly shared a photo showing its next two Alpha rockets awaiting shipment from the company’s Texas factory.

Righting the ship … These next two launches really need to go well for Firefly. The Alpha rocket has, at best, a mixed record with only two fully successful flights in six attempts. Two other missions put their payloads into off-target orbits, and two Alpha launches failed to reach orbit at all. Firefly went public on the NASDAQ stock exchange last month, raising nearly $900 million in the initial public offering to help fund the company’s future programs, namely the medium-lift Eclipse rocket developed in partnership with Northrop Grumman. There’s a lot to like about Firefly. The company achieved the first fully successful landing of a commercial spacecraft on the Moon in March. NASA has selected Firefly for three more commercial landings on the Moon, and Firefly reported this week it has an agreement with an unnamed commercial customer for an additional dedicated mission. But the Alpha program hasn’t had the same level of success. We’ll see if Firefly can get the rocket on track soon. (submitted by EllPeaTea)

Avio wins contract to launch “extra-European” mission. Italian rocket builder Avio has signed a launch services agreement with US-based launch aggregator SpaceLaunch for a Vega C launch carrying an Earth observation satellite for an “extra-European institutional customer” in 2027, European Spaceflight reports. Avio announced that it had secured the launch contract on September 18. According to the company, the contract was awarded through an open international competition, with Vega C chosen for its “versatility and cost-effectiveness.” While Avio did not reveal the identity of the “extra-European” customer, it said that it would do so later this year.

Plenty of peculiarities … There are several questions to unpack here, and Andrew Parsonson of European Spaceflight goes through them all. Presumably, extra-European means the customer is based outside of Europe. Avio’s statement suggests we’ll find out the answer to that question soon. Details about the US-based launch broker SpaceLaunch are harder to find. SpaceLaunch appears to have been founded in January 2025 by two former Firefly Aerospace employees with a combined 40 years of experience in the industry. On its website, the company claims to provide end-to-end satellite launch integration, mission management, and launch procurement services with a “portfolio of launch vehicle capacity around the globe.” SpaceLaunch boasts it has supported the launch of more than 150 satellites on 12 different launch vehicles. However, according to public records, it does not appear that the company itself has supported a single launch. Instead, the claim seems to credit SpaceLaunch with launches that were actually carried out during the two founders’ previous tenures at Spaceflight, Firefly Aerospace, Northrop Grumman, and the US Air Force. (submitted by EllPeaTea)

Falcon 9 launches three missions for NASA and NOAA. Scientists loaded three missions worth nearly $1.6 billion on a SpaceX Falcon 9 rocket for launch Wednesday, toward an orbit nearly a million miles from Earth, to measure the supersonic stream of charged particles emanating from the Sun, Ars reports. One of the missions, from the National Oceanic and Atmospheric Administration (NOAA), will beam back real-time observations of the solar wind to provide advance warning of geomagnetic storms that could affect power grids, radio communications, GPS navigation, air travel, and satellite operations. The other two missions come from NASA, with research objectives that include studying the boundary between the Solar System and interstellar space and observing the rarely seen outermost layer of our own planet’s atmosphere.

Immense value …All three spacecraft will operate in orbit around the L1 Lagrange point, a gravitational balance point located more than 900,000 miles (1.5 million kilometers) from Earth. Bundling these three missions onto the same rocket saved at least tens of millions of dollars in launch costs. Normally, they would have needed three different rockets. Rideshare missions to low-Earth orbit are becoming more common, but spacecraft departing for more distant destinations like the L1 Lagrange point are rare. Getting all three missions on the same launch required extensive planning, a stroke of luck, and fortuitous timing. “This is the ultimate cosmic carpool,” said Joe Westlake, director of NASA’s heliophysics division. “These three missions heading out to the Sun-Earth L1 point riding along together provide immense value for the American taxpayer.”

US officials concerned about China mastering reusable launch. SpaceX’s dominance in reusable rocketry is one of the most important advantages the United States has over China as competition between the two nations extends into space, US Space Force officials said Monday. But several Chinese companies are getting close to fielding their own reusable rockets, Ars reports. “It’s concerning how fast they’re going,” said Brig. Gen. Brian Sidari, the Space Force’s deputy chief of space operations for intelligence. “I’m concerned about when the Chinese figure out how to do reusable lift that allows them to put more capability on orbit at a quicker cadence than currently exists.”

By the numbers … China has used 14 different types of rockets on its 56 orbital-class missions this year, and none have flown more than 11 times. Eight US rocket types have cumulatively flown 145 times, with 122 of those using SpaceX’s workhorse Falcon 9. Without a reusable rocket, China must maintain more rocket companies to sustain a launch rate of just one-third to one-half that of the United States. This contrasts with the situation just four years ago, when China outpaced the United States in orbital rocket launches. The growth in US launches has been a direct result of SpaceX’s improvements to launch at a higher rate, an achievement primarily driven by the recovery and reuse of Falcon 9 boosters and payload fairings.

Atlas V launches more Kuiper satellites. Roughly an hour past sunrise Thursday, an Atlas V rocket from United Launch Alliance took flight from Cape Canaveral Space Force Station, Florida. Onboard the rocket, flying in its most powerful configuration, were the next 27 Project Kuiper broadband satellites from Amazon, Spaceflight Now reports. This is the third batch of production satellites launched by ULA and the fifth overall for the growing low-Earth orbit constellation. The Atlas V rocket released the 27 Kuiper satellites about 280 miles (450 kilometers) above Earth. The satellites will use onboard propulsion to boost themselves to their assigned orbit at 392 miles (630 kilometers).

Another Kuiper launch on tap … With this deployment, Amazon now has 129 satellites in orbit. This is a small fraction of the network’s planned total of 3,232 satellites, but Amazon has enjoyed a steep ramp-up in the Kuiper launch cadence as the company’s satellite assembly line in Kirkland, Washington, continues churning out spacecraft. Another 24 Kuiper satellites are slated to launch September 30 on a SpaceX Falcon 9 rocket, and Amazon has delivered enough satellites to Florida for an additional launch later this fall. (submitted by EllPeaTea)

German military will fly with Ariane 6. Airbus Defense and Space has awarded Arianespace a contract to launch a pair of SATCOMBw-3 communications satellites for the German Armed Forces, European Spaceflight reports. Airbus is the prime contractor for the nearly $2.5 billion (2.1 billion euro) SATCOMBw-3 program, which will take over from the two-satellite SATCOMBw-2 constellation currently providing secure communications for the German military. Arianespace announced Wednesday that it had been awarded the contract to launch the satellites aboard two Ariane 6 rockets. “By signing this new strategic contract for the German Armed Forces, Arianespace accomplishes its core mission of guaranteeing autonomous access to space for European sovereign satellites,” said Arianespace CEO David Cavaillolès.

Running home to Europe … The chief goal of the Ariane 6 program is to provide Europe with independent access to space, something many European governments see as a strategic requirement. Several European military, national security, and scientific satellites have launched on SpaceX Falcon 9 rockets in the last few years as officials waited for the debut of the Ariane 6 rocket. With three successful Ariane 6 flights now in the books, European customers seem to now have the confidence to commit to flying their satellites on Ariane 6. (submitted by EllPeaTea)

Artemis II launch targeted for February. NASA is pressing ahead with preparations for the first launch of humans beyond low-Earth orbit in more than five decades, and officials said Tuesday that the Artemis II mission could take flight early next year, Ars reports. Although work remains to be done, the space agency is now pushing toward a launch window that opens on February 5, 2026, officials said during a news conference on Tuesday at Johnson Space Center. The Artemis II mission represents a major step forward for NASA and seeks to send four astronauts—Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen—around the Moon and back. The 10-day mission will be the first time astronauts have left low-Earth orbit since the Apollo 17 mission in December 1972.

