spacex

concern-about-spacex-influence-at-nasa-grows-with-new-appointee

Concern about SpaceX influence at NASA grows with new appointee

Like a lot of the rest of the federal government right now, NASA is reeling during the first turbulent days of the Trump administration.

The last two weeks have brought a change in leadership in the form of interim administrator Janet Petro, whose ascension was a surprise. Her first act was to tell agency employees to remove diversity, equity, inclusion, and accessibility contracts and to “report” on anyone who did not carry out this order. Soon, civil servants began receiving emails from the US Office of Personnel Management that some perceived as an effort to push them to resign.

Then there are the actions of SpaceX founder Elon Musk. Last week he sowed doubt by claiming NASA had “stranded” astronauts on the space station. (The astronauts are perfectly safe and have a ride home.) Perhaps more importantly, he owns the space agency’s most important contractor and, in recent weeks, has become deeply enmeshed in operating the US government through his Department of Government Efficiency. For some NASA employees, whether or not it is true, there is now an uncomfortable sense that they are working for Musk and to dole out contracts to SpaceX.

This concern was heightened late Friday when Petro announced that a longtime SpaceX employee named Michael Altenhofen had joined the agency “as a senior advisor to the NASA Administrator.” Altenhofen is an accomplished engineer who interned at NASA in 2005 but has spent the last 15 years at SpaceX, most recently as a leader of human spaceflight programs. He certainly brings expertise, but his hiring also raises concerns about SpaceX’s influence over NASA operations. Petro did not respond to a request for comment on Monday about potential conflicts of interest and the scope of Altenhofen’s involvement.

I spent this weekend talking and texting with NASA sources at various centers around the country, and the overriding message is that morale at the agency is “absurdly low.” Meetings between civil servants and their leadership, such as an all-hands gathering at NASA’s Langley Research Center in Virginia recently, have been fraught with tension. No one knows what will happen next.

Concern about SpaceX influence at NASA grows with new appointee Read More »

starlink-profit-growing-rapidly-as-it-faces-a-moment-of-promise-and-peril

Starlink profit growing rapidly as it faces a moment of promise and peril

Estimates of Starlink’s consumer revenues.

Credit: Quilty Space

Estimates of Starlink’s consumer revenues. Credit: Quilty Space

Both of the new analyses indicate that over the course of the last decade, SpaceX has built a robust space-Internet business with affordable ground terminals, sophisticated gateways around the world, more than 7,000 satellites in orbit, and a reusable launch business to service the network. There is new technology coming, with larger V3 satellites on the horizon—to be launched by SpaceX’s Starship vehicle—and the promise of direct-to-cell Internet connectivity that bypasses the need for a ground terminal.

There is also plenty of room for growth in market share in both existing territories as well as large nations such as India, where SpaceX is seeking access to the market and providing Internet service.

Some risk on the horizon

In all of this, Starlink now faces a moment of promise and peril. The company has all of the potential described above, but SpaceX founder Elon Musk has become an increasingly prominent and controversial figure both in US and global politics. Many people and governments are becoming more uncomfortable with Musk’s behavior, his insertion into domestic and foreign politics, and the power he is wielding within the Trump administration.

In the near term, this may be good for Starlink’s business. The Financial Times reported that corporate America, in an effort to deepen ties with the Trump Administration, has been “cozying” up to Musk and his business empire. This includes Starlink, with United Airlines accelerating a collaboration for use of the service on its fleet, as well as deals with Oracle and Apple.

At the same time, Musk’s activities may make it challenging for Starlink in the long term in countries that seek to punish him and his companies. For example, the Canadian Broadcasting Corporation reported Monday that Progressive Conservative Leader Doug Ford will rip up Ontario’s nearly $100 million contract with Starlink in the wake of US tariffs on virtually all Canadian goods.

The contract, signed in November, was intended to provide high-speed Internet to 15,000 eligible homes and businesses in rural, remote, and northern communities by June of this year. Musk is “part of the Trump team that wants to destroy families, incomes, destroy businesses,” Ford said at a news conference Monday. “He wants to take food off the table of people—hard-working people—and I’m not going to tolerate it.”

Starlink profit growing rapidly as it faces a moment of promise and peril Read More »

it-seems-the-faa-office-overseeing-spacex’s-starship-probe-still-has-some-bite

It seems the FAA office overseeing SpaceX’s Starship probe still has some bite


The political winds have shifted in Washington, but the FAA hasn’t yet changed its tune on Starship.

Liftoff of SpaceX’s seventh full-scale test flight of the Super Heavy/Starship launch vehicle on January 16. Credit: SpaceX

The seventh test flight of SpaceX’s gigantic Starship rocket came to a disappointing end a little more than two weeks ago. The in-flight failure of the rocket’s upper stage, or ship, about eight minutes after launch on January 16 rained debris over the Turks and Caicos Islands and the Atlantic Ocean.

Amateur videos recorded from land, sea, and air showed fiery debris trails streaming overhead at twilight, appearing like a fireworks display gone wrong. Within hours, posts on social media showed small pieces of debris recovered by residents and tourists in the Turks and Caicos. Most of these items were modest in size, and many appeared to be chunks of tiles from Starship’s heat shield.

Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump. Elon Musk’s close relationship with Trump, coupled with the new administration’s appetite for cutting regulations and reducing the size of government, led some industry watchers to question whether Musk’s influence might change the FAA’s stance on SpaceX.

So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars on Friday. After a preliminary assessment of flight data, SpaceX officials said a fire appeared to develop in the aft section of the ship before it broke apart and fell to Earth.

“The FAA has directed SpaceX to lead an investigation of the Starship Super Heavy Flight 7 mishap with FAA oversight,” the spokesperson said. “Based on the investigation findings for root cause and corrective actions, the FAA may require a company to modify its license.”

This is much the same language the FAA used two weeks ago, when it first ordered the investigation.

Damage report

The FAA’s Office of Commercial Space Transportation is charged with ensuring commercial space launches and reentries don’t endanger the public, and requires launch operators obtain liability insurance or demonstrate financial ability to cover any third-party property damages.

For each Starship launch, the FAA requires SpaceX maintain liability insurance policies worth at least $500 million for such claims. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. And there’s no public record of any claims of third-party property damage in the era of commercial spaceflight. Under federal law, the US government would pay for damages to a much higher amount if any claims exceeded a launch company’s insurance policies.

