spacex

spacex-says-states-should-dump-fiber-plans,-give-all-grant-money-to-starlink

SpaceX says states should dump fiber plans, give all grant money to Starlink

Starlink operator SpaceX is continuing its fight against state plans to expand fiber broadband availability. After saying the Trump administration should deny a Virginia proposal, SpaceX is taking the same approach in a fight against Louisiana.

SpaceX made its view known to the Louisiana Office of Broadband Development and Connectivity in a filing, which was reported yesterday by PCMag. SpaceX complained that Louisiana proposed awarding 91.5 percent of funds to fiber Internet service providers instead of to the Starlink satellite system. SpaceX alleged that Louisiana was influenced by “a legion of fiber lobbyists and other hangers-on seeking to personally benefit from massive taxpayer spending.”

The Trump administration rewrote rules for the $42 billion Broadband Equity, Access, and Deployment (BEAD) grant program in a way that benefits Starlink. Instead of prioritizing fiber networks that offer better service and are more future-proof, the Trump administration ordered states to revise their plans with a “tech-neutral approach” and lower the average cost of serving each location.

SpaceX’s letters to Virginia and Louisiana claim the states are violating the new rules with their funding proposals.

“The State of Louisiana’s Equity, Access, and Deployment (BEAD) program Final Proposal proposes to spend nearly $500 million dollars [sic] to provide connectivity to its unserved and underserved locations,” SpaceX wrote. “SpaceX applied to serve virtually all BEAD households for less than $100 million dollars. As such, Louisiana’s proposal includes over $400 million dollars in wasteful and unnecessary taxpayer spending.”

SpaceX unhappy with $7.75 million

Instead of selecting Starlink for all locations, Louisiana allocated the company $7.75 million to serve 10,327 locations. The plan would spend $499 million for 127,842 locations overall. The Louisiana Local Fiber Consortium, which includes two Louisiana providers that partnered with T-Mobile, was the biggest winner, with $378 million for 68,535 locations.

“Louisiana’s results demonstrate that it did not observe statutory requirements or program rules and did not conduct a competitive process,” SpaceX alleged. “A process in which Louisiana is required to award grants based on the lowest cost to the program, and awards 91.5% of funds to fiber projects at an average per-location cost of $4,449, while rejecting applications at $750 per location because the bid was based on Low-Earth Orbit (LEO) technology could not possibly be considered compliant, technology neutral or a ‘competition.'”

SpaceX says states should dump fiber plans, give all grant money to Starlink Read More »

spacex-reveals-why-the-last-two-starships-failed-as-another-launch-draws-near

SpaceX reveals why the last two Starships failed as another launch draws near


“SpaceX can now proceed with Starship Flight 10 launch operations under its current license.”

SpaceX completed a six-engine static fire of the next Starship upper stage on August 1. Credit: SpaceX

SpaceX is continuing with final preparations for the 10th full-scale test flight of the company’s enormous Starship rocket after receiving launch approval Friday from the Federal Aviation Administration.

Engineers completed a final test of Starship’s propulsion system with a so-called “spin prime” test Wednesday at the launch site in South Texas. Ground crews then rolled the ship back to a nearby hangar for engine inspections, touchups to its heat shield, and a handful of other chores to ready it for liftoff.

SpaceX has announced the launch is scheduled for no earlier than next Sunday, August 24, at 6: 30 pm local time in Texas (23: 30 UTC).

Like all previous Starship launches, the huge 403-foot-tall (123-meter) rocket will take off from SpaceX’s test site in Starbase, Texas, just north of the US-Mexico border. The rocket consists of a powerful booster stage named Super Heavy, with 33 methane-fueled Raptor engines. Six Raptors power the upper stage, known simply as Starship.

With this flight, SpaceX officials hope to put several technical problems with the Starship program behind them. SpaceX is riding a streak of four disappointing Starship test flights from January through May, and and the explosion and destruction of another Starship vehicle during a ground test in June.

These setbacks followed a highly successful year for the world’s largest rocket in 2024, when SpaceX flew Starship four times and achieved new objectives on each flight. These accomplishments included the first catch of a Super Heavy booster back at the launch pad, proving the company’s novel concept for recovering and reusing the rocket’s first stage.

Starship’s record so far in 2025 is another story. The rocket’s inability to make it through an entire suborbital test flight has pushed back future program milestones, such as the challenging tasks of recovering and reusing the rocket’s upper stage, and demonstrating the ability to refuel another rocket in orbit. Those would both be firsts in the history of spaceflight.

These future tests, and more, are now expected to occur no sooner than next year. This time last year, SpaceX officials hoped to achieve them in 2025. All of these demonstrations are vital for Elon Musk to meet his promise of sending numerous Starships to build a settlement on Mars. Meanwhile, NASA is eager for SpaceX to reel off these tests as quickly as possible because the agency has selected Starship as the human-rated lunar lander for the Artemis Moon program. Once operational, Starship will also be key to building out SpaceX’s next-generation Starlink broadband network.

A good outcome on the next Starship test flight would give SpaceX footing to finally take a step toward these future demos after months of dithering over design dilemmas.

Elon Musk, SpaceX’s founder and CEO, presented an update on Starship to company employees in May. This chart shows the planned evolution from Starship Version 2 (left) to Version 3 (middle), and an even larger rocket (right) in the more distant future.

The FAA said Friday it formally closed the investigation into Starship’s most recent in-flight failure in May, when the rocket started leaking propellant after reaching space, rendering it unable to complete the test flight.

“The FAA oversaw and accepted the findings of the SpaceX-led investigation,” the federal regulator said in a statement. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

Diagnosing failures

SpaceX identified the most probable cause for the May failure as a faulty main fuel tank pressurization system diffuser located on the forward dome of Starship’s primary methane tank. The diffuser failed a few minutes after launch, when sensors detected a pressure drop in the main methane tank and a pressure increase in the ship’s nose cone just above the tank.

The rocket compensated for the drop in main tank pressure and completed its engine burn, but venting from the nose cone and a worsening fuel leak overwhelmed Starship’s attitude control system. Finally, detecting a major problem, Starship triggered automatic onboard commands to vent all remaining propellant into space and “passivate” itself before an unguided reentry over the Indian Ocean, prematurely ending the test flight.

Engineers recreated the diffuser failure on the ground during the investigation, and then redesigned the part to better direct pressurized gas into the main fuel tank. This will also “substantially decrease” strain on the diffuser structure, SpaceX said.

The FAA, charged with ensuring commercial rocket launches don’t endanger public safety, signed off on the investigation and gave the green light for SpaceX to fly Starship again when it is ready.

“SpaceX can now proceed with Starship Flight 10 launch operations under its current license,” the FAA said.

“The upcoming flight will continue to expand the operating envelope on the Super Heavy booster, with multiple landing burn tests planned,” SpaceX said in an update posted to its website Friday. “It will also target similar objectives as previous missions, including Starship’s first payload deployment and multiple reentry experiments geared towards returning the upper stage to the launch site for catch.”

File photo of Starship’s six Raptor engines firing on a test stand in South Texas. Credit: SpaceX

In the aftermath of the test flight in May, SpaceX hoped to fly Starship again by late June or early July. But another accident June 18, this time on the ground, delayed the program another couple of months. The Starship vehicle SpaceX assigned to the next flight, designated Ship 36, exploded on a test stand in Texas as teams filled it with cryogenic propellants for an engine test-firing.

The accident destroyed the ship and damaged the test site, prompting SpaceX to retrofit the sole active Starship launch pad to support testing of the next ship in line—Ship 37. Those tests included a brief firing of all six of the ship’s Raptor engines August 1.

After Ship 37’s final spin prime test Wednesday, workers transported the rocket back to a hangar for evaluation, and crews immediately got to work transitioning the launch pad back to its normal configuration to host a full Super Heavy/Starship stack.

SpaceX said the explosion on the test stand in June was likely caused by damage to a high-pressure nitrogen storage tank inside Starship’s payload bay section. This tank, called a composite overwrapped pressure vessel, or COPV, violently ruptured and led to the ship’s fiery demise. SpaceX said COPVs on upcoming flights will operate at lower pressures, and managers ordered additional inspections on COPVs to look for damage, more proof testing, more stringent acceptance criteria, and a hardware change to address the problem.

Try, try, try, try again

This year began with the first launch of an upgraded version of Starship, known as Version 2 or Block 2, in January. But the vehicle suffered propulsion failures and lost control before the upper stage completed its engine burn to propel the rocket on a trajectory carrying it halfway around the world to splash down in the Indian Ocean. Instead, the rocket broke apart and rained debris over the Bahamas and the Turks and Caicos Islands more than 1,500 miles downrange from Starbase.

That was followed in March by another Starship launch that had a similar result, again scattering debris near the Bahamas. In May, the ninth Starship test flight made it farther downrange and completed its engine burn before spinning out of control in space, preventing it from making a guided reentry to gather data on its heat shield.

Mastering the design of Starship’s heat shield is critical the future of the program. As it has on all of this year’s test flights, SpaceX has installed on the next Starship several different ceramic and metallic tile designs to test alternative materials to protect the vehicle during its scorching plunge back into Earth’s atmosphere. Starship successfully made it through reentry for a controlled splashdown in the sea several times last year, but sensors detected hot spots on the rocket’s stainless steel skin after some of the tiles fell off during launch and descent.

Making the Starship upper stage reusable like the Super Heavy booster will require better performance from the heat shield. The demands of flying the ship home from orbit and attempting a catch at the launch pad far outweigh the challenge of recovering a booster. Coming back from space, the ship encounters much higher temperatures than the booster sees at lower velocities.

Therefore, SpaceX’s most important goal for the 10th Starship flight will be gathering information about how well the ship’s different heat shield materials hold up during reentry. Engineers want to have this data as soon as possible to inform design decisions about the next iteration of Starship—Version 3 or Block 3—that will actually fly into orbit. So far, all Starship launches have intentionally targeted a speed just shy of orbital velocity, bringing the vehicle back through the atmosphere halfway around the world.

Other objectives on the docket for Starship Flight 10 include the deployment of spacecraft simulators mimicking the size of SpaceX’s next-generation Starlink Internet satellites. Like the heat shield data, this has been part of the flight plan for the last three Starship launches, but the rocket never made it far enough to attempt any payload deployment tests.

Thirty-three Raptor engines power the Super Heavy booster downrange from SpaceX’s launch site near Brownsville, Texas, in January. Credit: SpaceX

Engineers also plan to put the Super Heavy booster through the wringer on the next launch. Instead of coming back to Starbase for a catch at the launch pad—something SpaceX has now done three times—the massive booster stage will target a controlled splashdown in the Gulf of Mexico east of the Texas coast. This will give SpaceX room to try new things with the booster, such as controlling the rocket’s final descent with a different mix of engines to see if it could overcome a problem with one of its three primary landing engines.

