spacex

with-new-contracts,-spacex-will-become-the-us-military’s-top-launch-provider

With new contracts, SpaceX will become the US military’s top launch provider


The military’s stable of certified rockets will include Falcon 9, Falcon Heavy, Vulcan, and New Glenn.

A SpaceX Falcon Heavy rocket lifts off on June 25, 2024, with a GOES weather satellite for NOAA. Credit: SpaceX

The US Space Force announced Friday it selected SpaceX, United Launch Alliance, and Blue Origin for $13.7 billion in contracts to deliver the Pentagon’s most critical military to orbit into the early 2030s.

These missions will launch the government’s heaviest national security satellites, like the National Reconnaissance Office’s large bus-sized spy platforms, and deploy them into bespoke orbits. These types of launches often demand heavy-lift rockets with long-duration upper stages that can cruise through space for six or more hours.

The contracts awarded Friday are part of the next phase of the military’s space launch program once dominated by United Launch Alliance, the 50-50 joint venture between legacy defense contractors Boeing and Lockheed Martin.

After racking up a series of successful launches with its Falcon 9 rocket more than a decade ago, SpaceX sued the Air Force for the right to compete with ULA for the military’s most lucrative launch contracts. The Air Force relented in 2015 and allowed SpaceX to bid. Since then, SpaceX has won more than 40 percent of missions the Pentagon has ordered through the National Security Space Launch (NSSL) program, creating a relatively stable duopoly for the military’s launch needs.

The Space Force took over the responsibility for launch procurement from the Air Force after its creation in 2019. The next year, the Space Force signed another set of contracts with ULA and SpaceX for missions the military would order from 2020 through 2024. ULA’s new Vulcan rocket initially won 60 percent of these missions—known as NSSL Phase 2—but the Space Force reallocated a handful of launches to SpaceX after ULA encountered delays with Vulcan.

ULA’s Vulcan and SpaceX’s Falcon 9 and Falcon Heavy rockets will launch the remaining 42 Phase 2 missions over the next several years, then move on to Phase 3, which the Space Force announced Friday.

Spreading the wealth

This next round of Space Force launch contracts will flip the script, with SpaceX taking the lion’s share of the missions. The breakdown of the military’s new firm fixed-price launch agreements goes like this:

  • SpaceX will get 28 missions worth approximately $5.9 billion
  • ULA will get 19 missions worth approximately $5.4 billion
  • Blue Origin will get seven missions worth approximately

That equates to a 60-40 split between SpaceX and ULA for the bulk of the missions. Going into the competition, military officials set aside seven additional missions to launch with a third provider, allowing a new player to gain a foothold in the market. The Space Force reserves the right to reapportion missions between the three providers if one of them runs into trouble.

The Pentagon confirmed an unnamed fourth company also submitted a proposal, but wasn’t selected for Phase 3.

Rounded to the nearest million, the contract with SpaceX averages out to $212 million per launch. For ULA, it’s $282 million, and Blue Origin’s price is $341 million per launch. But take these numbers with caution. The contracts include a lot of bells and whistles, pricing them higher than what a commercial customer might pay.

According to the Pentagon, the contracts provide “launch services, mission unique services, mission acceleration, quick reaction/anomaly resolution, special studies, launch service support, fleet surveillance, and early integration studies/mission analysis.”

Essentially, the Space Force is paying a premium to all three launch providers for schedule priority, tailored solutions, and access to data from every flight of each company’s rocket, among other things.

New Glenn lifts off on its debut flight. Credit: Blue Origin

“Winning 60% percent of the missions may sound generous, but the reality is that all SpaceX competitors combined cannot currently deliver the other 40%!,” Elon Musk, SpaceX’s founder and CEO, posted on X. “I hope they succeed, but they aren’t there yet.”

This is true if you look at each company’s flight rate. SpaceX has launched Falcon 9 and Falcon Heavy rockets 140 times over the last 365 days. These are the flight-proven rockets SpaceX will use for its share of Space Force missions.

ULA has logged four missions in the same period, but just one with the Vulcan rocket it will use for future Space Force launches. And Blue Origin, Jeff Bezos’s space company, launched the heavy-lift New Glenn rocket on its first test flight in January.

“We are proud that we have launched 100 national security space missions and honored to continue serving the nation with our new Vulcan rocket,” said Tory Bruno, ULA’s president and CEO, in a statement.

ULA used the Delta IV and Atlas V rockets for most of the missions it has launched for the Pentagon. The Delta IV rocket family is now retired, and ULA will end production of the Atlas V rocket later this year. Now, ULA’s Vulcan rocket will take over as the company’s sole launch vehicle to serve the Pentagon. ULA aims to eventually ramp up the Vulcan launch cadence to fly up to 25 times per year.

After two successful test flights, the Space Force formally certified the Vulcan rocket last week, clearing the way for ULA to start using it for military missions in the coming months. While SpaceX has a clear advantage in number of launches, schedule assurance, and pricingand reliability comparable to ULABruno has recently touted the Vulcan rocket’s ability to maneuver over long periods in space as a differentiator.

“This award constitutes the most complex missions required for national security space,” Bruno said in a ULA press release. “Vulcan continues to use the world’s highest energy upper stage: the Centaur V. Centaur V’s unmatched flexibility and extreme endurance enables the most complex orbital insertions continuing to advance our nation’s capabilities in space.”

Blue Origin’s New Glenn must fly at least one more successful mission before the Space Force will certify it for Lane 2 missions. The selection of Blue Origin on Friday suggests military officials believe New Glenn is on track for certification by late 2026.

“Honored to serve additional national security missions in the coming years and contribute to our nation’s assured access to space,” Dave Limp, Blue Origin’s CEO, wrote on X. “This is a great endorsement of New Glenn’s capabilities, and we are committed to meeting the heavy lift needs of our US DoD and intelligence agency customers.”

Navigating NSSL

There’s something you must understand about the way the military buys launch services. For this round of competition, the Space Force divided the NSSL program into two lanes.

Friday’s announcement covers Lane 2 for traditional military satellites that operate thousands of miles above the Earth. This bucket includes things like GPS navigation satellites, NRO surveillance and eavesdropping platforms, and strategic communications satellites built to survive a nuclear war. The Space Force has a low tolerance for failure with these missions. Therefore, the military requires rockets be certified before they can launch big-ticket satellites, each of which often cost hundreds of millions, and sometimes billions, of dollars.

The Space Force required all Lane 2 bidders to show their rockets could reach nine “reference orbits” with payloads of a specified mass. Some of the orbits are difficult to reach, requiring technology that only SpaceX and ULA have demonstrated in the United States. Blue Origin plans to do so on a future flight.

This image shows what the Space Force’s fleet of missile warning and missile tracking satellites might look like in 2030, with a mix of platforms in geosynchronous orbit, medium-Earth orbit, and low-Earth orbit. The higher orbits will require launches by “Lane 2” providers. Credit: Space Systems Command

The military projects to order 54 launches in Lane 2 from this year through 2029, with announcements each October of exactly which missions will go to each launch provider. This year, it will be just SpaceX and ULA. The Space Force said Blue Origin won’t be eligible for firm orders until next year. The missions would launch between 2027 and 2032.

“America leads the world in space launch, and through these NSSL Phase 3 Lane 2 contracts, we will ensure continued access to this vital domain,” said Maj. Gen. Stephen Purdy, Acting Assistant Secretary of the Air Force for Space Acquisition and Integration. “These awards bolster our ability to launch critical defense satellites while strengthening our industrial base and enhancing operational readiness.”

Lane 1 is primarily for missions to low-Earth orbit. These payloads include tech demos, experimental missions, and the military’s mega-constellation of missile tracking and data relay satellites managed by the Space Development Agency. For Lane 1 missions, the Space Force won’t levy the burdensome certification and oversight requirements it has long employed for national security launches. The Pentagon is willing to accept more risk with Lane 1, encompassing at least 30 missions through the end of the 2020s, in an effort to broaden the military’s portfolio of launch providers and boost competition.

Last June, Space Systems Command chose SpaceX, ULA, and Blue Origin for eligibility to compete for Lane 1 missions. SpaceX won all nine of the first batch of Lane 1 missions put up for bids. The military recently added Rocket Lab’s Neutron rocket and Stoke Space’s Nova rocket to the Lane 1 mix. Neither of those rockets have flown, and they will need at least one successful launch before approval to fly military payloads.

The Space Force has separate contract mechanisms for the military’s smallest satellites, which typically launch on SpaceX rideshare missions or dedicated launches with companies like Rocket Lab and Firefly Aerospace.

Military leaders like having all these options, and would like even more. If one launch provider or launch site is unavailable due to a technical problem—or, as some military officials now worry, an enemy attack—commanders want multiple backups in their toolkit. Market forces dictate that more competition should also lower prices.

“A robust and resilient space launch architecture is the foundation of both our economic prosperity and our national security,” said US Space Force Chief of Space Operations Gen. Chance Saltzman. “National Security Space Launch isn’t just a program; it’s a strategic necessity that delivers the critical space capabilities our warfighters depend on to fight and win.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With new contracts, SpaceX will become the US military’s top launch provider Read More »

rocket-report:-stoke-is-stoked;-sovereignty-is-the-buzzword-in-europe

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe


“The idea that we will be able to do it through America… I think is very, very doubtful.”