Orion named Integrity The first astronauts set to fly to the Moon in more than 50 years will do so in Integrity, Ars reports. NASA’s Artemis II crew revealed Integrity as the name of their Orion spacecraft during a news conference on Wednesday at the Johnson Space Center in Houston. “We thought, as a crew, we need to name this spacecraft. We need to have a name for the Orion spacecraft that we’re going to ride this magical mission on,” said Wiseman, commander of the Artemis II mission.

FAA reveals new Starship trajectories. Sometime soon, perhaps next year, SpaceX will attempt to fly one of its enormous Starship rockets from low-Earth orbit back to its launch pad in South Texas. A successful return and catch at the launch tower would demonstrate a key capability underpinning Elon Musk’s hopes for a fully reusable rocket. In order for this to happen, SpaceX must overcome the tyranny of geography. A new document released by the Federal Aviation Administration shows the narrow corridors Starship will fly to space and back when SpaceX tries to recover them, Ars reports.

Flying over people It was always evident that flying a Starship from low-Earth orbit back to Starbase would require the rocket to fly over Mexico and portions of South Texas. The rocket launches to the east over the Gulf of Mexico, so it must approach Starbase from the west when it comes in for a landing. The new maps show SpaceX will launch Starships to the southeast over the Gulf and the Caribbean Sea, and directly over Jamaica, or to the northeast over the Gulf and the Florida peninsula. On reentry, the ship will fly over Baja California and Mexico’s interior near the cities of Hermosillo and Chihuahua, each with a population of roughly a million people. The trajectory would bring Starship well north of the Monterrey metro area and its 5.3 million residents, then over the Rio Grande Valley near the Texas cities of McAllen and Brownsville.

New Glenn’s second flight at least a month away. The second launch of Blue Origin’s New Glenn rocket, carrying a NASA smallsat mission to Mars, is now expected in late October or early November, Space News reports. Tim Dunn, NASA’s senior launch director at Kennedy Space Center, provided an updated schedule for the second flight of New Glenn in comments after a NASA-sponsored launch on a Falcon 9 rocket Wednesday. Previously, the official schedule from NASA showed the launch date as no earlier than September 29.

No surprise … It was already apparent that this launch wouldn’t happen September 29. Blue Origin has test-fired the second stage for the upcoming flight of the New Glenn rocket but hasn’t rolled the first stage to the launch pad for its static fire. Seeing the rocket emerge from Blue’s factory in Florida will be an indication that the launch date is finally near. Blue Origin will launch NASA’s ESCAPADE mission, a pair of small satellites to study how the solar wind interacts with the Martian upper atmosphere.

Blue Origin will launch a NASA rover to the Moon. NASA has awarded Blue Origin a task order worth up to $190 million to deliver its Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon’s surface, Aviation Week & Space Technology reports. Blue Origin, one of 13 currently active Commercial Lunar Payload Services (CLPS) providers, submitted the only bid to carry VIPER to the Moon after NASA requested offers from industry last month. NASA canceled the VIPER mission last year, citing cost overruns with the rover and delays in its planned ride to the Moon aboard a lander provided by Astrobotic. But engineers had already completed assembly of the rover, and scientists protested NASA’s decision to terminate the mission.

Some caveats … Blue Origin will deliver VIPER to a location near the Moon’s south pole in late 2027 using a robotic Blue Moon MK1 lander, a massive craft larger than the Apollo lunar landing module. The company’s first Blue Moon MK1 lander is scheduled to fly to the Moon next year. NASA’s contract for the VIPER delivery calls for Blue Origin to design accommodations for the rover on the Blue Moon lander. The agency said it will decide whether to proceed with the actual launch on a New Glenn rocket and delivery of VIPER to the Moon based partially on the outcome of the first Blue Moon test flight next year.

Next three launches

Sept. 26: Long March 4C | Unknown Payload | Jiuquan Satellite Launch Center, China | 19: 20 UTC

Sept. 27: Long March 6A | Unknown Payload | Taiyuan Satellite Launch Center, China | 12: 39 UTC

Sept. 28: Falcon 9 | Starlink 11-20 | Vandenberg Space Force Base, California | 23: 32 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips Read More »

astra’s-chris-kemp-woke-up-one-recent-morning-and-chose-violence

Astra’s Chris Kemp woke up one recent morning and chose violence

SpaceX

Kemp generally praises SpaceX for leading the way with iterative design and founder Elon Musk’s willingness to fail publicly in order to move fast. However, in seeking to appeal to interns, he suggested that Astra offered a better working environment than SpaceX’s Starbase factory in South Texas.

“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn,” he said. “And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required.”

For the record, no SpaceX interns have been beheaded. And honestly, Chris, that is just a really crass thing to say.

Rocket Lab

Kemp’s longest and oldest rival in the launch industry is Rocket Lab and its founder, Peter Beck. This was especially apparent in a recent documentary that covered the rise of both Astra and Rocket Lab, called Wild Wild West. Kemp did not take any direct shots at Beck during his Berkeley speech.

However, in the late 2010s both Astra and Rocket Lab were racing to develop a small-lift rocket capable of lifting dozens to a few hundred kilograms to orbit, Rocket 3 and Electron. In hindsight, Kemp said, these rockets were not large enough to serve the market for satellites. There just were not enough CubeSats to go around.

“That little rocket is too small,” Kemp said in Berkeley about Rocket 3. “And so is Electron.”

A size comparison between Rocket 3, right, and Rocket 4.

Credit: Astra

A size comparison between Rocket 3, right, and Rocket 4. Credit: Astra

Electron may be small, but it has launched more than 70 times. It could generate as much as $200 million in revenue for Rocket Lab this year. And it has provided an excellent test bed for Rocket Lab as it seeks to build the much larger Neutron vehicle, with a reusable first stage.

Overall, Kemp’s talk is insightful, offering thoughtful commentary on Astra’s history and vision for the future. The company is a startup again, now focusing on building a mobile, tactical rocket that could serve national defense interests. Instead of focusing on reuse, the company wants to build a lot of rockets cheaply. It has built a large factory in California to accomplish this.

Also, after nine years in the launch industry, Kemp seems to have finally learned an important lesson about rockets: reliability matters.

“Rocket 3 was the cowboy rocket,” he said, noting the company has worked hard to improve its practices and manufacturing to build vehicles that won’t fail anymore. “The big idea was, you can’t get to scale without reliability.”

Astra’s Chris Kemp woke up one recent morning and chose violence Read More »

us-intel-officials-“concerned”-china-will-soon-master-reusable-launch

US intel officials “concerned” China will soon master reusable launch


“They have to have on-orbit refueling because they don’t access space as frequently as we do.”

File photo of a reusable Falcon 9 booster moments before landing on a recent flight at Cape Canaveral Space Force Station, Florida. Credit: SpaceX

SpaceX scored its 500th landing of a Falcon 9 first stage booster on an otherwise routine flight earlier this month, sending 28 Starlink communications satellites into orbit. Barring any unforeseen problems, SpaceX will mark the 500th re-flight of a Falcon first stage later this year.