SpaceX tried to experiment with new ways of landing of the Super Heavy booster on the last test flight, too. The Super Heavy exploded before reaching the ocean, likely due to a structural failure of the rocket’s fuel transfer tube, an internal pipe where methane flows from the fuel tank at the top of the rocket to the engines at the bottom of the booster. SpaceX said the booster flew a higher angle of attack during its descent in May to test the limits of the rocket’s performance. It seems engineers found the limit, and the booster won’t fly at such a high angle of attack next time.

SpaceX has just two Starship Version 2 vehicles in its inventory before moving on to the taller Version 3 configuration, which will also debut improved Raptor engines.

“Every lesson learned, through both flight and ground testing, continues to feed directly into designs for the next generation of Starship and Super Heavy,” SpaceX said. “Two flights remain with the current generation, each with test objectives designed to expand the envelope on vehicle capabilities as we iterate towards fully and rapidly reusable, reliable rockets.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX reveals why the last two Starships failed as another launch draws near Read More »

rocket-report:-ariane-6-beats-vulcan-to-third-launch;-china’s-first-drone-ship

Rocket Report: Ariane 6 beats Vulcan to third launch; China’s first drone ship


Why is China’s heavy-lift Long March 5B able to launch only 10 Guowang satellites at a time?

Wearing their orange launch and reentry spacesuits, Artemis II commander Reid Wiseman (bottom) and pilot Victor Glover (top) walk out of an emergency egress basket during nighttime training at Launch Complex 39B.

Welcome to Edition 8.06 of the Rocket Report! Two of the world’s most storied rocket builders not named SpaceX achieved major successes this week. Arianespace’s Ariane 6 rocket launched from French Guiana on its third flight Tuesday night with a European weather satellite. Less than 20 minutes later, United Launch Alliance’s third Vulcan rocket lifted off from Florida on a US military mission. These are two of the three big rockets developed in the Western world that have made their orbital debuts in the last two years, alongside Blue Origin’s New Glenn launcher. Ariane 6 narrowly won the “race” to reach its third orbital flight, but if you look at it another way, Ariane 6 reached its third flight milestone 13 months after its inaugural launch. It took Vulcan more than 19 months, and New Glenn has flown just once. SpaceX’s Super Heavy/Starship rocket has flown nine times but has yet to reach orbit.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sixth success for sea-launched Chinese rocket. Private Chinese satellite operator Geespace added 11 spacecraft to its expanding Internet of Things constellation on August 8, aiming to boost low-power connectivity in key emerging markets, Space News reports. The 11 satellites rode into orbit aboard a solid-fueled Jielong 3 (Smart Dragon 3) rocket lifting off from an ocean platform in the Yellow Sea off the coast of Rizhao, a city in eastern China’s Shandong province. This was the sixth flight of the Jielong 3, a rocket developed by a commercially oriented spinoff of the state-owned China Academy of Launch Vehicle Technology.

Mistaken for a meteor … The fourth stage of the Jielong 3 rocket, left in orbit after deploying its 11 satellite payloads, reentered the atmosphere late Sunday night. The fiery and destructive reentry created a fireball that streaked across the skies over Spain, the Spanish newspaper El Mundo reports. Many Spanish residents identified the streaking object as a meteor associated with the Perseid meteor shower. But it turned out to be a piece of China’s Jielong 3 rocket. Any debris that may have survived the scorching reentry likely fell into the Mediterranean Sea.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Portugal green-lights Azores spaceport. The Portuguese government has granted the Atlantic Spaceport Consortium a license to build and operate a rocket launch facility on the island of Santa Maria in the Azores, European Spaceflight reports. The Atlantic Spaceport Consortium (ASC) was founded in 2019 with the goal of developing a commercial spaceport on Santa Maria, 1,500 kilometers off the Portuguese mainland. In September 2024, the company showcased the island’s suitability as a launch site by launching two small solid-fuel amateur-class rockets that it developed in-house.

What’s on deck? … The spaceport license granted by Portugal’s regulatory authorities does not cover individual launches themselves. Those must be approved in a separate licensing process. It’s likely that the launch site on Santa Maria Island will initially host suborbital launches, including flights by the Polish rocket company SpaceForest. The European Space Agency has also selected Santa Maria as the landing site for the first flight of the Space Rider lifting body vehicle after it launches into orbit, perhaps in 2027. (submitted by claudiodcsilva)

Why is Jeff Bezos buying launches from Elon Musk? Early Monday morning, a Falcon 9 rocket lifted off from its original launch site in Florida. Remarkably, it was SpaceX’s 100th launch of the year. Perhaps even more notable was the rocket’s payload: two-dozen Project Kuiper satellites, which were dispensed into low-Earth orbit on target, Ars reports. This was SpaceX’s second launch of satellites for Amazon, which is developing a constellation to deliver low-latency broadband Internet around the world. SpaceX, then, just launched a direct competitor to its Starlink network into orbit. And it was for the founder of Amazon, Jeff Bezos, who owns a rocket company of his own in Blue Origin.

Several answers … So how did it come to this—Bezos and Elon Musk, competitors in so many ways, working together in space? There are several answers. Most obviously, launching payloads for customers is one of SpaceX’s two core business areas, alongside Starlink. SpaceX sells launch services to all comers and typically offers the lowest price per kilogram to orbit. There’s immediate revenue to be made if a company with deep pockets like Amazon is willing to pay SpaceX. Second, the other options to get Kuiper satellites into orbit just aren’t available at the volume Amazon needs. Amazon has reserved the lion’s share of its Kuiper launches with SpaceX’s competitors: United Launch Alliance, Arianespace, and Jeff Bezos’ own space company Blue Origin. Lastly, SpaceX could gain some leverage by providing launch services to Amazon. In return for a launch, SpaceX has asked other companies with telecom satellites, such as OneWeb and Kepler Communications, to share spectrum rights to enable Starlink to expand into new markets.

Trump orders cull of commercial launch regulations. President Donald Trump signed an executive order on Wednesday directing government agencies to “eliminate or expedite” environmental reviews for commercial launch and reentry licenses, Ars reports. The FAA, part of the Department of Transportation, is responsible for granting the licenses after ensuring launch and reentries don’t endanger the public, comply with environmental laws, and comport with US national interests. The drive toward deregulation will be welcome news for companies like SpaceX, led by onetime Trump ally Elon Musk; SpaceX conducts nearly all of the commercial launches and reentries licensed by the FAA.

Deflecting scrutiny? … The executive order does several things, and not all of them will be as controversial as the potential elimination of environmental reviews. The order includes a clause directing the government to reevaluate, amend, or rescind a slate of launch-safety regulations written during the first Trump administration. The FAA published the new regulations, known as Part 450, in 2020, and they went into effect in 2021, but space companies have complained that they are too cumbersome and have slowed down the license approval process. The Biden administration established a committee last year to look at reforming the regulations in response to industry’s outcry. Another part of the order that will likely lack bipartisan support is a call for making the head of the FAA’s commercial spaceflight division a political appointee. This job has historically been held by a career civil servant.

Ariane 6 launches European weather satellite. Europe’s new Ariane 6 rocket successfully launched for a third time on Tuesday night, carrying a satellite into orbit for weather forecasting and climate monitoring, Euronews reports. “The success of this second commercial launch confirms the performance, reliability, and precision of Ariane 6,” said Martin Sion, CEO of ArianeGroup, operator of the rocket. “Once again, the new European heavy-lift launcher meets Europe’s needs, ensuring sovereign access to space,” Sion added. It marks the second commercial flight of the rocket, which has been in development for almost a decade with the European Space Agency (ESA). It is significant as it gives Europe independent access to space and reduces its reliance on Elon Musk’s SpaceX.

Eumetsat returns to Europe … The polar-orbiting weather satellite launched by the Ariane 6 rocket this week is owned by the European Organization for the Exploitation of Meteorological Satellites, or Eumetsat. Headquartered in Germany, Eumetsat is a multinational organization that owns and operates geostationary and polar-orbiting weather satellites, watching real-time storm development over Europe and Africa, while feeding key data into global weather and climate models. Just last month, Eumetsat’s newest geostationary weather satellite launched from Florida on a SpaceX Falcon 9 rocket because of delays with the Ariane 6 program.

Rocket Lab isn’t giving up on 2025 yet. Rocket Lab continues to push for a first launch of its medium-lift Neutron rocket before the end of the year, but company executives acknowledge that schedule has no margin for error, Space News reports. It may seem unlikely, but Rocket Lab’s founder and CEO, Peter Beck, said in a conference call with investment analysts last week that the company has a “green light” schedule to debut the Neutron rocket within the next four-and-a-half months. There’s still much work to do to prepare for the first launch, and the inaugural flight seems almost certain to slip into 2026.

Launch pad nearly complete … Rocket Lab plans to host a ribbon-cutting at the Neutron rocket’s new launch pad on Wallops Island, Virginia, on August 28. This launch pad is located just south of the spaceport’s largest existing launch facility, where Northrop Grumman’s Antares rocket lifts off on resupply missions to the International Space Station. Rocket Lab has a small launch pad for its light-class Electron launcher co-located with the Antares pad at Wallops.

Chinese company reveals drone ship. The Chinese launch company iSpace has released the first photos of an ocean-going recovery ship to support the landings of reusable first-stage boosters. The company hosted a dedication ceremony in Yangzhou, China, earlier this month for the vessel, which looks similar to SpaceX’s rocket landing drone ships. In a press release, iSpace said the ship, named “Interstellar Return,” is China’s first marine rocket recovery ship, and the fifth such vessel in the world. SpaceX has three drone ships in its fleet for the Falcon 9 rocket, and Blue Origin has one for the New Glenn booster.

Rocket agnostic … The recovery ship will be compatible with various medium- and large-sized reusable rockets, iSpace said. But its main use will be as the landing site for the first stage booster for iSpace’s own Hyperbola 3 rocket, a medium-lift launcher with methane-fueled engines. The company has completed multiple vertical takeoff and landing tests of prototype boosters for the Hyperbola 3. The recovery ship measures about 100 meters long and 42 meters wide, with a displacement of 17,000 metric tons, and it has the ability to perform “intelligent unmanned operations” thanks to a dynamic positioning system, according to iSpace.

Vulcan’s first national security launch. United Launch Alliance delivered multiple US military satellites into a high-altitude orbit after a prime-time launch Tuesday night, marking an important transition from development to operations for the company’s new Vulcan rocket, Ars reports. This mission, officially designated USSF-106 by the US Space Force, was the first flight of ULA’s Vulcan rocket to carry national security payloads. Two test flights of the Vulcan rocket last year gave military officials enough confidence to certify it for launching the Pentagon’s medium-to-large space missions.