Stoke Space’s Andromeda upper stage engine is hot-fired on a test stand. Credit: Stoke Space

Welcome to Edition 7.37 of the Rocket Report! It’s been interesting to watch how quickly European officials have embraced ensuring they have a space launch capability independent of other countries. A few years ago, European government satellites regularly launched on Russian Soyuz rockets, and more recently on SpaceX Falcon 9 rockets from the United States. Russia is now non grata in European government circles, and the Trump administration is widening the trans-Atlantic rift. European leaders have cited the Trump administration and its close association with Elon Musk, CEO of SpaceX, as prime reasons to support sovereign access to space, a capability currently offered only by Arianespace. If European nations can reform how they treat their commercial space companies, there’s enough ambition, know-how, and money in Europe to foster a competitive launch industry.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Isar Aerospace aims for weekend launch. A German startup named Isar Aerospace will try to launch its first rocket Saturday, aiming to become the first in a wave of new European launch companies to reach orbit, Ars reports. The Spectrum rocket consists of two stages, stands about 92 feet (28 meters) tall, and can haul payloads up to 1 metric ton (2,200 pounds) into low-Earth orbit. Based in Munich, Isar was founded by three university graduate students in 2018. Isar scrubbed a launch attempt Monday due to unfavorable winds at the launch site in Norway.

From the Arctic … Notably, this will be the first orbital launch attempt from a launch pad in Western Europe. The French-run Guiana Space Center in South America is the primary spaceport for European rockets. Virgin Orbit staged an airborne launch attempt from an airport in the United Kingdom in 2023, and the Plesetsk Cosmodrome is located in European Russia. The launch site for Isar is named Andøya Spaceport, located about 650 miles (1,050 kilometers) north of Oslo, inside the Arctic Circle. (submitted by EllPeaTea)

A chance for competition in Europe. The European Space Agency is inviting proposals to inject competition into the European launch market, an important step toward fostering a dynamic multiplayer industry officials hope one day will mimic that of the United States, Ars reports. The near-term plan for the European Launcher Challenge is for ESA to select companies for service contracts to transport ESA and other European government payloads to orbit from 2026 through 2030. A second component of the challenge is for companies to perform at least one demonstration of an upgraded launch vehicle by 2028. The competition is open to any European company working in the launch business.

Challenging the status quo … This is a major change from how ESA has historically procured launch services. Arianespace has been the only European launch provider available to ESA and other European institutions for more than 40 years. But there are private companies across Europe at various stages of developing their own small launchers, and potentially larger rockets, in the years ahead. With the European Launcher Challenge, ESA will provide each of the winners up to 169 million euros ($182 million), a significant cash infusion that officials hope will shepherd Europe’s nascent private launch industry toward liftoff. Companies like Isar Aerospace, Rocket Factory Augsburg, MaiaSpace, and PLD Space are among the contenders for ESA contracts.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab launches eight satellites. Rocket Lab launched eight satellites Wednesday for a German company that is expanding its constellation to detect and track wildfires, Space News reports. An Electron rocket lifted off from New Zealand and completed deploying its payload of eight CubeSats for OroraTech about 55 minutes later, placing them into Sun-synchronous orbits at an altitude of about 341 miles (550 kilometers). This was Rocket Lab’s fifth launch of the year, and the third in less than two weeks.

Fire goggles … OroraTech launched three satellites before this mission, fusing data from those satellites and government missions to detect and track wildfires. The new satellites are designed to fill a gap in coverage in the afternoon, a peak time for wildfire formation and spread. OroraTech plans to launch eight more satellites later this year. Wildfire monitoring from space is becoming a new application for satellite technology. Last month, OroraTech partnered with Spire for a contract to build a CubeSat constellation called WildFireSat for the Canadian Space Agency. Google is backing FireSat, another constellation of more than 50 satellites to be deployed in the coming years to detect and track wildfires. (submitted by EllPeaTea)

Should Britain have a sovereign launch capability? A UK House of Lords special inquiry committee has heard from industry experts on the importance of fostering a sovereign launch capability, European Spaceflight reports. On Monday, witnesses from the UK space industry testified that the nation shouldn’t rely on others, particularly the United States, to put satellites into orbit. “The idea that we will be able to do it through America… certainly in today’s, you know, the last 50 days, I think is very, very doubtful. The UK needs access to space,” said Scott Hammond, deputy CEO of SaxaVord Spaceport in Scotland.

Looking inward … A representative from one of the most promising UK launch startups agreed. “Most people who are looking to launch are beholden to the United States solutions or services that are there,” said Alan Thompson, head of government affairs at Skyrora. “Without having our own home-based or UK-based service provider, we risk not having that voice and not being able to undertake all these experiments or be able to manifest ourselves better in space.” The UK is the only nation to abandon an independent launch capability after putting a satellite into orbit. The British government canceled the Black Arrow rocket in the early 1970s, citing financial reasons. A handful of companies, including Skyrora, is working to restore the orbital launch business to the UK.

This rocket engine CEO faces some salacious allegations. The Independent published what it described as an exclusive report Monday describing a lawsuit filed against the CEO of RocketStar, a New York-based company that says its mission is “improving upon the engines that power us to the stars.” Christopher Craddock is accused of plundering investor funds to underwrite pricey jaunts to Europe, jewelry for his wife, child support payments, and, according to the company’s largest investor, “airline tickets for international call girls to join him for clandestine weekends in Miami,” The Independent reports. Craddock established RocketStar in 2014 after financial regulators barred him from working on Wall Street over a raft of alleged violations.

Go big or go home … The $6 million lawsuit filed by former CEO Michael Mojtahedi alleges RocketStar “is nothing more than a Ponzi scheme… [that] has been predicated on Craddock’s ability to con new people each time the company has run out of money.” On its website, RocketStar says its work focuses on aerospike rocket engines and a “FireStar Fusion Drive, the world’s first electric propulsion device enhanced with nuclear fusion.” These are tantalizing technologies that have proven elusive for other rocket companies. RocketStar’s attorney told The Independent: “The company denies the allegations and looks forward to vindicating itself in court.”

Another record for SpaceX. Last Thursday, SpaceX launched a batch of clandestine SpaceX-built surveillance satellites for the National Reconnaissance Office from Vandenberg Space Force Base in California, Spaceflight Now reports. This was the latest in a series of flights populating the NRO’s constellation of low-Earth orbit reconnaissance satellites. What was unique about this mission was its use of a Falcon 9 first stage booster that flew to space just nine days prior with a NASA astronomy satellite. The successful launch broke the record for the shortest span between flights of the same Falcon 9 booster, besting a 13.5-day turnaround in November 2024.

A mind-boggling number of launches … This flight also marked the 450th launch of a Falcon 9 rocket since its debut in 2010, and the 139th within a 365-day period, despite suffering its first mission failure in nearly 10 years and a handful of other glitches. SpaceX’s launch pace is unprecedented in the history of the space industry. No one else is even close. In the last Rocket Report I authored, I wrote that SpaceX’s steamroller no longer seems to be rolling downhill. That may be the case as the growth in the Falcon 9 launch cadence has slowed, but it’s hard for me to see anyone else matching SpaceX’s launch rate until at least the 2030s.

Rocket Lab and Stoke Space find an on-ramp. Space Systems Command announced Thursday that it selected Rocket Lab and Stoke Space to join the Space Force’s National Security Space Launch (NSSL) program. The contracts have a maximum value of $5.6 billion, and the Space Force will dole out “task orders” for individual missions as they near launch. Rocket Lab and Stoke Space join SpaceX, ULA, and Blue Origin as eligible launch providers for lower-priority national security satellites, a segment of missions known as Phase 3 Lane 1 in the parlance of the Space Force. For these missions, the Space Force won’t require certification of the rockets, as the military does for higher-value missions in the so-called “Lane 2” segment. However, Rocket Lab and Stoke Space must complete at least one successful flight of their new Neutron and Nova rockets before they are cleared to launch national security payloads.

Stoked at Stoke … This is a big win for Rocket Lab and Stoke. For Rocket Lab, it bolsters the business case for the medium-class Neutron rocket it is developing for flights from Wallops Island, Virginia. Neutron will be partially reusable with a recoverable first stage. But Rocket Lab already has a proven track record with its smaller Electron launch vehicle. Stoke hasn’t launched anything, and it has lofty ambitions for a fully reusable two-stage rocket called Nova. This is a huge vote of confidence in Stoke. When the Space Force released its invitation for an on-ramp to the NSSL program last year, it said bidders must show a “credible plan for a first launch by December 2025.” Smart money is that neither company will launch its rockets by the end of this year, but I’d love to be proven wrong.

Falcon 9 deploys spy satellite. Monday afternoon, a SpaceX Falcon 9 took flight from Florida’s Space Coast and delivered a national security payload designed, built, and operated by the National Reconnaissance Office into orbit, Florida Today reports. Like almost all NRO missions, details about the payload are classified. The mission codename was NROL-69, and the launch came three-and-a-half days after SpaceX launched another NRO mission from California. While we have some idea of what SpaceX launched from California last week, the payload for the NROL-69 mission is a mystery.

Space sleuthing … There’s an online community of dedicated skywatchers who regularly track satellites as they sail overhead around dawn and dusk. The US government doesn’t publish the exact orbital parameters for its classified spy satellites (they used to), but civilian trackers coordinate with one another, and through a series of observations, they can produce a pretty good estimate of a spacecraft’s orbit. Marco Langbroek, a Dutch archeologist and university lecturer on space situational awareness, is one of the best at this, using publicly available information about the flight path of a launch to estimate when the satellite will fly overhead. He and three other observers in Europe managed to locate the NROL-69 payload just two days after the launch, plotting the object in an orbit between 700 and 1,500 kilometers at an inclination of 64.1 degrees to the equator. Analysts speculated this mission might carry a pair of naval surveillance spacecraft, but this orbit doesn’t match up well with any known constellations of NRO satellites.