A handful of other US companies, including Blue Origin, Rocket Lab, Relativity Space, and Stoke Space, are on the way to replicating or building on SpaceX’s achievements in recycling rocket parts. These launch providers are racing a medley of Chinese rocket builders to become the second company to land and reuse a first stage booster.

But it will be many years—perhaps a decade or longer—until anyone else matches the kinds of numbers SpaceX is racking up in the realm of reusable rockets. SpaceX’s dominance in this field is one of the most important advantages the United States has over China as competition between the two nations extends into space, US Space Force officials said Monday.

“It’s concerning how fast they’re going,” said Brig. Gen. Brian Sidari, the Space Force’s deputy chief of space operations for intelligence. “I’m concerned about when the Chinese figure out how to do reusable lift that allows them to put more capability on orbit at a quicker cadence than currently exists.”

Taking advantage

China has used 14 different types of rockets on its 56 orbital-class missions this year, and none have flown more than 11 times. Eight US rocket types have cumulatively flown 142 times, with 120 of those using SpaceX’s workhorse Falcon 9. Without a reusable rocket, China must maintain more rocket companies to sustain a launch rate of just one-third to one-half that of the United States.

This contrasts with the situation just four years ago, when China outpaced the United States in orbital rocket launches. The growth in US launches has been a direct result of SpaceX’s improvements to launch at a higher rate, an achievement primarily driven by the recovery and reuse of Falcon 9 boosters and payload fairings. Last month, SpaceX flew one of its Falcon 9 boosters for the 30th time and set a record at nine days for the shortest turnaround between flights of the same booster in March.

“They’ve put more satellites on orbit,” Sidari said, referring to China. “They still do not compare to the US, but it is concerning once they figure out that reusable lift. The other one is the megaconstellations. They’ve seen how the megaconstellations provide capability to the US joint force and the West, and they’re mimicking it. So, that does concern me, how fast they’re going, but we’ll see. It’s easier said than done. They do have to figure it out, and they do have some challenges that we haven’t dealt with.”

One of those challenges is China’s continued reliance on expendable rockets. This has made it more important for China to make “game-changing” advancements in other areas, according to Chief Master Sgt. Ron Lerch, the Space Force’s senior enlisted advisor for intelligence.

Lerch pointed to the recent refueling of a Chinese satellite in geosynchronous orbit, more than 22,000 miles (nearly 36,000 kilometers) over the equator. China’s Shijian-21 and Shijian-25 satellites, known as SJ-21 and SJ-25 for short, came together on July 2 and have remained together ever since, according to open source orbital tracking data.

No one has refueled a spacecraft so far from Earth before. SJ-25 appears to be the refueler for SJ-21, a Chinese craft capable of latching onto other satellites and towing them to different orbits. Chinese officials say SJ-21 is testing “space debris mitigation” techniques, but US officials have raised concerns that China is testing a counter-space weapon that could sidle up to an American or allied satellite and take control of it.

Lerch said satellite refueling is more important to China than it is to the United States. With refueling, China can achieve a different kind of reuse in space while the government waits for reusable rockets to enter service.

“They have to have on-orbit refueling as a capability because they don’t access space as frequently as we do,” Lerch said Monday at the Air Force Association’s Air, Space, and Cyber Conference. “When it comes to replenishing our toolkit, getting more capability (on orbit) and reconstitution, having reusable launch is what affords us that ability, and the Chinese don’t have that. So, pursuing things like refueling on orbit, it is game-changing for them.”

The Nebula 1 rocket from China’s Deep Blue Aerospace just before attempting to land on a vertical takeoff, vertical landing test flight last year. Credit: Deep Blue Aerospace

SpaceX’s rapid-fire cadence is pivotal for a number of US national security programs. The Pentagon uses SpaceX’s Starlink satellites, which take up most of the Falcon 9 launch capacity, for commercial-grade global connectivity. SpaceX’s Starshield satellite platform, derived from the Starlink design, has launched in stacks of up to 22 spacecraft on a single Falcon 9 to deploy a constellation of hundreds of all-seeing spy satellites for the National Reconnaissance Office. The most recent batch of these Starshield satellites launched Monday.

Cheaper, readily available launch services will also be critical to the Pentagon’s aspirations to construct a missile shield to defend against attacks on the US homeland. Sensors and interceptors for the military’s planned Golden Dome missile defense system will be scattered throughout low-Earth orbit.

SpaceX’s inventory of Falcon 9 rockets has enabled the Space Force to move closer to realizing on-demand launch services. On two occasions within the last year, the Space Force asked SpaceX to launch a GPS navigation satellite with just a few months of lead time to prepare for the mission. With a fleet of reusable rockets at the ready, SpaceX delivered.

Meanwhile, China recently started deploying its own satellite megaconstellations. Chinese officials claim these new satellite networks will be used for Internet connectivity. That may be so, but Pentagon officials worry China can use them for other purposes, just as the Space Force is doing with Starlink, Starshield, and other programs.

Copycats in space

Lerch mentioned two other recent Chinese actions in space that have his attention. One is the launch of five Tongxin Jishu Shiyan (TJS) satellites, or what China calls communication technology test satellites, into geosynchronous orbit since January, something Lerch called “highly unusual.” Chinese authorities released (rather interesting) patches for four of these TJS satellites, suggesting they are part of a family of spacecraft.

“More importantly, these spacecraft sitting at GEO (geosynchronous orbit) are not supposed to be sliding all around the GEO belt,” Lerch said. “But the history of these experimental spacecraft have shown that that’s exactly what they do, which is very uncharacteristic for a system that’s supposed to be providing satellite communications.”

US officials believe China uses at least some of the TJS satellites for missile warning or spy missions. TJS satellites filling the role of a reconnaissance mission might have enormous umbrella-like reflectors to try to pick up communication signals transmitted by foreign forces, such as those of the United States.

A modified Long March 7 rocket carrying the Yaogan 45 satellite lifts off from the Wenchang Space Launch Site on September 9, 2025, in Wenchang, Hainan Province of China. Credit: Luo Yunfei/China News Service/VCG via Getty Images

China also launched a spy satellite called Yaogan 45 into a peculiar orbit earlier this month. (Yaogan is a cover name for China’s military spy satellites.) Yaogan 45 is a remote sensing platform, Lerch said, but it’s flying much higher than a typical Earth-imaging satellite. Instead of orbiting a few hundred miles above the Earth, Yaogan 45 circles at an altitude of some 4,660 miles (7,500 kilometers).

“That, alone, is very interesting,” Lerch said.

But US intelligence officials believe there’s more to the story. China launched the country’s first two communications satellites into a so-called medium-Earth orbit, or MEO, last year. These satellites are the first in a network called Smart Skynet.

“It looks like a year ago they started to put the infrastructure at MEO to be able to move around data, and then a year later, the Chinese are now putting remote sensing capability at MEO as well,” Lerch said. “That’s interesting, and that starts to paint a picture that they value remote sensing to the point where they want resiliency in layers of it.”

China launched a satellite named Yaogan 41 into geosynchronous orbit in 2023 with a sharp-eyed telescope with enough sensitivity to track car-sized objects on the ground and at sea. From its perch in geosynchronous orbit, Yaogan 41 will provide China’s military with a continuous view of the Indo-Pacific region. A single satellite in low-Earth orbit offers only fleeting views.

Some of this may sound familiar if you follow what the US military and the National Reconnaissance Office are doing with their satellites.

“Our military power has served as a bit of an open book, and adversaries have watched and observed us for years,” said Lt. Gen. Max Pearson, the Air Force’s deputy chief of staff for intelligence.