Secrecy in the fairing  … The Vulcan rocket’s Centaur upper stage released its payloads into geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator roughly seven hours after liftoff. One of the satellites deployed by the Vulcan rocket is an experimental navigation testbed named NTS-3. It will demonstrate new technologies that could be used on future GPS navigation satellites. But the Space Force declined to disclose any information about the mission’s other payloads.

Artemis II crew trains for nighttime ops. The four astronauts training to fly around the Moon on NASA’s Artemis II mission next year have been at Kennedy Space Center in Florida this week. One of the reasons they were at Kennedy was to run through a rehearsal for what it will be like to work at the launch pad if the Artemis II mission ends up lifting off at night. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen put on their spacesuits and rehearsed emergency procedures at Launch Complex 39B, replicating a daytime simulation they participated in last year.

Moving forward … The astronauts also went inside the Vehicle Assembly Building to practice using egress baskets they would use to quickly escape the launch pad in the event of a prelaunch emergency. The baskets are fastened to the mobile launch tower inside the VAB, where technicians are assembling and testing the Space Launch System rocket for the Artemis II mission. Later this year, the astronauts will return to Kennedy for a two-part countdown demonstration test. First, the crew members will board their Orion spacecraft once it’s stacked atop the SLS rocket inside the VAB. Then, in part two, the astronauts will again rehearse emergency evacuation procedures once the rocket rolls to the launch pad.

China’s Long March 5B flies again. China is ramping up construction of its national satellite-Internet megaconstellation with the successful deployment of another batch of Guowang satellites by a heavy-lift Long March 5B rocket on Wednesday, Space.com reports. Guowang, whose name translates as “national network,” will be operated by China SatNet, a state-run company established in 2021. The constellation will eventually consist of about 13,000 satellites if all goes to plan.

Make this make sense … Guowang is a long way from that goal. Wednesday’s launch was the eighth overall for the network, but it was the fourth for the project in less than three weeks. Each mission lofts just five to 10 Guowang spacecraft, apparently because each satellite is quite large. For comparison, SpaceX launches 24 to 28 satellites on each mission to assemble its Starlink broadband megaconstellation, which currently consists of nearly 8,100 operational spacecraft. The Long March 5B is China’s most powerful operational rocket, with a lift capacity somewhat higher than SpaceX’s Falcon 9 but below that of the Falcon Heavy. It begs the question of just how big the Guowang satellites really are, and do they have a purpose beyond broadband Internet service?

Next three launches

Aug. 16: Kinetica 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 07: 35 UTC

Aug. 17: Long March 4C | Unknown Payload | Xichang Satellite Launch Center, China | 09: 05 UTC

Aug. 17: Long March 6A | Unknown Payload | Taiyuan Satellite Launch Center, China | 14: 15 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Ariane 6 beats Vulcan to third launch; China’s first drone ship Read More »

starlink-tries-to-block-virginia’s-plan-to-bring-fiber-internet-to-residents

Starlink tries to block Virginia’s plan to bring fiber Internet to residents

Noting that its “project areas span from mountains and hills to farmland and coastal plains,” the DHCD said its previous experience with grant-funded deployments “revealed that tree canopy, rugged terrain, and slope can complicate installation and/or obstruct line-of-sight.” State officials said that wireless and low-Earth orbit satellite technology “can have signal degradation, increased latency, and reduced reliability” when there isn’t a clear line of sight.

The DHCD said it included these factors in its evaluation of priority broadband projects. State officials were also apparently concerned about the network capacity of satellite services and the possibility that using state funding to guarantee satellite service in one location could reduce availability of that same service in other locations.

“To review a technology’s ability to scale, the Office considered the currently served speeds of 100/20 Mbps, an application’s stated network capacity, the project area’s number of [locations], the project area’s geographic area, current customer base (if applicable), and future demand,” the department said. “For example, the existing customer base should not be negatively impacted by the award of BEAD locations for a given technology to be considered scalable.”

SpaceX: “Playing field was anything but level”

SpaceX said Virginia is wrong to determine that Starlink “did not qualify as ‘Priority Broadband,'” since the company “provided information demonstrating these capabilities in its application, and it appears that Virginia used this definition only as a pretext to reach a pre-ordained outcome.” SpaceX said that 95 percent of funded “locations in Virginia have an active Starlink subscriber within 1 mile, showing that Starlink already serves every type of environment in Virginia’s BEAD program today” and that 15 percent of funded locations have an active Starlink subscriber within 100 meters.

“The playing field was anything but level and technology neutral, as required by the [updated program rules], and was instead insurmountably stacked against low-Earth orbit satellite operators like SpaceX,” the company said.

We contacted the Virginia DHCD about SpaceX’s comments today and will update this article if the department provides a response.

Starlink tries to block Virginia’s plan to bring fiber Internet to residents Read More »

trump-orders-cull-of-regulations-governing-commercial-rocket-launches

Trump orders cull of regulations governing commercial rocket launches


The head of the FAA’s commercial spaceflight division will become a political appointee.

Birds take flight at NASA’s Kennedy Space Center in Florida in this 2010 photo. Credit: NASA

President Donald Trump signed an executive order Wednesday directing government agencies to “eliminate or expedite” environmental reviews for commercial launch and reentry licenses.

The Federal Aviation Administration (FAA), part of the Department of Transportation (DOT), grants licenses for commercial launch and reentry operations. The FAA is charged with ensuring launch and reentries comply with environmental laws, comport with US national interests, and don’t endanger the public.

The drive toward deregulation will be welcome news for companies like SpaceX, led by onetime Trump ally Elon Musk; SpaceX conducts nearly all of the commercial launches and reentries licensed by the FAA.

Deregulation time

Trump ordered Transportation Secretary Sean Duffy, who also serves as the acting administrator of NASA, to “use all available authorities to eliminate or expedite… environmental reviews for… launch and reentry licenses and permits.” In the order signed by Trump, White House officials wrote that Duffy should consult with the chair of the Council on Environmental Quality and follow “applicable law” in the regulatory cull.

The executive order also includes a clause directing Duffy to reevaluate, amend, or rescind a slate of launch-safety regulations written during the first Trump administration. The FAA published the new regulations, known as Part 450, in 2020, and they went into effect in 2021, but space companies have complained they are too cumbersome and have slowed down the license approval process.

And there’s more. Trump ordered NASA, the military, and DOT to eliminate duplicative reviews for spaceport development. This is particularly pertinent at federally owned launch ranges like those at Cape Canaveral, Florida; Vandenberg Space Force Base, California; and Wallops Island, Virginia.

The Trump administration also plans to make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This office oversees commercial launch and reentry licensing and was previously led by a career civil servant. Duffy will also hire an advisor on deregulation in the commercial spaceflight industry to join DOT, and the Office of Space Commerce will be elevated to a more prominent position within the Commerce Department.

“It is the policy of the United States to enhance American greatness in space by enabling a competitive launch marketplace and substantially increasing commercial space launch cadence and novel space activities by 2030,” Trump’s executive order reads. “To accomplish this, the federal government will streamline commercial license and permit approvals for United States-based operators.”

News of the executive order was reported last month by ProPublica, which wrote that the Trump administration was circulating draft language among federal agencies to slash rules to protect the environment and the public from the dangers of rocket launches. The executive order signed by Trump and released by the White House on Wednesday confirms ProPublica’s reporting.

Jared Margolis, a senior attorney for the Center for Biological Diversity, criticized the Trump administration’s move.

“This reckless order puts people and wildlife at risk from private companies launching giant rockets that often explode and wreak devastation on surrounding areas,” Margolis said in a statement. “Bending the knee to powerful corporations by allowing federal agencies to ignore bedrock environmental laws is incredibly dangerous and puts all of us in harm’s way. This is clearly not in the public interest.”

Duffy, the first person to lead NASA and another federal department at the same time, argued the order is important to sustain economic growth in the space industry.

“By slashing red tape tying up spaceport construction, streamlining launch licenses so they can occur at scale, and creating high-level space positions in government, we can unleash the next wave of innovation,” Duffy said in a statement. “At NASA, this means continuing to work with commercial space companies and improving our spaceports’ ability to launch.”

Nipping NEPA

The executive order is emblematic of the Trump administration’s broader push to curtail environmental reviews for large infrastructure projects.

The White House has already directed federal agencies to repeal regulations enforcing the National Environmental Policy Act (NEPA), a 1969 law that requires the feds prepare environmental assessments and environmental impact statements to evaluate the effects of government actions—such as licensing approvals—on the environment.

Regarding commercial spaceflight, the White House ordered the Transportation Department to create a list of activities officials there believe are not subject to NEPA and establish exclusions under NEPA for launch and reentry licenses.

Onlookers watch from nearby sand dunes as SpaceX prepares a Starship rocket for launch from Starbase, Texas. Credit: Stephen Clark/Ars Technica

The changes to the environmental review process might be the most controversial part of Trump’s new executive order. Another section of the order—the attempt to reform or rescind the so-called Part 450 launch and reentry regulations—appears to have bipartisan support in Congress.

The FAA started implementing its new Part 450 commercial launch and reentry regulations less than five years ago after writing the rules in response to another Trump executive order signed in 2018. Part 450 was intended to streamline the launch approval process by allowing companies to submit applications for a series of launches or reentries, rather than requiring a new license for each mission.

But industry officials quickly criticized the new regulations, which they said didn’t account for rapid iteration of rockets and spacecraft like SpaceX’s enormous Starship/Super Heavy launch vehicle. The FAA approved a SpaceX request in May to increase the number of approved Starship launches from five to 25 per year from the company’s base in Starship, Texas, near the US-Mexico border.

Last year, the FAA’s leadership under the Biden administration established a committee to examine the shortcomings of Part 450. The Republican and Democratic leaders of the House Science, Space, and Technology Committee submitted a joint request in February for the Government Accountability Office to conduct an independent review of the FAA’s Part 450 regulations.

“Reforming and streamlining commercial launch regulations and licensing is an area the Biden administration knew needed reform,” wrote Laura Forczyk, founder and executive director of the space consulting firm Astralytical, in a post on X. “However, little was done. Will more be done with this executive order? I hope so. This was needed years ago.”

Dave Cavossa, president of the Commercial Spaceflight Federation, applauded the Trump administration’s regulatory policy.

“This executive order will strengthen and grow the US commercial space industry by cutting red tape while maintaining a commitment to public safety, benefitting the American people and the US government that are increasingly reliant on space for our national and economic security,” Cavossa said in a statement.

Specific language in the new Trump executive order calls for the FAA to evaluate which regulations should be waived for hybrid launch or reentry vehicles that hold FAA airworthiness certificates, and which requirements should be remitted for rockets with a flight termination system, an explosive charge designed to destroy a launch vehicle if it veers off its pre-approved course after liftoff. These are similar to the topics the Biden-era FAA was looking at last year.

The new Trump administration policy also seeks to limit the authority of state officials in enforcing their own environmental rules related to the construction or operation of spaceports.

