starship

rocket-report:-keeping-up-with-kuiper;-new-glenn’s-second-flight-slips

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips


Amazon plans to conduct two launches of Kuiper broadband satellites just days apart.

An unarmed Trident II D5 Life Extension (D5LE) missile launches from an Ohio-class ballistic missile submarine off the coast of Florida. Credit: US Navy

Welcome to Edition 8.12 of the Rocket Report! We often hear from satellite operators—from the military to venture-backed startups—about their appetite for more launch capacity. With so many rocket launches happening around the world, some might want to dismiss these statements as a corporate plea for more competition, and therefore lower prices. SpaceX is on pace to launch more than 150 times this year. China could end the year with more than 70 orbital launches. These are staggering numbers compared to global launch rates just a few years ago. But I’m convinced there’s room for more alternatives for reliable (and reusable) rockets. All of the world’s planned mega-constellations will need immense launch capacity just to get off the ground, and if successful, they’ll go into regular replacement and replenishment cycles. Throw in the still-undefined Golden Dome missile shield and many nations’ desire for a sovereign launch capability, and it’s easy to see the demand curve going up.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sharp words from Astra’s Chris Kemp. Chris Kemp, the chief executive officer of Astra, apparently didn’t get the memo about playing nice with his competitors in the launch business. Kemp made some spicy remarks at the Berkeley Space Symposium 2025 earlier this month, billed as the largest undergraduate aerospace event at the university (see video of the talk). During the speech, Kemp periodically deviated from building up Astra to hurling insults at several of his competitors in the launch industry, Ars reports. To be fair to Kemp, some of his criticisms are not without a kernel of truth. But they are uncharacteristically rough all the same, especially given Astra’s uneven-at-best launch record and financial solvency to date.

Wait, what?! … Kemp is generally laudatory in his comments about SpaceX, but his most crass statement took aim at the quality of life of SpaceX employees at Starbase, Texas. He said life at Astra is “more fun than SpaceX because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn.” For the record, no SpaceX employees have been beheaded. “And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day.” Kemp also accused Firefly Aerospace of sending Astra “garbage” rocket engines as part of the companies’ partnership on propulsion for Astra’s next-generation rocket.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

A step forward for Europe’s reusable rocket program. No one could accuse the European Space Agency and its various contractors of moving swiftly when it comes to the development of reusable rockets. However, it appears that Europe is finally making some credible progress, Ars reports. Last week, the France-based ArianeGroup aerospace company announced that it completed the integration of the Themis vehicle, a prototype rocket that will test various landing technologies, on a launch pad in Sweden. Low-altitude hop tests, a precursor for developing a rocket’s first stage that can vertically land after an orbital launch, could start late this year or early next.

Hopping into the future … “This milestone marks the beginning of the ‘combined tests,’ during which the interface between Themis and the launch pad’s mechanical, electrical, and fluid systems will be thoroughly trialed, with the aim of completing a test under cryogenic conditions,” ArianeGroup said. This particular rocket will likely undergo only short hops, initially about 100 meters. A follow-up vehicle, Themis T1E, is intended to fly medium-altitude tests at a later date. Some of the learnings from these prototypes will feed into a smaller, reusable rocket intended to lift 500 kilograms to low-Earth orbit. This is under development by MaiaSpace, a subsidiary of ArianeGroup. Eventually, the European Space Agency would like to use technology developed as part of Themis to develop a new line of reusable rockets that will succeed the Ariane 6 rocket.

Navy conducts Trident missile drills. The US Navy carried out four scheduled missile tests of a nuclear-capable weapons system off the coast of Florida within the last week, Defense News reports. The service’s Strategic Systems Programs conducted flights of unarmed Trident II D5 Life Extension missiles from a submerged Ohio-class ballistic missile submarine from September 17 to September 21 as part of an ongoing scheduled event meant to test the reliability of the system. “The missile tests were not conducted in response to any ongoing world events,” a Navy release said.

Secret with high visibility … The Navy periodically performs these Trident missile tests off the coasts of Florida and California, taking advantage of support infrastructure and range support from the two busiest US spaceports. The military doesn’t announce the exact timing of the tests, but warnings issued for pilots to stay out of the area give a general idea of when they might occur. One of the launch events Sunday was visible from Puerto Rico, illuminating the night sky in photos published on social media. The missiles fell in the Atlantic Ocean as intended, the Navy said. The Trident II D5 missiles were developed in the 1980s and are expected to remain in service on the Navy’s ballistic missile submarines into the 2040s. The Trident system is one leg of the US military’s nuclear triad, alongside land-based Minuteman ballistic missiles and nuclear-capable strategic bombers. (submitted by EllPeaTea)

Firefly plans for Alpha’s return to flight. Firefly Aerospace expects to resume Alpha launches in the “coming weeks,” with two flights planned before the end of the year, Space News reports. These will be the first flights of Firefly’s one-ton-class Alpha rocket since a failure in April destroyed a Lockheed Martin tech demo satellite after liftoff from California. In a quarterly earnings call, Firefly shared a photo showing its next two Alpha rockets awaiting shipment from the company’s Texas factory.

Righting the ship … These next two launches really need to go well for Firefly. The Alpha rocket has, at best, a mixed record with only two fully successful flights in six attempts. Two other missions put their payloads into off-target orbits, and two Alpha launches failed to reach orbit at all. Firefly went public on the NASDAQ stock exchange last month, raising nearly $900 million in the initial public offering to help fund the company’s future programs, namely the medium-lift Eclipse rocket developed in partnership with Northrop Grumman. There’s a lot to like about Firefly. The company achieved the first fully successful landing of a commercial spacecraft on the Moon in March. NASA has selected Firefly for three more commercial landings on the Moon, and Firefly reported this week it has an agreement with an unnamed commercial customer for an additional dedicated mission. But the Alpha program hasn’t had the same level of success. We’ll see if Firefly can get the rocket on track soon. (submitted by EllPeaTea)

Avio wins contract to launch “extra-European” mission. Italian rocket builder Avio has signed a launch services agreement with US-based launch aggregator SpaceLaunch for a Vega C launch carrying an Earth observation satellite for an “extra-European institutional customer” in 2027, European Spaceflight reports. Avio announced that it had secured the launch contract on September 18. According to the company, the contract was awarded through an open international competition, with Vega C chosen for its “versatility and cost-effectiveness.” While Avio did not reveal the identity of the “extra-European” customer, it said that it would do so later this year.

Plenty of peculiarities … There are several questions to unpack here, and Andrew Parsonson of European Spaceflight goes through them all. Presumably, extra-European means the customer is based outside of Europe. Avio’s statement suggests we’ll find out the answer to that question soon. Details about the US-based launch broker SpaceLaunch are harder to find. SpaceLaunch appears to have been founded in January 2025 by two former Firefly Aerospace employees with a combined 40 years of experience in the industry. On its website, the company claims to provide end-to-end satellite launch integration, mission management, and launch procurement services with a “portfolio of launch vehicle capacity around the globe.” SpaceLaunch boasts it has supported the launch of more than 150 satellites on 12 different launch vehicles. However, according to public records, it does not appear that the company itself has supported a single launch. Instead, the claim seems to credit SpaceLaunch with launches that were actually carried out during the two founders’ previous tenures at Spaceflight, Firefly Aerospace, Northrop Grumman, and the US Air Force. (submitted by EllPeaTea)

Falcon 9 launches three missions for NASA and NOAA. Scientists loaded three missions worth nearly $1.6 billion on a SpaceX Falcon 9 rocket for launch Wednesday, toward an orbit nearly a million miles from Earth, to measure the supersonic stream of charged particles emanating from the Sun, Ars reports. One of the missions, from the National Oceanic and Atmospheric Administration (NOAA), will beam back real-time observations of the solar wind to provide advance warning of geomagnetic storms that could affect power grids, radio communications, GPS navigation, air travel, and satellite operations. The other two missions come from NASA, with research objectives that include studying the boundary between the Solar System and interstellar space and observing the rarely seen outermost layer of our own planet’s atmosphere.

Immense value …All three spacecraft will operate in orbit around the L1 Lagrange point, a gravitational balance point located more than 900,000 miles (1.5 million kilometers) from Earth. Bundling these three missions onto the same rocket saved at least tens of millions of dollars in launch costs. Normally, they would have needed three different rockets. Rideshare missions to low-Earth orbit are becoming more common, but spacecraft departing for more distant destinations like the L1 Lagrange point are rare. Getting all three missions on the same launch required extensive planning, a stroke of luck, and fortuitous timing. “This is the ultimate cosmic carpool,” said Joe Westlake, director of NASA’s heliophysics division. “These three missions heading out to the Sun-Earth L1 point riding along together provide immense value for the American taxpayer.”