China’s military has “observed how we fight, the techniques we use, the weapons systems we have,” Pearson said. “When you combine that with intellectual property theft that has fueled a lot of their modernization, they have deliberately developed and modernized to counter our American way of war.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

US intel officials “concerned” China will soon master reusable launch Read More »

starship-will-soon-fly-over-towns-and-cities,-but-will-dodge-the-biggest-ones

Starship will soon fly over towns and cities, but will dodge the biggest ones


Starship’s next chapter will involve launching over Florida and returning over Mexico.

SpaceX’s Starship vehicle is encased in plasma as it reenters the atmosphere over the Indian Ocean on its most recent test flight in August. Credit: SpaceX

Some time soon, perhaps next year, SpaceX will attempt to fly one of its enormous Starship rockets from low-Earth orbit back to its launch pad in South Texas. A successful return and catch at the launch tower would demonstrate a key capability underpinning Elon Musk’s hopes for a fully reusable rocket.

In order for this to happen, SpaceX must overcome the tyranny of geography. Unlike launches over the open ocean from Cape Canaveral, Florida, rockets departing from South Texas must follow a narrow corridor to steer clear of downrange land masses.

All 10 of the rocket’s test flights so far have launched from Texas toward splashdowns in the Indian or Pacific Oceans. On these trajectories, the rocket never completes a full orbit around the Earth, but instead flies an arcing path through space before gravity pulls it back into the atmosphere.

If Starship’s next two test flights go well, SpaceX will likely attempt to send the soon-to-debut third-generation version of the rocket all the way to low-Earth orbit. The Starship V3 vehicle will measure 171 feet (52.1 meters) tall, a few feet more than Starship’s current configuration. The entire rocket, including its Super Heavy booster, will have a height of 408 feet (124.4 meters).

Starship, made of stainless steel, is designed for full reusability. SpaceX has already recovered and reflown Super Heavy boosters, but won’t be ready to recover the rocket’s Starship upper stage until next year, at the soonest.

That’s one of the next major milestones in Starship’s development after achieving orbital flight. SpaceX will attempt to bring the ship home to be caught back at the launch site by the launch tower at Starbase, Texas, located on the southernmost section of the Texas Gulf Coast near the US-Mexico border.

It was always evident that flying a Starship from low-Earth orbit back to Starbase would require the rocket to fly over Mexico and portions of South Texas. The rocket launches to the east over the Gulf of Mexico, so it must approach Starbase from the west when it comes in for a landing.

New maps published by the Federal Aviation Administration show where the first Starships returning to Texas may fly when they streak through the atmosphere.

Paths to and from orbit

The FAA released a document Friday describing SpaceX’s request to update its government license for additional Starship launch and reentry trajectories. The document is a draft version of a “tiered environmental assessment” examining the potential for significant environmental impacts from the new launch and reentry flight paths.

The federal regulator said it is evaluating potential impacts in aviation emissions and air quality, noise and noise-compatible land use, hazardous materials, and socioeconomics. The FAA concluded the new flight paths proposed by SpaceX would have “no significant impacts” in any of these categories.

SpaceX’s Starship rocket shortly before splashing into the Indian Ocean in August. Credit: SpaceX

The environmental review is just one of several factors the FAA considers when deciding whether to approve a new commercial launch or reentry license. According to the FAA, the other factors are public safety issues (such as overflight of populated areas and payload contents), national security or foreign policy concerns, and insurance requirements.

The FAA didn’t make a statement on any public safety and foreign policy concerns with SpaceX’s new trajectories, but both issues may come into play as the company seeks approval to fly Starship over Mexican towns and cities uprange from Starbase.

The regulator’s licensing rules state that a commercial launch and reentry should each pose no greater than a 1 in 10,000 chance of harming or killing a member of the public not involved in the mission. The risk to any individual should not exceed 1 in 1 million.

So, what’s the danger? If something on Starship fails, it could disintegrate in the atmosphere. Surviving debris would rain down to the ground, as it did over the Turks and Caicos Islands after two Starship launch failures earlier this year. Two other Starship flights ran into problems once in space, tumbling out of control and breaking apart during reentry over the Indian Ocean.

The most recent Starship flight last month was more successful, with the ship reaching its target in the Indian Ocean for a pinpoint splashdown. The splashdown had an error of just 3 meters (10 feet), giving SpaceX confidence in returning future Starships to land.

This map shows Starship’s proposed reentry corridor. Credit: Federal Aviation Administration

One way of minimizing the risk to the public is to avoid flying over large metropolitan areas, and that’s exactly what SpaceX and the FAA are proposing to do, at least for the initial attempts to bring Starship home from orbit. A map of a “notional” Starship reentry flight path shows the vehicle beginning its reentry over the Pacific Ocean, then passing over Baja California and soaring above Mexico’s interior near the cities of Hermosillo and Chihuahua, each with a population of roughly a million people.

The trajectory would bring Starship well north of the Monterrey metro area and its 5.3 million residents, then over the Rio Grande Valley near the Texas cities of McAllen and Brownsville. During the final segment of Starship’s return trajectory, the vehicle will begin a vertical descent over Starbase before a final landing burn to slow it down for the launch pad’s arms to catch it in midair.

In addition to Monterrey, the proposed flight path dodges overflights of major US cities like San Diego, Phoenix, and El Paso, Texas.

Let’s back up

Setting up for this reentry trajectory requires SpaceX to launch Starship into an orbit with exactly the right inclination, or angle to the equator. There are safety constraints for SpaceX and the FAA to consider here, too.

All of the Starship test flights to date have launched toward the east, threading between South Florida and Cuba, south of the Bahamas, and north of Puerto Rico before heading over the North Atlantic Ocean. For Starship to target just the right orbit to set up for reentry, the rocket must fly in a slightly different direction over the Gulf.

Another map released by the FAA shows two possible paths Starship could take. One of the options goes to the southeast between Mexico’s Yucatan Peninsula and the western tip of Cuba, then directly over Jamaica as the rocket accelerated into orbit over the Caribbean Sea. The other would see Starship departing South Texas on a northeasterly path and crossing over North Florida before reaching the Atlantic Ocean.

While both trajectories fly over land, they avoid the largest cities situated near the flight path. For example, the southerly route misses Cancun, Mexico, and the northerly path flies between Jacksonville and Orlando, Florida. “Orbital launches would primarily be to low inclinations with flight trajectories north or south of Cuba that minimize land overflight,” the FAA wrote in its draft environmental assessment.

The FAA analyzed two launch trajectory options for future orbital Starship test flights. Credit: Federal Aviation Administration

The proposed launch and reentry trajectories would result in temporary airspace closures, the FAA said. This could force delays or rerouting of anywhere from seven to 400 commercial flights for each launch, according to the FAA’s assessment.

Launch airspace closures are already the norm for Starship test flights. The FAA concluded that the reentry path over Mexico would require the closure of a swath of airspace covering more than 4,200 miles. This would affect up to 200 more commercial airplane flights during each Starship mission. Eventually, the FAA aims to shrink the airspace closures as SpaceX demonstrates improved reliability with Starship test flights.

Eventually, SpaceX will move some flights of Starship to Florida’s Space Coast, where rockets can safely launch in many directions over the Atlantic. By then, SpaceX aims to be launching Starships at a regular cadence—first, multiple flights per month, then per week, and then per day.