This is especially relevant after the California Coastal Commission rejected a proposal by SpaceX to double its launch cadence at Vandenberg Space Force Base, a spaceport located roughly 140 miles (225 kilometers) northwest of Los Angeles. The Space Force, which owns Vandenberg and is one of SpaceX’s primary customers, backs SpaceX’s push for more launches.

Finally, the order gives the Department of Commerce responsibility for authorizing “novel space activities” such as in-space assembly and manufacturing, asteroid and planetary mining, and missions to remove space debris from orbit.

This story was updated at 12: 30 am EDT on August 14 with statements from the Center for Biological Diversity and the Commercial Spaceflight Federation.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Trump orders cull of regulations governing commercial rocket launches Read More »

with-trump’s-cutbacks,-crew-heads-for-iss-unsure-of-when-they’ll-come-back

With Trump’s cutbacks, crew heads for ISS unsure of when they’ll come back


“We are looking at the potential to extend this current flight, Crew-11.”

NASA astronaut Zena Cardman departs crew quarters at Kennedy Space Center, Florida, for the ride to SpaceX’s launch pad. Credit: Miguel J. Rodriguez Carrillo/Getty Images

The next four-person team to live and work aboard the International Space Station departed from NASA’s Kennedy Space Center in Florida on Friday, taking aim at the massive orbiting research complex for a planned stay of six to eight months.

Spacecraft commander Zena Cardman leads the mission, designated Crew-11, that lifted off from Florida’s Space Coast at 11: 43 am EDT (15: 43 UTC) on Friday. Sitting to her right inside SpaceX’s Crew Dragon Endeavour capsule was veteran NASA astronaut Mike Fincke, serving as the vehicle pilot. Flanking the commander and pilot were two mission specialists: Kimiya Yui of Japan and Oleg Platonov of Russia.

Cardman and her crewmates rode a Falcon 9 rocket off the launch pad and headed northeast over the Atlantic Ocean, lining up with the space station’s orbit to set the stage for an automated docking at the complex early Saturday.

Goodbye LZ-1

The Falcon 9’s reusable first stage booster detached and returned to a propulsive touchdown at Landing Zone 1 (LZ-1) at Cape Canaveral Space Force Station, a few miles south of the launch site. This was the 53rd and final rocket landing at LZ-1 since SpaceX aced the first intact recovery of a Falcon 9 booster there on December 21, 2015.

On most of SpaceX’s missions, Falcon 9 boosters land on the company’s offshore drone ships hundreds of miles downrange from the launch site. For launches with enough fuel margin, the first stage can return to an onshore landing. But the Space Force, which leases out the landing zones to SpaceX, wants to convert the site of LZ-1 into a launch site for another rocket company.

SpaceX will move onshore rocket landings to new landing zones to be constructed next to the two Falcon 9 launch pads at the Florida spaceport. Landing Zone 2, located adjacent to Landing Zone 1, will also be decommissioned and handed back over to the Space Force once SpaceX activates the new landing sites.

“We’re working with the Cape and with the Kennedy Space Center folks to figure out the right time to make that transition from Landing Zone 2 in the future,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability. “But I think we’ll stay with Landing Zone 2 at least near-term, for a little while, and then look at the right time to move to the other areas.”

The Falcon 9 booster returns to Landing Zone 1 after the launch of the Crew-11 mission on Friday, August 1, 2025. Credit: SpaceX

Meanwhile, the Falcon 9’s second stage fired its single engine to accelerate the Crew Dragon spacecraft into low-Earth orbit. Less than 10 minutes after liftoff, the capsule separated from the second stage to wrap up the 159th consecutive successful launch of a Falcon 9 rocket.

“I have no emotions but joy right now,” Cardman said moments after arriving in orbit. “That was absolutely transcendent, the ride of a lifetime.”

This is the first trip to space for Cardman, a 37-year-old geobiologist and Antarctic explorer selected as a NASA astronaut in 2017. She was assigned to command a Dragon flight to the ISS last year, but NASA bumped her and another astronaut from the mission to make room for the spacecraft to return the two astronauts left behind on the station by Boeing’s troubled Starliner capsule.

Mike Fincke, 58, is beginning his fourth spaceflight after previous launches on Russian Soyuz spacecraft and NASA’s space shuttle. He was previously training to fly on the Starliner spacecraft’s first long-duration mission, but NASA moved him to Dragon as the Boeing program faced more delays.

“Boy, it’s great to be back in orbit!” Fincke said. “Thank you to SpaceX and NASA for getting us here. What a ride!”

Yui is on his second flight to orbit. The 55-year-old former fighter pilot in the Japanese Air Self-Defense Force spent 141 days in space in 2015. Platonov, a 39-year-old spaceflight rookie, was a fighter pilot in the Russian Air Force before training to become a cosmonaut.

A matter of money

There’s some unexpected uncertainty going into this mission about how long the foursome will be in space. Missions sometimes get extended for technical reasons, or because of poor weather in recovery zones on Earth, but there’s something different in play with Crew-11. For the first time, there’s a decent chance that NASA will stretch out this expedition due to money issues.

The Trump administration has proposed across-the-board cuts to most NASA programs, including the International Space Station. The White House’s budget request for NASA in fiscal year 2026, which begins on October 1, calls for an overall cut in agency funding of nearly 25 percent.

The White House proposes a slightly higher reduction by percentage for the International Space Station and crew and cargo transportation to and from the research outpost. The cuts to the ISS would keep the station going through 2030, but with a smaller crew and a reduced capacity for research. Effectively, the ISS would limp toward retirement after more than 30 years in orbit.

Steve Stich, NASA’s commercial crew program manager, said the agency’s engineers are working with SpaceX to ensure the Dragon spacecraft can stay in orbit for at least eight months. The current certification limit is seven months, although officials waived the limit for one Dragon mission that lasted longer.

“When we launch, we have a mission duration that’s baseline,” Stich said in a July 10 press conference. “And then we can extend [the] mission in real-time, as needed, as we better understand… the reconciliation bill and the appropriations process and what that means relative to the overall station manifest.”

An update this week provided by Dana Weigel, NASA’s ISS program manager, indicated that officials are still planning for Crew-11 to stay in space a little longer than usual.

“We are looking at the potential to extend this current flight, Crew-11,” Weigel said Wednesday. “There are a few more months worth of work to do first.”

This photo of the International Space Station was captured by a crew member on a Soyuz spacecraft. Credit: NASA/Roscosmos

Budget bills advanced in the Senate and House of Representatives in July would maintain funding for most NASA programs, including the ISS and transportation, close to this year’s levels. But it’s no guarantee that Congress will pass an appropriations bill for NASA before the deadline of midnight on October 1. It’s also unknown whether President Donald Trump would sign a budget bill into law that rejects his administration’s cuts.

If Congress doesn’t act, lawmakers must pass a continuing resolution as a temporary stopgap measure or accept a government shutdown. Some members of Congress are also concerned that the Trump administration might simply refuse to spend money allotted to NASA and other federal agencies in any budget bill. This move, called impoundment, would be controversial, and its legality would likely have to be adjudicated in the courts.

A separate amendment added in Congress to a so-called reconciliation bill and signed into law by Trump on July 4 also adds $1.25 billion for ISS operations through 2029. “We’re still evaluating how that’s going to affect operations going forward, but it’s a positive step,” said Ken Bowersox, NASA’s associate administrator for space operations.

Suffice it to say that while Congress has signaled its intention to keep funding the ISS and many other NASA programs, the amount of money the space agency will actually receive remains uncertain. Trump appointees have directed NASA managers to prepare to operate as if the White House’s proposed cuts will become reality.

For officials in charge of the International Space Station, this means planning for fewer astronauts, reductions in research output, and longer-duration missions to minimize the number of crew rotation flights NASA must pay for. SpaceX is NASA’s primary contractor for crew rotation missions, using its Dragon spacecraft. NASA has a similar contract with Boeing, but that company’s Starliner spacecraft has not been certified for any operational flights to the station.

SpaceX’s next crew mission to the space station, Crew-12, is scheduled to launch early next year. Weigel said NASA is looking at the “entire spectrum” of options to cut back on the space station’s operations and transportation costs. One of those options would be to launch three crew members on Crew-12 instead of the regular four-person complement.

“We don’t have to answer that right now,” Weigel said. “We can actually wait pretty late to make the crew size smaller if we need to. In terms of cargo vehicles, we’re well-supplied through this fall, so in the short term, I’d say, through the end of this year and the beginning of ’26, things look pretty normal in terms of what we have planned for the program.

“But we’re evaluating things, and we’ll be ready to adjust when the budget is passed and when we figure out where we really land.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With Trump’s cutbacks, crew heads for ISS unsure of when they’ll come back Read More »

smithsonian-air-and-space-opens-halls-for-“milestone”-and-“future”-artifacts

Smithsonian Air and Space opens halls for “milestone” and “future” artifacts


$900M renovation nearing completion

John Glenn’s Friendship 7 returns as SpaceX and Blue Origin artifacts debut.

a gumdrop-shape white space capsule is seen on display with other rocket hardware in a museum gallery with blue walls and flooring

“Futures in Space” recaptures the experience of the early visitors to the National Air and Space Museum, where the objects on display were contemporary to the day. A mockup of a Blue Origin New Shepard capsule and SpaceX Merlin rocket engine are among the items on display for the first time. Credit: Smithsonian National Air and Space Museum

“Futures in Space” recaptures the experience of the early visitors to the National Air and Space Museum, where the objects on display were contemporary to the day. A mockup of a Blue Origin New Shepard capsule and SpaceX Merlin rocket engine are among the items on display for the first time. Credit: Smithsonian National Air and Space Museum

The National Air and Space Museum welcomed the public into five more of its renovated galleries on Monday, including two showcasing spaceflight artifacts. The new exhibitions shine modern light on returning displays and restore the museum’s almost 50-year-old legacy of adding objects that made history but have yet to become historical.

Visitors can again enter through the “Boeing Milestones of Flight Hall,” which has been closed for the past three years and has on display some of the museum’s most iconic items, including John Glenn’s Friendship 7 Mercury capsule and an Apollo lunar module.

From there, visitors can tour through the adjacent “Futures in Space,” a new gallery focused on the different approaches and technology that spaceflight will take in the years to come. Here, the Smithsonian is displaying for the first time objects that were recently donated by commercial spaceflight companies, including items used in space tourism and in growing the low-Earth orbit economy.

a museum gallery with air and spacecraft displayed on the terrazzo floor and suspended from the ceiling

The artifacts are iconic, but the newly reopened Boeing Milestones of Flight Hall at the National Air and Space Museum is all new. Credit: Smithsonian National Air and Space Museum

“We are thrilled to open this next phase of exhibitions to the public,” said Chris Browne, the John and Adrienne Mars Director of the National Air and Space Museum, in a statement. “Reopening our main hall with so many iconic aerospace artifacts, as well as completely new exhibitions, will give visitors much more to see and enjoy.”

