spacex

us-spy-satellites-built-by-spacex-send-signals-in-the-“wrong-direction”

US spy satellites built by SpaceX send signals in the “wrong direction”


Spy satellites emit surprising signals

It seems US didn’t coordinate Starshield’s unusual spectrum use with other countries.

Image of a satellite in space and the Earth in the background.

Image of a Starshield satellite from SpaceX’s website. Credit: SpaceX

Image of a Starshield satellite from SpaceX’s website. Credit: SpaceX

About 170 Starshield satellites built by SpaceX for the US government’s National Reconnaissance Office (NRO) have been sending signals in the wrong direction, a satellite researcher found.

The SpaceX-built spy satellites are helping the NRO greatly expand its satellite surveillance capabilities, but the purpose of these signals is unknown. The signals are sent from space to Earth in a frequency band that’s allocated internationally for Earth-to-space and space-to-space transmissions.

There have been no public complaints of interference caused by the surprising Starshield emissions. But the researcher who found them says they highlight a troubling lack of transparency in how the US government manages the use of spectrum and a failure to coordinate spectrum usage with other countries.

Scott Tilley, an engineering technologist and amateur radio astronomer in British Columbia, discovered the signals in late September or early October while working on another project. He found them in various parts of the 2025–2110 MHz band, and from his location, he was able to confirm that 170 satellites were emitting the signals over Canada, the United States, and Mexico. Given the global nature of the Starshield constellation, the signals may be emitted over other countries as well.

“This particular band is allocated by the ITU [International Telecommunication Union], the United States, and Canada primarily as an uplink band to spacecraft on orbit—in other words, things in space, so satellite receivers will be listening on these frequencies,” Tilley told Ars. “If you’ve got a loud constellation of signals blasting away on the same frequencies, it has the potential to interfere with the reception of ground station signals being directed at satellites on orbit.”

In the US, users of the 2025–2110 MHz portion of the S-Band include NASA and the National Oceanic and Atmospheric Administration (NOAA), as well as nongovernmental users like TV news broadcasters that have vehicles equipped with satellites to broadcast from remote locations.

Experts told Ars that the NRO likely coordinated with the US National Telecommunications and Information Administration (NTIA) to ensure that signals wouldn’t interfere with other spectrum users. A decision to allow the emissions wouldn’t necessarily be made public, they said. But conflicts with other governments are still possible, especially if the signals are found to interfere with users of the frequencies in other countries.

Surprising signals

A man standing outdoors in front of two large antennas.

Scott Tilley and his antennas.

Credit: Scott Tilley

Scott Tilley and his antennas. Credit: Scott Tilley

Tilley previously made headlines in 2018 when he located a satellite that NASA had lost contact with in 2005. For his new discovery, Tilley published data and a technical paper describing the “strong wideband S-band emissions,” and his work was featured by NPR on October 17.

Tilley’s technical paper said emissions were detected from 170 satellites out of the 193 known Starshield satellites. Emissions have since been detected from one more satellite, making it 171 out of 193, he told Ars. “The apparent downlink use of an uplink-allocated band, if confirmed by authorities, warrants prompt technical and regulatory review to assess interference risk and ensure compliance” with ITU regulations, Tilley’s paper said.

Tilley said he uses a mix of omnidirectional antennas and dish antennas at his home to receive signals, along with “software-defined radios and quite a bit of proprietary software I’ve written or open source software that I use for analysis work.” The signals did not stop when the paper was published. Tilley said the emissions are powerful enough to be received by “relatively small ground stations.”

Tilley’s paper said that Starshield satellites emit signals with a width of 9 MHz and signal-to-noise (SNR) ratios of 10 to 15 decibels. “A 10 dB SNR means the received signal power is ten times greater than the noise power in the same bandwidth,” while “20 dB means one hundred times,” Tilley told Ars.

Other Starshield signals that were 4 or 5 MHz wide “have been observed to change frequency from day to day with SNR exceeding 20dB,” his paper said. “Also observed from time to time are other weaker wide signals from 2025–2110 MHz what may be artifacts or actual intentional emissions.”

The 2025–2110 MHz band is used by NASA for science missions and by other countries for similar missions, Tilley noted. “Any other radio activity that’s occurring on this band is intentionally limited to avoid causing disruption to its primary purpose,” he said.

The band is used for some fully terrestrial, non-space purposes. Mobile service is allowed in 2025–2110 MHz, but ITU rules say that “administrations shall not introduce high-density mobile systems” in these frequencies. The band is also licensed in the US for non-federal terrestrial services, including the Broadcast Auxiliary Service, Cable Television Relay Service, and Local Television Transmission Service.

While Earth-based systems using the band, such as TV links from mobile studios, have legal protection against interference, Tilley noted that “they normally use highly directional and local signals to link a field crew with a studio… they’re not aimed into space but at a terrestrial target with a very directional antenna.” A trade group representing the US broadcast industry told Ars that it hasn’t observed any interference from Starshield satellites.

“There without anybody knowing it”

Spectrum consultant Rick Reaser told Ars that Starshield’s space-to-Earth transmissions likely haven’t caused any interference problems. “You would not see this unless you were looking for it, or if it turns out that your receiver looks for everything, which most receivers aren’t going to do,” he said.

Reaser said it appears that “whatever they’re doing, they’ve come up with a way to sort of be there without anybody knowing it,” or at least until Tilley noticed the signals.

“But then the question is, can somebody prove that that’s caused a problem?” Reaser said. Other systems using the same spectrum in the correct direction probably aren’t pointed directly at the Starshield satellites, he said.

Reaser’s extensive government experience includes managing spectrum for the Defense Department, negotiating a spectrum-sharing agreement with the European Union, and overseeing the development of new signals for GPS. Reaser said that Tilley’s findings are interesting because the signals would be hard to discover.

“It is being used in the wrong direction, if they’re coming in downlink, that’s supposed to be an uplink,” Reaser said. As for what the signals are being used for, Reaser said he doesn’t know. “It could be communication, it could be all sorts of things,” he said.

Tilley’s paper said the “results raise questions about frequency-allocation compliance and the broader need for transparent coordination among governmental, commercial, and scientific stakeholders.” He argues that international coordination is becoming more important because of the ongoing deployment of large constellations of satellites that could cause harmful interference.

“Cooperative disclosure—without compromising legitimate security interests—will be essential to balance national capability with the shared responsibility of preserving an orderly and predictable radio environment,” his paper said. “The findings presented here are offered in that spirit: not as accusation, but as a public-interest disclosure grounded in reproducible measurement and open analysis. The data, techniques, and references provided enable independent verification by qualified parties without requiring access to proprietary or classified information.”

While Tilley doesn’t know exactly what the emissions are for, his paper said the “signal characteristics—strong, coherent, and highly predictable carriers from a large constellation—create the technical conditions under which opportunistic or deliberate PNT exploitation could occur.”

PNT refers to Positioning, Navigation, and Timing (PNT) applications. “While it is not suggested that the system was designed for that role, the combination of wideband data channels and persistent carrier tones in a globally distributed or even regionally operated network represents a practical foundation for such use, either by friendly forces in contested environments or by third parties seeking situational awareness,” the paper said.

Emissions may have been approved in secret

Tilley told us that a few Starshield satellites launched just recently, in late September, have not emitted signals while moving toward their final orbits. He said this suggests the emissions are for an “operational payload” and not merely for telemetry, tracking, and control (TT&C).

“This could mean that [the newest satellites] don’t have this payload or that the emissions are not part of TT&C and may begin once these satellites achieve their place within the constellation,” Tilley told Ars. “If these emissions are TT&C, you would expect them to be active especially during the early phases of the mission, when the satellites are actively being tested and moved into position within the constellation.”

Whatever they’re for, Reaser said the emissions were likely approved by the NTIA and that the agency would likely have consulted with the Federal Communications Commission. For federal spectrum use, these kinds of decisions aren’t necessarily made public, he said.

“NRO would have to coordinate that through the NTIA to make sure they didn’t have an interference problem,” Reaser said. “And by the way, this happens a lot. People figure out a way [to transmit] on what they call a non-interference basis, and that’s probably how they got this approved. They say, ‘listen, if somebody reports interference, then you have to shut down.’”

Tilley said it’s clear that “persistent S-band emissions are occurring in the 2025–2110 MHz range without formal ITU coordination.” Claims that the downlink use was approved by the NTIA in a non-public decision “underscore, rather than resolve, the transparency problem,” he told Ars.

An NTIA spokesperson declined to comment. The NRO and FCC did not provide any comment in response to requests from Ars.

SpaceX just “a contractor for the US government”

Randall Berry, a Northwestern University professor of electrical and computer engineering, agreed with Reaser that it’s likely the NTIA approved the downlink use of the band and that this decision was not made public. Getting NTIA clearance is “the proper way this should be done,” he said.

“It would be surprising if NTIA was not aware, as Starshield is a government-operated system,” Berry told Ars. While NASA and other agencies use the band for Earth-to-space transmissions, “they may have been able to show that the Starshield space-to-Earth signals do not create harmful interference with these Earth-to-space signals,” he said.

There is another potential explanation that is less likely but more sinister. Berry said it’s possible that “SpaceX did not make this known to NTIA when the system was cleared for federal use.” Berry said this would be “surprising and potentially problematic.”

Digital rendering of a satellite in space.

SpaceX rendering of a Starshield satellite.

Credit: SpaceX

SpaceX rendering of a Starshield satellite. Credit: SpaceX

Tilley doesn’t think SpaceX is responsible for the emissions. While Starshield relies on technology built for the commercial Starlink broadband system of low Earth orbit satellites, Elon Musk’s space company made the Starshield satellites in its role as a contractor for the US government.

“I think [SpaceX is] just operating as a contractor for the US government,” Tilley said. “They built a satellite to the government specs provided for them and launched it for them. And from what I understand, the National Reconnaissance Office is the operator.”

SpaceX did not respond to a request for comment.

TV broadcasters conduct interference analysis

TV broadcasters with news trucks that use the same frequencies “protect their band vigorously” and would have reported interference if it was affecting their transmissions, Reaser said. This type of spectrum use is known as Electronic News Gathering (ENG).

The National Association of Broadcasters told Ars that it “has been closely tracking recent reports concerning satellite downlink operation in the 2025–2110 MHz frequency band… While it’s not clear that satellite downlink operations are authorized by international treaty in this range, such operations are uncommon, and we are not aware of any interference complaints related to downlink use.”

The NAB investigated after Tilley’s report. “When the Tilley report first surfaced, NAB conducted an interference analysis—based on some assumptions given that Starshield’s operating parameters have not been publicly disclosed,” the group told us. “That analysis found that interference with ENG systems is unlikely. We believe the proposed downlink operations are likely compatible with broadcaster use of the band, though coordination issues with the International Telecommunication Union (ITU) could still arise.”