NASA continues with Artemis II preps. Late Saturday night, technicians at Kennedy Space Center in Florida moved the core stage for NASA’s second Space Launch System rocket into position between the vehicle’s two solid-fueled boosters, Ars reports. Working inside the iconic 52-story-tall Vehicle Assembly Building, ground teams used heavy-duty cranes to first lift the butterscotch orange core stage from its cradle, then rotate it to a vertical orientation and lift it into a high bay, where it was lowered into position on a mobile launch platform. The 212-foot-tall (65-meter) core stage is the largest single hardware element for the Artemis II mission, which will send a team of four astronauts around the far side of the Moon and back to Earth as soon as next year.

Looking like a go … With this milestone, the slow march toward launch continues. A few months ago, some well-informed people in the space community thought there was a real possibility the Trump administration could quickly cancel NASA’s Space Launch System, the high-priced heavy-lifter designed to send astronauts from the Earth to the Moon. The most immediate possibility involved terminating the SLS program before it flies with Artemis II. This possibility appears to have been overcome by circumstances. The rockets most often mentioned as stand-ins for the Space Launch System—SpaceX’s Starship and Blue Origin’s New Glenn—aren’t likely to be cleared for crew missions for at least several years. The long-term future of the Space Launch System remains in doubt.

Space Force says Vulcan is good to go. The US Space Force on Wednesday announced that it has certified United Launch Alliance’s Vulcan rocket to conduct national security missions, Ars reports. “Assured access to space is a core function of the Space Force and a critical element of national security,” said Brig. Gen. Kristin Panzenhagen, program executive officer for Assured Access to Space, in a news release. “Vulcan certification adds launch capacity, resiliency, and flexibility needed by our nation’s most critical space-based systems.” The formal announcement closes a yearslong process that has seen multiple delays in the development of the Vulcan rocket, as well as two anomalies in recent years that were a further setback to certification.

Multiple options … This certification allows ULA’s Vulcan to launch the military’s most sensitive national security missions, a separate lot from those Rocket Lab and Stoke Space are now eligible for (as we report in a separate Rocket Report entry). It elevates Vulcan to launch these missions alongside SpaceX’s Falcon 9 and Falcon Heavy rockets. Vulcan will not be the next rocket that the company launches, however. First up is one of the company’s remaining Atlas V boosters, carrying Project Kuiper broadband satellites for Amazon. This launch could occur in April, although ULA has not set a date. This will be followed by the first Vulcan national security launch, which the Space Force says could occur during the coming “summer.”

Next three launches

March 29: Spectrum | “Going Full Spectrum” | Andøya Spaceport, Norway | 11: 30 UTC

March 29: Long March 7A | Unknown Payload | Wenchang Space Launch Site, China | 16: 05 UTC

March 30: Alpha | LM-400 | Vandenberg Space Force Base, California | 13: 37 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe Read More »

can-nasa-remain-nonpartisan-when-basic-spaceflight-truths-are-shredded?

Can NASA remain nonpartisan when basic spaceflight truths are shredded?

It looked like the final scene of a movie, the denouement of a long adventure in which the good guys finally prevail. Azure skies and brilliant blue seas provided a perfect backdrop on Tuesday evening as a spacecraft carrying four people neared the planet’s surface.

“Just breathtaking views of a calm, glass-like ocean off the coast of Tallahassee, Florida,” commented Sandra Jones, a NASA spokesperson, during the webcast co-hosted by the space agency and SpaceX, whose Dragon vehicle returned the four astronauts from orbit.

A drone near the landing site captured incredible images of Crew Dragon Freedom as it slowly descended beneath four parachutes. Most of NASA’s astronauts today, outside of the small community of spaceflight devotees, are relatively anonymous. But not two of the passengers inside Freedom, Butch Wilmore and Suni Williams. After nine months of travails, 286 days to be precise, they were finally coming home.

Dragon continued its stately descent, falling to 400 meters, then 300, and then 200 above the ocean.

Kate Tice, an engineer from SpaceX on the webcast, noted that touchdown was imminent. “We’re going to stand by for splashdown located in the Gulf of America,” she said.

Ah, yes. The Gulf of America.

This is why we can’t have nice things.

A throne of lies

For those of us who have closely followed the story of Wilmore and Williams over the last nine months—and Ars Technica has had its share of exclusive stories about this long and strange saga—the final weeks before the landing have seen it take a disturbing turn.

Can NASA remain nonpartisan when basic spaceflight truths are shredded? Read More »

rocket-report:-ula-confirms-cause-of-booster-anomaly;-crew-10-launch-on-tap

Rocket Report: ULA confirms cause of booster anomaly; Crew-10 launch on tap


The head of Poland’s space agency was fired over a bungled response to SpaceX debris falling over Polish territory.

A SpaceX Falcon 9 rocket with the company’s Dragon spacecraft on top is seen during sunset Tuesday at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

Welcome to Edition 7.35 of the Rocket Report! SpaceX’s steamroller is still rolling, but for the first time in many years, it doesn’t seem like it’s rolling downhill. After a three-year run of perfect performance—with no launch failures or any other serious malfunctions—SpaceX’s Falcon 9 rocket has suffered a handful of issues in recent months. Meanwhile, SpaceX’s next-generation Starship rocket is having problems, too. Kiko Dontchev, SpaceX’s vice president of launch, addressed some (but not all) of these concerns in a post on X this week. Despite the issues with the Falcon 9, SpaceX has maintained a remarkable launch cadence. As of Thursday, SpaceX has launched 28 Falcon 9 flights since January 1, ahead of last year’s pace.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Alpha rocket preps for weekend launch. While Firefly Aerospace is making headlines for landing on the Moon, its Alpha rocket is set to launch again as soon as Saturday morning from Vandenberg Space Force Base, California. The two-stage, kerosene-fueled rocket will launch a self-funded technology demonstration satellite for Lockheed Martin. It’s the first of up to 25 launches Lockheed Martin has booked with Firefly over the next five years. This launch will be the sixth flight of an Alpha rocket, which has become a leader in the US commercial launch industry for dedicated missions with 1 ton-class satellites.

Firefly’s OG … The Alpha rocket was Firefly’s first product, and it has been a central piece of the company’s development since 2014. Like Firefly itself, the Alpha rocket program has gone through multiple iterations, including a wholesale redesign nearly a decade ago. Sure, Firefly can’t claim any revolutionary firsts with the Alpha rocket, as it can with its Blue Ghost lunar lander. But without Alpha, Firefly wouldn’t be where it is today. The Texas-based firm is one of only four US companies with an operational orbital-class rocket. One thing to watch for is how quickly Firefly can ramp up its Alpha launch cadence. The rocket only flew once last year.

Isar Aerospace celebrates another win. In last week’s Rocket Report, we mentioned that the German launch startup Isar Aerospace won a contract with a Japanese company to launch a 200-kilogram commercial satellite in 2026. But wait, there’s more! On Wednesday, the Norwegian Space Agency announced it awarded a contract to Isar Aerospace for the launch of a pair of satellites for the country’s Arctic Ocean Surveillance initiative, European Spaceflight reports. The satellites are scheduled to launch on Isar’s Spectrum rocket from Andøya Spaceport in Norway by 2028.

First launch pending … These recent contract wins are a promising sign for Isar Aerospace, which is also vying for contracts to launch small payloads for the European Space Agency. The Spectrum rocket could launch on its inaugural flight within a matter of weeks, and if successful, it could mark a transformative moment for the European space industry, which has long been limited to a single launch provider: the French company Arianespace. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Mother Nature holds up Oz launch. The first launch by Gilmour Space has been postponed again due to a tropical cyclone that brought severe weather to Australia’s Gold Coast region earlier this month, InnovationAus.com reports. Tropical Cyclone Alfred didn’t significantly impact Gilmour’s launch site, but the storm did cause the company to suspend work at its corporate headquarters in Southeast Queensland. With the storm now over, Gilmour is reassessing when it might be ready to launch its Eris rocket. Reportedly, the delay could be as long as two weeks or more.

A regulatory storm … Gilmour aims to become the first Australian company to launch a rocket into orbit. Last month, Gilmour announced the launch date for the Eris rocket was set for no earlier than March 15, but Tropical Cyclone Alfred threw this schedule out the window. Gilmour said it received a launch license from the Australian Space Agency in November and last month secured approvals to clear airspace around the launch site. But there’s still a hitch. The license is conditional on final documentation for the launch being filed and agreed with the space agency, and this process is stretching longer than anticipated. (submitted by ZygP)

What is going on at SpaceX? As we mention in the introduction to this week’s Rocket Report, it has been an uncharacteristically messy eight months for SpaceX. These speed bumps include issues with the Falcon 9 rocket’s upper stage on three missions, two lost Falcon 9 boosters, and consecutive failures of SpaceX’s massive Starship rocket on its first two test flights of the year. So what’s behind SpaceX’s bumpy ride? Ars wrote about the pressures facing SpaceX employees as Elon Musk pushes his workforce ever-harder to accelerate toward what Musk might call a multi-planetary future.