The other three galleries newly open to the public are devoted to aviation history, including the “Barron Hilton Pioneers of Flight,” “World War I: The Birth of Military Aviation,” and the “Allan and Shelley Holt Innovations Gallery.”

What’s new is not yet old

Among the artifacts debuting in “Futures in Space” are a Merlin engine and grid fin that flew on a SpaceX Falcon 9 rocket, Sian Proctor’s pressure suit that she wore on the private Inspiration4 mission in 2021, and a mockup of a New Shepard crew module that Blue Origin has pledged to replace with its first flown capsule when it is retired from flying.

“When the museum first opened back in 1976 and people came here and saw things like the Apollo command module and Neil Armstrong’s spacesuit, or really anything related to human spaceflight, at that point it was all still very recent,” said Matt Shindell, one of the curators behind “Futures in Space,” in an interview with collectSPACE.com. “So when you would come into the museum, it wasn’t so much a history of space but what’s happening now and what could happen next. We wanted to have a gallery that would recapture that feeling.”

Instead of being themed around a single program or period in history, the new gallery invites visitors to consider a series of questions, including: Who decides who goes to space? Why do we go? And what will we do when we get there?

a black and white astronaut's pressure suit and other space artifacts are displayed behind glass in a museum gallery with blue flooring and walls

Curatores designed “Futures in Space” around a list of questions, including “Why go to space?” On display is a pressure suit worn by Sian Proctor on the Inspiration4 mission and a 1978 NASA astronaut “TFNG” T-shirt. Credit: Smithsonian National Air and Space Museum

“We really wanted the gallery to be one that engaged visitors in these questions and that centered the experience around what they thought should be happening in the future and what that would mean for them,” said Shindell. “We also have visions of the future presented throughout the gallery, including from popular culture—television shows, movies and comic books—that have explored what the future might look like and what it would mean for the people living through it.”

That is why the gallery also includes R2-D2, or rather a reproduction of the “Star Wars” droid as built by Adam Savage of Tested. In George Lucas’ vision of the future (“a long, long time ago”), Astromech droids serve as spacecraft navigators, mechanics, and companion aides.

Beyond the artifacts and exhibits (which also include an immersive 3D-printed Mars habitat and Yuri Gagarin’s training pressure suit), there is a stage and seating area at the center of “Futures.”

“I think of it as a TED Talk-style stage,” said Shindell. “We’re hoping to bring in people from industry, stakeholders, people who have flown, people who are getting ready to fly, and people who have ideas about what should be happening to come and talk to visitors from that stage about the same questions that we’re asking in the gallery.”

Modernized “Milestones”

The artifacts presented in the “Boeing Milestones of Flight” are mostly the same as they were before the hall was closed in 2022. The hall underwent a renovation in 2014 ahead of the museum’s 40th anniversary, so its displays did not need another redesign.

Still, the gallery looks new due to the work done surrounding the objects.

“What is new for the ‘Boeing Milestones of Flight Hall’ is, at some level, most noticeably the floor and media elements,” said Margaret Weitekamp, curator and division chair at the National Air and Space Museum, in an interview.

“We have a wonderful 123-foot (37-meter) media band that goes across the front of the mezzanine, and we have 20 different slide shows that work as a digest of what you’ll find in the new galleries throughout the building,” said Weitekamp. “So as people come into the Boeing Milestones of Flight Hall, they’ll be greeted by that and get a taste of what they’re going to see inside.”

And then there is the new flooring. In the past, the hall had been lined in maroon or dark gray carpet. It is now a much lighter color terrazzo.

“It really brightens up the room,” Weitekamp told collectsPACE.

“Also, you’ll notice that as you are going up and down the hallways, there are medallions embedded in the floor that display quotes from significant aviation and spaceflight figures. So we’ve been able to put some quotes from Carl Sagan, Sally Ride, and Chuck Yeager into the floor,” she said.

the view looking down and into a museum gallery with aircraft suspended from the ceiling, spacecraft on display and a binary map embedded in the flooring

The pattern on the floor of the Boeing Milesones of Flight Hall is the pulsar-based map to Earth’s solar system that was mounted to the Pioneer and Voyager probes, now updated for 2026. Credit: Smithsonian National Air and Space Museum

Visitors should also pay attention to what look like lines of dashes converging at the hall’s center. The design is an update to a NASA graphic.

“We have a revised version of the pulsar map from Pioneer 10 and 11 and the Voyager interstellar record,” said Weitekamp, referring to the representation of the location of Earth for any extraterrestrial species that might discover the probes in the future. “The map located Earth’s solar system with relationship to 14 pulsars.”

When the Pioneer and Voyager spacecraft were launched, astronomers didn’t know that pulsars (or rotating neutron stars) slow down over time.

“So we worked with a colleague of ours to make it a map to our solar system as would be accurate for 2026, which will mark the 50th anniversary of the museum’s building and the 250th birthday of the nation,” Weitekamp said.

Thirteen open, eight to go

Monday’s opening followed an earlier debut of eight reimagined galleries in 2022. Also open is the renovated Lockheed Martin IMAX Theater, which joins the planetarium, the museum store, and the Mars Café that were reopened earlier.

the exterior entrance to a building with a tall, spike-like silver sculpture standing front and center

The redesigned north entrance to the Smithsonian National Air and Space Museum opened to the public on Monday, July 28, 2025. Credit: Smithsonian National Air and Space Museum

“We are nearing the end of this multi-year renovation project,” said Browne. “We look forward to welcoming many more people into these modernized and inspiring new spaces,”

Eight more exhibitions are scheduled to open next year in time for the 50th anniversary of the National Air and Space Museum. Among those galleries are three that are focused on space: “At Home in Space,” “National Science Foundation Discovering Our Universe,” and “RTX Living in the Space Age Hall.”

Admission to the National Air and Space Museum and the new galleries is free, but timed-entry passes, available from the Smithsonian’s website, are required.

Photo of Robert Pearlman

Robert Pearlman is a space historian, journalist and the founder and editor of collectSPACE, a daily news publication and online community focused on where space exploration intersects with pop culture. He is also a contributing writer for Space.com and co-author of “Space Stations: The Art, Science, and Reality of Working in Space” published by Smithsonian Books in 2018. He is on the leadership board for For All Moonkind and is a member of the American Astronautical Society’s history committee.

Smithsonian Air and Space opens halls for “milestone” and “future” artifacts Read More »

starlink-kept-me-connected-to-the-internet-without-fail—until-thursday

Starlink kept me connected to the Internet without fail—until Thursday

A rare global interruption in the Starlink satellite Internet network knocked subscribers offline for more than two hours on Thursday, the longest widespread outage since SpaceX opened the service to consumers nearly five years ago.

The outage affected civilian and military users, creating an inconvenience for many but cutting off a critical lifeline for those who rely on Starlink for military operations, health care, and other applications.

Michael Nicolls, SpaceX’s vice president of Starlink engineering, wrote on X that the network outage lasted approximately 2.5 hours.

“The outage was due to failure of key internal software services that operate the core network,” Nicolls wrote. “We apologize for the temporary disruption in our service; we are deeply committed to providing a highly reliable network, and will fully root cause this issue and ensure it does not occur again.”

Elon Musk, SpaceX’s founder and CEO, apologized for the interruption in service on X: “Sorry for the outage. SpaceX will remedy root cause to ensure it doesn’t happen again.”

Effects big and small

The Ukrainian military has been at the leading edge of adopting Starlink services and adapting the system for use in war zones. Ukraine’s exploitation of Starlink connectivity has been instrumental in directing military operations, supporting battlefield communications, and controlling drones engaged in reconnaissance and offensive strikes.

The commander of Ukraine’s drone forces, Robert Brovdi, confirmed Thursday’s Starlink outage reached his country’s ongoing war with Russia.

“Starlink went down across the entire front,” Brovdi wrote on Telegram. “Combat operations were carried out without broadcasts; reconnaissance was carried out … using shock weapons.”

Brovdi added that the interruption in service illustrates the importance of having multiple paths of connectivity, especially for time-critical military operations. “This incident, which lasted 150 minutes in the war, points to bottlenecks,” he wrote, urging the military to diversify its means of communication and connectivity.

Oleksandr Dmitriev, the founder of a Ukrainian system that centralizes feeds from thousands of drone crews across the frontline, told Reuters the outage was an example of the shortcomings of relying on cloud services for military operations, particularly battlefield drone reconnaissance.

Starlink kept me connected to the Internet without fail—until Thursday Read More »

rocket-report:-channeling-the-future-at-wallops;-spacex-recovers-rocket-wreckage

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage


China’s Space Pioneer seems to be back on track a year after an accidental launch.

A SpaceX Falcon 9 rocket carrying a payload of 24 Starlink Internet satellites soars into space after launching from Vandenberg Space Force Base, California, shortly after sunset on July 18, 2025. This image was taken in Santee, California, approximately 250 miles (400 kilometers) away from the launch site. Credit: Kevin Carter/Getty Images

Welcome to Edition 8.04 of the Rocket Report! The Pentagon’s Golden Dome missile defense shield will be a lot of things. Along with new sensors, command and control systems, and satellites, Golden Dome will require a lot of rockets. The pieces of the Golden Dome architecture operating in orbit will ride to space on commercial launch vehicles. And Golden Dome’s space-based interceptors will essentially be designed as flying fuel tanks with rocket engines. This shouldn’t be overlooked, and that’s why we include a couple of entries discussing Golden Dome in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Space-based interceptors are a real challenge. The newly installed head of the Pentagon’s Golden Dome missile defense shield knows the clock is ticking to show President Donald Trump some results before the end of his term in the White House, Ars reports. Gen. Michael Guetlein identified command-and-control and the development of space-based interceptors as two of the most pressing technical challenges for Golden Dome. He believes the command-and-control problem can be “overcome in pretty short order.” The space-based interceptor piece of the architecture is a different story.

Proven physics, unproven economics … “I think the real technical challenge will be building the space-based interceptor,” Guetlein said. “That technology exists. I believe we have proven every element of the physics that we can make it work. What we have not proven is, first, can I do it economically, and then second, can I do it at scale? Can I build enough satellites to get after the threat? Can I expand the industrial base fast enough to build those satellites? Do I have enough raw materials, etc.?” Military officials haven’t said how many space-based interceptors will be required for Golden Dome, but outside estimates put the number in the thousands.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

One big defense prime is posturing for Golden Dome. Northrop Grumman is conducting ground-based testing related to space-based interceptors as part of a competition for that segment of the Trump administration’s Golden Dome missile-defense initiative, The War Zone reports. Kathy Warden, Northrop Grumman’s CEO, highlighted the company’s work on space-based interceptors, as well as broader business opportunities stemming from Golden Dome, during a quarterly earnings call this week. Warden identified Northrop’s work in radars, drones, and command-and-control systems as potentially applicable to Golden Dome.