Tilley said that a finding of interference being unlikely “addresses only performance, not legality… coordination conducted only within US domestic channels does not meet international requirements under the ITU Radio Regulations. This deployment is not one or two satellites, it is a distributed constellation of hundreds of objects with potential global implications.”

Canada agency: No coordination with ITU or US

When contacted by Ars, an ITU spokesperson said the agency is “unable to provide any comment or additional information on the specific matter referenced.” The ITU said that interference concerns “can be formally raised by national administrations” and that the ITU’s Radio Regulations Board “carefully examines the specifics of the case and determines the most appropriate course of action to address it in line with ITU procedures.”

The Canadian Space Agency (CSA) told Ars that its “missions operating within the frequency band have not yet identified any instances of interference that negatively impact their operations and can be attributed to the referenced emissions.” The CSA indicated that there hasn’t been any coordination with the ITU or the US over the new emissions.

“To date, no coordination process has been initiated for the satellite network in question,” the CSA told Ars. “Coordination of satellite networks is carried out through the International Telecommunication Union (ITU) Radio Regulation, with Innovation, Science and Economic Development Canada (ISED) serving as the responsible national authority.”

The European Space Agency also uses the 2025–2100 band for TT&C. We contacted the agency but did not receive any comment.

The lack of coordination “remains the central issue,” Tilley told Ars. “This band is globally allocated for Earth-to-space uplinks and limited space-to-space use, not continuous space-to-Earth transmissions.”

NASA needs protection from interference

An NTIA spectrum-use report updated in 2015 said NASA “operates earth stations in this band for tracking and command of manned and unmanned Earth-orbiting satellites and space vehicles either for Earth-to-space links for satellites in all types of orbits or through space-to-space links using the Tracking Data and Relay Satellite System (TDRSS). These earth stations control ninety domestic and international space missions including the Space Shuttle, the Hubble Space Telescope, and the International Space Station.”

Additionally, the NOAA “operates earth stations in this band to control the Geostationary Operational Environmental Satellite (GOES) and Polar Operational Environmental Satellite (POES) meteorological satellite systems,” which collect data used by the National Weather Service. We contacted NASA and NOAA, but neither agency provided comment to Ars.

NASA’s use of the band has increased in recent years. The NTIA told the FCC in 2021 that 2025–2110 MHz is “heavily used today and require[s] extensive coordination even among federal users.” The band “has seen dramatically increased demand for federal use as federal operations have shifted from federal bands that were repurposed to accommodate new commercial wireless broadband operations.”

A 2021 NASA memo included in the filing said that NASA would only support commercial launch providers using the band if their use was limited to sending commands to launch vehicles for recovery and retrieval purposes. Even with that limit, commercial launch providers would cause “significant interference” for existing federal operations in the band if the commercial use isn’t coordinated through the NTIA, the memo said.

“NASA makes extensive use of this band (i.e., currently 382 assignments) for both transmissions from earth stations supporting NASA spacecraft (Earth-to-space) and transmissions from NASA’s Tracking and Data Relay Satellite System (TDRSS) to user spacecraft (space-to-space), both of which are critical to NASA operations,” the memo said.

In 2024, the FCC issued an order allowing non-federal space launch operations to use the 2025–2110 MHz band on a secondary basis. The allocation is “limited to space launch telecommand transmissions and will require commercial space launch providers to coordinate with non-Federal terrestrial licensees… and NTIA,” the FCC order said.

International non-interference rules

While US agencies may not object to the Starshield emissions, that doesn’t guarantee there will be no trouble with other countries. Article 4.4 of ITU regulations says that member nations may not assign frequencies that conflict with the Table of Frequency Allocations “except on the express condition that such a station, when using such a frequency assignment, shall not cause harmful interference to, and shall not claim protection from harmful interference caused by, a station operating in accordance with the provisions.”

Reaser said that under Article 4.4, entities that are caught interfering with other spectrum users are “supposed to shut down.” But if the Starshield users were accused of interference, they would probably “open negotiations with the offended party” instead of immediately stopping the emissions, he said.

“My guess is they were allowed to operate on a non-interference basis and if there is an interference issue, they’d have to go figure a way to resolve them,” he said.

Tilley told Ars that Article 4.4 allows for non-interference use domestically but “is not a blank check for continuous, global downlinks from a constellation.” In that case, “international coordination duties still apply,” he said.

Tilley pointed out that under the Convention on Registration of Objects Launched into Outer Space, states must report the general function of a space object. “Objects believed to be part of the Starshield constellation have been registered with UNOOSA [United Nations Office for Outer Space Affairs] under the broad description: ‘Spacecraft engaged in practical applications and uses of space technology such as weather or communications,’” his paper said.

Tilley told Ars that a vague description such as this “may satisfy the letter of filing requirements, but it contradicts the spirit” of international agreements. He contends that filings should at least state whether a satellite is for military purposes.

“The real risk is that we are no longer dealing with one or two satellites but with massive constellations that, by their very design, are global in scope,” he told Ars. “Unilateral use of space and spectrum affects every nation. As the examples of US and Chinese behavior illustrate, we are beginning from uncertain ground when it comes to large, militarily oriented mega-constellations, and, at the very least, this trend distorts the intent and spirit of international law.”

China’s constellation

Tilley said he has tracked China’s Guowang constellation and its use of “spectrum within the 1250–1300 MHz range, which is not allocated for space-to-Earth communications.” China, he said, “filed advance notice and coordination requests with the ITU for this spectrum but was not granted protection for its non-compliant use. As a result, later Chinese filings notifying and completing due diligence with the ITU omit this spectrum, yet the satellites are using it over other nations. This shows that the Chinese government consulted internationally and proceeded anyway, while the US government simply did not consult at all.”

By contrast, Canada submitted “an unusual level of detail” to the ITU for its military satellite Sapphire and coordinated fully with the ITU, he said.

Tilley said he reported his findings on Starshield emissions “directly to various western space agencies and the Canadian government’s spectrum management regulators” at the ISED.

“The Canadian government has acknowledged my report, and it has been disseminated within their departments, according to a senior ISED director’s response to me,” Tilley said, adding that he is continuing to collaborate “with other researchers to assist in the gathering of more data on the scope and impact of these emissions.”

The ISED told Ars that it “takes any reports of interference seriously and is not aware of any instances or complaints in these bands. As a general practice, complaints of potential interference are investigated to determine both the cause and possible resolutions. If it is determined that the source of interference is not Canadian, ISED works with its regulatory counterparts in the relevant administration to resolve the issue. ISED has well-established working arrangements with counterparts in other countries to address frequency coordination or interference matters.”

Accidental discovery

Two pictures of large antennas set up outdoors.

Antennas used by Scott Tilley.

Credit: Scott Tilley

Antennas used by Scott Tilley. Credit: Scott Tilley

Tilley’s discovery of Starshield signals happened because of “a clumsy move at the keyboard,” he told NPR. “I was resetting some stuff, and then all of a sudden, I’m looking at the wrong antenna, the wrong band,” he said.

People using the spectrum for Earth-to-space transmissions generally wouldn’t have any reason to listen for transmissions on the same frequencies, Tilley told Ars. Satellites using 2025–2100 MHz for Earth-to-space transmissions have their downlink operations on other frequencies, he said.

“The whole reason why I publicly revealed this rather than just quietly sit on it is to alert spacecraft operators that don’t normally listen on this band… that they should perform risk assessments and assess whether their missions have suffered any interference or could suffer interference and be prepared to deal with that,” he said.

A spacecraft operator may not know “a satellite is receiving interference unless the satellite is refusing to communicate with them or asking for the ground station to repeat the message over and over again,” Tilley said. “Unless they specifically have a reason to look or it becomes particularly onerous for them, they may not immediately realize what’s going on. It’s not like they’re sitting there watching the spectrum to see unusual signals that could interfere with the spacecraft.”

While NPR paraphrased Tilley as saying that the transmissions could be “designed to hide Starshield’s operations,” he told Ars that this characterization is “maybe a bit strongly worded.”

“It’s certainly an unusual place to put something. I don’t want to speculate about what the real intentions are, but it certainly could raise a question in one’s mind as to why they would choose to emit there. We really don’t know and probably never will know,” Tilley told us.

How amateurs track Starshield

After finding the signals, Tilley determined they were being sent by Starshield satellites by consulting data collected by amateurs on the constellation. SpaceX launches the satellites into what Tilley called classified orbits, but the space company distributes some information that can be used to track their locations.

For safety reasons, SpaceX publishes “a notice to airmen and sailors that they’re going to be dropping boosters and debris in hazard areas… amateurs use those to determine the orbital plane the launch is going to go into,” Tilley said. “Once we know that, we just basically wait for optical windows when the lighting is good, and then we’re able to pick up the objects and start tracking them and then start cataloguing them and generating orbits. A group of us around the world do that. And over the last year and a half or so since they started launching the bulk of this constellation, the amateurs have amassed considerable body of orbital data on this constellation.”

After accidentally discovering the emissions, Tilley said he used open source software to “compare the Doppler signal I was receiving to the orbital elements… and immediately started coming back with hits to Starshield and nothing else.” He said this means that “the tens of thousands of other objects in orbit didn’t match the radio Doppler characteristics that these objects have.”

Tilley is still keeping an eye on the transmissions. He told us that “I’m continuing to hear the signals, record them, and monitor developments within the constellation.”

Photo of Jon Brodkin

Jon is a Senior IT Reporter for Ars Technica. He covers the telecom industry, Federal Communications Commission rulemakings, broadband consumer affairs, court cases, and government regulation of the tech industry.

US spy satellites built by SpaceX send signals in the “wrong direction” Read More »

what-would-a-“simplified”-starship-plan-for-the-moon-actually-look-like?

What would a “simplified” Starship plan for the Moon actually look like?


The problem is that it may be difficult to find options that both NASA and SpaceX like.

An image of SpaceX’s “Lunar” variant of Starship on the Moon’s surface. Credit: SpaceX

In what will likely be his most consequential act as NASA’s interim leader, Sean Duffy said last month that the space agency was “opening up” its competition to develop a lunar lander that will put humans on the surface of the Moon.

As part of this move, Duffy asked NASA’s current lunar lander contractors, SpaceX and Blue Origin, for more nimble plans. Neither has specified those plans publicly, but a recent update from SpaceX referenced a “simplified” version of the Starship system it’s building to help NASA return humans to the Moon.

“Since the contract was awarded, we have been consistently responsive to NASA as requirements for Artemis III have changed and have shared ideas on how to simplify the mission to align with national priorities,” the company said. “In response to the latest calls, we’ve shared and are formally assessing a simplified mission architecture and concept of operations that we believe will result in a faster return to the Moon while simultaneously improving crew safety.”

So what would a simplified architecture look like? It is difficult to say for sure, but there are some interesting ideas floating around.