US officials concerned about China mastering reusable launch. SpaceX’s dominance in reusable rocketry is one of the most important advantages the United States has over China as competition between the two nations extends into space, US Space Force officials said Monday. But several Chinese companies are getting close to fielding their own reusable rockets, Ars reports. “It’s concerning how fast they’re going,” said Brig. Gen. Brian Sidari, the Space Force’s deputy chief of space operations for intelligence. “I’m concerned about when the Chinese figure out how to do reusable lift that allows them to put more capability on orbit at a quicker cadence than currently exists.”

By the numbers … China has used 14 different types of rockets on its 56 orbital-class missions this year, and none have flown more than 11 times. Eight US rocket types have cumulatively flown 145 times, with 122 of those using SpaceX’s workhorse Falcon 9. Without a reusable rocket, China must maintain more rocket companies to sustain a launch rate of just one-third to one-half that of the United States. This contrasts with the situation just four years ago, when China outpaced the United States in orbital rocket launches. The growth in US launches has been a direct result of SpaceX’s improvements to launch at a higher rate, an achievement primarily driven by the recovery and reuse of Falcon 9 boosters and payload fairings.

Atlas V launches more Kuiper satellites. Roughly an hour past sunrise Thursday, an Atlas V rocket from United Launch Alliance took flight from Cape Canaveral Space Force Station, Florida. Onboard the rocket, flying in its most powerful configuration, were the next 27 Project Kuiper broadband satellites from Amazon, Spaceflight Now reports. This is the third batch of production satellites launched by ULA and the fifth overall for the growing low-Earth orbit constellation. The Atlas V rocket released the 27 Kuiper satellites about 280 miles (450 kilometers) above Earth. The satellites will use onboard propulsion to boost themselves to their assigned orbit at 392 miles (630 kilometers).

Another Kuiper launch on tap … With this deployment, Amazon now has 129 satellites in orbit. This is a small fraction of the network’s planned total of 3,232 satellites, but Amazon has enjoyed a steep ramp-up in the Kuiper launch cadence as the company’s satellite assembly line in Kirkland, Washington, continues churning out spacecraft. Another 24 Kuiper satellites are slated to launch September 30 on a SpaceX Falcon 9 rocket, and Amazon has delivered enough satellites to Florida for an additional launch later this fall. (submitted by EllPeaTea)

German military will fly with Ariane 6. Airbus Defense and Space has awarded Arianespace a contract to launch a pair of SATCOMBw-3 communications satellites for the German Armed Forces, European Spaceflight reports. Airbus is the prime contractor for the nearly $2.5 billion (2.1 billion euro) SATCOMBw-3 program, which will take over from the two-satellite SATCOMBw-2 constellation currently providing secure communications for the German military. Arianespace announced Wednesday that it had been awarded the contract to launch the satellites aboard two Ariane 6 rockets. “By signing this new strategic contract for the German Armed Forces, Arianespace accomplishes its core mission of guaranteeing autonomous access to space for European sovereign satellites,” said Arianespace CEO David Cavaillolès.

Running home to Europe … The chief goal of the Ariane 6 program is to provide Europe with independent access to space, something many European governments see as a strategic requirement. Several European military, national security, and scientific satellites have launched on SpaceX Falcon 9 rockets in the last few years as officials waited for the debut of the Ariane 6 rocket. With three successful Ariane 6 flights now in the books, European customers seem to now have the confidence to commit to flying their satellites on Ariane 6. (submitted by EllPeaTea)

Artemis II launch targeted for February. NASA is pressing ahead with preparations for the first launch of humans beyond low-Earth orbit in more than five decades, and officials said Tuesday that the Artemis II mission could take flight early next year, Ars reports. Although work remains to be done, the space agency is now pushing toward a launch window that opens on February 5, 2026, officials said during a news conference on Tuesday at Johnson Space Center. The Artemis II mission represents a major step forward for NASA and seeks to send four astronauts—Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen—around the Moon and back. The 10-day mission will be the first time astronauts have left low-Earth orbit since the Apollo 17 mission in December 1972.

Orion named Integrity The first astronauts set to fly to the Moon in more than 50 years will do so in Integrity, Ars reports. NASA’s Artemis II crew revealed Integrity as the name of their Orion spacecraft during a news conference on Wednesday at the Johnson Space Center in Houston. “We thought, as a crew, we need to name this spacecraft. We need to have a name for the Orion spacecraft that we’re going to ride this magical mission on,” said Wiseman, commander of the Artemis II mission.

FAA reveals new Starship trajectories. Sometime soon, perhaps next year, SpaceX will attempt to fly one of its enormous Starship rockets from low-Earth orbit back to its launch pad in South Texas. A successful return and catch at the launch tower would demonstrate a key capability underpinning Elon Musk’s hopes for a fully reusable rocket. In order for this to happen, SpaceX must overcome the tyranny of geography. A new document released by the Federal Aviation Administration shows the narrow corridors Starship will fly to space and back when SpaceX tries to recover them, Ars reports.

Flying over people It was always evident that flying a Starship from low-Earth orbit back to Starbase would require the rocket to fly over Mexico and portions of South Texas. The rocket launches to the east over the Gulf of Mexico, so it must approach Starbase from the west when it comes in for a landing. The new maps show SpaceX will launch Starships to the southeast over the Gulf and the Caribbean Sea, and directly over Jamaica, or to the northeast over the Gulf and the Florida peninsula. On reentry, the ship will fly over Baja California and Mexico’s interior near the cities of Hermosillo and Chihuahua, each with a population of roughly a million people. The trajectory would bring Starship well north of the Monterrey metro area and its 5.3 million residents, then over the Rio Grande Valley near the Texas cities of McAllen and Brownsville.

New Glenn’s second flight at least a month away. The second launch of Blue Origin’s New Glenn rocket, carrying a NASA smallsat mission to Mars, is now expected in late October or early November, Space News reports. Tim Dunn, NASA’s senior launch director at Kennedy Space Center, provided an updated schedule for the second flight of New Glenn in comments after a NASA-sponsored launch on a Falcon 9 rocket Wednesday. Previously, the official schedule from NASA showed the launch date as no earlier than September 29.

No surprise … It was already apparent that this launch wouldn’t happen September 29. Blue Origin has test-fired the second stage for the upcoming flight of the New Glenn rocket but hasn’t rolled the first stage to the launch pad for its static fire. Seeing the rocket emerge from Blue’s factory in Florida will be an indication that the launch date is finally near. Blue Origin will launch NASA’s ESCAPADE mission, a pair of small satellites to study how the solar wind interacts with the Martian upper atmosphere.

Blue Origin will launch a NASA rover to the Moon. NASA has awarded Blue Origin a task order worth up to $190 million to deliver its Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon’s surface, Aviation Week & Space Technology reports. Blue Origin, one of 13 currently active Commercial Lunar Payload Services (CLPS) providers, submitted the only bid to carry VIPER to the Moon after NASA requested offers from industry last month. NASA canceled the VIPER mission last year, citing cost overruns with the rover and delays in its planned ride to the Moon aboard a lander provided by Astrobotic. But engineers had already completed assembly of the rover, and scientists protested NASA’s decision to terminate the mission.

Some caveats … Blue Origin will deliver VIPER to a location near the Moon’s south pole in late 2027 using a robotic Blue Moon MK1 lander, a massive craft larger than the Apollo lunar landing module. The company’s first Blue Moon MK1 lander is scheduled to fly to the Moon next year. NASA’s contract for the VIPER delivery calls for Blue Origin to design accommodations for the rover on the Blue Moon lander. The agency said it will decide whether to proceed with the actual launch on a New Glenn rocket and delivery of VIPER to the Moon based partially on the outcome of the first Blue Moon test flight next year.

Next three launches

Sept. 26: Long March 4C | Unknown Payload | Jiuquan Satellite Launch Center, China | 19: 20 UTC

Sept. 27: Long March 6A | Unknown Payload | Taiyuan Satellite Launch Center, China | 12: 39 UTC

Sept. 28: Falcon 9 | Starlink 11-20 | Vandenberg Space Force Base, California | 23: 32 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Keeping up with Kuiper; New Glenn’s second flight slips Read More »

starship-will-soon-fly-over-towns-and-cities,-but-will-dodge-the-biggest-ones

Starship will soon fly over towns and cities, but will dodge the biggest ones


Starship’s next chapter will involve launching over Florida and returning over Mexico.