But here’s the real news … “It will also include new innovation, like space-based interceptors, which we’re testing now,” Warden continued. “These are ground-based tests today, and we are in competition, obviously, so not a lot of detail that I can provide here.” Warden declined to respond directly to a question about how the space-based interceptors Northrop Grumman is developing now will actually defeat their targets. (submitted by Biokleen)

Trump may slash environmental rules for rocket launches. The Trump administration is considering slashing rules meant to protect the environment and the public during commercial rocket launches, changes that companies like Elon Musk’s SpaceX have long sought, ProPublica reports. A draft executive order being circulated among federal agencies, and viewed by ProPublica, directs Secretary of Transportation Sean Duffy to “use all available authorities to eliminate or expedite” environmental reviews for launch licenses. It could also, in time, require states to allow more launches or even more launch sites along their coastlines.

Getting political at the FAA … The order is a step toward the rollback of federal oversight that Musk, who has fought bitterly with the Federal Aviation Administration over his space operations, and others have pushed for. Commercial rocket launches have grown exponentially more frequent in recent years. In addition to slashing environmental rules, the draft executive order would make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This is currently a civil servant position, but the last head of the office took a voluntary separation offer earlier this year.

There’s a SPAC for that. An unproven small launch startup is partnering with a severely depleted SPAC trust to do the impossible: go public in a deal they say will be valued at $400 million, TechCrunch reports. Innovative Rocket Technologies Inc., or iRocket, is set to merge with a Special Purpose Acquisition Company, or SPAC, founded by former Commerce Secretary Wilbur Ross. But the most recent regulatory filings by this SPAC showed it was in a tenuous financial position last year, with just $1.6 million held in trust. Likewise, iRocket isn’t flooded with cash. The company has raised only a few million in venture funding, a fraction of what would be needed to develop and test the company’s small orbital-class rocket, named Shockwave.

SpaceX traces a path to orbit for NASA. Two NASA satellites soared into orbit from California aboard a SpaceX Falcon 9 rocket Wednesday, commencing a $170 million mission to study a phenomenon of space physics that has eluded researchers since the dawn of the Space Age, Ars reports. The twin spacecraft are part of the NASA-funded TRACERS mission, which will spend at least a year measuring plasma conditions in narrow regions of Earth’s magnetic field known as polar cusps. As the name suggests, these regions are located over the poles. They play an important but poorly understood role in creating colorful auroras as plasma streaming out from the Sun interacts with the magnetic field surrounding Earth. The same process drives geomagnetic storms capable of disrupting GPS navigation, radio communications, electrical grids, and satellite operations.

Plenty of room for more … The TRACERS satellites are relatively small, each about the size of a washing machine, so they filled only a fraction of the capacity of SpaceX’s Falcon 9 rocket. Three other small NASA tech demo payloads hitched a ride to orbit with TRACERS, kicking off missions to test an experimental communications terminal, demonstrate an innovative scalable satellite platform made of individual building blocks, and study the link between Earth’s atmosphere and the Van Allen radiation belts. In addition to those missions, the European Space Agency launched its own CubeSat to test 5G communications from orbit. Five smallsats from an Australian company rounded out the group. Still, the Falcon 9 rocket’s payload shroud was filled with less than a quarter of the payload mass it could have delivered to the TRACERS mission’s targeted Sun-synchronous orbit.

Tianlong launch pad ready for action. Chinese startup Space Pioneer has completed a launch pad at Jiuquan spaceport in northwestern China for its Tianlong 3 liquid propellent rocket ahead of a first orbital launch, Space News reports. Space Pioneer said the launch pad passed an acceptance test, and ground crews raised a full-scale model of the Tianlong 3 rocket on the launch pad. “The rehearsal test was successfully completed,” said Space Pioneer, one of China’s leading private launch companies. The activation of the launch pad followed a couple of weeks after Space Pioneer announced the completion of static loads testing on Tianlong 3.

More to come … While this is an important step forward for Space Pioneer, construction of the launch pad is just one element the company needs to finish before Tianlong 3 can lift off for the first time. In June 2024, the company ignited Tianlong 3’s nine-engine first stage on a test stand in China. But the rocket broke free of its moorings on the test stand and unexpectedly climbed into the sky before crashing in a fireball nearby. Space Pioneer says the “weak design of the rocket’s tail structure was the direct cause of the failure” last year. The company hasn’t identified next steps for Tianlong 3, or when it might be ready to fly. Tianlong 3 is a kerosene-fueled rocket with nine main engines, similar in design architecture and payload capacity to SpaceX’s Falcon 9. Also, like Falcon 9, Tianlong 3 is supposed to have a recoverable and reusable first stage booster.

Dredging up an issue at Wallops. Rocket Lab has asked regulators for permission to transport oversized Neutron rocket structures through shallow waters to a spaceport off the coast of Virginia as it races to meet a September delivery deadline, TechCrunch reports. The request, which was made in July, is a temporary stopgap while the company awaits federal clearance to dredge a permanent channel to the Wallops Island site. Rocket Lab plans to launch its Neutron medium-lift rocket from the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Virginia, a lower-traffic spaceport that’s surrounded by shallow channels and waterways. Rocket Lab has a sizable checklist to tick off before Neutron can make its orbital debut, like mating the rocket stages, performing a “wet dress” rehearsal, and getting its launch license from the Federal Aviation Administration. Before any of that can happen, the rocket hardware needs to make it onto the island from Rocket Lab’s factory on the nearby mainland.

Kedging bets … Access to the channel leading to Wallops Island is currently available only at low tides. So, Rocket Lab submitted an application earlier this year to dredge the channel. The dredging project was approved by the Virginia Marine Resources Commission in May, but the company has yet to start digging because it’s still awaiting federal sign-off from the Army Corps of Engineers. As the company waits for federal approval, Rocket Lab is seeking permission to use a temporary method called “kedging” to ensure the first five hardware deliveries can arrive on schedule starting in September. We don’t cover maritime issues in the Rocket Report, but if you’re interested in learning a little about kedging, here’s a link.

Any better ideas for an Exploration Upper Stage? Not surprisingly, Congress is pushing back against the Trump administration’s proposal to cancel the Space Launch System, the behemoth rocket NASA has developed to propel astronauts back to the Moon. But legislation making its way through the House of Representatives includes an interesting provision that would direct NASA to evaluate alternatives for the Boeing-built Exploration Upper Stage, an upgrade for the SLS rocket set to debut on its fourth flight, Ars reports. Essentially, the House Appropriations Committee is telling NASA to look for cheaper, faster options for a new SLS upper stage.

CYA EUS? The four-engine Exploration Upper Stage, or EUS, is an expensive undertaking. Last year, NASA’s inspector general reported that the new upper stage’s development costs had ballooned from $962 million to $2.8 billion, and the project had been delayed more than six years. That’s almost a year-for-year delay since NASA and Boeing started development of the EUS. So, what are the options if NASA went with a new upper stage for the SLS rocket? One possibility is a modified version of United Launch Alliance’s dual-engine Centaur V upper stage that flies on the Vulcan rocket. It’s no longer possible to keep flying the SLS rocket’s existing single-engine upper stage because ULA has shut down the production line for it.

Raising Super Heavy from the deep. For the second time, SpaceX has retrieved an engine section from one of its Super Heavy boosters from the Gulf of Mexico, NASASpaceflight.com reports. Images posted on social media showed the tail end of a Super Heavy booster being raised from the sea off the coast of northern Mexico. Most of the rocket’s 33 Raptor engines appear to still be attached to the lower section of the stainless steel booster. Online sleuths who closely track SpaceX’s activities at Starbase, Texas, have concluded the rocket recovered from the Gulf is Booster 13, which flew on the sixth test flight of the Starship mega-rocket last November. The booster ditched in the ocean after aborting an attempted catch back at the launch pad in South Texas.

But why? … SpaceX recovered the engine section of a different Super Heavy booster from the Gulf last year. The company’s motivation for salvaging the wreckage is unclear. “Speculated reasons include engineering research, environmental mitigation, or even historical preservation,” NASASpaceflight reports.

Next three launches

July 26: Vega C | CO3D & MicroCarb | Guiana Space Center, French Guiana | 02: 03 UTC

July 26: Falcon 9 | Starlink 10-26 | Cape Canaveral Space Force Station, Florida | 08: 34 UTC

July 27: Falcon 9 | Starlink 17-2 | Vandenberg Space Force Base, California | 03: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage Read More »

spacex-launches-a-pair-of-nasa-satellites-to-probe-the-origins-of-space-weather

SpaceX launches a pair of NASA satellites to probe the origins of space weather


“This is going to really help us understand how to predict space weather in the magnetosphere.”

This artist’s illustration of the Earth’s magnetosphere shows the solar wind (left) streaming from the Sun, and then most of it being blocked by Earth’s magnetic field. The magnetic field lines seen here fold in toward Earth’s surface at the poles, creating polar cusps. Credit: NASA/Goddard Space Flight Center

Two NASA satellites rocketed into orbit from California aboard a SpaceX Falcon 9 rocket Wednesday, commencing a $170 million mission to study a phenomenon of space physics that has eluded researchers since the dawn of the Space Age.

The twin spacecraft are part of the NASA-funded TRACERS mission, which will spend at least a year measuring plasma conditions in narrow regions of Earth’s magnetic field known as polar cusps. As the name suggests, these regions are located over the poles. They play an important but poorly understood role in creating colorful auroras as plasma streaming out from the Sun interacts with the magnetic field surrounding Earth.

The same process drives geomagnetic storms capable of disrupting GPS navigation, radio communications, electrical grids, and satellite operations. These outbursts are usually triggered by solar flares or coronal mass ejections that send blobs of plasma out into the Solar System. If one of these flows happens to be aimed at Earth, we are treated with auroras but vulnerable to the storm’s harmful effects.

For example, an extreme geomagnetic storm last year degraded GPS navigation signals, resulting in more than $500 million in economic losses in the agriculture sector as farms temporarily suspended spring planting. In 2022, a period of elevated solar activity contributed to the loss of 40 SpaceX Starlink satellites.

“Understanding our Sun and the space weather it produces is more important to us here on Earth, I think, than most realize,” said Joe Westlake, director of NASA’s heliophysics division.

NASA’s two TRACERS satellites launched Wednesday aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, California. Credit: SpaceX

The launch of TRACERS was delayed 24 hours after a regional power outage disrupted air traffic control over the Pacific Ocean near the Falcon 9 launch site on California’s Central Coast, according to the Federal Aviation Administration. SpaceX called off the countdown Tuesday less than a minute before liftoff, then rescheduled the flight for Wednesday.