First, let’s make a couple of assumptions. Any approach to shortening the Artemis III timeline should not involve major hardware changes. This rules out a “stubby” version of Starship, which would require a significant reworking of the vehicle’s internals. Essentially, any new plan should use hardware that exists largely in the structural shape and form it’s in. And for SpaceX, we’ll assume that “simplified” means not working directly with other contractors beyond those already involved in Artemis III.

With these ground rules, there are two changes that SpaceX, in conjunction with NASA, could make to simplify or potentially accelerate Artemis: “Expendable Starships” and “Enter the Dragon.”

Expendable Starships

One of the biggest challenges with the existing plan is refueling in low-Earth orbit. Essentially, SpaceX must launch a “depot” variant of Starship and then fuel it with “tanker” Starship upper stages. Once this depot is full, the “lunar lander” variant of Starship launches, is refueled, and then flies to the Moon. There, it awaits a crew of astronauts on board Orion to land them on the Moon and return them to lunar orbit.

Estimates vary widely for how many ‘”tanker” Starships will be required to fuel the depot for a lunar mission. In truth, no one will know the answer until there is a mature Starship design with real-world performance numbers and demonstrated efficiency of propellant transfer and storage.

Critics of the SpaceX plan, and there are many, say the mission architecture is clunky and untenable. One household name in the space industry recently told Ars he believes it would take up to 20 to 40 “tanker” launches to fill a depot. That seems high, but a number in the ballpark of 12 to 20 flights (probably with the next-generation V4 ships) is realistic.

That is a lot of launches, to be sure. But it’s not inconceivable that a company now regularly launching three Falcon 9 rockets a week could launch a dozen or more Starships per month in the not-too-distant future.

There is one relatively straightforward way to cut down on the number of “tanker” launches. For early Artemis missions, SpaceX could use expendable “tanker” Starships rather than landing and reusing them. It is not clear how much this would boost the capacity of Starship, but it likely would be considerable. SpaceX probably could remove the grid fins (multiple tons), as well as a tiled heat shield that (according to rumors, it must be said) is running considerably more massive than what was budgeted for. There also would be propellant mass savings without the need for reentry and landing burns.

Using an optimized, expendable Starship might reduce the number of tanker missions required by up to 50 percent. There are downsides, including a significant increase in costs and an undermining of the whole point of Starship: full and rapid reuse.

It is safe to say that Starship will be the largest human spacecraft to land on the Moon by far.

Credit: SpaceX

It is safe to say that Starship will be the largest human spacecraft to land on the Moon by far. Credit: SpaceX

There is a third downside, and this is perhaps the most important one. An “expendable” Starship plan would be anathema to the leadership of SpaceX, including founder Elon Musk. Officials there do not believe the space industry has fully digested how Starship will transform the launch industry.

“You don’t yet understand how many Starship launches will happen,” a senior SpaceX source told Ars.

The company is aiming to launch 1 million tons of payload to orbit per year, the majority of which will be propellant. SpaceX simply believes that once it locks in on Starship operations, launching a dozen or many more rockets per month won’t be a big deal. So why waste time on expendable rockets? That era is over.

Enter the Dragon

A second option would be to rely solely on SpaceX hardware.

I don’t expect NASA to be interested in this idea, but it’s worth discussing. Nearly a year ago, in the immediate aftermath of the presidential election, Republican space officials were considering canceling Artemis and substituting a “competition” similar to the Commercial Cargo program. It was thought that both SpaceX and Blue Origin would bid plans to land humans on the Moon and that NASA would fund both.

These plans have largely fallen by the wayside in the last 12 months, though. NASA (and perhaps most importantly, paymasters in Congress) prefer to stick with the Space Launch System rocket and Orion spacecraft for the initial Artemis missions.

But if pressed, SpaceX could come up with a simplified Moon landing architecture that requires fewer refuelings. There are multiple ways this could be done, so I’ll offer just one variant here:

  • SpaceX launches the “lunar” variant of Starship into low-Earth orbit, uncrewed
  • SpaceX launches two “depot” variants of Starship into orbit
  • Both depots are fueled (perhaps requiring 3-5 “tanker” launches each)
  • One of these depots flies out to low-lunar orbit, the other fuels the Lunar starship previously launched into low-Earth orbit
  • A crew of four astronauts launches on Crew Dragon, which docks with the Lunar Starship
  • Crew transfers to Starship, which undocks from Dragon, flies to the Moon, and lands
  • After days on the surface, this Starship launches from the Moon and refuels from the second depot in lunar orbit
  • Starship flies back to low-Earth orbit, docks with Dragon, and Dragon returns to Earth

Does that sound complicated? Sure. But it’s arguably not as complicated as an Orion-based mission, and it would likely necessitate fewer refuelings. This is because Starship does not need to rendezvous with Orion in a near-rectilinear halo orbit, and there is no 100-day loiter requirement for a fully fueled Starship at the Moon.

This solution, however, would likely be viewed as toxic by NASA’s safety community due to the need to refuel in lunar orbit with crew on board. A decade ago, when SpaceX proposed fueling the Falcon 9 vehicle on the ground with astronauts on board—a procedure known as load-and-go—engineers tasked with the crew’s safety went berserk.

“When SpaceX came to us and said we want to load the crew first, and then the propellant, mushroom clouds went off in our safety community,” Phil McAlister, NASA’s then-chief of commercial spaceflight, told me when I was writing the book Reentry. “I mean, hair-on-fire stuff. It was just conventional wisdom that you load the propellant first and get it thermally stable. Fueling is a very dynamic operation. The vehicle is popping and hissing. The safety community was adamantly against this.”

It’s probably safe to say that SpaceX would be unhappy with the first solution offered here, and NASA would be unhappy with the second one. For these reasons, SpaceX’s current architecture may well remain the default one for Artemis III.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

What would a “simplified” Starship plan for the Moon actually look like? Read More »

with-another-record-broken,-the-world’s-busiest-spaceport-keeps-getting-busier

With another record broken, the world’s busiest spaceport keeps getting busier


It’s not just the number of rocket launches, but how much stuff they’re carrying into orbit.

With 29 Starlink satellites onboard, a Falcon 9 rocket streaks through the night sky over Cape Canaveral Space Force Station, Florida, on Monday night. Credit: Stephen Clark/Ars Technica

CAPE CANAVERAL, Florida—Another Falcon 9 rocket fired off its launch pad here on Monday night, taking with it another 29 Starlink Internet satellites to orbit.

This was the 94th orbital launch from Florida’s Space Coast so far in 2025, breaking the previous record for the most satellite launches in a calendar year from the world’s busiest spaceport. Monday night’s launch came two days after a Chinese Long March 11 rocket lifted off from an oceangoing platform on the opposite side of the world, marking humanity’s 255th mission to reach orbit this year, a new annual record for global launch activity.

As of Wednesday, a handful of additional missions have pushed the global figure this year to 259, putting the world on pace for around 300 orbital launches by the end of 2025. This will more than double the global tally of 135 orbital launches in 2021.

Routine vs. complacency

Waiting in the darkness a few miles away from the launch pad, I glanced around at my surroundings before watching SpaceX’s Falcon 9 thunder into the sky. There were no throngs of space enthusiasts anxiously waiting for the rocket to light up the night. No line of photographers snapping photos. Just this reporter and two chipper retirees enjoying what a decade ago would have attracted far more attention.

Go to your local airport and you’ll probably find more people posted up at a plane-spotting park at the end of the runway. Still, a rocket launch is something special. On the same night that I watched the 94th launch of the year depart from Cape Canaveral, Orlando International Airport saw the same number of airplane departures in just three hours.

The crowds still turn out for more meaningful launches, such as a test flight of SpaceX’s Starship megarocket in Texas or Blue Origin’s attempt to launch its second New Glenn heavy-lifter here Sunday. But those are not the norm. Generations of aerospace engineers were taught that spaceflight is not routine for fear of falling into complacency, leading to failure, and in some cases, death.

Compared to air travel, the mantra remains valid. Rockets are unforgiving, with engines operating under extreme pressures, at high thrust, and unable to suck in oxygen from the atmosphere as a reactant for combustion. There are fewer redundancies in a rocket than in an airplane.

The Falcon 9’s established failure rate is less than 1 percent, well short of any safety standard for commercial air travel but good enough to be the most successful orbital-class in history. Given the Falcon 9’s track record, SpaceX seems to have found a way to overcome the temptation for complacency.

A Chinese Long March 11 rocket carrying three Shiyan 32 test satellites lifts off from waters off the coast of Haiyang in eastern China’s Shandong province on Saturday. Credit: Guo Jinqi/Xinhua via Getty Images

Following the trend

The upward trend in rocket launches hasn’t always been the case. Launch numbers were steady for most of the 2010s, following a downward trend in the 2000s, with as few as 52 orbital launches in 2005, the lowest number since the nascent era of spaceflight in 1961. There were just seven launches from here in Florida that year.

The numbers have picked up dramatically in the last five years as SpaceX has mastered reusable rocketry.

It’s important to look at not just the number of launches but also how much stuff rockets are actually putting into orbit. More than half of this year’s launches were performed using SpaceX’s Falcon 9 rocket, and the majority of those deployed Starlink satellites for SpaceX’s global Internet network. Each spacecraft is relatively small in size and weight, but SpaceX stacks up to 29 of them on a single Falcon 9 to max out the rocket’s carrying capacity.

All this mass adds up to make SpaceX’s dominance of the launch industry appear even more absolute. According to analyses by BryceTech, an engineering and space industry consulting firm, SpaceX has launched 86 percent of all the world’s payload mass over the 18 months from the beginning of 2024 through June 30 of this year.

That’s roughly 2.98 million kilograms of the approximately 3.46 million kilograms (3,281 of 3,819 tons) of satellite hardware and cargo that all the world’s rockets placed into orbit during that timeframe.

The charts below were created by Ars Technica using publicly available launch numbers and payload mass estimates from BryceTech. The first illustrates the rising launch cadence at Cape Canaveral Space Force Station and NASA’s Kennedy Space Center, located next to one another in Florida. Launches from other US-licensed spaceports, primarily Vandenberg Space Force Base, California, and Rocket Lab’s base at Māhia Peninsula in New Zealand, are also on the rise.

These numbers represent rockets that reached low-Earth orbit. We didn’t include test flights of SpaceX’s Starship rocket in the chart because all of its launches have intentionally flown on suborbital trajectories.

In the second chart, we break down the payload upmass to orbit from SpaceX, other US companies, China, Russia, and other international launch providers.

Launch rates are on a clear upward trend, while SpaceX has launched 86 percent of the world’s total payload mass to orbit since the beginning of 2024. Credit: Stephen Clark/Ars Technica/BryceTech

Will it continue?

It’s a good bet that payload upmass will continue to rise in the coming years, with heavy cargo heading to orbit to further expand SpaceX’s Starlink communications network and build out new megaconstellations from Amazon, China, and others. The US military’s Golden Dome missile defense shield will also have a ravenous appetite for rockets to get it into space.