This will enable all of the things SpaceX wants to do with Starship. Chief among these goals is to fly Starships to Mars. Before then, SpaceX must master orbital refueling. NASA also has a contract with SpaceX to build Starships to land astronauts on the Moon’s south pole.

But all of that assumes SpaceX can routinely launch and recover Starships. That’s what engineers hope to soon prove they can do.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Starship will soon fly over towns and cities, but will dodge the biggest ones Read More »

after-a-very-slow-start,-europe’s-reusable-rocket-program-shows-signs-of-life

After a very slow start, Europe’s reusable rocket program shows signs of life

No one could accuse the European Space Agency and its various contractors of moving swiftly when it comes to the development of reusable rockets. However, it appears that Europe is finally making some credible progress.

This week, the France-based ArianeGroup aerospace company announced that it had completed the integration of the Themis vehicle, a prototype rocket that will test various landing technologies, on a launch pad in Sweden. Low-altitude hop tests, a precursor for developing a rocket’s first stage that can vertically land after an orbital launch, could start late this year or early next.

“This milestone marks the beginning of the ‘combined tests,’ during which the interface between Themis and the launch pad’s mechanical, electrical, and fluid systems will be thoroughly trialed, with the aim of completing a test under cryogenic conditions,” the company said.

Finally getting going

The advancement of the Themis program represents a concrete step forward for Europe, which has had a delayed and somewhat confusing response to the rise of reusable rockets a decade ago.

After several years of development and testing, including the Grasshopper program in Texas to demonstrate vertical landing, SpaceX landed its first orbital rocket in December 2015. Weeks earlier, Blue Origin landed the much smaller New Shepard vehicle after a suborbital hop. This put the industry on notice that first stage reuse was on the horizon.

At this point, the European Space Agency had already committed to a new medium-lift rocket, the Ariane 6, and locked in a traditional design that would not incorporate any elements of reuse. Most of its funding focused on developing the Ariane 6.

However, by the middle of 2017, the space agency began to initiate programs that would eventually lead to a reusable launch vehicle. They included:

After a very slow start, Europe’s reusable rocket program shows signs of life Read More »

northrop-grumman’s-new-spacecraft-is-a-real-chonker

Northrop Grumman’s new spacecraft is a real chonker

What happens when you use a SpaceX Falcon 9 rocket to launch Northrop Grumman’s Cygnus supply ship? A record-setting resupply mission to the International Space Station.

The first flight of Northrop’s upgraded Cygnus spacecraft, called Cygnus XL, is on its way to the international research lab after launching Sunday evening from Cape Canaveral Space Force Station, Florida. This mission, known as NG-23, is set to arrive at the ISS early Wednesday with 10,827 pounds (4,911 kilograms) of cargo to sustain the lab and its seven-person crew.

By a sizable margin, this is the heaviest cargo load transported to the ISS by a commercial resupply mission. NASA astronaut Jonny Kim will use the space station’s Canadian-built robotic arm to capture the cargo ship on Wednesday, then place it on an attachment port for crew members to open hatches and start unpacking the goodies inside.

A bigger keg

The Cygnus XL spacecraft looks a lot like Northrop’s previous missions to the station. It has a service module manufactured at the company’s factory in Northern Virginia. This segment of the spacecraft provides power, propulsion, and other necessities to keep Cygnus operating in orbit.

The most prominent features of the Cygnus cargo freighter are its circular, fan-like solar arrays and an aluminum cylinder called the pressurized cargo module that bears some resemblance to a keg of beer. This is the element that distinguishes the Cygnus XL from earlier versions of the Cygnus supply ship.

The cargo module is 5.2 feet (1.6 meters) longer on the Cygnus XL. The full spacecraft is roughly the size of two Apollo command modules, according to Ryan Tintner, vice president of civil space systems at Northrop Grumman. Put another way, the volume of the cargo section is equivalent to two-and-a-half minivans.

“The most notable thing on this mission is we are debuting the Cygnus XL configuration of the spacecraft,” Tintner said. “It’s got 33 percent more capacity than the prior Cygnus spacecraft had. Obviously, more may sound like better, but it’s really critical because we can deliver significantly more science, as well as we’re able to deliver a lot more cargo per launch, really trying to drive down the cost per kilogram to NASA.”

A SpaceX Falcon 9 rocket ascends to orbit Sunday after launching from Cape Canaveral Space Force Station, Florida, carrying Northrop Grumman’s Cygnus XL cargo spacecraft toward the International Space Station. Credit: Manuel Mazzanti/NurPhoto via Getty Images

Cargo modules for Northrop’s Cygnus spacecraft are built by Thales Alenia Space in Turin, Italy, employing a similar design to the one Thales used for several of the space station’s permanent modules. Officials moved forward with the first Cygnus XL mission after the preceding cargo module was damaged during shipment from Italy to the United States earlier this year.

Northrop Grumman’s new spacecraft is a real chonker Read More »

rocket-report:-russia’s-rocket-engine-predicament;-300th-launch-to-the-iss

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS


North Korea test-fired a powerful new solid rocket motor for its next-generation ICBM.

A Soyuz-2.1a rocket is propelled by kerosene-fueled RD-107A and RD-108A engines after lifting off Thursday with a resupply ship bound for the International Space Station. Credit: Roscosmos

Welcome to Edition 8.10 of the Rocket Report! Dear readers, if everything goes according to plan, four astronauts are less than six months away from traveling around the far side of the Moon and breaking free of low-Earth orbit for the first time in more than 53 years. Yes, there are good reasons to question NASA’s long-term plans for the Artemis lunar programthe woeful cost of the Space Launch System rocket, the complexity of new commercial landers, and a bleak budget outlook. But many of us who were born after the Apollo Moon landings have been waiting for this moment our whole lives. It is almost upon us.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

North Korea fires solid rocket motor. North Korea said Tuesday it had conducted the final ground test of a solid-fuel rocket engine for a long-range ballistic missile in its latest advancement toward having an arsenal that could viably threaten the continental United States, the Associated Press reports. The test Monday observed by leader Kim Jong Un was the ninth of the solid rocket motor built with carbon fiber and capable of producing 1,971 kilonewtons (443,000 pounds) of thrust, more powerful than past models, according to the North’s official Korean Central News Agency.

Mobility and flexibility … Solid-fueled intercontinental ballistic missiles, or ICBMs, have advantages over liquid-fueled missiles, which have historically comprised the bulk of North Korea’s inventory. Solid rocket motors can be stored for longer periods of time and are easier to conceal, transport, and launch on demand. The new solid rocket motor will be used on a missile called the Hwasong-20, according to North Korean state media. The AP reports some analysts say North Korea may conduct another ICBM test around the end of the year, showcasing its military strength ahead of a major ruling party congress expected in early 2026.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Astrobotic eyes Andøya. US-based lunar logistics company Astrobotic and Norwegian spaceport operator Andøya Space have signed a term sheet outlining the framework for a Launch Site Agreement, European Spaceflight reports. The agreement, once finalized, will facilitate flights of Astrobotic’s Xodiac lander testbed from the Andøya Space facilities. The Xodiac vertical takeoff, vertical landing rocket was initially developed by Masten Space Systems to simulate landing on the Moon and Mars. When Masten filed for bankruptcy in 2022, Astrobotic acquired its intellectual property and assets, including the Xodiac vehicle.