TRACERS, short for Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will study a process known as magnetic reconnection. As particles in the solar wind head out into the Solar System at up to 1 million mph, they bring along pieces of the Sun’s magnetic field. When the solar wind reaches our neighborhood, it begins interacting with Earth’s magnetic field.

The high-energy collision breaks and reconnects magnetic field lines, flinging solar wind particles across Earth’s magnetosphere at speeds that can approach the speed of light. Earth’s field draws some of these particles into the polar cusps, down toward the upper atmosphere. This is what creates dazzling auroral light shows and potentially damaging geomagnetic storms.

Over our heads

But scientists still aren’t sure how it all works, despite the fact that it’s happening right over our heads, within the reach of countless satellites in low-Earth orbit. But a single spacecraft won’t do the job. Scientists need at least two spacecraft, each positioned in bespoke polar orbits and specially instrumented to measure magnetic fields, electric fields, electrons, and ions.

That’s because magnetic reconnection is a dynamic process, and a single satellite would provide just a snapshot of conditions over the polar cusps every 90 minutes. By the time the satellite comes back around on another orbit, conditions will have changed, but scientists wouldn’t know how or why, according to David Miles, principal investigator for the TRACERS mission at the University of Iowa.

“You can’t tell, is that because the system itself is changing?” Miles said. “Is that because this magnetic reconnection, the coupling process, is moving around? Is it turning on and off, and if it’s turning on and off, how quickly can it do it? Those are fundamental things that we need to understand… how the solar wind arriving at the Earth does or doesn’t transfer energy to the Earth system, which has this downstream effect of space weather.”

This is why the tandem part of the TRACERS name is important. The novel part of this mission is it features two identical spacecraft, each about the size of a washing machine flying at an altitude of 367 miles (590 kilometers). Over the course of the next few weeks, the TRACERS satellites will drift into a formation with one trailing the other by about two minutes as they zip around the world at nearly five miles per second. This positioning will allow the satellites to sample the polar cusps one right after the other, instead of forcing scientists to wait another 90 minutes for a data refresh.

With TRACERS, scientists hope to pick apart smaller, fast-moving changes with each satellite pass. Within a year, TRACERS should collect 3,000 measurements of magnetic reconnections, a sample size large enough to start identifying why some space weather events evolve differently than others.

“Not only will it get a global picture of reconnection in the magnetosphere, but it’s also going to be able to statistically study how reconnection depends on the state of the solar wind,” said John Dorelli, TRACERS mission scientist at NASA’s Goddard Space Flight Center. “This is going to really help us understand how to predict space weather in the magnetosphere.”

One of the two TRACERS satellites undergoes launch preparations at Millennium Space Systems, the spacecraft’s manufacturer. Credit: Millennium Space Systems

“If we can understand these various different situations, whether it happens suddenly if you have one particular kind of event, or it happens in lots of different places, then we have a better way to model that and say, ‘Ah, here’s the likelihood of seeing a certain kind of effect that would affect humans,'” said Craig Kletzing, the principal investigator who led the TRACERS science team until his death in 2023.

There is broader knowledge to be gained with a mission like TRACERS. Magnetic reconnection is ubiquitous throughout the Universe, and the same physical processes produce solar flares and coronal mass ejections from the Sun.

Hitchhiking to orbit

Several other satellites shared the ride to space with TRACERS on Wednesday.

These secondary payloads included a NASA-sponsored mission named PExT, a small technology demonstration satellite carrying an experimental communications package capable of connecting with three different networks: NASA’s government-owned Tracking and Data Relay Satellites (TDRS) and commercial satellite networks owned by SES and Viasat.

What’s unique about the Polylingual Experimental Terminal, or PExT, is its ability to roam across multiple satellite relay networks. The International Space Station and other satellites in low-Earth orbit currently connect to controllers on the ground through NASA’s TDRS satellites. But NASA will retire its TDRS satellites in the 2030s and begin purchasing data relay services using commercial satellite networks.

The space agency expects to have multiple data relay providers, so radios on future NASA satellites must be flexible enough to switch between networks mid-mission. PExT is a pathfinder for these future missions.

Another NASA-funded tech demo named Athena EPIC was also aboard the Falcon 9 rocket. Led by NASA’s Langley Research Center, this mission uses a scalable satellite platform developed by a company named NovaWurks, using building blocks to piece together everything a spacecraft needs to operate in space.

Athena EPIC hosts a single science instrument to measure how much energy Earth radiates into space, an important data point for climate research. But the mission’s real goal is to showcase how an adaptable satellite design, such as this one using NovaWurks’ building block approach, might be useful for future NASA missions.

A handful of other payloads rounded out the payload list for Wednesday’s launch. They included REAL, a NASA-funded CubeSat project to investigate the Van Allen radiation belts and space weather, and LIDE, an experimental 5G communications satellite backed by the European Space Agency. Five commercial spacecraft from the Australian company Skykraft also launched to join a constellation of small satellites to provide tracking and voice communications between air traffic controllers and aircraft over remote parts of the world.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX launches a pair of NASA satellites to probe the origins of space weather Read More »

trump-wants-to-“eliminate-or-expedite”-environmental-rules-for-rocket-launches

Trump wants to “eliminate or expedite” environmental rules for rocket launches


Who cares about environmental impacts?

SpaceX, other commercial launch firms, have been seeking this change in policy.

In the background, a Falcon 9 rocket climbs away from Space Launch Complex 40 at Cape Canaveral Space Force Station, Florida. Another Falcon 9 stands on its launch pad at neighboring Kennedy Space Center awaiting its opportunity to fly.

The Trump administration is considering slashing rules meant to protect the environment and the public during commercial rocket launches, changes that companies like Elon Musk’s SpaceX have long sought.

A draft executive order being circulated among federal agencies, and viewed by ProPublica, directs Secretary of Transportation Sean Duffy to “use all available authorities to eliminate or expedite” environmental reviews for launch licenses. It could also, in time, require states to allow more launches or even more launch sites—known as spaceports—along their coastlines.

The order is a step toward the rollback of federal oversight that Musk, who has fought bitterly with the Federal Aviation Administration over his space operations, and others have pushed for. Commercial rocket launches have grown exponentially more frequent in recent years.

Critics warn such a move could have dangerous consequences.

“It would not be reasonable for them to be rescinding regulations that are there to protect the public interest, and the public, from harm,” said Jared Margolis, a senior attorney for the Center for Biological Diversity, a nonprofit that works to protect animals and the environment. “And that’s my fear here: Are they going to change things in a way that puts people at risk, that puts habitats and wildlife at risk?”

The White House did not answer questions about the draft order.

“The Trump administration is committed to cementing America’s dominance in space without compromising public safety or national security,” said White House spokesperson Kush Desai. “Unless announced by President Trump, however, discussion about any potential policy changes should be deemed speculation.”

The order would give Trump even more direct control over the space industry’s chief regulator by turning the civil servant position leading the FAA’s Office of Commercial Space Transportation into a political appointment. The last head of the office and two other top officials recently took voluntary separation offers.

The order would also create a new adviser to the transportation secretary to shepherd in deregulation of the space industry.

The draft order comes as SpaceX is ramping up its ambitious project to build a reusable deep-space rocket to carry people to Earth’s orbit, the moon and eventually Mars. The rocket, called Starship, is the largest, most powerful ever built, standing 403 feet tall with its booster. The company has hit some milestones but has also been beset by problems, as three of the rockets launched from Texas this year have exploded—disrupting air traffic and raining debris on beaches and roads in the Caribbean and Gulf waters.

The draft order also seeks to restrict the authority of state coastal officials who have challenged commercial launch companies like SpaceX, documents show. It could lead to federal officials interfering with state efforts to enforce their environmental rules when they conflict with the construction or operation of spaceports.

Derek Brockbank, executive director for the Coastal States Organization, said the proposed executive order could ultimately force state commissions to prioritize spaceport infrastructure over other land uses, such as renewable energy, waterfront development, or coastal restoration, along the coastline. His nonprofit represents 34 coastal states and territories.

“It’s concerning that it could potentially undermine the rights of a state to determine how it wants its coast used, which was the very fundamental premise of the congressionally authorized Coastal Zone Management Act,” he said. “We shouldn’t see any president, no matter what their party is, coming in and saying, ‘This is what a state should prioritize or should do.’”

SpaceX is already suing the California Coastal Commission, accusing the agency of political bias and interference with the company’s efforts to increase the number of Falcon 9 rocket launches from Vandenberg Space Force Base. The reusable Falcon 9 is SpaceX’s workhorse rocket, ferrying satellites to orbit and astronauts to the International Space Station.

The changes outlined in the order would greatly benefit SpaceX, which launches far more rockets into space than any other company in the US. But it would also help rivals such as Jeff Bezos’ Blue Origin and California-based Rocket Lab. The companies have been pushing to pare down oversight for years, warning that the US is racing with China to return to the moon—in hopes of mining resources like water and rare earth metals and using it as a stepping stone to Mars—and could lose if regulations don’t allow US companies to move faster, said Dave Cavossa, president of the Commercial Space Federation, a trade group that represents eight launch companies, including SpaceX, Blue Origin, and Rocket Lab.

“It sounds like they’ve been listening to industry, because all of those things are things that we’ve been advocating for strongly,” Cavossa said when asked about the contents of the draft order.

Cavossa said he sees “some sort of environmental review process” continuing to take place. “What we’re talking about doing is right-sizing it,” he said.

He added, “We can’t handle a yearlong delay for launch licenses.”

The former head of the FAA’s commercial space office said at a Congressional hearing last September that the office took an average of 151 days to issue a new license during the previous 11 years.

Commercial space launches have boomed in recent years—from 26 in 2019 to 157 last year. With more than 500 total launches, mostly from Texas, Florida, and California, SpaceX has been responsible for the lion’s share, according to FAA data.

But the company has tangled with the FAA, which last year proposed fining it $633,000 for violations related to two of its launches. The FAA did not answer a question last week about the status of the proposed fine.

SpaceX, Blue Origin, Rocket Lab, and the FAA did not respond to requests for comment.

Currently, the FAA’s environmental reviews look at 14 types of potential impacts that include air and water quality, noise pollution, and land use, and provide details about the launches that are not otherwise available. They have at times drawn big responses from the public.

When SpaceX sought to increase its Starship launches in Texas from five to 25 a year, residents and government agencies submitted thousands of comments. Most of the nearly 11,400 publicly posted comments opposed the increase, a ProPublica analysis found. The FAA approved the increase anyway earlier this year. After conducting an environmental assessment for the May launch of SpaceX’s Starship Flight 9 from Texas, the FAA released documents that revealed as many as 175 airline flights could be disrupted and Turks and Caicos’ Providenciales International Airport would need to close during the launch.

In addition to seeking to cut short environmental reviews, the executive order would open the door for the federal government to rescind sections of the federal rule that seeks to keep the public safe during launches and reentries.