SpaceX’s Starship megarocket could begin flying to low-Earth orbit next year, and if it does, SpaceX’s preeminence in delivering mass to orbit will remain assured. Starship’s first real payloads will likely be SpaceX’s next-generation Starlink satellites. These larger, heavier, more capable spacecraft will launch 60 at a time on Starship, further stretching SpaceX’s lead in the upmass war.

But Starship’s arrival will come at the expense of the workhorse Falcon 9, which lacks the capacity to haul the next-gen Starlinks to orbit. “This year and next year I anticipate will be the highest Falcon launch rates that we will see,” said Stephanie Bednarek, SpaceX’s vice president of commercial sales, at an industry conference in July.

SpaceX is on pace for between 165 and 170 Falcon 9 launches this year, with 144 flights already in the books for 2025. Last year’s total for Falcon 9 and Falcon Heavy was 134 missions. SpaceX has not announced how many Falcon 9 and Falcon Heavy launches it plans for next year.

Starship is designed to be fully and rapidly reusable, eventually enabling multiple flights per day. But that’s still a long way off, and it’s unknown how many years it might take for Starship to surpass the Falcon 9’s proven launch tempo.

A Starship rocket and Super Heavy booster lift off from Starbase, Texas. Credit: SpaceX

In any case, with Starship’s heavy-lifting capacity and upgraded next-gen satellites, SpaceX could match an entire year’s worth of new Starlink capacity with just two fully loaded Starship flights. Starship will be able to deliver 60 times more Starlink capacity to orbit than a cluster of satellites riding on a Falcon 9.

There’s no reason to believe SpaceX will be satisfied with simply keeping pace with today’s Starlink growth rate. There are emerging market opportunities in connecting satellites with smartphones, space-based computer processing and data storage, and military applications.

Other companies have medium-to-heavy rockets that are either new to the market or soon to debut. These include Blue Origin’s New Glenn, now set to make its second test flight in the coming days, with a reusable booster designed to facilitate a rapid-fire launch cadence.

Despite all of the newcomers, most satellite operators see a shortage of launch capacity on the commercial market. “The industry is likely to remain supply-constrained through the balance of the decade,” wrote Caleb Henry, director of research at the industry analysis firm Quilty Space. “That could pose a problem for some of the many large constellations on the horizon.”

United Launch Alliance’s Vulcan rocket, Rocket Lab’s Neutron, Stoke Space’s Nova, Relativity Space’s Terran R, and Firefly Aerospace and Northrop Grumman’s Eclipse are among the other rockets vying for a bite at the launch apple.

“Whether or not the market can support six medium to heavy lift launch providers from the US aloneplus Starshipis an open question, but for the remainder of the decade launch demand is likely to remain high, presenting an opportunity for one or more new players to establish themselves in the pecking order,” Henry wrote in a post on Quilty’s website.

China’s space program will need more rockets, too. That nation’s two megaconstellations, known as Guowang and Qianfan, will have thousands of satellites requiring a significant uptick on Chinese launches.

Taking all of this into account, the demand curve for access to space is sure to continue its upward trajectory. How companies meet this demand, and with how many discrete departures from Earth, isn’t quite as clear.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With another record broken, the world’s busiest spaceport keeps getting busier Read More »

the-government-shutdown-is-starting-to-have-cosmic-consequences

The government shutdown is starting to have cosmic consequences

The federal government shutdown, now in its 38th day, prompted the Federal Aviation Administration to issue a temporary emergency order Thursday prohibiting commercial rocket launches from occurring during “peak hours” of air traffic.

The FAA also directed commercial airlines to reduce domestic flights from 40 “high impact airports” across the country in a phased approach beginning Friday. The agency said the order from the FAA’s administrator, Bryan Bedford, is aimed at addressing “safety risks and delays presented by air traffic controller staffing constraints caused by the continued lapse in appropriations.”

The government considers air traffic controllers essential workers, so they remain on the job without pay until Congress passes a federal budget and President Donald Trump signs it into law. The shutdown’s effects, which affected federal workers most severely at first, are now rippling across the broader economy.

Sharing the airspace

Vehicles traveling to and from space share the skies with aircraft, requiring close coordination with air traffic controllers to clear airspace for rocket launches and reentries. The FAA said its order restricting commercial air traffic, launches, and reentries is intended to “ensure the safety of aircraft and the efficiency of the [National Airspace System].”

In a statement explaining the order, the FAA said the air traffic control system is “stressed” due to the shutdown.

“With continued delays and unpredictable staffing shortages, which are driving fatigue, risk is further increasing, and the FAA is concerned with the system’s ability to maintain the current volume of operations,” the regulator said. “Accordingly, the FAA has determined additional mitigation is necessary.”

Beginning Monday, the FAA said commercial space launches will only be permitted between 10 pm and 6 am local time, when the national airspace is most calm. The order restricts commercial reentries to the same overnight timeframe. The FAA licenses all commercial launches and reentries.

The government shutdown is starting to have cosmic consequences Read More »

rocket-report:-canada-invests-in-sovereign-launch;-india-flexes-rocket-muscles

Rocket Report: Canada invests in sovereign launch; India flexes rocket muscles


Europe’s Ariane 6 rocket gave an environmental monitoring satellite a perfect ride to space.

Rahul Goel, the CEO of Canadian launch startup NordSpace, poses with a suborbital demo rocket and members of his team in Toronto earlier this year. Credit: Andrew Francis Wallace/Toronto Star via Getty Images

Welcome to Edition 8.18 of the Rocket Report! NASA is getting a heck of a deal from Blue Origin for launching the agency’s ESCAPADE mission to Mars. Blue Origin is charging NASA about $20 million for the launch on the company’s heavy-lift New Glenn rocket. A dedicated ride on any other rocket capable of the job would undoubtedly cost more.

But there are trade-offs. First, there’s the question of risk. The New Glenn rocket is only making its second flight, and it hasn’t been certified by NASA or the US Space Force. Second, the schedule for ESCAPADE’s launch has been at the whim of Blue Origin, which has delayed the mission several times due to issues developing New Glenn. NASA’s interplanetary missions typically have a fixed launch period, and the agency pays providers like SpaceX and United Launch Alliance a premium to ensure the launch happens when it needs to happen.

New Glenn is ready, the satellites are ready, and Blue Origin has set a launch date for Sunday, November 9. The mission will depart Earth outside of the usual interplanetary launch window, so orbital dynamics wizards came up with a unique trajectory that will get the satellites to Mars in 2027.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Canadian government backs launcher development. The federal budget released by the Liberal Party-led government of Canada this week includes a raft of new defense initiatives, including 182.6 million Canadian dollars ($129.4 million) for sovereign space launch capability, SpaceQ reports. The new funding is meant to “establish a sovereign space launch capability” with funds available this fiscal year and spent over three years. How the money will be spent and on what has yet to be released. As anticipated, Canada will have a new Defense Investment Agency (DIA) to oversee defense procurement. Overall, the government outlined 81.8 billion Canadian dollars ($58 billion) over five years for the Canadian Armed Forces. The Department of National Defense will manage the government’s cash infusion for sovereign launch capability.

Kick-starting an industry … Canada joins a growing list of nations pursuing homegrown launchers as many governments see access to space as key to national security and an opportunity for economic growth. International governments don’t want to be beholden to a small number of foreign launch providers from established space powers. That’s why startups in Germany, the United Kingdom, South Korea, and Australia are making a play in the launch arena, often with government support. A handful of Canadian startups, such as Maritime Launch Services, Reaction Dynamics, and NordSpace, are working on commercial satellite launchers. The Canadian government’s announcement came days after MDA Space, the largest established space company in Canada, announced its own multimillion-dollar investment in Maritime Launch Services.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Money alone won’t solve Europe’s space access woes. Increasing tensions with Russia have prompted defense spending boosts throughout Europe that will benefit fledgling smallsat launcher companies across the continent. But Europe is still years away from meeting its own space access needs, Space News reports. Space News spoke with industry analysts from two European consulting firms. They concluded that a lack of experience, not a deficit of money, is holding European launch startups back. None of the new crop of European rocket companies have completed a successful orbital flight.

Swimming in cash … The German company Isar Aerospace has raised approximately $600 million, the most funding of any of the European launch startups. Isar is also the only one of the bunch to make an orbital launch attempt. Its Spectrum rocket failed less than 30 seconds after liftoff last March, and a second launch is expected next year. Isar has attracted more investment than Rocket Lab, Firefly Aerospace, and Astra collectively raised on the private market before each of them successfully launched a rocket into orbit. In addition to Isar, several other European companies have raised more than $100 million on the road to developing a small satellite launcher. (submitted by EllPeaTea)

Successful ICBM test from Vandenberg. Air Force Global Strike Command tested an unarmed Minuteman III intercontinental ballistic missile in the predawn hours of Wednesday, Air and Space Forces Magazine reports. The test, the latest in a series of launches that have been carried out at regular intervals for decades, came as Russian President Vladimir Putin has touted the development of two new nuclear weapons and President Donald Trump has suggested in recent days that the US might resume nuclear testing. The ICBM launched from an underground silo at Vandenberg Space Force Base, California, and traveled some 4,200 miles to a test range in the Pacific Ocean after receiving launch orders from an airborne nuclear command-and-control plane.

Rehearsing for the unthinkable … The test, known as Glory Trip 254 (GT 254), provided a “comprehensive assessment” of the Minuteman III’s readiness to launch at a moment’s notice, according to the Air Force. “The data collected during the test is invaluable in ensuring the continued reliability and accuracy of the ICBM weapon system,” said Lt. Col. Karrie Wray, commander of the 576th Flight Test Squadron. For Minuteman III tests, the Air Force pulls its missiles from the fleet of some 400 operational ICBMs. This week’s test used one from F.E. Warren Air Force Base, Wyoming, and the missile was equipped with a single unarmed reentry vehicle that carried telemetry instrumentation instead of a warhead, service officials said. (submitted by EllPeaTea)

One crew launches, another may be stranded. Three astronauts launched to China’s Tiangong space station on October 31 and arrived at the outpost a few hours later, extending the station’s four-year streak of continuous crew operations. The Shenzhou 21 crew spacecraft lifted off on a Chinese Long March 2F rocket from the Jiuquan space center in the Gobi Desert. Shenzhou 21 is supposed to replace a three-man crew that has been on the Tiangong station since April, but China’s Manned Space Agency announced Tuesday the outgoing crew’s return craft may have been damaged by space junk, Ars reports.