Across the pond … So far, the small Xodiac rocket has flown on low-altitude atmospheric hops from Mojave, California, reaching altitudes of up to 500 meters, or 1,640 feet. The agreement between Astrobotic and Andøya paves the way for “several” Xodiac flight campaigns from Andøya Space facilities on the Norwegian coast. “Xodiac’s presence at Andøya represents a meaningful step toward delivering reliable, rapid, and cost-effective testing and demonstration capabilities to the European space market,” said Astrobotic CEO John Thornton.

Ursa Major breaks ground in Colorado. Ursa Major on Wednesday said it has broken ground on a new 400-acre site where it will test and qualify large-scale solid rocket motors for current and future missiles, including the Navy’s Standard Missile fleet, Defense Daily reports. The new site in Weld County, Colorado, north of Denver, will be ready for testing to begin in the fourth quarter of 2025. Ursa Major will be able to conduct full-scale static firings, and drop and temperature storage testing for current and future missile systems.

Seeking SRM options … Ursa Major said the new facility will support national and missile defense programs. The company’s portfolio includes solid rocket motors (SRMs) ranging from 2 inches to 22 inches in diameter for missiles like the Stinger, Javelin, and air-defense interceptors. Ursa Major aims to join industry incumbents Northrop Grumman, L3Harris, and newcomer Anduril as a major supplier of SRMs to the government. “This facility represents a major step forward in our ability to deliver qualified SRMs that are scalable, flexible, and ready to meet the evolving threat environment,” said Dan Jablonsky, CEO of Ursa Major, in a statement. “It’s a clear demonstration of our commitment and ability to rapidly advance and expand the American-made solid rocket motor industrial base that the country needs, ensuring warfighters will have the quality and quantity of SRMs needed to meet mission demands.”

Falcon 9 launches first satellites in a military megaconstellation. The first 21 satellites in a constellation that could become a cornerstone for the Pentagon’s Golden Dome missile-defense shield successfully launched from California Wednesday aboard a SpaceX Falcon 9 rocket, Ars reports. The Falcon 9 took off from Vandenberg Space Force Base, California, and headed south over the Pacific Ocean, reaching an orbit over the poles before releasing the 21 military-owned satellites to begin several weeks of activations and checkouts.

First of many … These 21 satellites will boost themselves to a final orbit at an altitude of roughly 600 miles (1,000 kilometers). The Pentagon plans to launch 133 more satellites over the next nine months to complete the build-out of the Space Development Agency’s first-generation, or Tranche 1, constellation of missile-tracking and data-relay satellites. Military officials have worked for six years to reach this moment. The Space Development Agency (SDA) was established during the first Trump administration, which made plans for an initial set of demonstration satellites that launched a couple of years ago. In 2022, the Pentagon awarded contracts for the first 154 operational spacecraft, including the ones launched Wednesday. “Back in 2019, when the SDA was stood up, it was to do two things. One was to make sure that we can do beyond line of sight targeting, and the other was to pace the threat, the emerging threat, in the missile-warning and missile-tracking domain. That’s what the focus has been,” said Gurpartap “GP” Sandhoo, the SDA’s acting director.

Another Falcon 9 was delayed three times. SpaceX scrubbed launching a communications satellite from an Indonesian company for a third consecutive day Wednesday, Spaceflight Now reports. Possible technical issues got in the way of a launch attempt Wednesday evening after back-to-back days of weather delays at Cape Canaveral Space Force Station, Florida. The Falcon 9 finally launched Thursday evening with the Boeing-built Nusantara Lima communications satellite, targeting a geosynchronous transfer orbit. It’s the latest satellite from the Indonesian company Pasifik Satelit Nusantara.

A declining market … This was just the fifth geosynchronous communications satellite to launch on a commercial rocket this year, all by SpaceX. There were 21 such satellites that launched on commercial vehicles in 2015, including SpaceX’s Falcon 9, Europe’s Ariane 5, Russia’s Proton, ULA’s Atlas V, and Japan’s H-IIA. Much of the world’s launch capacity today is used to deploy smaller communications satellites into low-Earth orbit, primarily for broadband connectivity rather than for the video broadcast market once dominated by higher-altitude geosynchronous satellites.

Putin urges Russia to build more rocket engines. Russian President Vladimir Putin urged aerospace industry leaders on September 5 to press on with efforts to develop booster rocket engines for space launch vehicles and build on Russia’s longstanding reputation as a leader in space technology, Reuters reports. Putin, who spent the preceding days in China and the Russian far eastern port of Vladivostok, flew to the southern Russian city of Samara, where he met industry specialists and toured the Kuznetsov design bureau engine manufacturing plant.

A shell of its former self … “It is important to consistently renew production capacity in terms of engines for booster rockets,” Russian news agencies quoted Putin as saying during the visit. “And in doing so, we must not only meet our own current and future needs but also move actively on world markets and be successful competitors.” The Kuznetsov plant in Samara builds medium-class RD-107 and RD-108 engines for Russia’s Soyuz-2 rockets, which launch Russian military satellites and crew and cargo to the International Space Station. Their designs can be traced to the dawn of the Space Age nearly 70 years ago. Meanwhile, the outlook for heavier-duty Russian rocket engines is murky, at best. Russia’s most-flown large rocket engine in the post-Cold War era, the RD-180, produced by a company called Energomash, is out of production after the end of sales to the United States.

India nabs a noteworthy launch contract. Astroscale, a satellite servicing and space debris mitigation company based in Japan, has selected India’s Polar Satellite Launch Vehicle (PSLV) to deliver a small satellite named ISSA-J1 to orbit in 2027. This is an interesting mission. The ISSA-J1 spacecraft will fly up to two large pieces of satellite debris in orbit to image and inspect them. ISSA-J1, developed in partnership with the Japanese government, is one in a series of Astroscale missions testing different ways of approaching, monitoring, capturing, and refueling other objects in space. The launch agreement was signed between Astroscale and NewSpace India Limited, the commercial arm of India’s space agency.

Rideshare not an option … “We selected NSIL after thorough evaluations of more than 10 launch service providers over the past year, considering technical capabilities, track record, cost, and other elements,” said Eddie Kato, president and managing director of Astroscale Japan. India’s PSLV is right-sized for a mission like this. ISSA-J1 is a rarity in that it must launch on a dedicated rocket because it has to reach a specific orbit to line up with the pieces of space debris it will approach and inspect. Rideshare launches, such as those that routinely fly on SpaceX’s Falcon 9 rocket, are cheaper but go to standard orbits popular for many different types of satellite missions. A dedicated launch on a Falcon 9 would presumably have been more expensive than a flight on India’s smaller PSLV. Rocket Lab’s Electron, another rocket popular for dedicated launches of small satellites, lacks the performance required for Astroscale’s mission.

Russian cargo en route to ISS. Another cargo ship is flying to humanity’s orbital outpost with the successful launch of Russia’s Progress MS-32 supply freighter Thursday from the Baikonur Cosmodrome in Kazakhstan, NASASpaceflight.com reports. The supply ship launched aboard a Soyuz-2.1a rocket and arrived in orbit about nine minutes later, kicking off a two-day pursuit of the International Space Station. This was the 300th launch of an assembly, crew, or cargo mission to the ISS since 1998, including a handful of missions that didn’t reach the complex due to rocket or spacecraft failures.

Important stuff … The Progress MS-32 cargo craft will dock with the aft port of the space station’s Russian Zvezda service module Saturday. The payloads flying on the Progress mission include food, experiments, clothing, water, air, and propellant to be pumped into the space station’s onboard tanks. The spacecraft will also reboost the lab’s orbit.