SpaceX’s Starship vehicle is encased in plasma as it reenters the atmosphere over the Indian Ocean on its most recent test flight in August. Credit: SpaceX

Some time soon, perhaps next year, SpaceX will attempt to fly one of its enormous Starship rockets from low-Earth orbit back to its launch pad in South Texas. A successful return and catch at the launch tower would demonstrate a key capability underpinning Elon Musk’s hopes for a fully reusable rocket.

In order for this to happen, SpaceX must overcome the tyranny of geography. Unlike launches over the open ocean from Cape Canaveral, Florida, rockets departing from South Texas must follow a narrow corridor to steer clear of downrange land masses.

All 10 of the rocket’s test flights so far have launched from Texas toward splashdowns in the Indian or Pacific Oceans. On these trajectories, the rocket never completes a full orbit around the Earth, but instead flies an arcing path through space before gravity pulls it back into the atmosphere.

If Starship’s next two test flights go well, SpaceX will likely attempt to send the soon-to-debut third-generation version of the rocket all the way to low-Earth orbit. The Starship V3 vehicle will measure 171 feet (52.1 meters) tall, a few feet more than Starship’s current configuration. The entire rocket, including its Super Heavy booster, will have a height of 408 feet (124.4 meters).

Starship, made of stainless steel, is designed for full reusability. SpaceX has already recovered and reflown Super Heavy boosters, but won’t be ready to recover the rocket’s Starship upper stage until next year, at the soonest.

That’s one of the next major milestones in Starship’s development after achieving orbital flight. SpaceX will attempt to bring the ship home to be caught back at the launch site by the launch tower at Starbase, Texas, located on the southernmost section of the Texas Gulf Coast near the US-Mexico border.

It was always evident that flying a Starship from low-Earth orbit back to Starbase would require the rocket to fly over Mexico and portions of South Texas. The rocket launches to the east over the Gulf of Mexico, so it must approach Starbase from the west when it comes in for a landing.

New maps published by the Federal Aviation Administration show where the first Starships returning to Texas may fly when they streak through the atmosphere.

Paths to and from orbit

The FAA released a document Friday describing SpaceX’s request to update its government license for additional Starship launch and reentry trajectories. The document is a draft version of a “tiered environmental assessment” examining the potential for significant environmental impacts from the new launch and reentry flight paths.

The federal regulator said it is evaluating potential impacts in aviation emissions and air quality, noise and noise-compatible land use, hazardous materials, and socioeconomics. The FAA concluded the new flight paths proposed by SpaceX would have “no significant impacts” in any of these categories.

SpaceX’s Starship rocket shortly before splashing into the Indian Ocean in August. Credit: SpaceX

The environmental review is just one of several factors the FAA considers when deciding whether to approve a new commercial launch or reentry license. According to the FAA, the other factors are public safety issues (such as overflight of populated areas and payload contents), national security or foreign policy concerns, and insurance requirements.

The FAA didn’t make a statement on any public safety and foreign policy concerns with SpaceX’s new trajectories, but both issues may come into play as the company seeks approval to fly Starship over Mexican towns and cities uprange from Starbase.

The regulator’s licensing rules state that a commercial launch and reentry should each pose no greater than a 1 in 10,000 chance of harming or killing a member of the public not involved in the mission. The risk to any individual should not exceed 1 in 1 million.

So, what’s the danger? If something on Starship fails, it could disintegrate in the atmosphere. Surviving debris would rain down to the ground, as it did over the Turks and Caicos Islands after two Starship launch failures earlier this year. Two other Starship flights ran into problems once in space, tumbling out of control and breaking apart during reentry over the Indian Ocean.

The most recent Starship flight last month was more successful, with the ship reaching its target in the Indian Ocean for a pinpoint splashdown. The splashdown had an error of just 3 meters (10 feet), giving SpaceX confidence in returning future Starships to land.

This map shows Starship’s proposed reentry corridor. Credit: Federal Aviation Administration

One way of minimizing the risk to the public is to avoid flying over large metropolitan areas, and that’s exactly what SpaceX and the FAA are proposing to do, at least for the initial attempts to bring Starship home from orbit. A map of a “notional” Starship reentry flight path shows the vehicle beginning its reentry over the Pacific Ocean, then passing over Baja California and soaring above Mexico’s interior near the cities of Hermosillo and Chihuahua, each with a population of roughly a million people.

The trajectory would bring Starship well north of the Monterrey metro area and its 5.3 million residents, then over the Rio Grande Valley near the Texas cities of McAllen and Brownsville. During the final segment of Starship’s return trajectory, the vehicle will begin a vertical descent over Starbase before a final landing burn to slow it down for the launch pad’s arms to catch it in midair.

In addition to Monterrey, the proposed flight path dodges overflights of major US cities like San Diego, Phoenix, and El Paso, Texas.

Let’s back up

Setting up for this reentry trajectory requires SpaceX to launch Starship into an orbit with exactly the right inclination, or angle to the equator. There are safety constraints for SpaceX and the FAA to consider here, too.

All of the Starship test flights to date have launched toward the east, threading between South Florida and Cuba, south of the Bahamas, and north of Puerto Rico before heading over the North Atlantic Ocean. For Starship to target just the right orbit to set up for reentry, the rocket must fly in a slightly different direction over the Gulf.

Another map released by the FAA shows two possible paths Starship could take. One of the options goes to the southeast between Mexico’s Yucatan Peninsula and the western tip of Cuba, then directly over Jamaica as the rocket accelerated into orbit over the Caribbean Sea. The other would see Starship departing South Texas on a northeasterly path and crossing over North Florida before reaching the Atlantic Ocean.

While both trajectories fly over land, they avoid the largest cities situated near the flight path. For example, the southerly route misses Cancun, Mexico, and the northerly path flies between Jacksonville and Orlando, Florida. “Orbital launches would primarily be to low inclinations with flight trajectories north or south of Cuba that minimize land overflight,” the FAA wrote in its draft environmental assessment.

The FAA analyzed two launch trajectory options for future orbital Starship test flights. Credit: Federal Aviation Administration

The proposed launch and reentry trajectories would result in temporary airspace closures, the FAA said. This could force delays or rerouting of anywhere from seven to 400 commercial flights for each launch, according to the FAA’s assessment.

Launch airspace closures are already the norm for Starship test flights. The FAA concluded that the reentry path over Mexico would require the closure of a swath of airspace covering more than 4,200 miles. This would affect up to 200 more commercial airplane flights during each Starship mission. Eventually, the FAA aims to shrink the airspace closures as SpaceX demonstrates improved reliability with Starship test flights.

Eventually, SpaceX will move some flights of Starship to Florida’s Space Coast, where rockets can safely launch in many directions over the Atlantic. By then, SpaceX aims to be launching Starships at a regular cadence—first, multiple flights per month, then per week, and then per day.

This will enable all of the things SpaceX wants to do with Starship. Chief among these goals is to fly Starships to Mars. Before then, SpaceX must master orbital refueling. NASA also has a contract with SpaceX to build Starships to land astronauts on the Moon’s south pole.

But all of that assumes SpaceX can routinely launch and recover Starships. That’s what engineers hope to soon prove they can do.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Starship will soon fly over towns and cities, but will dodge the biggest ones Read More »

rocket-report:-european-rocket-reuse-test-delayed;-nasa-tweaks-sls-for-artemis-ii

Rocket Report: European rocket reuse test delayed; NASA tweaks SLS for Artemis II


All the news that’s fit to lift

“There’s a lot of interest because of the fear that there’s just not a lot of capacity.”

Isar Aerospace’s Spectrum rocket lifts off from Andøya Spaceport, Norway, on March 30, 2025. Credit: Isar Aerospace/Brady Kenniston/NASASpaceflight.com

Welcome to Edition 8.11 of the Rocket Report! We have reached the time of year when it is possible the US government will shut down its operations at the end of this month, depending on congressional action. A shutdown would have significant implications for many NASA missions, but most notably a couple of dozen in the science directorate that the White House would like to shut down. At Ars, we will be watching this issue closely in the coming days. As for Artemis II, it seems to be far enough along that a launch next February seems possible as long as any government closure does not drag on for weeks and weeks.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Rocket Lab to sell common shares. The space company said Tuesday that it intends to raise up to $750 million by selling common shares, MSN reports. This new at-the-market program replaces a prior agreement that allowed Rocket Lab to sell up to $500 million of stock. Under that earlier arrangement, the company had sold roughly $396.6 million in shares before ending the program.