Headwinds or tailwinds? … No country or private company ever launched as many times as SpaceX flew its fleet of Falcon 9 rockets in 2024. At the same time, the company has been attempting to move its talented engineering team off the Falcon 9 and Dragon programs and onto Starship to keep that ambitious program moving forward. This is all happening as Musk has taken on significant roles in the Trump administration, stirring controversy and raising questions about his motives and potential conflicts of interest. However, it may be not so much Musk’s absence from SpaceX that is causing these issues but more the company’s relentless culture. As my colleague Eric Berger suggested in his piece, it seems possible that, at least for now, SpaceX has reached the speed limit for commercial spaceflight.

A titan of Silicon Valley enters the rocket business. Former Google chief executive Eric Schmidt has taken a controlling interest in the Long Beach, California-based Relativity Space, Ars reports. Schmidt’s involvement with Relativity has been quietly discussed among space industry insiders for a few months. Multiple sources told Ars that he has largely been bankrolling the company since the end of October, when the company’s previous fundraising dried up. Now, Schmidt is Relativity’s CEO.

Unclear motives … It is not immediately clear why Schmidt is taking a hands-on approach at Relativity. However, it is one of the few US-based companies with a credible path toward developing a medium-lift rocket that could potentially challenge the dominance of SpaceX and its Falcon 9 rocket. If the Terran R booster becomes commercially successful, it could play a big role in launching megaconstellations. Schmidt’s ascension also means that Tim Ellis, the company’s co-founder, chief executive, and almost sole public persona for nearly a decade, is now out of a leadership position.

Falcon 9 deploys NASA’s newest space telescope. Satellites come in all shapes and sizes, but there aren’t any that look quite like SPHEREx, an infrared observatory NASA launched Tuesday night in search of answers to simmering questions about how the Universe, and ultimately life, came to be, Ars reports. The SPHEREx satellite rocketed into orbit from California aboard a SpaceX Falcon 9 rocket, beginning a two-year mission surveying the sky in search of clues about the earliest periods of cosmic history, when the Universe rapidly expanded and the first galaxies formed. SPHEREx will also scan for pockets of water ice within our own galaxy, where clouds of gas and dust coalesce to form stars and planets.

Excess capacity … SPHEREx has lofty goals, but it’s modest in size, weighing just a little more than a half-ton at launch. This meant the Falcon 9 rocket had plenty of extra room for four other small satellites that will fly in formation to image the solar wind as it travels from the Sun into the Solar System. The four satellites are part of NASA’s PUNCH mission. SPHEREx and PUNCH are part of NASA’s Explorers program, a series of cost-capped science missions with a lineage going back to the dawn of the Space Age. SPHEREx and PUNCH have a combined cost of about $638 million. (submitted by EllPeaTea)

China has launched another batch of Internet satellites. A new group of 18 satellites entered orbit Tuesday for the Thousand Sails constellation with the first launch from a new commercial launch pad, Space News reports. The satellites launched on top of a Long March 8 rocket from Hainan Commercial Launch Site near Wenchang on Hainan Island. The commercial launch site has two pads, the first of which entered service with a launch last year. This mission was the first to launch from the other pad at the commercial spaceport, which is gearing up for an uptick in Chinese launch activity to continue deploying satellites for the Thousand Sails network and other megaconstellations.

Sailing on … The Thousand Sails constellation, also known as Qianfan, or G60 Starlink, is a broadband satellite constellation spearheaded by Shanghai Spacecom Satellite Technology (SSST), also known as Spacesail, Space News reported. The project, which aims to deploy 14,000 satellites, seeks to compete in the global satellite Internet market. Spacesail has now launched 90 satellites into near-polar orbits, and the operator previously stated it aims to have 648 satellites in orbit by the end of 2025. If Spacesail continues launching 18 satellites per rocket, this goal would require 31 more launches this year. (submitted by EllPeaTea)

NASA, SpaceX call off astronaut launch. With the countdown within 45 minutes of launch, NASA called off an attempt to send the next crew to the International Space Station Wednesday evening to allow more time to troubleshoot a ground system hydraulics issue, CBS News reports. During the countdown Wednesday, SpaceX engineers were troubleshooting a problem with one of two clamp arms that hold the Falcon 9 rocket to its strongback support gantry. Hydraulics are used to retract the two clamps prior to launch.

Back on track … NASA confirmed Thursday SpaceX ground teams completed inspections of the hydraulics system used for the clamp arm supporting the Falcon 9 rocket and successfully flushed a suspected pocket of trapped air in the system, clearing the way for another launch attempt Friday evening. This mission, known as Crew-10, will ferry two NASA astronauts, a Japanese mission specialist, and a Russian cosmonaut to the space station. They will replace a four-person crew currently at the ISS, including Butch Wilmore and Suni Williams, who have been in orbit since last June after flying to space on Boeing’s Starliner capsule. Starliner returned to Earth without its crew due to a problem with overheating thrusters, leaving Wilmore and Williams behind to wait for a ride home with SpaceX.

SpaceX’s woes reach Poland’s space agency. The president of the Polish Space Agency, Grzegorz Wrochna, has been dismissed following a botched response to the uncontrolled reentry of a Falcon 9 second stage that scattered debris across multiple locations in Poland, European Spaceflight reports. The Falcon 9’s upper stage was supposed to steer itself toward a controlled reentry last month after deploying a set of Starlink satellites, but a propellant leak prevented it from doing so. Instead, the stage remained in orbit for nearly three weeks before falling back into the atmosphere February 19, scattering debris fragments at several locations in Poland.

A failure to communicate … In the aftermath of the Falcon 9’s uncontrolled reentry, the Polish Space Agency (POLSA) claimed it sent warnings of the threat of falling space debris to multiple departments of the Polish government. One Polish ministry disputed this claim, saying it was not adequately warned about the uncontrolled reentry. POLSA later confirmed it sent information regarding the reentry to a wrong email address. Making matters worse, the Polish Space Agency reported it was hacked on March 2. The Polish government apparently had enough and fired the head of the space agency March 11.

Vulcan booster anomaly blamed on “manufacturing defect.” The loss of a solid rocket motor nozzle on the second flight of United Launch Alliance’s Vulcan Centaur last October was caused by a manufacturing defect, Space News reports. In a roundtable with reporters Wednesday, ULA chief executive Tory Bruno said the problem has been corrected as the company awaits certification of the Vulcan rocket by the Space Force. The nozzle fell off the bottom of one of the Vulcan launcher’s twin solid rocket boosters about a half-minute into its second test flight last year. The rocket continued its climb into space, but ULA and Northrop Grumman, which supplies solid rocket motors for Vulcan, set up an investigation to find the cause of the nozzle malfunction.

All the trimmings … Bruno said the anomaly was traced to a “manufacturing defect” in one of the internal parts of the nozzle, an insulator. Specific details, he said, remained proprietary, according to Space News. “We have isolated the root cause and made appropriate corrective actions,” he said, which were confirmed in a static-fire test of a motor at a Northrop test site in Utah in February. “So we are back continuing to fabricate hardware and, at least initially, screening for what that root cause was.” Bruno said the investigation was aided by recovery of hardware that fell off the motor while in flight and landed near the launch pad in Florida, as well as “trimmings” of material left over from the manufacturing process. ULA also recovered both boosters from the ocean so engineers could compare the one that lost its nozzle to the one that performed normally. The defective hardware “just stood out night and day,” Bruno said. “It was pretty clear that that was an outlier, far out of family.” Meanwhile, ULA has trimmed its launch forecast for this year, from a projection of up to 20 launches down to a dozen. (submitted by EllPeaTea)

Next three launches

March 14: Falcon 9 | Crew-10 | Kennedy Space Center, Florida | 23: 03 UTC

March 15: Electron | QPS-SAR-9 | Mahia Peninsula, New Zealand | 00: 00 UTC

March 15: Long March 2B | Unknown Payload | Jiuquan Satellite Launch Center, China | 04: 10 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: ULA confirms cause of booster anomaly; Crew-10 launch on tap Read More »

the-starship-program-hits-another-speed-bump-with-second-consecutive-failure

The Starship program hits another speed bump with second consecutive failure

The flight flight plan going into Thursday’s mission called for sending Starship on a journey halfway around the world from Texas, culminating in a controlled reentry over the Indian Ocean before splashing down northwest of Australia.

The test flight was supposed to be a do-over of the previous Starship flight on January 16, when the rocket’s upper stage—itself known as Starship, or ship—succumbed to fires fueled by leaking propellants in its engine bay. Engineers determined the most likely cause of the propellant leak was a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected.

The Super Heavy booster returned to Starbase in Texas to be caught back at the launch pad. Credit: SpaceX

Engineers test-fired the Starship vehicle for this week’s test flight earlier this month, validating changes to the ship’s fuel feed lines leading its six Raptor engines, adjustments to propellant temperatures, and a new operating thrust.

But engineers missed something. On Thursday, the Raptor engines began shutting down on Starship about eight minutes into the flight, and the rocket started tumbling 90 miles (146 kilometers) over the southeastern Gulf of Mexico. SpaceX ground controllers lost all contact with the rocket about nine-and-a-half minutes after liftoff.

“Prior to the end of the ascent burn, an energetic event in the aft portion of Starship resulted in the loss of several Raptor engines,” SpaceX wrote on X. “This in turn led to a loss of attitude control and ultimately a loss of communications with Starship.”