Here’s a piece of Starship 33 @SpaceX @elonmusk found in Turks and Caicos! 🚀🏝️ pic.twitter.com/HPZDCqA9MV

— @maximzavet (@MaximZavet) January 17, 2025

The good news is there were no injuries or reports of significant damage from the wreckage that fell over the Turks and Caicos. “The FAA confirmed one report of minor damage to a vehicle located in South Caicos,” an FAA spokesperson told Ars on Friday. “To date, there are no other reports of damage.”

It’s not clear if the vehicle owner in South Caicos will file a claim against SpaceX for the damage. It would the first time someone makes such a claim related to an accident with a commercial rocket overseen by the FAA. Last year, a Florida homeowner submitted a claim to NASA for damage to his house from a piece of debris that fell from the International Space Station.

Nevertheless, the Turks and Caicos government said local officials met with representatives from SpaceX and the UK Air Accident Investigations Branch on January 25 to develop a recovery plan for debris that fell on the islands, which are a British Overseas Territory.

A prickly relationship

Musk often bristled at the FAA last year, especially after regulators proposed fines of more than $600,000 alleging that SpaceX violated terms of its launch licenses during two Falcon 9 missions. The alleged violations involved the relocation of a propellant farm at one of SpaceX’s launch pads in Florida, and the use of a new launch control center without FAA approval.

In a post on X, Musk said the FAA was conducting “lawfare” against his company. “SpaceX will be filing suit against the FAA for regulatory overreach,” Musk wrote.

There was no such lawsuit, and the issue may now be moot. Sean Duffy, Trump’s new secretary of transportation, vowed to review the FAA fines during his confirmation hearing in the Senate. It is rare for the FAA to fine launch companies, and the fines last year made up the largest civil penalty ever imposed by the FAA’s commercial spaceflight division.

SpaceX also criticized delays in licensing Starship test flights last year. The FAA cited environmental issues and concerns about the extent of the sonic boom from Starship’s 23-story-tall Super Heavy booster returning to its launch pad in South Texas. SpaceX successfully caught the returning first stage booster at the launch pad for the first time in October, and repeated the feat after the January 16 test flight.

What separates the FAA’s ongoing oversight of Starship’s recent launch failure from these previous regulatory squabbles is that debris fell over populated areas. This would appear to be directly in line with the FAA’s responsibility for public safety.

During last month’s test flight, Starship did not deviate from its planned ground track, which took the rocket over the Gulf of Mexico, the waters between Florida and Cuba, and then the Atlantic Ocean. But the debris field extended beyond the standard airspace closure for the launch. After the accident, FAA air traffic controllers cleared additional airspace over the debris zone for more than an hour, rerouting, diverting, and delaying dozens of commercial aircraft.

These actions followed pre-established protocols. However, it highlighted the small but non-zero risk of rocket debris falling to Earth after a launch failure. “The potential for a bad day downrange just got real,” Lori Garver, a former NASA deputy administrator, posted on X.

Public safety is not sole mandate of the FAA’s commercial space office. It is also chartered to “encourage, facilitate, and promote commercial space launches and reentries by the private sector,” according to an FAA website. There’s a balance to strike.

Lawmakers last year urged the FAA to speed up its launch approvals, primarily because Starship is central to strategic national objectives. NASA has contracts with SpaceX to develop a variant of Starship to land astronauts on the Moon, and Starship’s unmatched ability to deliver more than 100 tons of cargo to low-Earth orbit is attractive to the Pentagon.

While Musk criticized the FAA in 2024, SpaceX officials in 2023 took a different tone, calling for Congress to increase the budget for the FAA’s Office of Commercial Spaceflight and for the regulator to double the space division’s workforce. This change, SpaceX officials argued, would allow the FAA to more rapidly assess and approve a fast-growing number of commercial launch and reentry applications.

In September, SpaceX released a statement accusing the former administrator of the FAA, Michael Whitaker, of making inaccurate statements about SpaceX to a congressional subcommittee. In a different post on X, Musk directly called for Whitaker’s resignation.

He needs to resign https://t.co/pG8htfTYHb

— Elon Musk (@elonmusk) September 25, 2024

That’s exactly what happened. Whitaker, who took over the FAA’s top job in 2023 under the Biden administration, announced in December he would resign on Inauguration Day. Since the agency’s establishment in 1958, three FAA administrators have similarly resigned when a new administration takes power, but the office has been largely immune from presidential politics in recent decades. Since 1993, FAA administrators have stayed in their post during all presidential transitions.

There’s no evidence Whitaker’s resignation had any role in the mid-air collision of an American Eagle passenger jet and a US Army helicopter Wednesday night near Ronald Reagan Washington National Airport. But his departure from the FAA less than two years into a five-year term on January 20 left the agency without a leader. Trump named Chris Rocheleau as the FAA’s acting administrator Thursday.

Next flight, next month?

SpaceX has not released an official schedule for the next Starship test flight or outlined its precise objectives. However, it will likely repeat many of the goals planned for the previous flight, which ended before SpaceX could accomplish some of its test goals. These missed objectives included the release of satellite mockups in space for the first demonstration of Starship’s payload deployment mechanism, and a reentry over the Indian Ocean to test new, more durable heat shield materials.

The January 16 test flight was the first launch up an upgraded, slightly taller Starship, known as Version 2 or Block 2. The next flight will use the same upgraded version.

A SpaceX filing with the Federal Communications Commission suggests the next Starship flight could launch as soon as February 24. Sources told Ars that SpaceX teams believe a launch before the end of February is realistic.

But SpaceX has more to do before Flight 8. These tasks include completing the FAA-mandated investigation and the installation of all 39 Raptor engines on the rocket. Then, SpaceX will likely test-fire the booster and ship before stacking the two elements together to complete assembly of the 404-foot-tall (123.1-meter) rocket.

SpaceX is also awaiting a new FAA launch license, pending its completion of the investigation into what happened on Flight 7.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

It seems the FAA office overseeing SpaceX’s Starship probe still has some bite Read More »

fire-destroys-starship-on-its-seventh-test-flight,-raining-debris-from-space

Fire destroys Starship on its seventh test flight, raining debris from space

This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.

SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?

Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.

On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.

Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.

This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.

Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX

The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.

In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.

Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.

With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.

Fire destroys Starship on its seventh test flight, raining debris from space Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »

rocket-report:-china-launches-refueling-demo;-dod’s-big-appetite-for-hypersonics

Rocket Report: China launches refueling demo; DoD’s big appetite for hypersonics


We’re just a few days away from getting a double-dose of heavy-lift rocket action.