Seeking to scale up … The program’s structure enables Rocket Lab to sell shares periodically through the appointed agents, who may act as either principals or intermediaries. The larger offering indicates that Rocket Lab is aiming to bolster its cash reserves to support ongoing development of its launch services, including the medium-lift Neutron rocket and spacecraft manufacturing operations. The company’s stock dropped by about 10 percent after the announcement.

Astra targets mid-2026 for Rocket 4 debut. Astra is targeting next summer for the first flight of its Rocket 4 vehicle as the company prepares to reenter the launch market, Space News reports. At the World Space Business Week conference in Paris, Chris Kemp, chief executive of Astra, said the company was on track for a first launch of Rocket 4 in summer 2026 from Cape Canaveral, Florida. He highlighted progress Astra is making, such as tests of a new engine the company developed for the vehicle’s first stage that produces 42,000 pounds of thrust. Two of those engines will power the first stage, while the upper stage will use a single Hadley engine produced by Ursa Major.

Pricing a launch competitively … The vehicle will initially be capable of placing about 750 kilograms into low-Earth orbit for a price of $5 million. “That’ll be very competitive,” Kemp said in an interview after the presentation, similar to what SpaceX charges for payloads of that size through its rideshare program. The company is targeting customers seeking alternatives to SpaceX in a constrained launch market. “There’s a lot of interest because of the fear that there’s just not a lot of capacity,” he said, particularly for satellites too large to launch on Rocket Lab’s Electron. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Avio seeks to raise 400 million euros. Italian rocket builder Avio’s board of directors has approved a 400 million euro ($471 million) capital increase to fund an expansion of its manufacturing capacity to meet rising demand in the global space and defense markets, European Spaceflight reports. The company expects to complete the capital increase by the end of the year; however, it is still subject to a shareholder vote, scheduled for October 23.

Small rockets, big plans … The capital raise is part of a new 10-year business plan targeting an average annual growth rate of about 10 percent in turnover and more than 15 percent in core profit. This growth is projected to be driven by a higher Vega C launch cadence, the introduction of the Vega E rocket, continued participation in the Ariane 6 program by providing solid rocket boosters, and the construction of a new defense production facility in the United States, which is expected to be completed by 2028.

Isar working toward second Spectrum launch. In a briefing this week, Isar Aerospace executives discussed the outcome of the investigation into the March 30 launch of the Spectrum rocket from the Andøya Spaceport in northern Norway, Space News reports. The vehicle activated its flight termination system about half a minute after liftoff, shutting down its engines and plummeting into the waters just offshore of the pad. The primary issue with the rocket was a loss of attitude control.

Bend it like Spectrum … Alexandre Dalloneau, vice president of mission and launch operations at Isar, said that the company had not properly characterized bending modes of the vehicle at liftoff. Despite the failure to get to orbit, Dalloneau considers the first Spectrum launch a successful test flight. The company is working toward a second flight of Spectrum, which will take place “as soon as possible,” Dalloneau said. He did not give a specific target launch date, but officials indicated they were hoping to launch near the end of this year or early next year. (submitted by EllPeaTea)

Callisto rocket test delayed again. A new document from the French space agency CNES has revealed that the inaugural flight of the Callisto reusable rocket demonstrator has slipped from 2026 to 2027, European Spaceflight reports. This reusable launch testbed is a decade old. Conceived in 2015, the Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations (Callisto) project is a collaboration between CNES and the German and Japanese space agencies aimed at maturing reusable rocket technology for future European and Japanese launch systems.

Still waiting … The Callisto demonstrator will stand 14 meters tall, with a width of 1.1 meters and a takeoff mass of 3,500 kilograms. This latest revision to the program’s timeline comes less than a year after JAXA confirmed in October 2024 that the program’s flight-test campaign had been pushed to 2026. The campaign will be carried out from the Guiana Space Centre in French Guiana and will include an integration phase followed by eight test flights and two demonstration flights, all to be completed over a period of eight months. (submitted by EllPeaTea)

Falcon 9 launches larger Cygnus spacecraft. The first flight of Northrop’s upgraded Cygnus spacecraft, called Cygnus XL, launched Sunday evening from Cape Canaveral Space Force Station, Florida, en route to the International Space Station, Ars reports. Without a rocket of its own, Northrop Grumman inked a contract with SpaceX for three Falcon 9 launches to carry the resupply missions until engineers could develop a new, all-domestic version of the Antares rocket. Sunday’s launch was the last of these three Falcon 9 flights. Northrop is partnering with Firefly Aerospace on a new rocket, the Antares 330, using a new US-made booster stage and engines.

A few teething issues … This new rocket won’t be ready to fly until late 2026, at the earliest, somewhat later than Northrop officials originally hoped. The company confirmed it has purchased a fourth Falcon 9 launch from SpaceX for the next Cygnus cargo mission in the first half of next year, in a bid to bridge the gap until the debut of the Antares 330 rocket. Due to problems with the propulsion system on the larger Cygnus vehicle, its arrival at the space station was delayed. But the vehicle successfully reached the station on Thursday, carrying a record 11,000 pounds of cargo.

Launch companies still struggling with cadence. Launch companies are reiterating plans to sharply increase flight rates to meet growing government and commercial demand, even as some fall short of earlier projections, Space News reports. Executives speaking at a September 15 panel at the World Space Business Week conference highlighted efforts to scale up flights of new vehicles that have entered service in the last two years. “The key for us is cadence,” said Laura Maginnis, vice president of New Glenn mission management at Blue Origin. However, the publication notes, at this time last year, Blue Origin was projecting eight to 10 New Glenn launches this year. There has been one.

It’s difficult to go from 1 to 100 … Blue Origin is not alone in falling short of forecasts. United Launch Alliance projected 20 launches in 2025 between the Atlas 5 and Vulcan Centaur, but in August, CEO Tory Bruno said the company now expects nine. As recently as June, Arianespace projected five Ariane 6 launches this year, including the debut of the more powerful Ariane 64, with four solid-rocket boosters, but has completed only two Ariane 62 flights, including one in August.

NASA makes some modifications to SLS for Artemis II. This week, the space agency declared the SLS rocket is now “ready” to fly crew for the Artemis II mission early next year. However, NASA and its contractors did make some modest changes after the first flight of the booster in late 2022. For example, the Artemis II rocket includes an improved navigation system compared to Artemis I. Its communications capability has also been improved by repositioning antennas on the rocket to ensure continuous communications with the ground.

Not good, but bad vibrations … Additionally, SLS will jettison the spent boosters four seconds earlier during the Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights. During the Artemis I test flight, the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that were caused by unsteady airflow. To steady the airflow, a pair of 6-foot-long strakes flank each booster’s forward connection points on the SLS intertank.

Federal judge sides with SpaceX, FAA. The initial launch of Starship in April 2023 spread debris across a wide area, sending pulverized concrete as far as six miles away as the vehicle tore up the launch pad. After this, environmental groups and other organizations sued the FAA when the federal organization reviewed the environmental impact of this launch and cleared SpaceX to launch again several months later. A federal judge in Washington, DC, ruled this week that the FAA did not violate environmental laws as part of this review, the San Antonio Express-News reports.

Decision grounded within reason … In his opinion issued Monday, Judge Carl Nichols determined the process was not capricious, writing, “Most of the (programmatic environmental assessment’s) conclusions were well-reasoned and supported by the record, and while parts of its analysis left something to be desired, even those parts fell ‘within a broad zone of reasonableness.'” The environmental organizations said they were considering the next steps for the case and a potential appeal. (submitted by RP)

Next three launches

September 13: Falcon 9 | Starlink 17-12 | Vandenberg Space Force Base, California | 15: 44 UTC

September 21: Falcon 9 | Starlink 10-27 | Cape Canaveral Space Force Station, Florida | 09: 20 UTC

September 21: Falcon 9 | NROL-48 | Vandenberg Space Force Base, California | 17: 23 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: European rocket reuse test delayed; NASA tweaks SLS for Artemis II Read More »

rocket-report:-russia’s-rocket-engine-predicament;-300th-launch-to-the-iss

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS


North Korea test-fired a powerful new solid rocket motor for its next-generation ICBM.

A Soyuz-2.1a rocket is propelled by kerosene-fueled RD-107A and RD-108A engines after lifting off Thursday with a resupply ship bound for the International Space Station. Credit: Roscosmos

Welcome to Edition 8.10 of the Rocket Report! Dear readers, if everything goes according to plan, four astronauts are less than six months away from traveling around the far side of the Moon and breaking free of low-Earth orbit for the first time in more than 53 years. Yes, there are good reasons to question NASA’s long-term plans for the Artemis lunar programthe woeful cost of the Space Launch System rocket, the complexity of new commercial landers, and a bleak budget outlook. But many of us who were born after the Apollo Moon landings have been waiting for this moment our whole lives. It is almost upon us.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

North Korea fires solid rocket motor. North Korea said Tuesday it had conducted the final ground test of a solid-fuel rocket engine for a long-range ballistic missile in its latest advancement toward having an arsenal that could viably threaten the continental United States, the Associated Press reports. The test Monday observed by leader Kim Jong Un was the ninth of the solid rocket motor built with carbon fiber and capable of producing 1,971 kilonewtons (443,000 pounds) of thrust, more powerful than past models, according to the North’s official Korean Central News Agency.