Just like in January, residents and tourists across the Florida peninsula, the Bahamas, and the Turks and Caicos Islands shared videos of fiery debris trails appearing in the twilight sky. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint, just as they did in response to the January incident.

There were no immediate reports Thursday of any Starship wreckage falling over populated areas. In January, residents in the Turks and Caicos Islands recovered small debris fragments, including one piece that caused minor damage when it struck a car. The debris field from Thursday’s failed flight appeared to fall west of the areas where debris fell after Starship Flight 7.

A spokesperson for the Federal Aviation Administration said the regulatory agency will require SpaceX perform an investigation into Thursday’s Starship failure.

The Starship program hits another speed bump with second consecutive failure Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

rocket-report:-starship-will-soon-fly-again;-gilmour-has-a-launch-date

Rocket Report: Starship will soon fly again; Gilmour has a launch date


One Falcon 9 launched an Intuitive Machines lunar lander, an asteroid prospector, and a NASA science probe.

Peter Beck, Rocket Lab’s founder and CEO, stands inside a test version of the “Hungry Hippo,” a nickname used to describe the clamshell-like nose cone of the Neutron rocket’s first stage booster. The fairing will open in flight to release Neutron’s second and payloads to continue into orbit, then close as the booster comes back to Earth for recovery. Credit: Rocket Lab

Welcome to Edition 7.33 of the Rocket Report! Phew, what a week for Rocket Lab! The company released a bevy of announcements in conjunction with its quarterly earnings report Thursday. Rocket Lab is spending a lot of money to develop the medium-lift rocket Neutron rocket, and as we’ll discuss below, a rocket landing platform and a new satellite design. For now, the company is sticking by its public statements that the Neutron rocket will launch this year—the official line is it will debut in the second half of 2025—but this schedule assumes near-perfect execution on the program. “We’ve always been clear that we run aggressive schedules,” said Peter Beck, Rocket Lab’s founder and CEO. The official schedule doesn’t quite allow me to invoke a strict interpretation of Berger’s Law, which states that if a rocket’s debut is predicted to happen in the fourth quarter of a year, and that quarter is six or more months away, the launch will be delayed. However, the spirit of the law seems valid here. This time last year, Rocket Lab targeted a first launch by the end of 2024, an aggressive target that has come and gone.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Australian startup sets a launch date. The first attempt to send an Australian-made rocket into orbit is set to take place no sooner than March 15, the Australian Broadcasting Corporation reports. Gilmour Space Technologies’ launch window announcement marks a major development for the company, which has been working towards a test launch for a decade. Gilmour previously hoped to launch its test rocket, Eris, in May 2024, but had to wait for the Australian government to issue a launch license and airspace approvals for the flight to go forward. Those are now in hand, clearing the last regulatory hurdle before liftoff.

Setting expectations … Gilmour’s Eris rocket is made of three stages powered by hybrid engines consuming a solid fuel and a liquid oxidizer. Eris is designed to haul payloads of up to 672 pounds (305 kilograms) to low-Earth orbit, and will launch from Bowen Orbital Spaceport in Queensland on Australia’s northeastern coast. Gilmour said it would be “very lucky” if the rocket reached orbit on first attempt. “Success means different things for different people, but ignition and liftoff will be huge,” said James Gilmour, the company’s co-founder. (submitted by ZygP)

Blue Origin is keeping a secret. Blue Origin conducted the tenth crewed flight of its New Shepard suborbital vehicle Tuesday, carrying six people, one of whom remained at least semi-anonymous, Space News reports. The five passengers Blue Origin identified come from business and entertainment backgrounds, but in a break from past missions, the company did not disclose the identity of the sixth person, with hosts of the company webcast saying that individual “requested we not share his name today.” Photos released by the company before the launch, and footage from the webcast, showed that person to be a man wearing a flight suit with an “R. Wilson” nametag, and the NS-30 mission patch also included “Wilson” with the names of the other members of the crew. Not disclosing the name of someone who has been to space has little precedent.

Big names on NS-31 … Some of the passengers Blue Origin will fly on the next New Shepard crew mission lack the anonymity of R. Wilson. The next flight, designated NS-31, will carry an all-female crew, including music star Katy Perry, CBS host Gayle King, and Lauren Sánchez, a former journalist who is engaged to Blue Origin’s founder, Jeff Bezos. Blue Origin identified the other three passengers as Aisha Bowe, Amanda Ngyuen, and Kerianne Flynn. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is still blowing through cash. Virgin Galactic reported a net loss of $347 million in 2024, compared to a $502 million net loss in 2023, with the improvement primarily driven by lower operating expenses, the company said this week in a quarterly earnings release. These lower operating expenses are tied to Virgin Galactic’s decision to suspend operations of its VSS Unity suborbital rocket plane last year to focus investment into a new series of suborbital spacecraft known as Delta-class ships. Virgin Galactic said cash and cash equivalents fell 18 percent from the same period a year ago to $178.6 million. Investors have been eager for details on when it would resume—and then ramp up—flights to increase sales and cash in on a backlog of around 700 ticket holders, Bloomberg reports.

March toward manufacturing … Virgin Galactic said it plans to start assembling its first Delta-class ship in March, with a first flight targeted for the summer of 2026, two years after it stopped flying VSS Unity. The Delta ships will be easier to recycle between flights, and will carry six paying passengers, rather than the four VSS Unity carried on each flight. Company officials believe a higher flight rate with more passengers will bring in significantly more revenue, which was reported at just $430,000 in the fourth quarter of 2024. (submitted by EllPeaTea)

Japanese customers seem to love Rocket Lab. While Rocket Lab is developing the larger Neutron rocket, the company’s operational Electron launch vehicle continues to dominate the market for dedicated launches of small satellites. Rocket Lab announced Thursday it signed a new multi-launch deal with iQPS, a Japan-based Earth imaging company. The new deal follows an earlier multi-launch contract signed with iQPS in 2024 and brings the total number of booked dedicated Electron launches for iQPS to eight.

Radar is all the rage … These eight Electron launches in 2025 and 2026 will help iQPS build out its planned constellation of 36 radar remote sensing satellites capable of imaging the Earth day and night, and through any weather. The new deal is one of the largest Electron launch agreements to date, second only to Rocket Lab’s ten launch deal with another Japanese radar constellation operator, Synspective, signed last year. (submitted by zapman987)

Falcon 9 launch targets Moon and asteroid. With two commercial Moon landers already on their way, Houston-based Intuitive Machines launched its second robotic lander atop a SpaceX Falcon 9 rocket Wednesday, CBS News reports. Given the on-time launch and assuming no major problems, the Athena lander is expected to descend to touchdown on a flat mesa-like structure known as Mons Mouton on March 6, setting down just 100 miles from the Moon’s south pole—closer than any other spacecraft has attempted. Intuitive Machines became the first company to successfully land a spacecraft on the Moon last year, but the Athena lander will pursue more complex goals. It will test a NASA-provided drill designed to search for subsurface ice, deploy a small “micro-rover,” and dispatch a rocket-powered drone to explore a permanently shadowed crater.

Hitching a ride … The Athena lander didn’t take up all the capacity of the Falcon 9 rocket. Three other spacecraft also rocketed into space Wednesday night. These rideshare payloads were AstroForge’s commercially developed Odin asteroid prospector to search for potentially valuable mineral deposits, NASA’s Lunar Trailblazer satellite to characterize lunar ice from a perch in lunar orbit, and a compact space tug from Epic Aerospace. (submitted by EllPeaTea)

This rocket got a visitor for the first time since 2009. Astroscale’s ADRAS-J mission became the first spacecraft (at least in the unclassified world) to approach a piece of space junk in low-Earth orbit, Ars reports. This particular object, a derelict upper stage from a Japanese H-IIA rocket, has been in orbit since 2009. It’s one of about 2,000 spent rocket bodies circling the Earth and one of more than 45,000 objects in orbit tracked by US Space Command. Astroscale, based in Tokyo, built and launched the ADRAS-J mission in partnership with the Japanese space agency as a demonstration to show how a commercial satellite could rendezvous with an object in orbit that was never designed to receive visitors.

Next steps … ADRAS-J worked like a champ, closing in to a distance of less than 50 feet (15 meters) from the H-IIA rocket as it orbited several hundred miles above the Earth. The rocket is a “non-cooperative” object representative of other large pieces of space junk, which Astroscale wants to remove from orbit with a series of trash collecting satellites like ADRAS-J. But this demo only validated part of the technology required for space debris removal. Japan’s space agency and Astroscale are partnering on another mission, ADRAS-J2, for launch in 2027 to go up and latch on to the same H-IIA rocket and steer it out of orbit toward a controlled reentry over the ocean.

An update on Falcon 9’s upper stage. SpaceX said that a Falcon 9 upper stage that reentered over Europe earlier this month suffered a propellant leak that prevented it from doing a controlled reentry, Space News reports. The upper stage was placed in orbit on a February 1 launch from Vandenberg Space Force Base in California. After deploying its payload of 22 Starlink satellites, the upper stage was expected to perform a burn to enable a controlled reentry over the ocean, a standard procedure on most Falcon 9 launches to low-Earth orbit. The stage, though, did not appear to perform the burn and remained in orbit. Its orbit decayed from atmospheric drag and the stage reentered over Europe on February 19. Debris from the Falcon 9 second stage, including composite overwrapped pressure vessels, fell in Poland, landing near the city of Poznań.