Stratolaunch’s Talon-A hypersonic rocket plane will be used for military tests involving hypersonic missile technology. Credit: Stratolaunch

Welcome to Edition 7.26 of the Rocket Report! Let’s pause and reflect on how far the rocket business has come in the last 10 years. On this date in 2015, SpaceX made the first attempt to land a Falcon 9 booster on a drone ship positioned in the Atlantic Ocean. Not surprisingly, the rocket crash-landed. In less than a year and a half, though, SpaceX successfully landed reusable Falcon 9 boosters onshore and offshore, and now has done it nearly 400 times. That was remarkable enough, but we’re in a new era now. Within a few days, we could see SpaceX catch its second Super Heavy booster and Blue Origin land its first New Glenn rocket on an offshore platform. Extraordinary.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Our annual ranking of the top 10 US launch companies. You can easily guess who made the top of the list: the company that launched Falcon rockets 134 times in 2024 and launched the most powerful and largest rocket ever built on four test flights, each accomplishing more than the last. The combined 138 launches is more than NASA flew the Space Shuttle over three decades. SpaceX will aim to launch even more often in 2025. These missions have far-reaching impacts, supporting Internet coverage for consumers worldwide, launching payloads for NASA and the US military, and testing technology that will take humans back to the Moon and, someday, Mars.

Are there really 10? … It might also be fairly easy to rattle off a few more launch companies that accomplished big things in 2024. There’s United Launch Alliance, which finally debuted its long-delayed Vulcan rocket and flew two Atlas V missions and the final Delta IV mission, and Rocket Lab, which launched 16 missions with its small Electron rocket this year. Blue Origin flew its suborbital New Shepard vehicle on three human missions and one cargo-only mission and nearly launched its first orbital-class New Glenn rocket in 2024. That leaves just Firefly Aerospace as the only other US company to reach orbit last year.

DoD announces lucrative hypersonics deal. Defense technology firm Kratos has inked a deal worth up to $1.45 billion with the Pentagon to help develop a low-cost testbed for hypersonic technologies, Breaking Defense reports. The award is part of the military’s Multi-Service Advanced Capability Hypersonic Test Bed (MACH-TB) 2.0 program. The MACH-TB program, which began as a US Navy effort, includes multiple “Task Areas.” For its part, Kratos will be tasked with “systems engineering, integration, and testing, to include integrated subscale, full-scale, and air launch services to address the need to affordably increase hypersonic flight test cadence,” according to the company’s release.

Multiple players … The team led by Kratos, which specializes in developing airborne drones and military weapons systems, includes several players such as Leidos, Rocket Lab, Stratolaunch, and others. Kratos last year revealed that its Erinyes hypersonic test vehicle successfully flew for a Missile Defense Agency experiment. Rocket Lab has launched multiple suborbital hypersonic experiments for the military using a modified version of its Electron rocket, and Stratolaunch reportedly flew a high-speed test vehicle and recovered it last month, according to Aviation Week & Space Technology. The Pentagon is interested in developing hypersonic weapons that can evade conventional air and missile defenses. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

ESA will modify some of its geo-return policies. An upcoming European launch competition will be an early test of efforts by the European Space Agency to modify its approach to policies that link contracts to member state contributions, Space News reports. ESA has long used a policy known as geo-return, where member states are guaranteed contracts with companies based in their countries in proportion to the contribution those member states make to ESA programs.

The third rail of European space … Advocates of geo-return argue that it provides an incentive for countries to fund those programs. This incentivizes ESA to lure financial contributions from its member states, which will win guaranteed business and jobs from the agency’s programs. However, critics of geo-return, primarily European companies, claim that it creates inefficiencies that make them less competitive. One approach to revising geo-return is known as “fair contribution,” where ESA first holds competitions for projects, and member states then make contributions based on how companies in their countries fared in the competition. ESA will try the fair contribution approach for the upcoming launch competition to award contracts to European rocket startups. (submitted by EllPeaTea)

RFA is building a new rocket. German launch services provider Rocket Factory Augsburg (RFA) is currently focused on building a new first stage for the inaugural flight of its RFA One rocket, European Spaceflight reports. The stage that was initially earmarked for the flight was destroyed during a static fire test last year on a launch pad in Scotland. In a statement given to European Spaceflight, RFA confirmed that it expects to attempt an inaugural flight of RFA One in 2025.

Waiting on a booster … RFA says it is “fully focused on building a new first stage and qualifying it.” The rocket’s second stage and Redshift OTV third stage are already qualified for flight and are being stored until a new first stage is ready. The RFA One rocket will stand 98 feet (30 meters) tall and will be capable of delivering payloads of up to 1.3 metric tons (nearly 2,900 pounds) into polar orbits. RFA is one of several European startups developing commercial small satellite launchers and was widely considered the frontrunner before last year’s setback. (submitted by EllPeaTea)

Pentagon provides a boost for defense startup. Defense technology contractor Anduril Industries has secured a $14.3 million Pentagon contract to expand solid-fueled rocket motor production, as the US Department of Defense moves to strengthen domestic manufacturing capabilities amid growing supply chain concerns, Space News reports. The contract, awarded under the Defense Production Act, will support facility modernization and manufacturing improvements at Anduril’s Mississippi plant, the Pentagon said Tuesday.

Doing a solid … The Pentagon is keen to incentivize new entrants into the solid rocket manufacturing industry, which provides propulsion for missiles, interceptors, and other weapons systems. Two traditional defense contractors, Northrop Grumman and L3Harris, control almost all US solid rocket production. Companies like Anduril, Ursa Major, and X-Bow are developing solid rocket motor production capability. The Navy previously awarded Anduril a $19 million contract last year to develop solid rocket motors for the Standard Missile 6 program. (submitted by EllPeaTea)

Relativity’s value seems to be plummeting. For several years, an innovative, California-based launch company named Relativity Space has been the darling of investors and media. But the honeymoon appears to be over, Ars reports. A little more than a year ago, Relativity reached a valuation of $4.5 billion following its latest Series F fundraising round. This was despite only launching one rocket and then abandoning that program and pivoting to the development of a significantly larger reusable launch vehicle. The decision meant Relativity would not realize any significant revenue for several years, and Ars reported in September on some of the challenges the company has encountered developing the much larger Terran R rocket.

Gravity always wins … Relativity is a privately held company, so its financial statements aren’t public. However, we can glean some clues from the published quarterly report from Fidelity Investments, which owns Relativity shares. As of March 2024, Fidelity valued its 1.67 million shares at an estimated $31.8 million. However, in a report ending November 29 of last year, which was only recently published, Fidelity’s valuation of Relativity plummeted. Its stake in Relativity was then thought to be worth just $866,735—a per-share value of 52 cents. Shares in the other fundraising rounds are also valued at less than $1 each.