Mobility and flexibility … Solid-fueled intercontinental ballistic missiles, or ICBMs, have advantages over liquid-fueled missiles, which have historically comprised the bulk of North Korea’s inventory. Solid rocket motors can be stored for longer periods of time and are easier to conceal, transport, and launch on demand. The new solid rocket motor will be used on a missile called the Hwasong-20, according to North Korean state media. The AP reports some analysts say North Korea may conduct another ICBM test around the end of the year, showcasing its military strength ahead of a major ruling party congress expected in early 2026.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Astrobotic eyes Andøya. US-based lunar logistics company Astrobotic and Norwegian spaceport operator Andøya Space have signed a term sheet outlining the framework for a Launch Site Agreement, European Spaceflight reports. The agreement, once finalized, will facilitate flights of Astrobotic’s Xodiac lander testbed from the Andøya Space facilities. The Xodiac vertical takeoff, vertical landing rocket was initially developed by Masten Space Systems to simulate landing on the Moon and Mars. When Masten filed for bankruptcy in 2022, Astrobotic acquired its intellectual property and assets, including the Xodiac vehicle.

Across the pond … So far, the small Xodiac rocket has flown on low-altitude atmospheric hops from Mojave, California, reaching altitudes of up to 500 meters, or 1,640 feet. The agreement between Astrobotic and Andøya paves the way for “several” Xodiac flight campaigns from Andøya Space facilities on the Norwegian coast. “Xodiac’s presence at Andøya represents a meaningful step toward delivering reliable, rapid, and cost-effective testing and demonstration capabilities to the European space market,” said Astrobotic CEO John Thornton.

Ursa Major breaks ground in Colorado. Ursa Major on Wednesday said it has broken ground on a new 400-acre site where it will test and qualify large-scale solid rocket motors for current and future missiles, including the Navy’s Standard Missile fleet, Defense Daily reports. The new site in Weld County, Colorado, north of Denver, will be ready for testing to begin in the fourth quarter of 2025. Ursa Major will be able to conduct full-scale static firings, and drop and temperature storage testing for current and future missile systems.

Seeking SRM options … Ursa Major said the new facility will support national and missile defense programs. The company’s portfolio includes solid rocket motors (SRMs) ranging from 2 inches to 22 inches in diameter for missiles like the Stinger, Javelin, and air-defense interceptors. Ursa Major aims to join industry incumbents Northrop Grumman, L3Harris, and newcomer Anduril as a major supplier of SRMs to the government. “This facility represents a major step forward in our ability to deliver qualified SRMs that are scalable, flexible, and ready to meet the evolving threat environment,” said Dan Jablonsky, CEO of Ursa Major, in a statement. “It’s a clear demonstration of our commitment and ability to rapidly advance and expand the American-made solid rocket motor industrial base that the country needs, ensuring warfighters will have the quality and quantity of SRMs needed to meet mission demands.”

Falcon 9 launches first satellites in a military megaconstellation. The first 21 satellites in a constellation that could become a cornerstone for the Pentagon’s Golden Dome missile-defense shield successfully launched from California Wednesday aboard a SpaceX Falcon 9 rocket, Ars reports. The Falcon 9 took off from Vandenberg Space Force Base, California, and headed south over the Pacific Ocean, reaching an orbit over the poles before releasing the 21 military-owned satellites to begin several weeks of activations and checkouts.

First of many … These 21 satellites will boost themselves to a final orbit at an altitude of roughly 600 miles (1,000 kilometers). The Pentagon plans to launch 133 more satellites over the next nine months to complete the build-out of the Space Development Agency’s first-generation, or Tranche 1, constellation of missile-tracking and data-relay satellites. Military officials have worked for six years to reach this moment. The Space Development Agency (SDA) was established during the first Trump administration, which made plans for an initial set of demonstration satellites that launched a couple of years ago. In 2022, the Pentagon awarded contracts for the first 154 operational spacecraft, including the ones launched Wednesday. “Back in 2019, when the SDA was stood up, it was to do two things. One was to make sure that we can do beyond line of sight targeting, and the other was to pace the threat, the emerging threat, in the missile-warning and missile-tracking domain. That’s what the focus has been,” said Gurpartap “GP” Sandhoo, the SDA’s acting director.

Another Falcon 9 was delayed three times. SpaceX scrubbed launching a communications satellite from an Indonesian company for a third consecutive day Wednesday, Spaceflight Now reports. Possible technical issues got in the way of a launch attempt Wednesday evening after back-to-back days of weather delays at Cape Canaveral Space Force Station, Florida. The Falcon 9 finally launched Thursday evening with the Boeing-built Nusantara Lima communications satellite, targeting a geosynchronous transfer orbit. It’s the latest satellite from the Indonesian company Pasifik Satelit Nusantara.

A declining market … This was just the fifth geosynchronous communications satellite to launch on a commercial rocket this year, all by SpaceX. There were 21 such satellites that launched on commercial vehicles in 2015, including SpaceX’s Falcon 9, Europe’s Ariane 5, Russia’s Proton, ULA’s Atlas V, and Japan’s H-IIA. Much of the world’s launch capacity today is used to deploy smaller communications satellites into low-Earth orbit, primarily for broadband connectivity rather than for the video broadcast market once dominated by higher-altitude geosynchronous satellites.

Putin urges Russia to build more rocket engines. Russian President Vladimir Putin urged aerospace industry leaders on September 5 to press on with efforts to develop booster rocket engines for space launch vehicles and build on Russia’s longstanding reputation as a leader in space technology, Reuters reports. Putin, who spent the preceding days in China and the Russian far eastern port of Vladivostok, flew to the southern Russian city of Samara, where he met industry specialists and toured the Kuznetsov design bureau engine manufacturing plant.

A shell of its former self … “It is important to consistently renew production capacity in terms of engines for booster rockets,” Russian news agencies quoted Putin as saying during the visit. “And in doing so, we must not only meet our own current and future needs but also move actively on world markets and be successful competitors.” The Kuznetsov plant in Samara builds medium-class RD-107 and RD-108 engines for Russia’s Soyuz-2 rockets, which launch Russian military satellites and crew and cargo to the International Space Station. Their designs can be traced to the dawn of the Space Age nearly 70 years ago. Meanwhile, the outlook for heavier-duty Russian rocket engines is murky, at best. Russia’s most-flown large rocket engine in the post-Cold War era, the RD-180, produced by a company called Energomash, is out of production after the end of sales to the United States.

India nabs a noteworthy launch contract. Astroscale, a satellite servicing and space debris mitigation company based in Japan, has selected India’s Polar Satellite Launch Vehicle (PSLV) to deliver a small satellite named ISSA-J1 to orbit in 2027. This is an interesting mission. The ISSA-J1 spacecraft will fly up to two large pieces of satellite debris in orbit to image and inspect them. ISSA-J1, developed in partnership with the Japanese government, is one in a series of Astroscale missions testing different ways of approaching, monitoring, capturing, and refueling other objects in space. The launch agreement was signed between Astroscale and NewSpace India Limited, the commercial arm of India’s space agency.

Rideshare not an option … “We selected NSIL after thorough evaluations of more than 10 launch service providers over the past year, considering technical capabilities, track record, cost, and other elements,” said Eddie Kato, president and managing director of Astroscale Japan. India’s PSLV is right-sized for a mission like this. ISSA-J1 is a rarity in that it must launch on a dedicated rocket because it has to reach a specific orbit to line up with the pieces of space debris it will approach and inspect. Rideshare launches, such as those that routinely fly on SpaceX’s Falcon 9 rocket, are cheaper but go to standard orbits popular for many different types of satellite missions. A dedicated launch on a Falcon 9 would presumably have been more expensive than a flight on India’s smaller PSLV. Rocket Lab’s Electron, another rocket popular for dedicated launches of small satellites, lacks the performance required for Astroscale’s mission.