Few details … Chinese officials said the Shenzhou 20 spacecraft will remain at the station while engineers investigate the potential damage. As of Thursday, China has not set a new landing date or declared whether the spacecraft is safe to return to Earth at all. “The Shenzhou 20 manned spacecraft is suspected of being impacted by small space debris,” Chinese officials wrote on social media. “Impact analysis and risk assessment are underway. To ensure the safety and health of the astronauts and the complete success of the mission, it has been decided that the Shenzhou 20 return mission, originally scheduled for November 5, will be postponed.” In the event Shenzhou 20 is unsafe to return, China could launch a rescue craft—Shenzhou 22—already on standby at the Jiuquan space center.

Falcon 9 rideshare boosts Vast ambitions. A pathfinder mission for Vast’s privately owned space station launched into orbit Sunday and promptly extended its solar panel, kicking off a shakedown cruise to prove the company’s designs can meet the demands of spaceflight, Ars reports. Vast’s Haven Demo mission lifted off just after midnight Sunday from Cape Canaveral Space Force Station, Florida, and rode a SpaceX Falcon 9 rocket into orbit. Haven Demo was one of 18 satellites sharing a ride on SpaceX’s Bandwagon 4 mission, launching alongside a South Korean spy satellite and a small testbed for Starcloud, a startup working with Nvidia to build an orbital data center.

Subscale testing … After release from the Falcon 9, the half-ton Haven Demo spacecraft stabilized itself and extended its power-generating solar array. The satellite captured 4K video of the solar array deployment, and Vast shared the beauty shot on social media. “Haven Demo’s mission success has turned us into a proven spacecraft company,” Vast’s CEO, Max Haot, posted on X. “The next step will be to become an actual commercial space station company next year. Something no one has achieved yet.” Vast plans to launch its first human-rated habitat, named Haven-1, into low-Earth orbit in 2026. Haven Demo lacks crew accommodations but carries several systems that are “architecturally similar” to Haven-1, according to Vast. For example, Haven-1 will have 12 solar arrays, each identical to the single array on Haven Demo. The pathfinder mission uses a subset of Haven-1’s propulsion system, but with identical thrusters, valves, and tanks.

Lights out at Vostochny. One of Russia’s most important projects over the last 15 years has been the construction of the Vostochny spaceport as the country seeks to fly its rockets from native soil and modernize its launch operations. Progress has been slow as corruption clouded Vostochny’s development. Now, the primary contractor building the spaceport, the Kazan Open Stock Company (PSO Kazan), has failed to pay its bills, Ars reports. The story, first reported by the Moscow Times, says that the energy company supplying Vostochny cut off electricity to areas of the spaceport still under construction after PSO Kazan racked up $627,000 in unpaid energy charges. The electricity company did so, it said, “to protect the interests of the region’s energy system.”

A dark reputation … Officials at the government-owned spaceport said PSO Kazan would repay its debt by the end of November, but the local energy company said it intends to file a lawsuit against KSO Kazan to declare the entity bankrupt. The two operational launch pads at Vostochny are apparently not affected by the power cuts. Vostochny has been a fiasco from the start. After construction began in 2011, the project was beset by hunger strikes, claims of unpaid workers, and the theft of $126 million. Additionally, a man driving a diamond-encrusted Mercedes was arrested after embezzling $75,000. Five years ago, there was another purge of top officials after another round of corruption.

Ariane 6 delivers for Europe again. European launch services provider Arianespace has successfully launched the Sentinel 1D Earth observation satellite aboard an Ariane 62 rocket for the European Commission, European Spaceflight reports. Launched in its two-booster configuration, the Ariane 6 rocket lifted off from the Guiana Space Center in South America on Tuesday. Approximately 34 minutes after liftoff, the satellite was deployed from the rocket’s upper stage into a Sun-synchronous orbit at an altitude of 693 kilometers (430 miles). Sentinel 1D is the newest spacecraft to join Europe’s Copernicus program, the world’s most expansive network of environmental monitoring satellites. The new satellite will extend Europe’s record of global around-the-clock radar imaging, revealing information about environmental disasters, polar ice cover, and the use of water resources.

Doubling cadence … This was the fourth flight of Europe’s new Ariane 6 rocket, and its third operational launch. Arianespace plans one more Ariane 62 launch to close out the year with a pair of Galileo navigation satellites. The company aims to double its Ariane 6 launch cadence in 2026, with between six and eight missions planned, according to David Cavaillès, Arianespace’s CEO. The European launch provider will open its 2026 manifest with the first flight of the more powerful four-booster variant of the rocket. If the company does manage eight Ariane 6 flights in 2026, it will already be close to reaching the stated maximum launch cadence of between nine and 10 flights per year.

India sets its own record for payload mass. The Indian Space Research Organization on Sunday successfully launched the Indian Navy’s advanced communication satellite GSAT-7R, or CMS-03, on an LVM3 rocket from the Satish Dhawan Space Center, The Hindu reports. The indigenously designed and developed satellite, weighing approximately 4.4 metric tons (9,700 pounds), is the heaviest satellite ever launched by an Indian rocket and marks a major milestone in strengthening the Navy’s space-based communications and maritime domain awareness.

Going heavy … The launch Sunday was India’s fourth of 2025, a decline from the country’s high-water mark of eight orbital launches in a year in 2023. The failure in May of India’s most-flown rocket, the PSLV, has contributed to this year’s slower launch cadence. India’s larger rockets, the GSLV and LVM3, have been more active while officials grounded the PSLV for an investigation into the launch failure. (submitted by EllPeaTea)

Blue Origin preps for second flight of New Glenn. The road to the second flight of Blue Origin’s heavy-lifting New Glenn rocket got a lot clearer this week. The company confirmed it is targeting Sunday, November 9, for the launch of New Glenn from Cape Canaveral Space Force Station, Florida. This follows a successful test-firing of the rocket’s seven BE-4 main engines last week, Ars reports. Blue Origin, the space company owned by billionaire Jeff Bezos, said the engines operated at full power for 22 seconds, generating nearly 3.9 million pounds of thrust on the launch pad.

Fully integrated … With the launch date approaching, engineers worked this week to attach the rocket’s payload shroud containing two NASA satellites set to embark on a journey to Mars. Now that the rocket is fully integrated, ground crews will roll it back to Blue Origin’s Launch Complex-36 (LC-36) for final countdown preps. The launch window on Sunday opens at 2: 45 pm EST (19: 45 UTC). Blue Origin is counting on recovering the New Glenn first stage on the next flight after missing the landing on the rocket’s inaugural mission in January. Officials plan to reuse this booster on the third New Glenn launch early next year, slated to propel Blue Origin’s first unpiloted Blue Moon lander toward the Moon.

Next three launches

Nov. 8: Falcon 9 | Starlink 10-51 | Kennedy Space Center, Florida | 08: 30 UTC

Nov. 8: Long March 11H| Unknown Payload | Haiyang Spaceport, China Coastal Waters | 21: 00 UTC

Nov. 9: New Glenn | ESCAPADE | Cape Canaveral Space Force Station, Florida | 19: 45 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Canada invests in sovereign launch; India flexes rocket muscles Read More »

a-commercial-space-station-startup-now-has-a-foothold-in-space

A commercial space station startup now has a foothold in space

The integration tasks still include installing Haven-1’s environmental control and life support elements, power, data, and thermal control systems, and thrusters, fuel tanks, and internal crew accommodations. While that work continues on Earth, Vast’s demo mission will validate some of the company’s designs in space.

Flying at an altitude of 300 miles (500 kilometers), Haven Demo will test Vast’s computer, power, software, guidance and control, propulsion, and radio systems. The pathfinder will also provide Vast an opportunity to exercise its ground stations and mission control teams.

Meanwhile, Vast will ship Haven-1 from its California headquarters to NASA’s Neil Armstrong Test Facility in Ohio for a rigorous environmental test campaign. The Haven-1 module, roughly 33 feet (10.1 meters) long and 14 feet (4.4 meters) wide, will undergo acoustics, vibration, and electromagnetic interference testing. Engineers will also place the habitat into a test chamber to check its performance in the extreme temperatures and airless vacuum environment of low-Earth orbit.

Then, Haven-1 will ship to Cape Canaveral, Florida, for final launch preparations. Vast’s official schedule calls for a launch of Haven-1 no earlier than May 2026, but there’s still a lot to do before the spacecraft is ready to travel to the launch site.

The primary structure of Vast’s Haven-1 habitat is seen undergoing structural testing in Mojave, California. Credit: Vast

Once in orbit, Haven-1 will host a series of crew visits flying on SpaceX’s Dragon spacecraft, each staying for two weeks before returning to Earth.

Haven-1 has a habitable volume of about 1,600 cubic feet (45 cubic meters), somewhat less than one of the primary modules on the International Space Station, but five times more than SpaceX’s Dragon capsule. Vast’s longer-term roadmap includes a larger multi-module space station called Haven-2 to support larger crews and longer expeditions in the 2030s.

Vast’s demo mission is an initial step toward these goals. The satellite now circling the planet carries several systems that are “architecturally similar” to Haven-1, according to Vast. For example, Haven-1 will have 12 solar arrays, each identical to the single array on Haven Demo. The pathfinder mission uses a subset of Haven-1’s propulsion system, but with identical thrusters, valves, and tanks.

A commercial space station startup now has a foothold in space Read More »

elon-musk-on-data-centers-in-orbit:-“spacex-will-be-doing-this”

Elon Musk on data centers in orbit: “SpaceX will be doing this”

Interest is growing rapidly

“The amount of momentum from heavyweights in the tech industry is very much worth paying attention to,” said Caleb Henry, director of research at Quilty Space, in an interview. “If they start putting money behind it, we could see another transformation of what’s done in space.”

The essential function of a data center is to store, process, and transmit data. Historically, satellites have already done a lot of this, Henry said. Telecommunications satellites specialize in transmitting data. Imaging satellites store a lot of data and then dump it when they pass over ground stations. In recent years, onboard computers have gotten more sophisticated at processing data. Data centers in space could represent the next evolution of that.

Critics rightly note that it would require very large satellites with extensive solar panels to power data centers that rival ground-based infrastructure. However, SpaceX’s Starlink V3 satellites are unlike any previous space-based technology, Henry said.

A lot more capacity

SpaceX’s current Starlink V2 mini satellites have a maximum downlink capacity of approximately 100 Gbps. The V3 satellite is expected to increase this capacity by a factor of 10, to 1 Tbps. This is not unprecedented in satellite capacity, but it certainly is at scale.

For example, Viasat contracted with Boeing for the better part of a decade, spending hundreds of millions of dollars, to build Viasat-3, a geostationary satellite with a capacity of 1 Tbps. This single satellite may launch next week on an Atlas V rocket.

SpaceX plans to launch dozens of Starlink V3 satellites—Henry estimates the number is about 60—on each Starship rocket launch. Those launches could occur as soon as the first half of 2026, as SpaceX has already tested a satellite dispenser on its Starship vehicle.

“Nothing else in the rest of the satellite industry that comes close to that amount of capacity,” Henry said.