SpaceX has already launched four times this year. The space company is off to a fast start in 2025, with four missions in the first nine days of the year. Two of these missions launched Starlink internet satellites, and the other two deployed an Emirati-owned geostationary communications satellite and a batch of Starshield surveillance satellites for the National Reconnaissance Office. In its new year projections, SpaceX estimates it will launch more than 170 Falcon rockets, between Falcon 9 and Falcon Heavy, Spaceflight Now reports. This is in addition to SpaceX’s plans for up to 25 flights of the Starship rocket from Texas.

What’s in store this year?… Highlights of SpaceX’s launch manifest this year will likely include an attempt to catch and recover Starship after returning from orbit, a first in-orbit cryogenic propellant transfer demonstration with Starship, and perhaps the debut of a second launch pad at Starbase in South Texas. For the Falcon rocket fleet, notable missions this year will include launches of commercial robotic lunar landers for NASA’s CLPS program and several crew flights, including the first human spaceflight mission to fly in polar orbit. According to public schedules, a Falcon 9 rocket could launch a commercial mini-space station for Vast, a privately held startup, before the end of the year. That would be a significant accomplishment, but we won’t be surprised if this schedule moves to the right.

China is dipping its toes into satellite refueling. China kicked off its 2025 launch activities with the successful launch of the Shijian-25 satellite Monday, aiming to advance key technologies for on-orbit refueling and extending satellite lifespans, Space News reports. The satellite launched on a Long March 3B into a geostationary transfer orbit, suggesting the unspecified target spacecraft for the refueling demo test might be in geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator.

Under a watchful eye … China has tested mission extension and satellite servicing capabilities in space before. In 2021, China launched a satellite named Shijian-21, which docked a defunct Beidou navigation satellite and towed it to a graveyard orbit above the geostationary belt. Reportedly, Shijian-21 satellite may have carried robotic arms to capture and manipulate other objects in space. These kinds of technologies are dual-use, meaning they have civilian and military applications. The US Space Force is also interested in satellite life extension and refueling tech, so US officials will closely monitor Shijian-25’s actions in orbit.

SpaceX set to debut upgraded Starship. An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week, Ars reports. The rocket could lift off as soon as Monday from SpaceX’s Starbase test facility in South Texas. This flight is the seventh full-scale demonstration launch for Starship. The rocket will test numerous upgrades, including a new flap design, larger propellant tanks, redesigned propellant feed lines, a new avionics system, and an improved antenna for communications and navigation.

The new largest rocket … Put together, all of these changes to the ship raise the rocket’s total height by nearly 6 feet (1.8 meters), so it now towers 404 feet (123.1 meters) tall. With this change, SpaceX will break its own record for the largest rocket ever launched. SpaceX plans to catch the rocket’s Super Heavy booster back at the launch site in Texas and will target a controlled splashdown of the ship in the Indian Ocean.

Blue Origin targets weekend launch of New Glenn. Blue Origin is set to launch its New Glenn rocket in a long-delayed, uncrewed test mission that would help pave the way for the space venture founded by Jeff Bezos to compete against Elon Musk’s SpaceX, The Washington Post reports. Blue Origin has confirmed it plans to launch the 320-foot-tall rocket during a three-hour launch window opening at 1 am EDT (06: 00 UTC) Sunday in the company’s first attempt to reach orbit.

Finally … This is a much-anticipated milestone for Blue Origin and for the company’s likely customers, which include the Pentagon and NASA. Data from this test flight will help the Space Force certify New Glenn to loft national security satellites, providing a new competitor for SpaceX and United Launch Alliance in the heavy-lift segment of the market. Blue Origin isn’t quite shooting for the Moon on this inaugural launch, but the company will attempt to reach orbit and try to land the New Glenn’s first stage booster on a barge in the Atlantic Ocean. (submitted by EllPeaTea)

Next three launches

Jan. 10: Falcon 9 | Starlink 12-12 | Cape Canaveral Space Force Station, Florida | 18: 11 UTC

Jan. 12: New Glenn | NG-1 Blue Ring Pathfinder | Cape Canaveral Space Force Station, Florida | 06: 00 UTC

Jan. 13: Jielong 3 | Unknown Payload | Dongfang Spaceport, Yellow Sea | 03: 00 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: China launches refueling demo; DoD’s big appetite for hypersonics Read More »

a-taller,-heavier,-smarter-version-of-spacex’s-starship-is-almost-ready-to-fly

A taller, heavier, smarter version of SpaceX’s Starship is almost ready to fly


Starship will test its payload deployment mechanism on its seventh test flight.

SpaceX’s first second-generation Starship, known as Version 2 or Block 2, could launch as soon as January 13. Credit: SpaceX

An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week.

The two-mile transfer moved the bullet-shaped spaceship one step closer to launch Monday from SpaceX’s Starbase test site in South Texas. The launch window opens at 5 pm EST (4 pm CST; 2200 UTC). This will be the seventh full-scale test flight of SpaceX’s Super Heavy booster and Starship spacecraft and the first of 2025.

In the coming days, SpaceX technicians will lift the ship on top of the Super Heavy booster already emplaced on the launch mount. Then, teams will complete the final tests and preparations for the countdown on Monday.

“The upcoming flight test will launch a new generation ship with significant upgrades, attempt Starship’s first payload deployment test, fly multiple reentry experiments geared towards ship catch and reuse, and launch and return the Super Heavy booster,” SpaceX officials wrote in a mission overview posted on the company’s website.

The mission Monday will repeat many of the maneuvers SpaceX demonstrated on the last two Starship test flights. The company will again attempt to return the Super Heavy booster to the launch site and attempt to catch it with two mechanical arms, or “chopsticks,” on the launch tower approximately seven minutes after liftoff.

SpaceX accomplished this feat on the fifth Starship test flight in October but aborted a catch attempt on a November flight because of damaged sensors on the tower chopsticks. The booster, which remained healthy, diverted to a controlled splashdown offshore in the Gulf of Mexico.

SpaceX’s next Starship prototype, Ship 33, emerges from its assembly building at Starbase, Texas, early Thursday morning. Credit: SpaceX/Elon Musk via X

For the next flight, SpaceX added protections to the sensors on the tower and will test radar instruments on the chopsticks to provide more accurate ranging measurements for returning vehicles. These modifications should improve the odds of a successful catch of the Super Heavy booster and of Starship on future missions.