Russian cargo en route to ISS. Another cargo ship is flying to humanity’s orbital outpost with the successful launch of Russia’s Progress MS-32 supply freighter Thursday from the Baikonur Cosmodrome in Kazakhstan, NASASpaceflight.com reports. The supply ship launched aboard a Soyuz-2.1a rocket and arrived in orbit about nine minutes later, kicking off a two-day pursuit of the International Space Station. This was the 300th launch of an assembly, crew, or cargo mission to the ISS since 1998, including a handful of missions that didn’t reach the complex due to rocket or spacecraft failures.

Important stuff … The Progress MS-32 cargo craft will dock with the aft port of the space station’s Russian Zvezda service module Saturday. The payloads flying on the Progress mission include food, experiments, clothing, water, air, and propellant to be pumped into the space station’s onboard tanks. The spacecraft will also reboost the lab’s orbit.

Metallic tiles? Not so great. It has been two weeks since SpaceX’s last Starship test flight, and engineers have diagnosed issues with its heat shield, identified improvements, and developed a preliminary plan for the next time the ship heads into space, Ars reports. Bill Gerstenmaier, a SpaceX executive in charge of build and flight reliability, presented the findings Monday at the American Astronautical Society’s Glenn Space Technology Symposium in Cleveland. The test flight went “extremely well,” Gerstenmaier said, but he noted some important lessons learned with the ship’s heat shield.

Crunch wrap reigns supreme “We were essentially doing a test to see if we could get by with non-ceramic tiles, so we put three metal tiles on the side of the ship to see if they would provide adequate heat control, because they would be simpler to manufacture and more durable than the ceramic tiles. It turns out they’re not,” Gerstenmaier said. “The metal tiles… didn’t work so well.” One bright spot with the heat shield was the performance of a new experimental material around and under the tiles. “We call it crunch wrap,” Gerstenmaier said. “It’s like a wrapping paper that goes around each tile.” On the next Starship flight, SpaceX will likely cover more parts of the heat shield with this crunch wrap material. Gerstenmaier said the inaugural flight of Starship Version 3, with upgraded engines and more fuel, is now set to occur next year.

An SLS compromise might be afoot in DC. The Trump administration is seeking to cancel NASA’s Space Launch System rocket after two more flights, but key lawmakers in Congress, including Republican Sen. Ted Cruz of Texas, aren’t ready to go along.  So is this an impasse? Possibly not, as sources say the White House and Congress may not be all that far apart on how to handle this. The solution involves canceling part of the SLS rocket now, but not all of it, Ars reports.

Goodbye EUS? … The compromise might be to cancel a large new upper stage for the SLS rocket called the Exploration Upper Stage. This would save NASA billions of dollars, and the agency could instead procure commercial upper stages, such as those built by United Launch Alliance or Blue Origin, to fly on SLS rockets after NASA’s Artemis III mission. It would also eliminate the need for NASA to finish building an expensive new launch tower at Kennedy Space Center, Florida. The upper stage flying on the first three SLS missions is no longer in production. Sources indicated to Ars that Blue Origin has already begun work on a modified version of its New Glenn upper stage that could fit within the shroud of the SLS rocket.

Next three launches

Sept. 13: Soyuz-2.1b | Glonass-K1 No. 18L | Plesetsk Cosmodrome, Russia | 02: 30 UTC

Sept. 13: Falcon 9 | Starlink 17-10 | Vandenberg Space Force Base, California | 15: 41 UTC

Sept. 14: Falcon 9 | Cygnus NG-23 | Cape Canaveral Space Force Station, Florida | 22: 11 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS Read More »

rocket-report:-neutron’s-pad-opens-for-business;-spacex-gets-falcon-9-green-light

Rocket Report: Neutron’s pad opens for business; SpaceX gets Falcon 9 green light


All the news that’s fit to lift

“Nobody’s waving the white flag here until the last hour of the last day.”

Image of a Starlink launch on Falcon 9 this week. Credit: SpaceX

Welcome to Edition 8.09 of the Rocket Report! The biggest news of the week happened inside the Beltway rather than on a launch pad somewhere. In Washington, DC, Congress has pushed back on the Trump administration’s plan to stop flying the Space Launch System rocket after Artemis III. Congress made it clear that it wants to keep the booster in business for a long time. The big question now is whether the Trump White House will blink.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Israel launches SAR satellite. The Israel Ministry of Defense, Israel Defense Forces, and Israel Aerospace Industries successfully launched the Ofek 19 satellite on Tuesday from the Palmachim Airbase. The launch was carried out by the country’s solid-propellant Shavit 2 rocket. Ofek 19 is a synthetic aperture radar observation satellite with enhanced capabilities, 7 Israel National News reports.

A unique launch posture … This was the seventh launch of the Shavit-2 vehicle, which made its debut in June 2007. The most recent launch prior to this week occurred in March 2023. Because of its geographic location and difficult relations with surrounding countries, Israel launches its rockets to the west, over the Mediterranean Sea. (submitted by MarkW98)

Canadian launch firm invests in launch site. Earlier this summer, Reaction Dynamics, an Ontario-based launch company, closed on a Series A funding round worth $10 million. This will support the next phase of development of the Canadian company’s hybrid propulsion system, of which an initial suborbital demonstration flight is planned for this winter. Now the company has taken some of this funding and invested in a launch site in Nova Scotia, SpaceQ reports.

Getting in on the ground floor … In a transaction worth $1.2 million, Reaction Dynamics is investing in Maritime Launch Services, which is developing the Spaceport Nova Scotia facility. Reaction Dynamics intends to launch its Aurora-8 rocket from the Canadian launch site. Bachar Elzein, the CEO of Reaction Dynamics, said the move made sense for two reasons. The first is that it secures “a spot to launch our very first orbital rocket,” with Elzein adding, “we believe in their vision,” and thus wanted to invest. That second factor had to do with all the work, the heavy lifting, MLS has done to date, to build a spaceport from the ground up. (submitted by JoeyS)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

MaiaSpace completes tank tests. French rocket builder and ArianeGroup subsidiary MaiaSpace announced the completion of a monthslong test campaign that subjected several subscale prototypes of its propellant tanks to high-pressure burst tests, European Spaceflight reports. Over the course of six months, the company conducted 15 “burst” tests of subscale propellant tanks. Burst tests push tanks to failure to assess their structural limits and ensure they can safely withstand pressures well beyond normal operating conditions.

Working toward space … The data collected will be used to validate mechanical models that will inform the final design of the full-scale propellant tanks. The tests come as MaiaSpace continues to work toward the debut flight of its Maia rocket, which could take place in 2027 from French Guiana. At present, the company intends the rocket to have a lift capacity of 1.5 metric tons to low-Earth orbit.

Orienspace secures B+ round funding. Chinese commercial rocket company Orienspace has raised tens of millions of dollars in Series B+ financing as it moves towards a key test flight, Space News reports. Orienspace secured funding of between $27 million and $124 million, according to the Chinese-language Taibo Network. The capital will be used mainly for the follow-up development and mass production of the Gravity-2 medium-lift liquid launch vehicle.

Not a small rocket … The company will soon begin comprehensive ground verification tests for the Gravity-2 and is scheduled to carry out its first flight test by the end of this year. In July, Orienspace successfully conducted a hot fire test of a Gravity-2 kerosene-liquid oxygen first-stage engine, including gimbal and valve system evaluations. Gravity-2 is expected to lift on the order of 20 metric tons to low-Earth orbit.

Rocket Lab unveils Neutron launch complex. As Rocket Lab prepares to roll out its new Neutron, the firm recently unveiled the launch complex from which the vehicle will fly, DefenseNews reports. Located within the Virginia Space Authority’s Mid-Atlantic Regional Spaceport in Wallops Island, the facility, dubbed Launch Complex 3, will support testing, launch, and return missions for the reusable rocket. Rocket Lab sees Neutron as a contender to help ease the bottleneck in demand from both commercial and military customers for a ride to space. Today, that demand is largely being met by a single provider in the medium-lift market, SpaceX.

A launch this year? … It sounds unlikely. During the event, Rocket Lab founder Peter Beck said that although he believes the company’s plan to launch this year is within reach, the schedule is aggressive with no margin for error. Speaking with reporters at the launch site, Beck said the company has some key testing in the coming months to qualify key stages of the rocket, which will give it a better idea of whether it can meet that 2025 timeline. “Nobody’s waving the white flag here until the last hour of the last day,” he said. This one is unlikely to break Berger’s Law, however.

SpaceX obtains approval to ramp up Falcon 9 cadence. The Federal Aviation Administration issued a record of decision on Wednesday approving SpaceX’s plan to more than double the number of Falcon 9 launches from Space Launch Complex-40 (SLC-40), the busiest of the company’s four operational launch pads. The FAA concluded that the proposed launch rate “would not significantly impact the quality of the human environment,” Ars reports.