Higher than expected body rates … In an update posted to its website this week, SpaceX blamed the upper stage anomaly on a liquid oxygen leak. “During the coast phase of this Starlink mission, a small liquid oxygen leak developed, which ultimately drove higher than expected vehicle body rates,” SpaceX said. SpaceX aborted the deorbit burn and instead passivated the upper stage, a process where the rocket discharges energy from its batteries and vents leftover propellant from its tanks to minimize the risk of a break-up in orbit. This was the third incident involving a Falcon 9 upper stage in a little more than six months. (submitted by EllPeaTea)

Rocket Lab’s reveals “Return On Investment.” Rocket Lab’s Neutron rocket is designed for partial reusability, and the company unveiled Thursday an important piece of infrastructure to make this a reality. Neutron’s first stage booster will land on a modified barge named “Return On Investment” measuring around 400 feet (122 meters) wide, somewhat bigger than SpaceX’s drone ships used for Falcon 9 landings at sea. In order to prep the barge for rocket duty, the company is adding autonomous ground support equipment to capture and secure the landed Neutron, blast shielding to protect equipment during Neutron landings, and station-keeping thrusters for precise positioning. It should be ready to enter service in 2026. Rocket Lab also has the option to return the Neutron first stage back to the launch site when mission parameters allow the rocket to reserve enough propellant to make the return journey.

More news from Rocket Lab … Continuing the firehose of news from Rocket Lab this week, the company announced a new satellite design called “Flatellite” that looks remarkably similar to SpaceX’s Starlink satellites. The satellite is flat in shape, hence its name, and stackable to fit as many spacecraft as possible into the envelope of a rocket’s payload fairing. Rocket Lab said the new satellite “can be produced in high volumes and (is) tailored for large constellations, targeting high value applications and national security missions.” (submitted by zapman987)

The writing is on the wall for SLS. The lights may be starting to go out for NASA’s Space Launch System program. On Wednesday, one of the Republican space policy leaders most consistently opposed to commercial heavy lift rockets over the last decade—as an alternative to NASA’s large SLS rocket—has changed his mind, Ars reports. “We need an off-ramp for reliance on the SLS,” said Scott Pace, director of the Space Policy Institute at George Washington University, in written testimony before a congressional hearing about US space policy.

Not keeping Pace … A physicist and influential policy expert, Pace has decades of experience researching and writing space policy. He has served in multiple Republican administrations, most recently as executive secretary of the National Space Council from 2017 to 2020. He strongly advocated for the SLS rocket after Congress directed NASA to develop it in 2011. As part of his policy recommendations, Pace said NASA should seek to use commercial providers of heavy lift launch so that NASA can send “multiple” crew and cargo missions to the Moon each year. He notes that the SLS rocket is not reusable and is incapable of a high flight rate. Commercial options from SpaceX, Blue Origin, and United Launch Alliance are now available, Pace wrote.

The verdict is in for Starship Flight 7. SpaceX believes the spectacular break-up of Starship’s upper stage during its most recent test flight was caused by a harmonic response that stressed onboard hardware, leading to a fire and loss of the vehicle, Aviation Week reports. Higher-than-expected vibrations stressed hardware in the ship’s propulsion system, triggering propellant leaks and sustained fires until the test flight ended prematurely. The rocket broke apart and deposited debris over the Turks and Caicos Islands and the Atlantic Ocean, and forced dozens of commercial and private aircraft to delay their flights or steer into safer airspace.

Whole lotta shaking … SpaceX’s description of the problem as a harmonic response suggests vibrations during Starship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing. SpaceX completed an extended duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight, which could launch from South Texas as soon as Monday.

Next three launches

March 1: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 10: 00 UTC

March 2: Ceres 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 08: 10 UTC

March 2: Soyuz-2.1b | Glonass-K2 No. 14L | Plesetsk Cosmodrome, Russia | 22: 22 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Starship will soon fly again; Gilmour has a launch date Read More »

rocket-report:-another-hiccup-with-spacex-upper-stage;-japan’s-h3-starts-strong

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong


Vast’s schedule for deploying a mini-space station in low-Earth orbit was always ambitious.

A stack of 21 Starlink Internet satellites arrives in orbit Tuesday following launch on a Falcon 9 rocket. Credit: SpaceX

Welcome to Edition 7.30 of the Rocket Report! The US government relies on SpaceX for a lot of missions. These include launching national security satellites, putting astronauts on the Moon, and global broadband communications. But there are hurdles—technical and, increasingly, political—on the road ahead. To put it generously, Elon Musk, without whom much of what SpaceX does wouldn’t be possible, is one of the most divisive figures in American life today.

Now, a Democratic lawmaker in Congress has introduced a bill that would end federal contracts for special government employees (like Musk), citing conflict-of-interest concerns. The bill will go nowhere with Republicans in control of Congress, but it is enough to make me pause and think. When the Trump era passes and a new administration takes the White House, how will they view Musk? Will there be an appetite to reduce the government’s reliance on SpaceX? To answer this question, you must first ask if the government will even have a choice. What if, as is the case in many areas today, there’s no viable replacement for the services offered by SpaceX?

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Blue Origin flight focuses on lunar research. For the first time, Jeff Bezos’ Blue Origin space venture has put its New Shepard suborbital rocket ship through a couple of minutes’ worth of Moon-level gravity, GeekWire reports. The uncrewed mission, known as NS-29, sent 30 research payloads on a 10-minute trip from Blue Origin’s Launch Site One in West Texas. For this trip, the crew capsule was spun up to 11 revolutions per minute, as opposed to the typical half-revolution per minute. The resulting centrifugal force was equivalent to one-sixth of Earth’s gravity, which is what would be felt on the Moon.

Gee, that’s cool … The experiments aboard Blue Origin’s space capsule examined how to process lunar soil to extract resources and how to manufacture solar cells on the Moon for Blue Origin’s Blue Alchemist project. Another investigated how moondust gets electrically charged and levitated when exposed to ultraviolet light. These types of experiments in partial gravity can be done on parabolic airplane flights, but those only provide a few seconds of the right conditions to simulate the Moon’s gravity. (submitted by EllPeaTea)

Orbex announces two-launch deal with D-Orbit. UK-based rocket builder Orbex announced Monday that it has signed a two-launch deal with Italian in-orbit logistics provider D-Orbit, European Spaceflight reports. The deal includes capacity aboard two launches on Orbex’s Prime rocket over the next three years. D-Orbit aggregates small payloads on rideshare missions (primarily on SpaceX rockets so far) and has an orbital transfer vehicle for ferrying satellites to different altitudes after separation from a launch vehicle. Orbex’s Prime rocket is sized for the small satellite industry, and the company aims to debut it later this year.

Thanks to fresh funding? … Orbex has provided only sparse updates on its progress toward launching the Prime rocket. What we do know is that Orbex suspended plans to develop a spaceport in Scotland to focus its resources on the Prime rocket itself. Despite little evidence of any significant accomplishments, Orbex last month secured a $25 million investment from the UK government. The timing of the launch agreement with D-Orbit begs the question of whether the UK government’s backing helped seal the deal. As Andrew Parsonson of European Spaceflight writes: “Is this a clear indication of how important strong institutional backing is for the growth of privately developed launch systems in Europe?” (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Falcon 9’s upper stage misfires again. The second stage of a SpaceX Falcon 9 rocket remained in orbit following a launch Saturday from Vandenberg Space Force Base, California. The rocket successfully deployed a new batch of Starlink Internet satellites but was supposed to reignite its engine for a braking maneuver to head for a destructive reentry over the Pacific Ocean. While airspace warning notices from the FAA showed a reentry zone over the eastern Pacific Ocean, publicly available US military tracking continued to show the upper stage in orbit this week. Sources also told Ars that SpaceX delayed two Falcon 9 launches this week by a day to allow time for engineers to evaluate the problem.

3 in 6 months … This is the third time since last July that the Falcon 9’s upper stage has encountered a problem in flight. On one occasion, the upper stage failed to reach its targeted orbit, leading to the destruction of 20 Starlink satellites. Then, an upper stage misfired during a deorbit burn after an otherwise successful launch in September, causing debris to fall outside of the pre-approved danger area. After both events, the FAA briefly grounded the Falcon 9 rocket while SpaceX conducted an investigation. This time, an FAA spokesperson said the agency won’t require an investigation. “All flight events occurred within the scope of SpaceX’s licensed activities,” the spokesperson told Ars.

Vast tests hardware for commercial space station. Vast Space has started testing a qualification model of its first commercial space station but has pushed back the launch of that station into 2026, Space News reports. In an announcement Thursday, Vast said it completed a proof test of the primary structure of a test version of its Haven-1 space station habitat at a facility in Mojave, California. During the testing, Vast pumped up the pressure inside the structure to 1.8 times its normal level and conducted a leak test. “On the first try we passed that critical test,” Max Haot, chief executive of Vast, told Space News.