In another first, one of the 33 Raptor engines that will fly on this Super Heavy booster—designated Booster 14 in SpaceX’s fleet—was recovered from the booster that launched and returned to Starbase in October. For SpaceX, this is a step toward eventually flying the entire rocket repeatedly. The Super Heavy booster and Starship spacecraft are designed for full reusability.

After separation of the booster stage, the Starship upper stage will ignite six engines to accelerate to nearly orbital velocity, attaining enough energy to fly halfway around the world before gravity pulls it back into the atmosphere. Like the past three test flights, SpaceX will guide Starship toward a controlled reentry and splashdown in the Indian Ocean northwest of Australia around one hour after liftoff.

New ship, new goals

The most significant changes engineers will test next week are on the ship, or upper stage, of SpaceX’s enormous rocket. The most obvious difference on Starship Version 2, or Block 2, is with the vehicle’s forward flaps. Engineers redesigned the flaps, reducing their size and repositioning them closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Cameras onboard Starship showed heat damage to the flaps during reentry on test flights last year.

SpaceX is also developing an upgraded Super Heavy booster that is slightly taller than the existing model. The next version of the booster will produce more thrust and will be slightly taller than the current Super Heavy, but for the upcoming test flight, SpaceX will still use the first-generation booster design.

Starship Block 2 has smaller flaps than previous ships. The flaps are located in a more leeward position to protect them from the heat of reentry. Credit: SpaceX

For next week’s flight, Super Heavy and Starship combined will hold more than 10.5 million pounds of fuel and oxidizer. The ship’s propellant tanks have 25 percent more volume than previous iterations of the vehicle, and the payload compartment, which contains 10 mock-ups of Starlink Internet satellites on this launch, is somewhat smaller. Put together, the changes add nearly 6 feet (1.8 meters) to the rocket’s height, bringing the full stack to approximately 404 feet (123.1 meters).

This means SpaceX will break its own record for launching the largest and most powerful rocket ever built. And the company will do it again with the even larger Starship Version 3, which SpaceX says will have nine upper stage engines, instead of six, and will deliver up to 440,000 pounds (200 metric tons) of cargo to low-Earth orbit.

Other changes debuting with Starship Version 2 next week include:

• Vacuum jacketing of propellant feedlines

• A new fuel feedline system for the ship’s Raptor vacuum engines

• An improved propulsion avionics module controlling vehicle valves and reading sensors

• Redesigned inertial navigation and star tracking sensors

• Integrated smart batteries and power units to distribute 2.7 megawatts of power across the ship

• An increase to more than 30 cameras onboard the vehicle.

Laying the foundation

The enhanced avionics system will support future missions to prove SpaceX’s ability to refuel Starships in orbit and return the ship to the launch site. For example, SpaceX will fly a more powerful flight computer and new antennas that integrate connectivity with the Starlink Internet constellation, GPS navigation satellites, and backup functions for traditional radio communication links. With Starlink, SpaceX said Starship can stream more than 120Mbps of real-time high-definition video and telemetry in every phase of flight.

These changes “all add additional vehicle performance and the ability to fly longer missions,” SpaceX said. “The ship’s heat shield will also use the latest generation tiles and includes a backup layer to protect from missing or damaged tiles.”

Somewhere over the Atlantic Ocean, a little more than 17 minutes into the flight, Starship will deploy 10 dummy payloads similar in size and weight to next-generation Starlink satellites. The mock-ups will soar around the world on a suborbital trajectory, just like Starship, and reenter over the unpopulated Indian Ocean. Future Starship flights will launch real next-gen Starlink satellites to add capacity to the Starlink broadband network, but they’re too big and too heavy to launch on SpaceX’s smaller Falcon 9 rocket.

SpaceX will again reignite one of the ship’s Raptor engines in the vacuum of space, repeating a successful test achieved on Flight 6 in November. The engine restart capability is important for several reasons. It gives the ship the ability to maneuver itself out of low-Earth orbit for reentry (not a concern for Starship’s suborbital tests), and will allow the vehicle to propel itself to higher orbits, the Moon, or Mars once SpaceX masters the technology for orbital refueling.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

NASA has contracts with SpaceX to build a derivative of Starship to ferry astronauts to and from the surface of the Moon for the agency’s Artemis program. The NASA program manager overseeing SpaceX’s lunar lander contract, Lisa Watson-Morgan, said she was pleased with the results of the in-space engine restart demo last year.

“The whole path to the Moon, as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold,” Morgan told Ars in a recent interview. “To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that.

“In addition, after we land, clearly, the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to launch the crews off the lunar surface),” she said. “So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.”

“The biggest technology challenge remaining”

SpaceX continues to experiment with Starship’s heat shield, which the company’s founder and CEO, Elon Musk, has described as “the biggest technology challenge remaining with Starship.” In order for SpaceX to achieve its lofty goal of launching Starships multiple times per day, the heat shield needs to be fully and immediately reusable.

While the last three ships have softly splashed down in the Indian Ocean, some of their heat-absorbing tiles stripped away from the vehicle during reentry, when it’s exposed to temperatures up to 2,600° Fahrenheit (1,430° Celsius).

Engineers removed tiles from some areas of the ship for next week’s test flight in order to “stress-test” vulnerable parts of the vehicle. They also smoothed and tapered the edge of the tile line, where the ceramic heat shield gives way to the ship’s stainless steel skin, to address “hot spots” observed during reentry on the most recent test flight.

“Multiple metallic tile options, including one with active cooling, will test alternative materials for protecting Starship during reentry,” SpaceX said.

SpaceX is also flying rudimentary catch fittings on Starship to test their thermal performance on reentry. The ship will fly a more demanding trajectory during descent to probe the structural limits of the redesigned flaps at the point of maximum entry dynamic pressure, according to SpaceX.

All told, SpaceX’s inclusion of a satellite deployment demo and ship upgrades on next week’s test flight will lay the foundation for future missions, perhaps in the next few months, to take the next great leap in Starship development.

In comments following the last Starship test flight in November, SpaceX founder and CEO Elon Musk posted on X that the company could try to return the ship to a catch back at the launch site—something that would require the vehicle to complete at least one full orbit of Earth—as soon as the next flight following Monday’s mission.