Exactly what “scaling up” Starlink V3 satellites might look like is not clear, but it doesn’t seem silly to expect it could happen. The very first operational Starlink satellites launched a little more than half a decade ago with a mass of about 300 kg and a capacity of 15Gbps. Starlink V3 satellites will likely mass 1,500 kg.

Elon Musk on data centers in orbit: “SpaceX will be doing this” Read More »

spacex-teases-simplified-starship-as-alarms-sound-over-moon-landing-delays

SpaceX teases simplified Starship as alarms sound over Moon landing delays


“SpaceX shares the goal of returning to the Moon as expeditiously as possible.”

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

SpaceX on Thursday released the most detailed public update in nearly two years on its multibillion-dollar contract to land astronauts on the Moon for NASA, amid growing sentiment that China is likely to beat the United States back to the lunar surface with humans.

In a lengthy statement published on SpaceX’s website Thursday, the company said it “will be a central enabler that will fulfill the vision of NASA’s Artemis program, which seeks to establish a lasting presence on the lunar surface… and ultimately forge the path to land the first humans on Mars.”

Getting to Mars is SpaceX’s overarching objective, a concise but lofty mission statement introduced by Elon Musk at the company’s founding nearly a quarter-century ago. Musk has criticized NASA’s Artemis program, which aims to return US astronauts to the Moon for the first time since the last Apollo lunar mission in 1972, as unambitious and too reliant on traditional aerospace contractors.

Is this a priority for SpaceX?

The Starship rocket and its massive Super Heavy booster are supposed to be SpaceX’s solution for fulfilling Musk’s mission of creating a settlement on Mars. The red planet has been the focus each time Musk has spoken at length about Starship in the last couple of years, with Moon missions receiving little or no time in his comments, whether they’re scripted or off the cuff.

In the background, SpaceX’s engineers have been busy developing a version of the Starship rocket to fly crews to and from the surface of the Moon for NASA. The agency’s current architecture calls for astronauts to transit from the Earth to the vicinity of the Moon inside NASA’s Orion spacecraft, made by Lockheed Martin, then link up with Starship in lunar orbit for a ride to the Moon’s south pole.

After completing their mission on the surface, the astronauts will ride Starship back into space and dock with Orion to bring them home. Starship and Orion may also link together by docking at the planned Gateway mini-space station orbiting the Moon, but Gateway’s future is in question as NASA faces budget cuts.

NASA has contracts with SpaceX valued at more than $4 billion to land two astronaut crews on the Moon on NASA’s Artemis III and Artemis IV missions. The contract also covers milestones ahead of any human mission, such as an uncrewed Starship landing and takeoff at the Moon, to prove the vehicle is ready.

SpaceX’s Starship descends toward the Indian Ocean at the conclusion of Flight 11 on October 3. Credit: SpaceX

The fresh update from SpaceX lists recent achievements the company has accomplished on the path to the Moon, including demos of life support and thermal control systems, the docking adapter to link Starship with Orion, navigation hardware and software, a landing leg structural test, and engine firings in conditions similar to what the ship will see at the Moon.

Many of these milestones were completed ahead of schedule, SpaceX said. But the biggest tests, such as demonstrating in-orbit refueling, remain ahead. Some NASA officials believe mastering orbital refueling will take many tries, akin to SpaceX’s iterative two steps forward, one step back experience with its initial Starship test flights.

The first test to transfer large amounts of cryogenic liquid methane and liquid oxygen between two Starships in low-Earth orbit is now planned for next year. This time a year ago, SpaceX aimed to launch the first orbital refueling demo before the end of 2025.

Orbital refueling is key to flying Starship to the Moon or Mars. The rocket consumes all of its propellant getting to low-Earth orbit, and it needs more gas to go farther. For lunar missions, SpaceX will launch a Starship-derived propellant depot into orbit, refill it with perhaps a dozen or more Starship tankers, and then dock the Starship lander with it to load its tanks before heading off to the Moon.

Officials haven’t given a precise number of tanker flights required for a Starship lunar lander. It’s likely engineers won’t settle on an exact number until they obtain data on how much of the super-cold liquid propellant boils off in space, and how efficient it is to transfer from ship to ship. Whatever the number, SpaceX says Starship’s design for recovery and rapid reuse will facilitate a fast-paced launch and refueling campaign.

SpaceX tests the elevator to be used on Starship. Credit: SpaceX

The upshot of overcoming the refueling hurdle is Starship’s promise of becoming a transformative vehicle. Starship is enormous compared to any other concept for landing on the Moon. One single Starship has a pressurized habitable volume of more than 600 cubic meters, or more than 21,000 cubic feet, roughly two-thirds that of the entire International Space Station, according to SpaceX. Starship will have dual airlocks, or pathways for astronauts and equipment to exit and enter the spacecraft.

An elevator will lower people and cargo down to the lunar surface from the crew cabin at the top of the 15-story-tall spacecraft. For pure cargo missions, SpaceX says Starship will be capable of landing up to 100 metric tons of cargo directly on the Moon’s surface. This would unlock the ability to deliver large rovers, nuclear reactors, or lunar habitats to the Moon in one go. In the long run, the Starship architecture could allow landers to be reused over and over again. All of this is vital if NASA wants to build a permanent base or research outpost on the Moon.

A competition in more ways than one

But hard things take time. SpaceX dealt with repeated setbacks in the first half of this year: three in-flight failures of Starship and one Starship explosion on the ground at the company’s development facility in South Texas. Since then, teams have reeled off consecutive successful Starship test flights ahead of the debut of an upgraded Starship variant called Version 3 in the coming months. Starship Version 3 will have the accoutrements for refueling, and SpaceX says this will also be the version to fly to the Moon.

The recent Starship delays, coupled with the scope of work to go, have raised concerns that the Artemis program is falling behind China’s initiative to land its own astronauts on the Moon. China’s goal is to do it by 2030, a schedule reiterated in Chinese state media this week. The Chinese program relies on an architecture more closely resembling NASA’s old Apollo designs.

The official schedule for the first Artemis crew landing, on Artemis III, puts it in 2027, but that timeline is no longer achievable. Starship and new lunar spacesuits developed by Axiom Space won’t be ready, in part because NASA didn’t award the contracts to SpaceX and Axiom until 2021 and 2022.

All of this adds up to waning odds that the United States can beat China back to the Moon, according to a growing chorus of voices in the space community. Last month, former NASA chief Jim Bridenstine, who led the agency during the first Trump administration, told Congress the United States was likely to lose the second lunar space race.

At a space conference earlier this week, Bridenstine suggested the Trump administration use its powers to fast-track a lunar landing, even floating the idea of invoking the Defense Production Act, a law that grants the president authority to marshal industrial might to meet pressing national needs.

An executive order from President Donald Trump could authorize such an effort and declare a “national security imperative that we’re going to beat China to the Moon,” Bridenstine said at the American Astronautical Society’s von Braun Space Exploration Symposium in Huntsville, Alabama.

Charlie Bolden, NASA’s administrator under former President Barack Obama, also expressed doubts that NASA could land humans on the Moon before China, or by the end of Trump’s term in the White House. “Let’s be real, OK? Everybody in this room knows, to say we’re going to do it by the end of the term, or we’re going to do it before the Chinese, that doesn’t help industry.”

But Bolden said maybe it’s not so terrible if China lands people on the Moon before NASA can return with astronauts. “We may not make 2030, and that’s OK with me, as long as we get there in 2031 better than they are with what they have there.”

Sean Duffy, NASA’s acting administrator, doesn’t see it the same way. Duffy said last week he would give contractors until this Wednesday to propose other ways of landing astronauts on the Moon sooner than the existing plan. SpaceX and Blue Origin, the space company founded by billionaire Jeff Bezos, confirmed they submitted updated plans to NASA this week.

SpaceX released a new rendering of the internal crew cabin for the Starship lunar lander. Credit: SpaceX

Blue Origin has a separate contract with NASA to provide its own human-rated lunar lander—Blue Moon Mark 2—for entry into service on the Artemis V mission, likely not to occur before the early 2030s. A smaller unpiloted lander—Blue Moon Mark 1—is on track to launch on Blue Origin’s first lunar landing attempt next year.

Blue Moon Mark 1 is still a big vehicle, standing taller than the lunar lander used by NASA during the Apollo program. But it doesn’t match the 52-foot (16-meter) height of Blue Origin’s Mark 2 lander, and tops out well short of the roughly 165-foot-tall (50-meter) Starship lander.

What’s more, Blue Moon Mark 1 won’t need to be refueled after launch, unlike Starship and Mark 2. Jacki Cortese, senior director of civil space at Blue Origin, confirmed Tuesday that her company is looking at employing a “more incremental approach” using Mark 1 to accelerate an Artemis crew landing. Ars first reported Blue Origin was studying how to modify Blue Moon Mark 1 for astronauts.

All of this is a reminder of something Blue Origin said in 2021, when NASA passed over Bezos’ company to award the first Artemis lander contract to SpaceX. Blue Origin protested the award and filed a lawsuit against the government, triggering a lunar lander work stoppage that lasted several months until a federal judge dismissed the suit.

Blue Origin said SpaceX’s approach with numerous refueling sorties was “immensely complex and high risk” and argued its proposal was the better option for NASA. The statement has taken on a meme-worthy status among fans of Starship.

But SpaceX bid a lower cost, and NASA officials said it was the only proposal the agency could afford at the time. And then, when Blue Origin won a contract from NASA in 2023 to provide a second lander option, the company’s concept also hinged on refueling the Blue Moon Mark 2 lander in space.

Now, SpaceX is making a new offering to NASA. Like Blue Origin, SpaceX said it has sent in a proposal for a “simplified architecture” for landing astronauts on the Moon, but did not provide details.

“We’ve shared and are formally assessing a simplified mission architecture and concept of operations that we believe will result in a faster return to the Moon while simultaneously improving crew safety,” the company said.

Since NASA selected SpaceX for the Human Landing System contract in 2021, the company said it has been “consistently responsive to NASA as requirements for Artemis III have changed.”

For example, NASA originally required SpaceX to only demonstrate it could land Starship on the Moon before moving forward with a crew mission. Lori Glaze, who leads NASA’s human exploration division, said in July that the agency is now requiring the uncrewed landing demo to also include an ascent from the Moon’s surface. NASA wants to know if Starship can not just land astronauts on the Moon, but also get them back.

“Starship continues to simultaneously be the fastest path to returning humans to the surface of the Moon and a core enabler of the Artemis program’s goal to establish a permanent, sustainable presence on the lunar surface,” SpaceX said. “SpaceX shares the goal of returning to the Moon as expeditiously as possible, approaching the mission with the same alacrity and commitment that returned human spaceflight capability to America under NASA’s Commercial Crew program.”