The rule, referred to as Part 450, was approved during Trump’s first term and aimed to streamline commercial space regulations and speed approvals of launches. But the rule soon fell out of favor with launch companies, which said the FAA didn’t provide enough guidance on how to comply and was taking too long to review applications.

Musk helped lead the charge. Last September, he told attendees at a conference in Los Angeles, “It really should not be possible to build a giant rocket faster than paper can move from one desk to another.” He called for the resignation of the head of the FAA, who stepped down as Trump took office.

Other operators have expressed similar frustration, and some members of Congress have signaled support for an overhaul. In February, Rep. Brian Babin, R-Texas, and Rep. Zoe Lofgren, D-Calif., signed a letter asking the Government Accountability Office to review the process for approving commercial launches and reentries.

In their letter, Babin and Lofgren wrote they wanted to understand whether the rules are “effectively and efficiently accommodating United States commercial launch and reentry operations, especially as the cadence and technological diversity of such operations continues to increase.

The draft executive order directs the secretary of transportation to “reevaluate, amend, or rescind” sections of Part 450 to “enable a diversified set of operators to achieve an increase in commercial space launch cadence and novel space activities by an order of magnitude by 2030.”

The order also directs the Department of Commerce to streamline regulation of novel space activity, which experts say could include things like mining or making repairs in space, that doesn’t fall under other regulations.

Brandon Roberts and Pratheek Rebala contributed data analysis.

This story originally appeared on ProPublica.

Photo of ProPublica

Trump wants to “eliminate or expedite” environmental rules for rocket launches Read More »

rocket-report:-spacex-won’t-land-at-johnston-atoll;-new-north-sea-launch-site

Rocket Report: SpaceX won’t land at Johnston Atoll; new North Sea launch site


All the news that’s fit to lift

“Europe is seizing the opportunity to lead.”

NASA astronauts Mike Fincke (left) and Zena Cardman (right), the pilot and commander of NASA’s SpaceX Crew-11 mission to the International Space Station, view a Falcon 9 rocket ahead of their spaceflight. Credit: SpaceX

Welcome to Edition 8.03 of the Rocket Report! We are at an interesting stage in Europe, with its efforts to commercialize spaceflight. Finally, it seems the long-slumbering continent is waking up to the need to leverage private capital to drive down the costs of space access, and we are seeing more investment flow into European companies. But it is critical that European policymakers make strategic investments across the industry or companies like PLD Space, which outlined big plans this week, will struggle to get off the launch pad.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Avio celebrates freedom from Arianespace. Representatives from Italy, Germany, and France met at the European Space Agency headquarters last week to sign the Launcher Exploitation Declaration, which officially began the transfer of Vega C launch operation responsibilities from Arianespace to the rocket’s builder, Avio, European Spaceflight reports. “It is a historic step that reinforces our nation’s autonomy in access to space and assigns us a strategic responsibility towards Europe,” said Avio CEO Giulio Ranzo. “We are ready to meet this challenge with determination, and we are investing in technologies, expertise, and infrastructure to ensure a competitive service.”

A breaking of long-term partnerships … In addition to securing control over the full exploitation of the Vega launch vehicle family, Italy, through Avio, is also investing in what comes next. The country has committed more than 330 million euros to the development of the MR60 methalox rocket engine and two demonstrator vehicles. These, along with the MR10 engine being developed under the Vega E programme, will support Avio’s preparation of a future reusable launch vehicle. Historically, France, Germany, and Italy have worked together on European launch vehicles. This appears to be another step in breaking up that long-term partnership toward more nationalistic efforts.

PLD Space outlines grand ambitions. PLD Space, Spain’s sole contestant in the European Launcher Challenge, unveiled its long-term strategy at the company’s Industry Days event this week, Payload reports. The company is targeting a production rate of 32 Miura 5 launchers annually by 2030. To achieve this output, PLD plans to deepen its vertical integration, consolidate its supplier network, and begin to serialize its manufacturing process beginning in 2027.

Building up the supply chain … The company’s production plans also call for the parallel development of Miura Next, a heavy-lift vehicle capable of bringing 13 tons to orbit. However, the company will start with the Miura 5 vehicle, which PLD expects to launch for the first time from French Guiana in 2026. Since the beginning of 2024, PLD has invested a total of 50 million euros in its Miura 5 supply chain, consisting of 397 industrial partners, many of which are located in Spain and other European countries.  These plans are great, but sooner or later, the 14-year-old company needs to start putting rockets in space. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

New consortium will study space plane. A UK-based space and defense consultant group, Frazer-Nash, will lead a program to design a vehicle and its integrated systems with the goal of building and flying a Mach 5-capable aircraft at the edge of space by early 2031. This so-called INVICTUS program was funded with a 7 million-euro grant from the European Space Agency and is seen as a stepping stone toward developing a reusable space plane that takes off and lands horizontally from a runway.

Seeking to lead a new era of flight … Over 12 months, INVICTUS has been tasked to deliver the concept and elements of the preliminary design of the full flight system. It will attempt to demonstrate the efficacy of hydrogen-fueled, precooled air-breathing propulsion at hypersonic speeds, technology that will ultimately enable horizontal take-off. “With INVICTUS, Europe is seizing the opportunity to lead in technologies that will redefine how we move across the planet and reach beyond it,” said Tommaso Ghidini, head of the Mechanical Department at the European Space Agency. (submitted by Jid)

ESA backs North Sea launch site. A private company developing a launch site in the North Sea, EuroSpaceport, has secured support from the European Space Agency. The company, founded five years ago, is developing a sea-based launch platform built on a repurposed offshore wind turbine service vessel, European Spaceflight reports. Rockets are envisioned to launch from a position 50 to 100 km offshore from the port of Esbjerg, in Denmark.

Seeing the forest for the trees … On Wednesday, EuroSpaceport announced that it had signed an agreement with the European Space Agency and Polish rocket builder SpaceForest to support the first launch from its Spaceport North Sea platform. The company will receive support from the agency through its Boost! Program. SpaceForest has been a recipient of Boost! funding, receiving 2.4 million euros in October 2024. SpaceForest said the mission will be used to verify the launch procedures of its Perun rocket under nominal suborbital conditions. (submitted by EllPeaTea)

Amazon and SpaceX, best frenemies? Maybe not, but for the time being, they appear to be friends of convenience. A Falcon 9 rocket launched from Florida’s Space Coast early on Wednesday with a batch of Internet satellites for Amazon’s Project Kuiper network, thrusting a rival one step closer to competing with SpaceX’s Starlink broadband service. With this launch, Amazon now has 78 Kuiper satellites in orbit, Ars reports. The full Kuiper constellation will consist of 3,232 satellites to provide broadband Internet service to most of the populated world, bringing Amazon in competition with SpaceX’s Starlink network.

Launch is not cheap … Kuiper is an expensive undertaking, estimated at between $16.5 billion and $20 billion by the industry analytics firm Quilty Space. Quilty has concluded that Amazon is spending $10 billion on launch alone, exceeding the company’s original cost estimate for the entire program. Amazon has booked more than 80 launches to deploy the Kuiper constellation, but the company didn’t turn to SpaceX until it had to. A shareholder lawsuit filed in 2023 accused Amazon founder Jeff Bezos and the company’s board of directors of breaching their “fiduciary duty” by not considering SpaceX as an option for launching Kuiper satellites. The plaintiffs in the lawsuit alleged Amazon didn’t consider the Falcon 9 due to an intense and personal rivalry between Bezos and SpaceX founder Elon Musk. Amazon bowed to the allegations and announced a contract with SpaceX for three Falcon 9 launches in December 2023 to provide “additional capacity” for deploying the Kuiper network.

NASA targets end of July for Crew-11. NASA said Monday that it and SpaceX were targeting July 31 for the flight of SpaceX’s Crew-11 mission to the orbiting outpost, Spaceflight Now reports. The mission is led by NASA astronaut Zena Cardman. She will be flying along with fellow NASA astronaut Mike Fincke, Japan Aerospace Exploration Agency (JAXA) astronaut Kimiya Yui and Roscosmos cosmonaut Oleg Platonov.

Pushing Dragon reuse … The mission was moved up from its previously planned August launch window to create more room in the manifest for the arrival of the Cargo Dragon flying the CRS-33 mission. That Dragon will perform a boost of the space station as a demonstration of some of the capabilities SpaceX will use on its US Deorbit Vehicle currently in work. Crew-11 will fly to the orbiting outpost on Crew Dragon Endeavour, which will be its sixth trip to the ISS. This will be the first Crew Dragon spacecraft to fly for a sixth time.

SpaceX won’t use Johnston Atoll for rocket cargo tests. Johnston Atoll, an unincorporated US territory and Pacific island wildlife refuge with a complicated military history, will no longer become a SpaceX reusable rocket test site, Popular Science reports. “The Department of the Air Force has elected to hold the preparation of the Johnston Atoll Environmental Assessment for a proposed rocket cargo landing demonstration on Johnston Atoll in abeyance while the service explores alternative options for implementation,” Air Force spokesperson Laurel Falls said.

Taking a toll on the atoll … Located roughly 860 miles southwest of Hawaii, Johnston Atoll has served as a base for numerous US military operations for over 90 years. Despite this, the atoll remains a home for 14 tropical bird species as part of the Pacific Remote Islands Marine National Monument. The site had been under consideration for tests as part of a military program to deliver cargo around the planet, using suborbital missions on rocket such as SpaceX’s Starship vehicle. The Johnston Atoll plans included the construction of two landing pads that were met with public backlash from wildlife experts and indigenous representatives. (submitted by Tfargo04)

Blue Origin confirms ESCAPADE is up next. On Thursday, Blue Origin said on social media that the second launch of its New Glenn rocket will carry NASA’s ESCAPADE mission as its primary payload. This launch will support ESCAPADE’s science objectives as the twin spacecraft progress on their journey to the Red Planet. Also onboard is a technology demonstration from @Viasat in support of @NASASpaceOps’ Communications Services Project.

Left unsaid was when the launch will occur … The social media post confirms a report from Ars in June, which said the ESCAPADE spacecraft was up next on New Glenn. Previously, the company has said this second launch will take place no earlier than August 15. However, that is less than one month away. Late September is probably the earliest realistic launch date, with October or November more likely for the second flight of the company’s large rocket.

Next three launches

July 19: Falcon 9 | Starlink 17-3 | Vandenberg Space Force Base, California | 03: 44 UTC

July 21: Falcon 9 | O3b mPOWER 9 & 10 | Cape Canaveral Space Force Station, Florida | 21: 00 UTC

July 22: Falcon 9 | NASA’s Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites | Vandenberg Space Force Base, California | 18: 05 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: SpaceX won’t land at Johnston Atoll; new North Sea launch site Read More »