“We will do one more ocean landing of the ship,” Musk posted. “If that goes well, then SpaceX will attempt to catch the ship with the tower.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

A taller, heavier, smarter version of SpaceX’s Starship is almost ready to fly Read More »

italy’s-plan-to-buy-starlink-data-deals-a-serious-blow-to-european-space-network

Italy’s plan to buy Starlink data deals a serious blow to European space network

Developed by the European Union and European Space Agency, with Italian participation, this constellation of 290 satellites is planned to come online by 2030 at a development cost of $10.5 billion. During the lengthy negotiations, Italy even managed to secure one of the three primary ground stations in the Abruzzo region of the country.

The response from some Italian and European officials to the potential agreement between Italy and SpaceX has been ferocious.

Antonio Misiani, former deputy finance minister for Italy and senator for the opposition Democratic Party, told Politico that a completed agreement would represent an “unacceptable sell-out of national sovereignty.”

An Atlantic Council senior fellow and former policy advisor to the Italian government, Beniamino Irdi, told the Financial Times, “It sends a political signal to the EU,” Irdi said. “Iris² is a symbol of Europe’s strategic autonomy, and a key EU member shifting to a different solution can be interpreted as a sign of divestment from that.”

There are multiple layers of frustration here beyond Iris². One concerns Musk, who, since the election of Trump, has turned his attention toward advancing far-right political causes in Europe, particularly in Germany and the United Kingdom. Meloni, a conservative leader of Italy, considers Musk a friend and ally. Andrea Stroppa, one of Musk’s advisers in Italy, explained in September that “Elon recognizes Giorgia Meloni’s leadership. And he sees in her the same thing he sees in Donald Trump, someone who can defend Western values ​​in danger.”

Battling with Breton

Musk has also had a long-running feud with French businessman Thierry Breton, who was Commissioner for the Internal Market of the European Union for five years until last September. Breton spearheaded the Iris² initiative to provide secure communications from low-Earth orbit. He also championed the Digital Services Act, which aims to curb misinformation published online in Europe. The European Commission has been energetically investigating Musk’s social media site X under the law.

Italy’s plan to buy Starlink data deals a serious blow to European space network Read More »

elon-musk:-“we’re-going-straight-to-mars-the-moon-is-a-distraction.”

Elon Musk: “We’re going straight to Mars. The Moon is a distraction.”

To a large extent, NASA resisted this change during the remainder of the Trump administration, keeping its core group of major contractors, such as Boeing and Lockheed Martin, in place. It had help from key US Senators, including Richard Shelby, the now-retired Republican from Alabama. But this time, the push for change is likely to be more concerted, especially with key elements of NASA’s architecture, including the Space Launch System rocket, being bypassed by privately developed rockets such as SpaceX’s Starship vehicle and Blue Origin’s New Glenn rocket.

Not one, but both

In all likelihood, NASA will adopt a new “Artemis” plan that involves initiatives to both the Moon and Mars. When Musk said “we’re going straight to Mars,” he may have meant that this will be the thrust of SpaceX, with support from NASA. That does not preclude a separate initiative, possibly led by Blue Origin with help from NASA, to develop lunar return plans.

Isaacman, who is keeping a fairly low profile ahead of his nomination, has not weighed in on Musk’s comments. However, when his nomination was announced one month ago, he did make a germane comment on X.

“I was born after the Moon landings; my children were born after the final space shuttle launch,” he wrote. “With the support of President Trump, I can promise you this: We will never again lose our ability to journey to the stars and never settle for second place. We will inspire children, yours and mine, to look up and dream of what is possible. Americans will walk on the Moon and Mars and in doing so, we will make life better here on Earth.”

In short, NASA is likely to adopt a two-lane strategy of reaching for both the Moon and Mars. Whether the space agency is successful with either one will be a major question asked of the new administration.

Elon Musk: “We’re going straight to Mars. The Moon is a distraction.” Read More »

trump-nominates-jared-isaacman-to-become-the-next-nasa-administrator

Trump nominates Jared Isaacman to become the next NASA administrator

President-elect Donald Trump announced Wednesday he has selected Jared Isaacman, a billionaire businessman and space enthusiast who twice flew to orbit with SpaceX, to become the next NASA administrator.

“I am delighted to nominate Jared Isaacman, an accomplished business leader, philanthropist, pilot, and astronaut, as Administrator of the National Aeronautics and Space Administration (NASA),” Trump posted on his social media platform, Truth Social. “Jared will drive NASA’s mission of discovery and inspiration, paving the way for groundbreaking achievements in space science, technology, and exploration.”

In a post on X, Isaacman said he was “honored” to receive Trump’s nomination.

“Having been fortunate to see our amazing planet from space, I am passionate about America leading the most incredible adventure in human history,” Isaacman wrote. “On my last mission to space, my crew and I traveled farther from Earth than anyone in over half a century. I can confidently say this second space age has only just begun.”

Top officials who served at NASA under President Trump and President Obama endorsed Isaacman as the next NASA boss.

“Jared Isaacman will be an outstanding NASA Administrator and leader of the NASA family,” said Jim Bridenstine, who led NASA as administrator during Trump’s first term in the White House. “Jared’s vision for pushing boundaries, paired with his proven track record of success in private industry, positions him as an ideal candidate to lead NASA into a bold new era of exploration and discovery. I urge the Senate to swiftly confirm him.”

Lori Garver, NASA’s deputy administrator during the Obama administration, wrote on X that Isaacman’s nomination was “terrific news,” adding that “he has the opportunity to build on NASA’s amazing accomplishments to pave our way to an even brighter future.”

Isaacman, 41, is the founder and CEO of Shift4, a mobile payment processing platform, and co-founded Draken International, which owns a fleet of retired fighter jets to pose as adversaries for military air combat training. If the Senate confirms his nomination, Isaacman would become the 15th NASA administrator, and the fourth who has flown in space.

Trump nominates Jared Isaacman to become the next NASA administrator Read More »

rocket-report:-a-good-week-for-blue-origin;-italy-wants-its-own-launch-capability

Rocket Report: A good week for Blue Origin; Italy wants its own launch capability


Blue Origin is getting ready to test-fire its first fully integrated New Glenn rocket in Florida.