Not this year … It’s encouraging to see Vast making tangible progress in developing its commercial space station. The privately held company is one of several seeking to develop a commercial outpost in low-Earth orbit to replace the International Space Station after its scheduled retirement in 2030. NASA is providing funding to two industrial teams led by Blue Origin and Voyager Space, which are working on different space station concepts. But so far, Vast’s work has been funded primarily through private capital. The launch of the Haven-1 outpost, which Vast previously said could happen this year, is now scheduled no earlier than May 2026. The spacecraft will launch in one piece on a Falcon 9 rocket, and the first astronaut crew to visit Haven-1 could launch a month later. Haven-1 is a pathfinder for a larger commercial station called Haven-2, which Vast intends to propose to NASA. (submitted by EllPeaTea)

H3 deploys Japanese navigation satellite. Japan successfully launched a flagship H3 rocket Sunday and put into orbit a Quasi-Zenith Satellite (QZS), aiming to improve the accuracy of global positioning data for various applications, Kyodo News reports. After separation from the H3 rocket, the Michibiki 6 satellite will climb into geostationary orbit, where it will supplement navigation signals from GPS satellites to provide more accurate positioning data to users in Japan and surrounding regions, particularly in mountainous terrain and amid high-rise buildings in large cities. The new satellite joins a network of four QZS spacecraft launched by Japan beginning in 2010. Two more Quasi-Zenith Satellites are under construction, and Japan’s government is expected to begin development of an additional four regional navigation satellites this year.

A good start … After a failed inaugural flight in 2023, Japan’s new H3 rocket has reeled off four consecutive successful launches in less than a year. This may not sound like a lot, but the H3 has achieved its first four successful flights faster than any other rocket since 2000. SpaceX’s Falcon 9 rocket completed its first four successful flights in a little more than two years, and United Launch Alliance’s Atlas V logged its fourth flight in a similar timeframe. More than 14 months elapsed between the first and fourth successful flight of Rocket Lab’s Electron rocket. The H3 is an expendable rocket with no roadmap to reusability, so its service life and commercial potential are likely limited. But the rocket is shaping up to provide reliable access to space for Japan’s space agency and military, while some of its peers in Europe and the United States struggle to ramp up to a steady launch cadence. (submitted by EllPeaTea)

Europe really doesn’t like relying on Elon Musk. Europe’s space industry has struggled to keep up with SpaceX for a decade. The writing was on the wall when SpaceX landed a Falcon 9 booster for the first time. Now, European officials are wary of becoming too reliant on SpaceX, and there’s broad agreement on the continent that Europe should have the capability to launch its own satellites. In this way, access to space is a strategic imperative for Europe. The problem is, Europe’s new Ariane 6 rocket is just not competitive with SpaceX’s Falcon 9, and there’s no concrete plan to counter SpaceX’s dominance.

So here’s another terrible idea … Airbus, Europe’s largest aerospace contractor with a 50 percent stake in the Ariane 6 program, has enlisted Goldman Sachs for advice on how to forge a new European space and satellite company to better compete with SpaceX. France-based Thales and the Italian company Leonardo are part of the talks, with Bank of America also advising on the initiative. The idea that some bankers from Goldman and Bank of America will go into the guts of some of Europe’s largest institutional space companies and emerge with a lean, competitive entity seems far-fetched, to put it mildly, Ars reports.

The FAA still has some bite. We’re now three weeks removed from the most recent test flight of SpaceX’s Starship rocket, which ended with the failure of the vehicle’s upper stage in the final moments of its launch sequence. The accident rained debris over the Atlantic Ocean and the Turks and Caicos Islands. Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump, who counts Musk as one of his top allies. So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars.

Debris field … In the hours and days after the failed Starship launch, residents and tourists in the Turks and Caicos shared images of debris scattered across the islands and washing up onshore. The good news is there were no injuries or reports of significant damage from the wreckage, but the FAA confirmed one report of minor damage to a vehicle located in South Caicos. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. Before now, there has been no public record of any claims of third-party property damage in the era of commercial spaceflight.

DOD eager to reap the benefits of Starship. A Defense Department unit is examining how SpaceX’s Starship vehicle could be used to support a broader architecture of in-space refueling, Space News reports. A senior adviser at the Defense Innovation Unit (DIU) said SpaceX approached the agency about how Starship’s refueling architecture could be used by the wider space industry. The plan for Starship is to transfer cryogenic propellants between tankers, depots, and ships heading to the Moon, Mars, or other deep-space destinations.

Few details available … US military officials have expressed interest in orbital refueling to support in-space mobility, where ground controllers have the freedom to maneuver national security satellites between different orbits without worrying about running out of propellant. For several years, Space Force commanders and Pentagon officials have touted the importance of in-space mobility, or dynamic space operations, in a new era of orbital warfare. However, there are reports that the Space Force has considered zeroing out a budget line item for space mobility in its upcoming fiscal year 2026 budget request.

A small step toward a fully reusable European rocket. The French space agency CNES has issued a call for proposals to develop a reusable upper stage for a heavy-lift rocket, European Spaceflight reports. This project is named DEMESURE (DEMonstration Étage SUpérieur REutilisable / Reusable Upper Stage Demonstration), and it marks one of Europe’s first steps in developing a fully reusable rocket. That’s all good, but there’s a sense of tentativeness in this announcement. The current call for proposals will only cover the earliest phases of development, such as a requirements evaluation, cost estimation review, and a feasibility meeting. A future call will deal with the design and fabrication of a “reduced scale” upper stage, followed by a demonstration phase with a test flight, recovery, and reuse of the vehicle. CNES’s vision is to field a fully reusable rocket as a successor to the single-use Ariane 6.

Toes in the water … If you’re looking for reasons to be skeptical about Project DEMESURE, look no further than the Themis program, which aims to demonstrate the recovery and reuse of a booster stage akin to SpaceX’s Falcon 9. Themis originated in a partnership between CNES and European industry in 2019, then ESA took over the project in 2020. Five years later, the Themis demonstrator still hasn’t flown. After some initial low-altitude hops, Themis is supposed to launch on a high-altitude test flight and maneuver through the entire flight profile of a reusable booster, from liftoff to a vertical propulsive landing. As we’ve seen with SpaceX, recovering an orbital-class upper stage is a lot harder than landing the booster. An optimistic view of this announcement is that anything worth doing requires taking a first step, and that’s what CNES has done here. (submitted by EllPeaTea)

Next three launches

Feb. 7: Falcon 9 | Starlink 12-9 | Cape Canaveral Space Force Station, Florida | 18: 52 UTC

Feb. 8: Electron | IoT 4 You and Me | Māhia Peninsula, New Zealand | 20: 43 UTC

Feb. 10: Falcon 9 | Starlink 11-10 | Vandenberg Space Force Base, California | 00: 03 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong Read More »

concern-about-spacex-influence-at-nasa-grows-with-new-appointee

Concern about SpaceX influence at NASA grows with new appointee

Like a lot of the rest of the federal government right now, NASA is reeling during the first turbulent days of the Trump administration.

The last two weeks have brought a change in leadership in the form of interim administrator Janet Petro, whose ascension was a surprise. Her first act was to tell agency employees to remove diversity, equity, inclusion, and accessibility contracts and to “report” on anyone who did not carry out this order. Soon, civil servants began receiving emails from the US Office of Personnel Management that some perceived as an effort to push them to resign.

Then there are the actions of SpaceX founder Elon Musk. Last week he sowed doubt by claiming NASA had “stranded” astronauts on the space station. (The astronauts are perfectly safe and have a ride home.) Perhaps more importantly, he owns the space agency’s most important contractor and, in recent weeks, has become deeply enmeshed in operating the US government through his Department of Government Efficiency. For some NASA employees, whether or not it is true, there is now an uncomfortable sense that they are working for Musk and to dole out contracts to SpaceX.

This concern was heightened late Friday when Petro announced that a longtime SpaceX employee named Michael Altenhofen had joined the agency “as a senior advisor to the NASA Administrator.” Altenhofen is an accomplished engineer who interned at NASA in 2005 but has spent the last 15 years at SpaceX, most recently as a leader of human spaceflight programs. He certainly brings expertise, but his hiring also raises concerns about SpaceX’s influence over NASA operations. Petro did not respond to a request for comment on Monday about potential conflicts of interest and the scope of Altenhofen’s involvement.

I spent this weekend talking and texting with NASA sources at various centers around the country, and the overriding message is that morale at the agency is “absurdly low.” Meetings between civil servants and their leadership, such as an all-hands gathering at NASA’s Langley Research Center in Virginia recently, have been fraught with tension. No one knows what will happen next.

Concern about SpaceX influence at NASA grows with new appointee Read More »

starlink-profit-growing-rapidly-as-it-faces-a-moment-of-promise-and-peril

Starlink profit growing rapidly as it faces a moment of promise and peril

Estimates of Starlink’s consumer revenues.

Credit: Quilty Space

Estimates of Starlink’s consumer revenues. Credit: Quilty Space

Both of the new analyses indicate that over the course of the last decade, SpaceX has built a robust space-Internet business with affordable ground terminals, sophisticated gateways around the world, more than 7,000 satellites in orbit, and a reusable launch business to service the network. There is new technology coming, with larger V3 satellites on the horizon—to be launched by SpaceX’s Starship vehicle—and the promise of direct-to-cell Internet connectivity that bypasses the need for a ground terminal.

There is also plenty of room for growth in market share in both existing territories as well as large nations such as India, where SpaceX is seeking access to the market and providing Internet service.

Some risk on the horizon

In all of this, Starlink now faces a moment of promise and peril. The company has all of the potential described above, but SpaceX founder Elon Musk has become an increasingly prominent and controversial figure both in US and global politics. Many people and governments are becoming more uncomfortable with Musk’s behavior, his insertion into domestic and foreign politics, and the power he is wielding within the Trump administration.