Reaching ludicrous speed … The environmental review paves the way for SpaceX to launch up to 120 Falcon 9 rockets per year from SLC-40, an increase from 50 launches covered in a previous FAA review in 2020. Since then, the FAA has issued SpaceX temporary approval to go beyond 50 launches from SLC-40. For example, SpaceX launched 62 of its overall 132 Falcon 9 flights last year from SLC-40. SpaceX’s goal for this year is 170 Falcon 9 launches, and the company is on pace to come close to this target.

NASA sets date for science mission. NASA said Thursday that a trio of spacecraft to study the Sun will launch no earlier than September 23, on a Falcon 9 rocket. The missions include NASA’s IMAP (Interstellar Mapping and Acceleration Probe), NASA’s Carruthers Geocorona Observatory, and NOAA’s SWFO-L1 (Space Weather Follow On-Lagrange 1) spacecraft. After launching from Kennedy Space Center, the spacecraft will travel together to their destination at the first Earth-Sun Lagrange point (L1), around 1 million miles from Earth toward the Sun.

Fun in the Sun … The missions will each focus on different effects of the solar wind and space weather, from their origins at the Sun to their farthest reaches billions of miles away at the edge of our Solar System. Research and observations from the missions will help us better understand the Sun’s influence on Earth’s habitability, map our home in space, and protect satellites and voyaging astronauts and airline crews from space weather impacts.

Starship’s heat shield shows promise. One of the key issues ahead of last week’s test of SpaceX’s Starship vehicle was the performance of the upper stage heat shield, Ars reports. When the vehicle landed in the Indian Ocean, it had a decidedly orange tint. So what gives? SpaceX founder Elon Musk provided some clarity after the flight, saying, “Worth noting that the heat shield tiles almost entirely stayed attached, so the latest upgrades are looking good! The red color is from some metallic test tiles that oxidized and the white is from insulation of areas where we deliberately removed tiles.”

A step toward the goal … The successful test and additional information from Musk suggest that SpaceX is making progress on developing a heat shield for Starship. This really is the key technology to make an upper stage rapidly reusable—NASA’s space shuttle orbiters were reusable but required a standing army to refurbish the vehicle between flights. To unlock Starship’s potential, SpaceX wants to be able to refly Starships within 24 hours.

Ted Cruz emerges as key SLS defender. All of the original US senators who created and sustained NASA’s Space Launch System rocket over the last 15 years—Bill Nelson, Kay Bailey Hutchison, and Richard Shelby—have either retired or failed to win reelection. However, Ars reports that a new champion has emerged to continue the fight: Texas Republican Ted Cruz. As part of its fiscal year 2026 budget, the White House sought to end funding for the Space Launch System rocket after the Artemis III mission, and also cancel the Lunar Gateway, an orbital space station that provides a destination for the rocket.

Money for future missions … However, Cruz subsequently crafted a NASA provision tacked onto President Trump’s “One Big, Beautiful Bill.” The Cruz addendum provided $6.7 billion in funding for two additional SLS missions, Artemis IV and Artemis V, and to continue Gateway construction. In several hearings this year, Cruz has made it clear that his priorities for human spaceflight are to beat China back to the Moon and maintain a presence there. However, it is now increasingly clear that he views this as only being possible through continued use of NASA’s SLS rocket.

SpaceX seeks to solve Starship prop demands. If SpaceX is going to fly Starships as often as it wants to, it’s going to take more than rockets and launch pads. Tanker trucks have traditionally delivered rocket propellant to launch pads at America’s busiest spaceports in Florida and California. SpaceX has used the same method of bringing propellant for the first several years of operations at Starbase. But a reusable Starship’s scale dwarfs that of other rockets. It stands more than 400 feet tall, with a capacity for more than a million gallons of super-cold liquid methane and liquid oxygen propellants.

That’s a lot of gas … SpaceX also uses large quantities of liquid nitrogen to chill and purge the propellant loading system for Starship. It takes more than 200 tanker trucks traveling from distant refineries to deliver all of the methane, liquid oxygen, and liquid nitrogen for a Starship launch. SpaceX officials recognize this is not an efficient means of conveying these commodities to the launch pad. It takes time, emits pollution, and clogs roadways. SpaceX’s solution to some of these problems is to build its own plants to generate cryogenic fluids. In a new report, Ars explains how the company plans to do this.

Next three launches

September 5: Falcon 9 | Starlink 10-57 | Kennedy Space Center Florida | 11: 29 UTC

September 5: Ceres 1 | Unknown payload | Jiuquan Satellite Launch Center, China | 11: 35 UTC

September 6: Falcon 9 | Starlink 17-9 | Vandenberg Space Force Base, California | 15: 45 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: Neutron’s pad opens for business; SpaceX gets Falcon 9 green light Read More »

starship’s-heat-shield-appears-to-have-performed-quite-well-in-test

Starship’s heat shield appears to have performed quite well in test

One of the more curious aspects of the 10th flight of SpaceX’s Starship rocket on Tuesday was the striking orange discoloration of the second stage. This could be observed on video taken from a buoy near the landing site as the vehicle made a soft landing in the Indian Ocean.

This color—so different from the silvery skin and black tiles that cover Starship’s upper stage—led to all sorts of speculation. Had heating damaged the stainless steel skin? Had the vehicle’s tiles been shucked off, leaving behind some sort of orange adhesive material? Was this actually NASA’s Space Launch System in disguise?

The answer to this question was rather important, as SpaceX founder Elon Musk had said before this flight that gathering data about the performance of this heat shield was the most important aspect of the mission.

We got some answers on Thursday. During the afternoon, the company posted some new high-resolution photos, taken by a drone in the vicinity of the landing location. They offered a clear view of the Starship vehicle with its heat shield intact, albeit with a rust-colored tint.

Musk provided some clarity on this discoloration on Thursday evening, writing on the social media site X, “Worth noting that the heat shield tiles almost entirely stayed attached, so the latest upgrades are looking good! The red color is from some metallic test tiles that oxidized and the white is from insulation of areas where we deliberately removed tiles.”

The new images and information from Musk suggest that SpaceX is making progress on developing a heat shield for Starship. This really is the key technology to make an upper stage rapidly reusable—NASA’s space shuttle orbiters were reusable but required a standing army to refurbish the vehicle between flights. To unlock Starship’s potential, SpaceX wants to be able to refly Starships within 24 hours.

Starship’s heat shield appears to have performed quite well in test Read More »

rocket-report:-spacex-achieved-daily-launch-this-week;-ula-recovers-booster

Rocket Report: SpaceX achieved daily launch this week; ULA recovers booster


Firefly Aerospace reveals why its Alpha booster exploded after launch in April.

Starship and its Super Heavy booster ascend through a clear sky over Starbase, Texas, on Tuesday evening. A visible vapor cone enveloped the rocket as it passed through maximum aerodynamic pressure and the speed of sound. Credit: Stephen Clark/Ars Technica

Welcome to Edition 8.08 of the Rocket Report! What a week it’s been for SpaceX. The company completed its first successful Starship test flight in nearly a year, and while it wasn’t perfect, it sets up SpaceX for far more ambitious tests ahead. SpaceX’s workhorse rocket, the Falcon 9, launched six times since our last edition of the Rocket Report. Many of these missions were noteworthy in their own right, including the launch of the US military’s X-37B spaceplane, an upgraded Dragon capsule to boost the International Space Station to a higher orbit, and the record 30th launch and landing of a flight-proven Falcon 9 booster. All told, that’s seven SpaceX launches in seven days.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Firefly announces cause of Alpha launch failure. Firefly Aerospace closed the investigation into the failure of one of its Alpha rockets during an April mission for Lockheed Martin and received clearance from the FAA to resume launches, Payload reports. The loss of the launch vehicle was a dark cloud hanging over the company’s otherwise successful IPO this month. The sixth flight of Firefly’s Alpha rocket launched in April from Vandenberg Space Force Base, California, and failed when its first stage booster broke apart milliseconds after stage separation. This created a shockwave that destroyed the engine nozzle extension on the second stage, damaging the engine before the second stage ran out of propellant seconds before it attained orbital velocity. Both stages ultimately fell into the Pacific Ocean.