Blue Origin’s first fully integrated New Glenn rocket rolls out to its launch pad at Cape Canaveral Space Force Station, Florida. Credit: Blue Origin

Welcome to Edition 7.21 of the Rocket Report! We’re publishing the Rocket Report a little early this week due to the Thanksgiving holiday in the United States. We don’t expect any Thanksgiving rocket launches this year, but still, there’s a lot to cover from the last six days. It seems like we’ve seen the last flight of the year by SpaceX’s Starship rocket. A NASA filing with the Federal Aviation Administration requests approval to fly an aircraft near the reentry corridor over the Indian Ocean for the next Starship test flight. The application suggests the target launch date is January 11, 2025.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Another grim first in Ukraine. For the first time in warfare, Russia launched an Intermediate Range Ballistic Missile against a target in Ukraine, Ars reports. This attack on November 21 followed an announcement from Russian President Vladimir Putin earlier the same week that the country would change its policy for employing nuclear weapons in conflict. The IRBM, named Oreshnik, is the longest-range weapon ever used in combat in Europe, and could be refitted to carry nuclear warheads on future strikes.

Putin’s rationale … Putin says his ballistic missile attack on Ukraine is a warning to the West after the US and UK governments approved Ukraine’s use of Western-supplied ATACMS and Storm Shadow tactical ballistic missiles against targets on Russian territory. The Russian leader said his forces could attack facilities in Western countries that supply weapons for Ukraine to use on Russian territory, continuing a troubling escalatory ladder in the bloody war in Eastern Europe. Interestingly, this attack has another rocket connection. The target was apparently a factory in Dnipro that, not long ago, produced booster stages for Northrop Grumman’s Antares rocket.

Blue Origin hops again. Blue Origin launched its ninth suborbital human spaceflight over West Texas on November 22, CollectSpace reports. Six passengers rode the company’s suborbital New Shepard booster to the edge of space, reaching an altitude of 347,661 feet (65.8 miles or 106 kilometers), flying 3 miles (4.8 km) above the Kármán line that serves as the internationally-accepted border between Earth’s atmosphere and outer space. The pressurized capsule carrying the six passengers separated from the booster, giving them a taste of microgravity before parachuting back to Earth.

Dreams fulfilled … These suborbital flights are getting to be more routine, and may seem insignificant compared to Blue Origin’s grander ambitions of flying a heavy-lift rocket and building a human-rated Moon lander. However, we’ll likely have to wait many years before truly routine access to orbital flights becomes available for anyone other than professional astronauts or multimillionaires. This means tickets to ride on suborbital spaceships from Blue Origin or Virgin Galactic are currently the only ways to get to space, however briefly, for something on the order of $1 million or less. That puts the cost of one of these seats within reach for hundreds of thousands of people, and within the budgets of research institutions and non-profits to fund a flight for a scientist, student, or a member of the general public. The passengers on the November 22 flight included Emily Calandrelli, known online as “The Space Gal,” an engineer, Netflix host, and STEM education advocate who became the 100th woman to fly to space. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab flies twice in one day. Two Electron rockets took flight Sunday, one from New Zealand’s Mahia Peninsula and the other from Wallops Island, Virginia, making Rocket Lab the first commercial space company to launch from two different hemispheres in a 24-hour period, Payload reports. One of the missions was the third of five launches for the French Internet of Things company Kinéis, which is building a satellite constellation. The other launch was an Electron modified to act as a suborbital technology demonstrator for hypersonic research. Rocket Lab did not disclose the customer, but speculation is focused on the defense contractor Leidos, which signed a four-launch deal with Rocket Lab last year.

Building cadence … SpaceX first launched two Falcon 9 rockets in 24 hours in 2021. This year, the company launched three Falcon 9s in a single day from pads at Cape Canaveral Space Force Station, Florida, and Vandenberg Space Force Base, California. Rocket Lab has now launched 14 Electron rockets this year, more than any other Western company other than SpaceX. “Two successful launches less than 24 hours apart from pads in different hemispheres. That’s unprecedented capability in the small launch market and one we’re immensely proud to deliver at Rocket Lab,” said Peter Beck, the company’s founder and CEO. (submitted by Ken the Bin)

Italy to reopen offshore launch site. An Italian-run space center located in Kenya will once again host rocket launches from an offshore launch platform, European Spaceflight reports. The Italian minister for enterprises, Adolfo Urso, recently announced that the country decided to move ahead with plans to again launch rockets from the Luigi Broglio Space Center near Malindi, Kenya. “The idea is to give a new, more ambitious mission to this base and use it for the launch of low-orbit microsatellites,” Urso said.

Decades of dormancy … Between 1967 and 1988, the Italian government and NASA partnered to launch nine US-made Scout rockets from the Broglio Space Center to place small satellites into orbit. The rockets lifted off from the San Marco platform, a converted oil platform in equatorial waters off the Kenyan coast. Italian officials have not said what rocket might be used once the San Marco platform is reactivated, but Italy is the leading contributor on the Vega C rocket, a solid-fueled launcher somewhat larger than the Scout. Italy will manage the reactivation of the space center, which has remained in service as a satellite tracking station, under the country’s Mattei Plan, an initiative aimed at fostering stronger economic partnerships with African nations. (submitted by Ken the Bin)

SpaceX flies same rocket twice in two weeks. Less than 14 days after its previous flight, a Falcon 9 booster took off again from Florida’s Space Coast early Monday to haul 23 more Starlink internet satellites into orbit, Spaceflight Now reports. The booster, numbered B1080 in SpaceX’s fleet of reusable rockets, made its 13th trip to space before landing on SpaceX’s floating drone ship in the Atlantic Ocean. The launch marked a turnaround of 13 days, 12 hours, and 44 minutes from this booster’s previous launch November 11, also with a batch of Starlink satellites. The previous record turnaround time between flights of the same Falcon 9 booster was 21 days.

400 and still going … SpaceX’s launch prior to this one was on Saturday night, when a Falcon 9 carried a set of Starlinks aloft from Vandenberg Space Force Base, California. The flight Saturday night was the 400th launch of a Falcon 9 rocket since 2010, and SpaceX’s 100th launch from the West Coast. (submitted by Ken the Bin)

Chinese firm launches upgraded rocket. Chinese launch startup LandSpace put two satellites into orbit late Tuesday with the first launch of an improved version of the Zhuque-2 rocket, Space News reports. The enhanced rocket, named the Zhuque-2E, replaces vernier steering thrusters with a thrust vector control system on the second stage engine, saving roughly 880 pounds (400 kilograms) in mass. The Zhuque-2E rocket is capable of placing a payload of up to 8,800 pounds (4,000 kilograms) into a polar Sun-synchronous orbit, according to LandSpace.