Metallic tiles? Not so great. It has been two weeks since SpaceX’s last Starship test flight, and engineers have diagnosed issues with its heat shield, identified improvements, and developed a preliminary plan for the next time the ship heads into space, Ars reports. Bill Gerstenmaier, a SpaceX executive in charge of build and flight reliability, presented the findings Monday at the American Astronautical Society’s Glenn Space Technology Symposium in Cleveland. The test flight went “extremely well,” Gerstenmaier said, but he noted some important lessons learned with the ship’s heat shield.

Crunch wrap reigns supreme “We were essentially doing a test to see if we could get by with non-ceramic tiles, so we put three metal tiles on the side of the ship to see if they would provide adequate heat control, because they would be simpler to manufacture and more durable than the ceramic tiles. It turns out they’re not,” Gerstenmaier said. “The metal tiles… didn’t work so well.” One bright spot with the heat shield was the performance of a new experimental material around and under the tiles. “We call it crunch wrap,” Gerstenmaier said. “It’s like a wrapping paper that goes around each tile.” On the next Starship flight, SpaceX will likely cover more parts of the heat shield with this crunch wrap material. Gerstenmaier said the inaugural flight of Starship Version 3, with upgraded engines and more fuel, is now set to occur next year.

An SLS compromise might be afoot in DC. The Trump administration is seeking to cancel NASA’s Space Launch System rocket after two more flights, but key lawmakers in Congress, including Republican Sen. Ted Cruz of Texas, aren’t ready to go along.  So is this an impasse? Possibly not, as sources say the White House and Congress may not be all that far apart on how to handle this. The solution involves canceling part of the SLS rocket now, but not all of it, Ars reports.

Goodbye EUS? … The compromise might be to cancel a large new upper stage for the SLS rocket called the Exploration Upper Stage. This would save NASA billions of dollars, and the agency could instead procure commercial upper stages, such as those built by United Launch Alliance or Blue Origin, to fly on SLS rockets after NASA’s Artemis III mission. It would also eliminate the need for NASA to finish building an expensive new launch tower at Kennedy Space Center, Florida. The upper stage flying on the first three SLS missions is no longer in production. Sources indicated to Ars that Blue Origin has already begun work on a modified version of its New Glenn upper stage that could fit within the shroud of the SLS rocket.

Next three launches

Sept. 13: Soyuz-2.1b | Glonass-K1 No. 18L | Plesetsk Cosmodrome, Russia | 02: 30 UTC

Sept. 13: Falcon 9 | Starlink 17-10 | Vandenberg Space Force Base, California | 15: 41 UTC

Sept. 14: Falcon 9 | Cygnus NG-23 | Cape Canaveral Space Force Station, Florida | 22: 11 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS Read More »

pentagon-begins-deploying-new-satellite-network-to-link-sensors-with-shooters

Pentagon begins deploying new satellite network to link sensors with shooters


“This is the first time we’ll have a space layer fully integrated into our warfighting operations.”

A SpaceX Falcon 9 rocket lifts off from Vandenberg Space Force Base, California, with a payload of 21 data-relay satellites for the US military’s Space Development Agency. Credit: SpaceX

The first 21 satellites in a constellation that could become a cornerstone for the Pentagon’s Golden Dome missile-defense shield successfully launched from California Wednesday aboard a SpaceX Falcon 9 rocket.

The Falcon 9 took off from Vandenberg Space Force Base, California, at 7: 12 am PDT (10: 12 am EDT; 14: 12 UTC) and headed south over the Pacific Ocean, heading for an orbit over the poles before releasing the 21 military-owned satellites to begin several weeks of activations and checkouts.

These 21 satellites will boost themselves to a final orbit at an altitude of roughly 600 miles (1,000 kilometers). The Pentagon plans to launch 133 more satellites over the next nine months to complete the build-out of the Space Development Agency’s first-generation, or Tranche 1, constellation of missile-tracking and data-relay satellites.

“We had a great launch today for the Space Development Agency, putting this array of space vehicles into orbit in support of their revolutionary new architecture,” said Col. Ryan Hiserote, system program director for the Space Force’s assured access to space launch execution division.

Over the horizon

Military officials have worked for six years to reach this moment. The Space Development Agency (SDA) was established during the first Trump administration, which made plans for an initial set of demonstration satellites that launched a couple of years ago. In 2022, the Pentagon awarded contracts for the first 154 operational spacecraft. The first batch of 21 data-relay satellites built by Colorado-based York Space Systems is what went up Wednesday.

“Back in 2019, when the SDA was stood up, it was to do two things. One was to make sure that we can do beyond line of sight targeting, and the other was to pace the threat, the emerging threat, in the missile-warning and missile-tracking domain. That’s what the focus has been,” said Gurpartap “GP” Sandhoo, the SDA’s acting director.

Secretary of the Air Force Troy Meink and Sen. Kevin Cramer (R-N.D.) pose with industry and government teams in front of the Space Development’s first 21 operational satellites at Vandenberg Space Force Base, California. Cramer is one the most prominent backers of the Golden Dome program in the US Senate. Credit: US Air Force/Staff Sgt. Daekwon Stith

Historically, the military communications and missile-warning networks have used a handful of large, expensive satellites in geosynchronous orbit some 22,000 miles (36,000 kilometers) above the Earth. This architecture was devised during the Cold War and is optimized for nuclear conflict and intercontinental ballistic missiles.

For example, the military’s ultra-hardened Advanced Extremely High Frequency satellites in geosynchronous orbit are designed to operate through an electromagnetic pulse and nuclear scintillation. The Space Force’s missile-warning satellites are also in geosynchronous orbit, with infrared sensors tuned to detect the heat plume of a missile launch.

The problem? Those satellites cost more than $1 billion a pop. They’re also vulnerable to attack from a foreign adversary. Pentagon officials say the SDA’s satellite constellation, officially called the Proliferated Warfighter Space Architecture, is tailored to detect and track more modern threats, such as smaller missiles and hypersonic weapons carrying conventional warheads. It’s easier for these missiles to evade the eyes of older early warning satellites.

What’s more, the SDA’s fleet in low-Earth orbit will have numerous satellites. Losing one or several satellites to an attack would not degrade the constellation’s overall capability. The SDA’s new relay satellites cost between $14 and $15 million each, according to Sandhoo. The total cost of the first tranche of 154 operational satellites totals approximately $3.1 billion.

Multi-mission satellites

These satellites will not only detect and track ballistic and hypersonic missile launches; they will also transmit signals between US forces using an existing encrypted tactical data link network known as Link 16. This UHF system is used by NATO and other US allies to allow military aircraft, ships, and land forces to share tactical information through text messages, pictures, data, and voice communication in near real time, according to the SDA’s website.

Up to now, Link 16 radios were ubiquitous on fighter jets, helicopters, naval vessels, and missile batteries. But they had a severe limitation. Link 16 was only able to close a radio link with a clear line of sight. The Space Development Agency’s satellites will change that, providing direct-to-weapon connectivity from sensors to shooters on Earth’s surface, in the air, and in space.

The relay satellites, which the SDA calls the transport layer, are also equipped with Ka-band and laser communication terminals for higher-bandwidth connectivity.

“What the transport layer does is it extends beyond the line of sight,” Sandhoo said. “Now, you’re able to talk not only to within a couple of miles with your Link 16 radios, (but) we can use space to, let’s say, go from Hawaii out to Guam using those tactical radios, using a space layer.”