In the near term, this may be good for Starlink’s business. The Financial Times reported that corporate America, in an effort to deepen ties with the Trump Administration, has been “cozying” up to Musk and his business empire. This includes Starlink, with United Airlines accelerating a collaboration for use of the service on its fleet, as well as deals with Oracle and Apple.

At the same time, Musk’s activities may make it challenging for Starlink in the long term in countries that seek to punish him and his companies. For example, the Canadian Broadcasting Corporation reported Monday that Progressive Conservative Leader Doug Ford will rip up Ontario’s nearly $100 million contract with Starlink in the wake of US tariffs on virtually all Canadian goods.

The contract, signed in November, was intended to provide high-speed Internet to 15,000 eligible homes and businesses in rural, remote, and northern communities by June of this year. Musk is “part of the Trump team that wants to destroy families, incomes, destroy businesses,” Ford said at a news conference Monday. “He wants to take food off the table of people—hard-working people—and I’m not going to tolerate it.”

Starlink profit growing rapidly as it faces a moment of promise and peril Read More »

it-seems-the-faa-office-overseeing-spacex’s-starship-probe-still-has-some-bite

It seems the FAA office overseeing SpaceX’s Starship probe still has some bite


The political winds have shifted in Washington, but the FAA hasn’t yet changed its tune on Starship.

Liftoff of SpaceX’s seventh full-scale test flight of the Super Heavy/Starship launch vehicle on January 16. Credit: SpaceX

The seventh test flight of SpaceX’s gigantic Starship rocket came to a disappointing end a little more than two weeks ago. The in-flight failure of the rocket’s upper stage, or ship, about eight minutes after launch on January 16 rained debris over the Turks and Caicos Islands and the Atlantic Ocean.

Amateur videos recorded from land, sea, and air showed fiery debris trails streaming overhead at twilight, appearing like a fireworks display gone wrong. Within hours, posts on social media showed small pieces of debris recovered by residents and tourists in the Turks and Caicos. Most of these items were modest in size, and many appeared to be chunks of tiles from Starship’s heat shield.

Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump. Elon Musk’s close relationship with Trump, coupled with the new administration’s appetite for cutting regulations and reducing the size of government, led some industry watchers to question whether Musk’s influence might change the FAA’s stance on SpaceX.

So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars on Friday. After a preliminary assessment of flight data, SpaceX officials said a fire appeared to develop in the aft section of the ship before it broke apart and fell to Earth.

“The FAA has directed SpaceX to lead an investigation of the Starship Super Heavy Flight 7 mishap with FAA oversight,” the spokesperson said. “Based on the investigation findings for root cause and corrective actions, the FAA may require a company to modify its license.”

This is much the same language the FAA used two weeks ago, when it first ordered the investigation.

Damage report

The FAA’s Office of Commercial Space Transportation is charged with ensuring commercial space launches and reentries don’t endanger the public, and requires launch operators obtain liability insurance or demonstrate financial ability to cover any third-party property damages.

For each Starship launch, the FAA requires SpaceX maintain liability insurance policies worth at least $500 million for such claims. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. And there’s no public record of any claims of third-party property damage in the era of commercial spaceflight. Under federal law, the US government would pay for damages to a much higher amount if any claims exceeded a launch company’s insurance policies.

Here’s a piece of Starship 33 @SpaceX @elonmusk found in Turks and Caicos! 🚀🏝️ pic.twitter.com/HPZDCqA9MV

— @maximzavet (@MaximZavet) January 17, 2025

The good news is there were no injuries or reports of significant damage from the wreckage that fell over the Turks and Caicos. “The FAA confirmed one report of minor damage to a vehicle located in South Caicos,” an FAA spokesperson told Ars on Friday. “To date, there are no other reports of damage.”

It’s not clear if the vehicle owner in South Caicos will file a claim against SpaceX for the damage. It would the first time someone makes such a claim related to an accident with a commercial rocket overseen by the FAA. Last year, a Florida homeowner submitted a claim to NASA for damage to his house from a piece of debris that fell from the International Space Station.

Nevertheless, the Turks and Caicos government said local officials met with representatives from SpaceX and the UK Air Accident Investigations Branch on January 25 to develop a recovery plan for debris that fell on the islands, which are a British Overseas Territory.

A prickly relationship

Musk often bristled at the FAA last year, especially after regulators proposed fines of more than $600,000 alleging that SpaceX violated terms of its launch licenses during two Falcon 9 missions. The alleged violations involved the relocation of a propellant farm at one of SpaceX’s launch pads in Florida, and the use of a new launch control center without FAA approval.

In a post on X, Musk said the FAA was conducting “lawfare” against his company. “SpaceX will be filing suit against the FAA for regulatory overreach,” Musk wrote.

There was no such lawsuit, and the issue may now be moot. Sean Duffy, Trump’s new secretary of transportation, vowed to review the FAA fines during his confirmation hearing in the Senate. It is rare for the FAA to fine launch companies, and the fines last year made up the largest civil penalty ever imposed by the FAA’s commercial spaceflight division.

SpaceX also criticized delays in licensing Starship test flights last year. The FAA cited environmental issues and concerns about the extent of the sonic boom from Starship’s 23-story-tall Super Heavy booster returning to its launch pad in South Texas. SpaceX successfully caught the returning first stage booster at the launch pad for the first time in October, and repeated the feat after the January 16 test flight.

What separates the FAA’s ongoing oversight of Starship’s recent launch failure from these previous regulatory squabbles is that debris fell over populated areas. This would appear to be directly in line with the FAA’s responsibility for public safety.

During last month’s test flight, Starship did not deviate from its planned ground track, which took the rocket over the Gulf of Mexico, the waters between Florida and Cuba, and then the Atlantic Ocean. But the debris field extended beyond the standard airspace closure for the launch. After the accident, FAA air traffic controllers cleared additional airspace over the debris zone for more than an hour, rerouting, diverting, and delaying dozens of commercial aircraft.

These actions followed pre-established protocols. However, it highlighted the small but non-zero risk of rocket debris falling to Earth after a launch failure. “The potential for a bad day downrange just got real,” Lori Garver, a former NASA deputy administrator, posted on X.

Public safety is not sole mandate of the FAA’s commercial space office. It is also chartered to “encourage, facilitate, and promote commercial space launches and reentries by the private sector,” according to an FAA website. There’s a balance to strike.

Lawmakers last year urged the FAA to speed up its launch approvals, primarily because Starship is central to strategic national objectives. NASA has contracts with SpaceX to develop a variant of Starship to land astronauts on the Moon, and Starship’s unmatched ability to deliver more than 100 tons of cargo to low-Earth orbit is attractive to the Pentagon.

While Musk criticized the FAA in 2024, SpaceX officials in 2023 took a different tone, calling for Congress to increase the budget for the FAA’s Office of Commercial Spaceflight and for the regulator to double the space division’s workforce. This change, SpaceX officials argued, would allow the FAA to more rapidly assess and approve a fast-growing number of commercial launch and reentry applications.

In September, SpaceX released a statement accusing the former administrator of the FAA, Michael Whitaker, of making inaccurate statements about SpaceX to a congressional subcommittee. In a different post on X, Musk directly called for Whitaker’s resignation.

He needs to resign https://t.co/pG8htfTYHb

— Elon Musk (@elonmusk) September 25, 2024

That’s exactly what happened. Whitaker, who took over the FAA’s top job in 2023 under the Biden administration, announced in December he would resign on Inauguration Day. Since the agency’s establishment in 1958, three FAA administrators have similarly resigned when a new administration takes power, but the office has been largely immune from presidential politics in recent decades. Since 1993, FAA administrators have stayed in their post during all presidential transitions.

There’s no evidence Whitaker’s resignation had any role in the mid-air collision of an American Eagle passenger jet and a US Army helicopter Wednesday night near Ronald Reagan Washington National Airport. But his departure from the FAA less than two years into a five-year term on January 20 left the agency without a leader. Trump named Chris Rocheleau as the FAA’s acting administrator Thursday.

Next flight, next month?

SpaceX has not released an official schedule for the next Starship test flight or outlined its precise objectives. However, it will likely repeat many of the goals planned for the previous flight, which ended before SpaceX could accomplish some of its test goals. These missed objectives included the release of satellite mockups in space for the first demonstration of Starship’s payload deployment mechanism, and a reentry over the Indian Ocean to test new, more durable heat shield materials.

The January 16 test flight was the first launch up an upgraded, slightly taller Starship, known as Version 2 or Block 2. The next flight will use the same upgraded version.

A SpaceX filing with the Federal Communications Commission suggests the next Starship flight could launch as soon as February 24. Sources told Ars that SpaceX teams believe a launch before the end of February is realistic.

But SpaceX has more to do before Flight 8. These tasks include completing the FAA-mandated investigation and the installation of all 39 Raptor engines on the rocket. Then, SpaceX will likely test-fire the booster and ship before stacking the two elements together to complete assembly of the 404-foot-tall (123.1-meter) rocket.

SpaceX is also awaiting a new FAA launch license, pending its completion of the investigation into what happened on Flight 7.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

It seems the FAA office overseeing SpaceX’s Starship probe still has some bite Read More »

fire-destroys-starship-on-its-seventh-test-flight,-raining-debris-from-space

Fire destroys Starship on its seventh test flight, raining debris from space

This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.

SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?

Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.

On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.

Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.

This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.

Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX

The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.

In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.

Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.

With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.

Fire destroys Starship on its seventh test flight, raining debris from space Read More »