An artist’s illustration of multiple Starships on the lunar surface, with a Moon base in the background. Credit: SpaceX

SpaceX has built a reputation for doing things quickly. One example has been the rapid-fire launch cadence of the company’s workhorse Falcon 9 rocket. SpaceX is setting up launch pads and factories to manufacture and launch Super Heavy and Starshipcombining together to make the largest rocket ever built—at an even faster rate than Falcon 9.

The company has launched 11 full-scale test flights of Starship/Super Heavy since April 2023. “This campaign has quickly matured the core Starship and has produced numerous feats,” SpaceX said. The company listed some of them:

  • Multiple successful ascents of the world’s most powerful rocket
  • The launch, return, catch, and reuse of that rocket to unlock the high launch rate cadence needed for lunar missions
  • The transfer of approximately 5 metric tons of cryogenic propellant between tanks while in space
  • Successful in-space relights of the Raptor engines that are critical for the maneuvers that will send Starship to the Moon
  • Multiple controlled reentries through Earth’s atmosphere

It’s true that these feats have come fast. Many more remain on the road ahead before SpaceX can make good on its commitment to NASA.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX teases simplified Starship as alarms sound over Moon landing delays Read More »

rocket-report:-china-tests-falcon-9-lookalike;-nasa’s-moon-rocket-fully-stacked

Rocket Report: China tests Falcon 9 lookalike; NASA’s Moon rocket fully stacked


A South Korean rocket startup will soon make its first attempt to reach low-Earth orbit.

The Orion spacecraft for the Artemis II mission is lowered on top of the Space Launch System rocket at Kennedy Space Center, Florida.

Welcome to Edition 8.16 of the Rocket Report! The 10th anniversary of SpaceX’s first Falcon 9 rocket landing is coming up at the end of this year. We’re still waiting for a second company to bring back an orbital-class booster from space for a propulsive landing. Two companies, Jeff Bezos’ Blue Origin and China’s LandSpace, could join SpaceX’s exclusive club as soon as next month. (Bezos might claim he’s already part of the club, but there’s a distinction to be made.) Each company is in the final stages of launch preparations—Blue Origin for its second New Glenn rocket, and LandSpace for the debut flight of its Zhuque-3 rocket. Blue Origin and LandSpace will both attempt to land their first stage boosters downrange from their launch sites. They’re not exactly in a race with one another, but it will be fascinating to see how New Glenn and Zhuque-3 perform during the uphill and downhill phases of flight, and whether one or both of the new rockets stick the landing.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

The race for space-based interceptors. The Trump administration’s announcement of the Golden Dome missile defense shield has set off a race among US companies to develop and test space weapons, some of them on their own dime, Ars reports. One of these companies is a 3-year-old startup named Apex, which announced plans to test a space-based interceptor as soon as next year. Apex’s concept will utilize one of the company’s low-cost satellite platforms outfitted with an “Orbital Magazine” containing multiple interceptors, which will be supplied by an undisclosed third-party partner. The demonstration in low-Earth orbit could launch as soon as June 2026 and will test-fire two interceptors from Apex’s Project Shadow spacecraft. The prototype interceptors could pave the way for operational space-based interceptors to shoot down ballistic missiles. (submitted by biokleen)

Usual suspects … Traditional defense contractors are also getting in the game. Northrop Grumman’s CEO, Kathy Warden, said earlier this year that her company is already testing space-based interceptor components on the ground. This week, Lockheed Martin announced it is on a path to test a space-based interceptor in orbit by 2028. Neither company has discussed as much detail of their plans as Apex revealed this week.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Lockheed Martin’s latest “New Space” investment. As interest grows in rotating detonation engines for hypersonic flight, a startup specialist in the technology says it will receive backing from Lockheed Martin’s corporate venture capital arm, Aviation Week & Space Technology reports. The strategic investment by Lockheed Martin Ventures “reflects the potential of Venus’s dual-use technology” in an era of growing defense and space spending, Venus Aerospace said in a statement. Venus said its partnership with Lockheed Martin combines the former’s startup mindset with the latter’s resources and industry expertise. The companies did not announce the value of Lockheed’s investment, but Venus said it has raised $106 million since its founding in 2020. Lockheed Martin Ventures has made similar investments in other rocket startups, including Rocket Lab in 2015.

What’s this actually for? … Houston-based Venus Aerospace completed a high-thrust test flight of its Rotating Detonation Rocket Engine (RDRE) in May from Spaceport America, New Mexico. Rotating detonation engine technology is interesting because it has the potential to significantly increase fuel efficiency in various applications, from Navy carriers to rocket engines, Ars reported earlier this year. The engine works by producing a shockwave with a flow of detonation traveling through a circular channel. The engine harnesses these supersonic detonation waves to generate thrust. “Venus has proven in flight the most efficient rocket engine technology in history,” said Sassie Duggleby, co-founder and CEO of Venus Aerospace. “With support from Lockheed Martin Ventures, we will advance our capabilities to deliver at scale and deploy the engine that will power the next 50 years of defense, space, and commercial high-speed aviation.”

South Korean startup receives permission to fly. Innospace announced on October 20 that it has received South Korea’s first private commercial launch permit from the Korea AeroSpace Administration,” the Chosun Daily reports. Accordingly, Innospace will launch its independently developed “HANBIT-Nano” launch vehicle from a Brazilian launch site as early as late this month. Innospace stated that the launch window for this mission has been set for October 28 through November 28. The launch site is the Alcântara Space Center, operated by the Brazilian Air Force.

Aiming for LEO … This will be the first flight of Innospace’s HANBIT-Nano launch vehicle, standing roughly 72 feet (22 meters) tall with a diameter of 4.6 feet (1.4 meters). The two-stage rocket is powered by hybrid propulsion, consuming a mixture of paraffin and liquid oxygen. For its debut flight, the rocket will target an orbit about 300 kilometers (186 miles) high with a batch of small satellites from customers in South Korea, Brazil, and India. According to Innospace, HANBIT-Nano can lift about 200 pounds (90 kilograms) of payload into orbit.

A new record for rocket reuse. SpaceX’s launch of a Falcon 9 rocket from Florida on October 19 set a new record for reusable rockets, Ars reports. It marked the 31st launch of the company’s most-flown Falcon 9 booster. The rocket landed on SpaceX’s recovery ship in the Atlantic Ocean to be returned to Florida for a 32nd flight. Several more rockets in SpaceX’s inventory are nearing their 30th launch. In all, SpaceX has more than 20 Falcon 9 boosters in its fleet on both the East and West Coasts. SpaceX engineers are now certifying the Falcon 9 boosters for up to 40 flights apiece.

10,000 and counting … SpaceX’s two launches last weekend weren’t just noteworthy for Falcon 9 lore. Hours after setting the new booster reuse record, SpaceX deployed a batch of 28 Starlink satellites from a different rocket after lifting off from California. This mission propelled SpaceX’s Starlink program past a notable milestone. With the satellites added to the constellation on Sunday, the company has delivered more than 10,000 mass-produced Starlink spacecraft to low-Earth orbit. The exact figure stands at 10,006 satellites, according to a tabulation by Jonathan McDowell, an astrophysicist who expertly tracks comings and goings between Earth and space. About 8,700 of these Starlink satellites are still in orbit, with SpaceX adding more every week.

China is on the cusp of something big. Launch startup LandSpace is in the final stages of preparations for the first flight of its Zhuque-3 rocket and a potentially landmark mission for China, Space News reports. LandSpace said it completed the first phase of the Zhuque-3 rocket’s inaugural launch campaign this week. The Zhuque-3 is the largest commercial rocket developed to date in China, nearly matching the size and performance of SpaceX’s Falcon 9, with nine first stage engines and a single upper stage engine. One key difference is that the Zhuque-3 burns methane fuel, while Falcon 9’s engines consume kerosene. Most notably, LandSpace will attempt to land the rocket’s first stage booster at a location downrange from the launch site, similar to the way SpaceX lands Falcon 9 boosters on drone ships at sea. Zhuque-3’s first stage will aim for a land-based site in an experiment that could pave the way for LandSpace to reuse rockets in the future.

Testing status … The recent testing at Jiuquan Satellite Launch Center in northwestern China included a propellant loading demonstration and a static fire test of the rocket’s first stage engines. Earlier this week, LandSpace integrated the payload fairing on the rocket. The company said it will return the rocket to a nearby facility “for inspection and maintenance in preparation for its upcoming orbital launch and first stage recovery.” The launch is expected to happen as soon as next month.

Uprated Ariane 6 won’t launch until next year. Arianespace has confirmed that the first flight of the more powerful, four-booster variant of the Ariane 6 rocket will not be launched until 2026, European Spaceflight reports. The first Ariane 64 rocket had been expected to launch in late 2025, carrying the first batch of Amazon’s Project Kuiper satellites. On October 16, Arianespace announced the fourth and final Ariane 6 flight of the year would carry a pair of Galileo satellites for Europe’s global satellite navigation system in December. This will follow an already-scheduled Ariane 6 launch scheduled for November 4. Both of the upcoming flights will employ the same Ariane 6 configuration used on all of the rocket’s flights to date. This version, known as Ariane 62, has two strap-on solid rocket boosters.

Kuiper soon … The Ariane 64 variant will expose the rocket to stronger forces coming from four solid rocket boosters, each producing about a million pounds (4,500 kilonewtons) of thrust. ArianeGroup, the rocket’s manufacturer, said a year ago that it completed qualification of the Ariane 6 upper stage to withstand the stronger launch loads. Arianespace didn’t offer any explanation of the Ariane 64’s delay from this year to next, but it did confirm the uprated rocket will be the company’s first flight of 2026. The mission will be the first of 18 Arianespace flights dedicated to launching Amazon’s Project Kuiper broadband satellites, adding Ariane 6 to the mix of rockets deploying the Internet network in low-Earth orbit.

Duffy losing confidence in Starship. NASA acting Administrator Sean Duffy made two television appearances on Monday morning in which he shook up the space agency’s plans to return humans to the Moon, Ars reports. Speaking on Fox News, where the secretary of transportation frequently appears in his acting role as NASA chief, Duffy said SpaceX has fallen behind in developing the Starship vehicle as a lunar lander. Duffy also indirectly acknowledged that NASA’s projected target of a 2027 crewed lunar landing is no longer achievable. Accordingly, he said he intended to expand the competition to develop a lander capable of carrying humans down to the Moon from lunar orbit and back.

The rest of the story … “They’re behind schedule, and so the President wants to make sure we beat the Chinese,” Duffy said of SpaceX. “He wants to get there in his term. So I’m in the process of opening that contract up. I think we’ll see companies like Blue [Origin] get involved, and maybe others. We’re going to have a space race in regard to American companies competing to see who can actually lead us back to the Moon first.” The timing of Duffy’s public appearances on Monday seems tailored to influence a fierce, behind-the-scenes battle to hold onto the NASA leadership position. Jared Isaacman, who Trump nominated and then withdrew for the NASA posting, is again under consideration at the White House to become the agency’s next full-time administrator. (submitted by zapman987)

Rocket fully stacked for Artemis II. The last major hardware component before Artemis II launches early next year has been installed,” NASA’s acting Administrator Sean Duffy posted on X Monday. Over the weekend, ground teams at Kennedy Space Center in Florida hoisted the Orion spacecraft for the Artemis II mission atop its Space Launch System rocket inside the Vehicle Assembly Building. This followed the transfer of the Orion spacecraft to the VAB from a nearby processing facility last week. With Orion installed, the rocket is fully assembled to its complete height of 322 feet (98 meters) tall.