The Space Development Agency’s “Tranche 1” architecture includes 154 operational satellites, 126 for data relay and 28 for missile tracking. With this illustration, the SDA does its best to show how the complex architecture is supposed to work. Credit: Space Development Agency

Another batch of SDA relay satellites will launch next month, and more will head to space in November. In all, it will take 10 launches to fully deploy the SDA’s Tranche 1 constellation. Six of those missions will carry data-relay satellites, and four will carry satellites with sensors to detect and track missile launches. The Pentagon selected several contractors to build the satellites, so the military is not reliant on a single company. The builders of the SDA’s operational satellites include York, Lockheed Martin, Northrop Grumman, and L3Harris.

“We will increase coverage as we get the rest of those launches on orbit,” said Michael Eppolito, the SDA’s acting deputy director.

The satellites will connect with one another using inter-satellite laser links, creating a mesh network with sufficient range to provide regional communications, missile warning, and targeting coverage over the Western Pacific beginning in 2027. US Indo-Pacific Command, which oversees military operations in this region, is slated to become the first combatant command to take up use of the SDA’s satellite constellation.

This is not incidental. US officials see China as the nation’s primary strategic threat, and Indo-Pacific Command would be on the front lines of any future conflict between Chinese and US forces. The SDA has contracts in place for more than 270 second-generation, or Tranche 2, satellites, to further expand the network’s reach. There’s also a third generation in the works, but the Pentagon has paused part of the SDA’s Tranche 3 program to evaluate other architectures, including one offered by SpaceX.

Teaching tactical operators to use the new capabilities offered by the SDA’s satellite fleet could be just as challenging as building the network itself. To do this, the Pentagon plans to put soldiers, sailors, airmen, and marines through “warfighter immersion” training beginning next year. This training will allow US forces to “get used to using space from this construct,” Sandhoo said.

“This is different than how it has been done in the past,” Sandhoo said. “This is the first time we’ll have a space layer actually fully integrated into our warfighting operations.”

The SDA’s satellite architecture is a harbinger for what’s to come with the Pentagon’s Golden Dome system, a missile-defense shield for the US homeland proposed by President Donald Trump in an executive order in January. Congress authorized a down payment on Golden Dome in July, the first piece of funding for what the White House says will cost $175 billion over the next three years.

Golden Dome, as currently envisioned, will require thousands of satellites in low-Earth orbit to track missile launches and space-based interceptors to attempt to shoot them down. The Trump administration hasn’t said how much of the shield might be deployed by the end of 2028, or what the entire system might eventually cost.

But the capabilities of the SDA’s satellites will lay the foundation for any regional or national missile-defense shield. Therefore, it seems likely that the military will incorporate the SDA network into Golden Dome, which, at least at first, is likely to consist of technologies already in space or nearing launch. Apart from the Space Development Agency’s architecture in low-Earth orbit (LEO), the Space Force was already developing a new generation of missile-warning satellites to replace aging platforms in geosynchronous orbit (GEO), plus a fleet of missile-warning satellites to fly at a midrange altitude between LEO and GEO.

Air Force Gen. Gregory Guillot, commander of US Northern Command, said in April that Golden Dome “for the first time integrates multiple layers into one system that allows us to detect, track, and defeat multiple types of threats that affect us in different domains.

“So, while a lot of the components and the requirements were there in the past, this is the first time that it’s all tied together in one system,” he said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Pentagon begins deploying new satellite network to link sensors with shooters Read More »

lull-in-falcon-heavy-missions-opens-window-for-spacex-to-build-new-landing-pads

Lull in Falcon Heavy missions opens window for SpaceX to build new landing pads

SpaceX’s goal for this year is 170 Falcon 9 launches, and the company is on pace to come close to this target. Most Falcon 9 launches carry SpaceX’s own Starlink broadband satellites into orbit. The FAA’s environmental approval opens the door for more flights from SpaceX’s busiest launch pad.

But launch pad availability is not the only hurdle limiting how many Falcon 9 flights can take off in a year. There’s also the rate of production for Falcon 9 upper stages, which are new on each flight, and the time it takes for each vessel in SpaceX’s fleet of drone ships (one in California, two in Florida) to return to port with a recovered booster and redeploy back to sea again for the next mission. SpaceX lands Falcon 9 boosters on offshore drone ships after most of its launches and only brings the rocket back to an onshore landing on missions carrying lighter payloads to orbit.

When a Falcon 9 booster does return to landing on land, it targets one of SpaceX’s recovery zones at military-run spaceports in Florida and California. SpaceX’s landing zone at Vandenberg Space Force Base in California is close to the Falcon 9 launch pad there.

The Space Force wants SpaceX, and potentially other future reusable rocket companies, to replicate the side-by-side launch and landing pads at Cape Canaveral.

To do that, the FAA also gave the green light Wednesday for SpaceX to construct and operate a new rocket landing zone at SLC-40 and conduct up to 34 first-stage booster landings there each year. The landing zone will consist of a 280-foot diameter concrete pad surrounded by a 60-foot-wide gravel apron. The landing zone’s broadest diameter, including the apron, will measure 400 feet.

The location of SpaceX’s new rocket landing pad is shown with the red circle, approximately 1,000 feet northeast of the Falcon 9 rocket’s launch pad at Space Launch Complex-40. Credit: Google Maps/Ars Technica

SpaceX is in an earlier phase of planning for a Falcon landing pad at historic Launch Complex-39A at NASA’s Kennedy Space Center, just a few miles north of SLC-40. SpaceX uses LC-39A as a launch pad for most Falcon 9 crew launches, all Falcon Heavy missions, and, in the future, flights of the company’s gigantic next-generation rocket, Starship. SpaceX foresees Starship as a replacement for Falcon 9 and Falcon Heavy, but the company’s continuing investment in Falcon-related infrastructure shows the workhorse rocket will stick around for a while.

Lull in Falcon Heavy missions opens window for SpaceX to build new landing pads Read More »

starship’s-heat-shield-appears-to-have-performed-quite-well-in-test

Starship’s heat shield appears to have performed quite well in test

One of the more curious aspects of the 10th flight of SpaceX’s Starship rocket on Tuesday was the striking orange discoloration of the second stage. This could be observed on video taken from a buoy near the landing site as the vehicle made a soft landing in the Indian Ocean.

This color—so different from the silvery skin and black tiles that cover Starship’s upper stage—led to all sorts of speculation. Had heating damaged the stainless steel skin? Had the vehicle’s tiles been shucked off, leaving behind some sort of orange adhesive material? Was this actually NASA’s Space Launch System in disguise?

The answer to this question was rather important, as SpaceX founder Elon Musk had said before this flight that gathering data about the performance of this heat shield was the most important aspect of the mission.

We got some answers on Thursday. During the afternoon, the company posted some new high-resolution photos, taken by a drone in the vicinity of the landing location. They offered a clear view of the Starship vehicle with its heat shield intact, albeit with a rust-colored tint.

Musk provided some clarity on this discoloration on Thursday evening, writing on the social media site X, “Worth noting that the heat shield tiles almost entirely stayed attached, so the latest upgrades are looking good! The red color is from some metallic test tiles that oxidized and the white is from insulation of areas where we deliberately removed tiles.”

The new images and information from Musk suggest that SpaceX is making progress on developing a heat shield for Starship. This really is the key technology to make an upper stage rapidly reusable—NASA’s space shuttle orbiters were reusable but required a standing army to refurbish the vehicle between flights. To unlock Starship’s potential, SpaceX wants to be able to refly Starships within 24 hours.

Starship’s heat shield appears to have performed quite well in test Read More »