LandSpace in the lead … Founded in 2015, LandSpace is a leader among China’s crop of quasi-commercial launch startups. The company hasn’t launched as often as some of its competitors, but it became the first launch operator in the world to successfully reach orbit with a methane/liquid oxygen (methalox) rocket last year. Now, LandSpace has improved on its design to create the Zhuque-2E rocket, which also has a large niobium allow nozzle extension on the second stage engine for reduced weight. LandSpace also claims the Zhuque-2E is China’s first rocket to use fully supercooled propellant loading, similar to the way SpaceX loads densified propellants into its rockets to achieve higher performance. (submitted by Ken the Bin)

NASA taps Falcon Heavy for another big launch. A little more than a month after SpaceX launched NASA’s flagship Europa Clipper mission on a Falcon Heavy rocket, the space agency announced its next big interplanetary probe will also launch on a Falcon Heavy, Ars reports. What’s more, the Dragonfly mission the Falcon Heavy will launch in 2028 is powered by a plutonium power source. This will be the first time SpaceX launches a rocket with nuclear materials onboard, requiring an additional layer of safety certification by NASA. The agency’s most recent nuclear-powered spacecraft have all launched on United Launch Alliance Atlas V rockets, which are nearing retirement.

The details … Dragonfly is one of the most exciting robotic missions NASA has ever developed. The mission is to send an automated rotorcraft to explore Saturn’s largest moon, Titan, where Dragonfly will soar through a soupy atmosphere in search of organic molecules, the building blocks of life. It’s a hefty vehicle, about the size of a compact car, and much larger than NASA’s Ingenuity Mars helicopter. The launch period opens July 5, 2028, to allow Dragonfly to reach Titan in 2034. NASA is paying SpaceX $256.6 million to launch the mission on a Falcon Heavy. (submitted by Ken the Bin)

New Glenn is back on the pad. Blue Origin has raised its fully stacked New Glenn rocket on the launch pad at Cape Canaveral Space Force Station ahead of pre-launch testing, Florida Today reports. The last time this new 322-foot-tall (98-meter) rocket was visible to the public eye was in March. Since then, Blue Origin has been preparing the rocket for its inaugural launch, which could yet happen before the end of the year. Blue Origin has not announced a target launch date.

But first, more tests … Blue Origin erected the New Glenn rocket vertical on the launch pad earlier this year for ground tests, but this is the first time a flight-ready (or close to it) New Glenn has been spotted on the pad. This time, the first stage booster has its full complement of seven methane-fueled BE-4 engines. Before the first flight, Blue Origin plans to test-fire the seven BE-4 engines on the pad and conduct one or more propellant loading tests to exercise the launch team, the rocket, and ground systems before launch day.

Second Ariane 6 incoming. ArianeGroup has confirmed that the first and second stages for the second Ariane 6 flight have begun the transatlantic voyage from Europe to French Guiana aboard the sail-assisted transport ship Canopée, European Spaceflight reports. The second Ariane 6 launch, previously targeted before the end of this year, has now been delayed to no earlier than February 2025, according to Arianespace, the rocket’s commercial operator. This follows a mostly successful debut launch in July.

An important passenger … While the first Ariane 6 launch carried a cluster of small experimental satellites, the second Ariane 6 rocket will carry a critical spy satellite into orbit for the French armed forces. Shipping the core elements of the second Ariane 6 to the launch site in Kourou, French Guiana, is a significant step in the launch campaign. Once in Kourou, the stages will be connected together and rolled out to the launch pad, where technicians will install two strap-on solid rocket boosters and the payload fairing containing France’s CSO-3 military satellite.

Next three launches

Nov. 29: Soyuz-2.1a | Kondor-FKA 2 | Vostochny Cosmodrome, Russia | 21: 50 UTC

Nov. 30: Falcon 9 | Starlink 6-65 | Cape Canaveral Space Force Station, Florida | 05: 00 UTC

Nov. 30: Falcon 9 | NROL-126 | Vandenberg Space Force Base, California | 08: 08 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: A good week for Blue Origin; Italy wants its own launch capability Read More »

nasa-awards-spacex-a-contract-for-one-of-the-few-things-it-hasn’t-done-yet

NASA awards SpaceX a contract for one of the few things it hasn’t done yet

Notably, the Dragonfly launch was one of the first times United Launch Alliance has been eligible to bid its new Vulcan rocket for a NASA launch contract. NASA officials gave the green light for the Vulcan rocket to compete head-to-head with SpaceX’s Falcon 9 and Falcon Heavy after ULA’s new launcher had a successful debut launch earlier this year. With this competition, SpaceX came out on top.

A half-life of 88 years

NASA’s policy for new space missions is to use solar power whenever possible. For example, Europa Clipper was originally supposed to use a nuclear power generator, but engineers devised a way for the spacecraft to use expansive solar panels to capture enough sunlight to produce electricity, even at Jupiter’s vast distance from the Sun.

But there are some missions where this isn’t feasible. One of these is Dragonfly, which will soar through the soupy nitrogen-methane atmosphere of Titan. Saturn’s largest moon is shrouded in cloud cover, and Titan is nearly 10 times farther from the Sun than Earth, so its surface is comparatively dim.

The Dragonfly mission, seen here in an artist’s concept, is slated to launch no earlier than 2027 on a mission to explore Saturn’s moon Titan. Credit: NASA/JHUAPL/Steve Gribben

Dragonfly will launch with about 10.6 pounds (4.8 kilograms) of plutonium-238 to fuel its power generator. Plutonium-238 has a half-life of 88 years. With no moving parts, RTGs have proven quite reliable, powering spacecraft for many decades. NASA’s twin Voyager probes are approaching 50 years since launch.

The Dragonfly rotorcraft will launch cocooned inside a transit module and entry capsule, then descend under parachute through Titan’s atmosphere, which is four times denser than Earth’s. Finally, Dragonfly will detach from its descent module and activate its eight rotors to reach a safe landing.

Once on Titan, Dragonfly is designed to hop from place to place on numerous flights, exploring environments rich in organic molecules, the building blocks of life. This is one of NASA’s most exciting, and daring, robotic missions of all time.

After launching from NASA’s Kennedy Space Center in Florida in July 2028, it will take Dragonfly about six years to reach Titan. When NASA selected the Dragonfly mission to begin development in 2019, the agency hoped to launch the mission in 2026. NASA later directed Dragonfly managers to target a launch in 2027, and then 2028, requiring the mission to change from a medium-lift to a heavy-lift rocket.

Dragonfly has also faced rising costs NASA blames on the COVID-19 pandemic and supply chain issues and an in-depth redesign since the mission’s selection in 2019. Collectively, these issues caused Dragonfly’s total budget to grow to $3.35 billion, more than double its initial projected cost.

NASA awards SpaceX a contract for one of the few things it hasn’t done yet Read More »