Four months away? … NASA is still officially targeting no earlier than February 5, 2026, for the launch of the Artemis II mission. This will be the first flight of astronauts to the vicinity of the Moon since 1972, and the first glimpse of human spaceflight beyond low-Earth orbit for several generations. Upcoming milestones in the Artemis II launch campaign include a countdown demonstration inside the VAB, where the mission’s four-person crew will take their seats in the Orion spacecraft to simulate what they’ll go through on launch day.

New Glenn staged for rollout. Dave Limp, Blue Origin’s CEO, posted a video this week of the company’s second New Glenn rocket undergoing launch preparations inside a hangar at Launch Complex 36 at Cape Canaveral, Florida. The rocket’s first and second stages are now mated together and installed on the transporter erector that will carry them from the hangar to the launch pad. “We will spend the next days on final checkouts and connecting the umbilicals. Stay tuned for rollout and hotfire!” Limp wrote.

“Big step toward launch” … The connection of New Glenn’s stages and integration on the transporter erector marks a “big step toward launch,” Limp wrote. A launch sometime in November is still possible if engineers can get through a smooth test-firing of the rocket’s seven main engines on the launch pad. The rocket will send two NASA spacecraft on a journey to Mars.

China launches clandestine satellite. China launched a Long March 5 rocket Thursday with a classified military satellite heading toward geosynchronous orbit, Space News reports. The satellite is named TJS-20, and the circumstances of the launch—using China’s most powerful operational rocket—suggest TJS-20 could be the next in a line of signals intelligence-gathering missions. The previous satellite of this line, TJS-11, launched in February 2024, also on a Long March 5.

Doing a lot … This launch continued China’s increasing use of the Long March 5 and its sister variant, the Long March 5B. The Long March 5 is expendable, and although we don’t know how much it costs, it can’t be cheap. It is a complex rocket powered by 10 engines on its core stage and four boosters, some burning liquid hydrogen fuel and others burning kerosene. The second stage also has two cryogenically fueled engines. The Long March 5 has now flown 16 times in nine years and seven times within the last two years. The uptick in launches is largely due to China’s use of the Long March 5 to launch satellites for the Guowang megaconstellation.

Next three launches

Oct. 25: Falcon 9 | Starlink 11-12 | Vandenberg Space Force Base, California | 14: 00 UTC

Oct. 26: H3 | HTV-X 1 | Tanegashima Space Center, Japan | 00: 00 UTC

Oct. 26: Long March 3B/E | Unknown Payload | Xichang Satellite Launch Center | 03: 50 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: China tests Falcon 9 lookalike; NASA’s Moon rocket fully stacked Read More »

satellite-operators-will-soon-join-airlines-in-using-starlink-in-flight-wi-fi

Satellite operators will soon join airlines in using Starlink in-flight Wi-Fi

So long, data limits

Lasers have other benefits over ground stations. Optical links offer significantly more throughput than traditional radio communication systems, and they’re not constrained by regulations on radio spectrum usage.

“What it does for our customers and for the company is we are able to get more than 10x, maybe even 50x, the amount of data that they’re able to bring down, and we’re able to offer them that on a latency of nearly instant,” Stang said in an interview with Ars.

SpaceX’s mini-lasers are designed to achieve link speeds of 25Gbps at distances up to 2,500 miles (4,000 kilometers). These speeds will “open new business models” for satellite operators who can now rely on the same “Internet speed and responsiveness as cloud providers and telecom networks on the ground,” Muon said in a statement.

Muon’s platform, called Halo, comes in different sizes, with satellites ranging up to a half-ton. “With persistent optical broadband, Muon Halo satellites will move from being isolated vehicles to becoming active, realtime nodes on Starlink’s global network,” Stang said in a press release. “That shift transforms how missions are designed and how fast insights flow to decisionmakers on Earth.”

Muon said the first laser-equipped satellite will launch in early 2027 for an undisclosed customer.

“We like to believe part of why SpaceX trusts us to be the ones to be able to lead on this is because our system is designed to really deal with very different levels of requirements,” Smirin said. “As far as we’re aware, this is the first integration into a satellite. We have a ton of interest from commercial customers for our capabilities in general, and we expect this should just boost that quite significantly.”

FireSat is one of the missions where Starlink connectivity would have an impact by rapidly informing first responders of a wildfire, Smirin said. According to Muon, using satellite laser links would cut FireSat data latency from an average of 20 minutes to near real-time.

“It’s not just for the initial detection,” Smirin said. “It’s also once a fire is ongoing, [cutting] the time and the latency for seeing the intensity and direction of the fire, and being able to update that in near real-time. It has incredible value to incident commanders on the ground, because they’re trying to figure out a way to position their equipment and their people.”

Thinking big

Ubiquitous connectivity in space could eventually lead to new types of missions. “Now, you’ve got a data center in space,” Smirin said. “You can do AI there. You can connect with data centers on the ground.”

While this first agreement between Muon and SpaceX covers commercial data relay, it’s easy to imagine other applications, such as continuous live drone-like high-resolution streaming video from space for surveillance or weather monitoring. Live video from space has historically been limited to human spaceflight missions or rocket-mounted cameras that operate for a short time.

One example of that is the dazzling live video beamed back to Earth, through Starlink, from SpaceX’s Starship rockets. The laser terminals on Starship operate through the extreme heat of reentry, returning streaming video as plasma envelops the vehicle. This environment routinely causes radio blackouts for other spacecraft as they reenter the atmosphere. With optical links, that’s no longer a problem.

“This starts to enable a whole new category of capabilities, much the same way as when terrestrial computers went from dial-up to broadband,” Smirin said. “You knew what it could do, but we blew through bulletin boards very quickly to many different applications.”

Satellite operators will soon join airlines in using Starlink in-flight Wi-Fi Read More »

spacex-has-plans-to-launch-falcon-heavy-from-california—if-anyone-wants-it-to

SpaceX has plans to launch Falcon Heavy from California—if anyone wants it to

There’s more to the changes at Vandenberg than launching additional rockets. The authorization gives SpaceX the green light to redevelop Space Launch Complex 6 (SLC-6) to support Falcon 9 and Falcon Heavy missions. SpaceX plans to demolish unneeded structures at SLC-6 (pronounced “Slick 6”) and construct two new landing pads for Falcon boosters on a bluff overlooking the Pacific just south of the pad.

SpaceX currently operates from a single pad at Vandenberg—Space Launch Complex 4-East (SLC-4E)—a few miles north of the SLC-6 location. The SLC-4E location is not configured to launch the Falcon Heavy, an uprated rocket with three Falcon 9 boosters bolted together.

SLC-6, cocooned by hills on three sides and flanked by the ocean to the west, is no stranger to big rockets. It was first developed for the Air Force’s Manned Orbiting Laboratory program in the 1960s, when the military wanted to put a mini-space station into orbit for astronauts to spy on the Soviet Union. Crews readied the complex to launch military astronauts on top of Titan rockets, but the Pentagon canceled the program in 1969 before anything actually launched from SLC-6.

NASA and the Air Force then modified SLC-6 to launch space shuttles. The space shuttle Enterprise was stacked vertically at SLC-6 for fit checks in 1985, but the Air Force abandoned the Vandenberg-based shuttle program after the Challenger accident in 1986. The launch facility sat mostly dormant for nearly two decades until Boeing, and then United Launch Alliance, took over SLC-6 and began launching Delta IV rockets there in 2006.

The space shuttle Enterprise stands vertically at Space Launch Complex-6 at Vandenberg. NASA used the shuttle for fit checks at the pad, but it never launched from California. Credit: NASA

ULA launched its last Delta IV Heavy rocket from California in 2022, leaving the future of SLC-6 in question. ULA’s new rocket, the Vulcan, will launch from a different pad at Vandenberg. Space Force officials selected SpaceX in 2023 to take over the pad and prepare it to launch the Falcon Heavy, which has the lift capacity to carry the military’s most massive satellites into orbit.

No big rush

Progress at SLC-6 has been slow. It took nearly a year to prepare the Environmental Impact Statement. In reality, there’s no big rush to bring SLC-6 online. SpaceX has no Falcon Heavy missions from Vandenberg in its contract backlog, but the company is part of the Pentagon’s stable of launch providers. To qualify as a member of the club, SpaceX must have the capability to launch the Space Force’s heaviest missions from the military’s spaceports at Vandenberg and Cape Canaveral, Florida.

SpaceX has plans to launch Falcon Heavy from California—if anyone wants it to Read More »

nvidia-sells-tiny-new-computer-that-puts-big-ai-on-your-desktop

Nvidia sells tiny new computer that puts big AI on your desktop

For the OS, the Spark is an ARM-based system that runs Nvidia’s DGX OS, an Ubuntu Linux-based operating system built specifically for GPU processing. It comes with Nvidia’s AI software stack preinstalled, including CUDA libraries and the company’s NIM microservices.

Prices for the DGX Spark start at US $3,999. That may seem like a lot, but given the cost of high-end GPUs with ample video RAM like the RTX Pro 6000 (about $9,000) or AI server GPUs (like $25,000 for a base-level H100), the DGX Spark may represent a far less expensive option overall, though it’s not nearly as powerful.

In fact, according to The Register, the GPU computing performance of the GB10 chip is roughly equivalent to an RTX 5070. However, the 5070 is limited to 12GB of video memory, which limits the size of AI models that can be run on such a system. With 128GB of unified memory, the DGX Spark can run far larger models, albeit at a slower speed than, say, an RTX 5090 (which typically ships with 24 GB of RAM). For example, to run the 120 billion-parameter larger version of OpenAI’s recent gpt-oss language model, you’d need about 80GB of memory, which is far more than you can get in a consumer GPU.

A callback to 2016

Nvidia founder and CEO Jensen Huang marked the occasion of the DGX Spark launch by personally delivering one of the first units to Elon Musk at SpaceX’s Starbase facility in Texas, echoing a similar delivery Huang made to Musk at OpenAI in 2016.

“In 2016, we built DGX-1 to give AI researchers their own supercomputer. I hand-delivered the first system to Elon at a small startup called OpenAI, and from it came ChatGPT,” Huang said in a statement. “DGX-1 launched the era of AI supercomputers and unlocked the scaling laws that drive modern AI. With DGX Spark, we return to that mission.”

Nvidia sells tiny new computer that puts big AI on your desktop Read More »