Too much stress … Investigators concluded that “plume induced flow separation” caused the failure. The phenomenon occurs when a rocket’s exhaust disrupts airflow around the vehicle in flight. In this case, Firefly said the rocket was flying at a higher angle of attack than prior missions, which resulted in the flow separation and created intense heat that broke the first stage apart just after it jettisoned from the second stage. Firefly will increase heat shielding on the first stage of the rocket and fly at reduced angles of attack on future missions. Alpha has now launched six times since 2021, with only two complete successes. Firefly said it was working on setting a date for the seventh Alpha launch. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

ESA books a ticket on European launchers. The European Space Agency has awarded launch service contracts to Avio and Isar Aerospace under its Flight Ticket Initiative, European Spaceflight reports. Announced in October 2023, the Flight Ticket Initiative is a program run jointly by ESA and the European Union that offers subsidized flight opportunities for European companies and organizations seeking to demonstrate new satellite technologies in orbit. The initiative is part of ESA’s strategy to foster the continent’s commercial space industry, offering institutional funding to support satellite and launch companies. Avio won contracts to launch three small European space missions as secondary payloads on Vega C rockets flying into low-Earth orbit. Isar Aerospace will launch two small satellite missions to orbit for European companies.

No other options … Avio and Isar Aerospace were the obvious contenders for the Flight Ticket Initiative from a pool of five European companies eligible for launch awards. The other companies, PLD Space, Orbex, and Rocket Factory Augsburg, haven’t launched their orbital-class rockets yet. Avio, based in Italy, builds the now-operational Vega C rocket, and Germany’s Isar Aerospace launched its first Spectrum rocket earlier this year, but it failed to reach orbit. Avio’s selection replaces Arianespace, which was originally part of the Flight Ticket Initiative. Arianespace was previously responsible for marketing and sales for the Vega rocket, but ESA transferred its Flight Ticket Initiative eligibility to Avio following its split from Arianespace. (submitted by EllPeaTea)

Canadian rocket company ready for launch. NordSpace is preparing to launch its 6-meter tall Taiga rocket from Newfoundland, CBC reports. It will be a suborbital launch, meaning it won’t orbit Earth, but NordSpace says the launch will be the first of a Canadian commercial rocket from a Canadian commercial spaceport. The rocket is powered by a 3D-printed liquid-fueled engine and is a stepping stone to an orbital-class rocket NordSpace is developing called Tundra, scheduled to debut in 2027. The smaller Taiga rocket will launch partially fueled and fire its engine for approximately 60 seconds, according to NordSpace.

Newfoundland to space … The launch site, called the Atlantic Spaceport Complex, is located on the Atlantic coast near the town of St. Lawrence, Newfoundland. It will have two launch pads, one for suborbital flights like Taiga, and another for orbital missions by the Tundra rocket and other launch vehicles from US and European companies. The Taiga launch is scheduled no earlier than Friday morning at 5: 00 am EDT (09: 00 UTC). NordSpace says it is a “fully privately funded and managed initiative crucial for Canada to build a space launch capability that supports our security, economy, and sovereignty.” (submitted by Matthew P)

SpaceX’s reuse idea isn’t so dumb after all. A Falcon 9 rocket launched early Thursday from Kennedy Space Center, Florida, with another batch of Starlink Internet satellites. These types of missions launch multiple times per week, but this flight was special. The first stage of the Falcon 9, designated Booster 1067, launched and landed on drone ship in the Atlantic Ocean, completing its 30th flight to space and back, Ars reports. This is a new record for a reusable orbital-class booster stage and comes less than 24 hours after a preceding SpaceX launch from Florida that marked the 400th Falcon 9 landing on a drone ship since the first offshore recovery in 2016.

30 going for 40 … SpaceX is now aiming for at least 40 launches per Falcon 9 first stage, four times as many flights as the company’s original target for Falcon 9 booster reuse. Many people in the industry were skeptical about SpaceX’s approach to reuse. In the mid-2010s, both the European and Japanese space agencies were looking to develop their next generation of rockets. In both cases, Europe with the Ariane 6 and Japan with the H3, the space agencies opted for traditional, expendable rockets instead of pushing toward reuse. In the United States, the main competitor to SpaceX has historically been United Launch Alliance. Their reaction to SpaceX’s plan to reuse first stages a decade ago was dismissive. ULA dubbed its plan to reuse just the engine section of its Vulcan rocket “Smart Reuse” a few years ago. But ULA hasn’t even attempted to recover the engines from the Vulcan core stage yet, and reuse is still at least several years away.

Russia nears debut of Soyuz-5 rocket. In recent comments to the Russian state-run media service TASS, the chief of Roscosmos said the country’s newest rocket, the Soyuz-5, should take flight for the first time before the end of this year, Ars reports. “Yes, we are planning for December,” said Dmitry Bakanov, the director of Roscosmos, Russia’s main space corporation. “Everything is in place.” According to the report, translated for Ars by Rob Mitchell, the debut launch of Soyuz-5 will mark the first of several demonstration flights, with full operational service not expected to begin until 2028. It will launch from the Baikonur spaceport in Kazakhstan.

Breaking free of Ukraine … From an innovation standpoint, the Soyuz-5 vehicle does not stand out. It has been a decade in the making and is fully expendable, unlike a lot of newer medium-lift rockets coming online in the next several years. However, for Russia, this is an important advancement because it seeks to break some of the country’s dependency on Ukraine for launch technology. The new rocket is also named Irtysh, a river that flows through Russia and Kazakhstan. The rocket has been in development since 2016 and largely repurposes older technology. But for Russia, a key advantage is that it takes rocket elements formerly made in Ukraine and now manufactures them in Russia.

SpaceX launches mission to reboost the ISS. SpaceX completed its 33rd cargo delivery to the International Space Station (ISS) early Monday, when a Dragon supply ship glided to an automated docking with more than 5,000 pounds of scientific experiments and provisions for the lab’s seven-person crew, Ars reports. The resupply flight is part of the normal rotation of cargo and crew missions that keep the space station operating, but this one carries something new. What’s different with this mission is a new rocket pack mounted inside the Dragon spacecraft’s rear trunk section. In the coming weeks, SpaceX and NASA will use this first-of-its-kind propulsion system to begin boosting the altitude of the space station’s orbit.

A rocket on a rocket … SpaceX engineers installed two small Draco rocket engines in the trunk of the Dragon spacecraft. The thrusters have their own dedicated propellant tanks and will operate independently of 16 other Draco thrusters used to maneuver Dragon on its journey to the ISS. When NASA says it’s the right time, SpaceX controllers will command the Draco thrusters to ignite and gently accelerate the massive 450-ton space station. All told, the reboost kit can add about 20 mph, or 9 meters per second, to the space station’s already-dizzying speed. Maintaining the space station’s orbit has previously been the responsibility of Russia.

X-37B rides with SpaceX again. The US military’s reusable winged spaceship rocketed back into orbit from Florida on August 21 atop a SpaceX rocket, kicking off a mission that will, among other things, demonstrate how future spacecraft can navigate without relying on GPS signals, Ars reports. The core of the navigation experiment is what the Space Force calls the “world’s highest performing quantum inertial sensor ever used in space.” The spaceplane also hosts a laser inter-satellite communications demo. This is the eighth flight of the X-37B spaceplane, and the third to launch with SpaceX.

Back to LEO … This mission launched on a Falcon 9 rocket into low-Earth orbit (LEO) a few hundred miles above the Earth. This marks a return to LEO after the previous X-37B mission flew on a Falcon Heavy rocket into a much higher orbit. Many of the spaceplane’s payloads have been classified, but officials typically identify a handful of unclassified experiments flying on each X-37B mission. Past X-37B missions have also deployed small satellites into orbit before returning to Earth for a runway landing at Kennedy Space Center, Florida, or Vandenberg Space Force Base, California.

Rocket Lab cuts the ribbon on Neutron launch pad. Launch Complex 3, the Virginia Spaceport Authority’s Mid-Atlantic Regional Spaceport and home to Rocket Lab’s newest reusable rocket, Neutron, is now complete and celebrated its official opening Thursday, WAVY-TV reports. Officials said Launch Complex 3 is ready to bring the largest orbital launch capacity in the spaceport’s history with Neutron, Rocket Lab’s reusable launch vehicle, a medium-lift vehicle capable of launching 33,000 pounds (15 metric tons) to space for commercial constellations, national security, and interplanetary missions.

Not budging … “We’re trying as hard as we can to get this on the pad by the end of the year and get it away,” said Peter Beck, Rocket Lab’s founder and CEO. Beck is holding to his hope the Neutron rocket will be ready to fly in the next four months, but time is running out to make this a reality. The Neutron rocket will be Rocket Lab’s second orbital-class launch vehicle after the Electron, which can place payloads of several hundred pounds in orbit. Electron has a launch pad in Virginia, too, but most Electron rockets take off from New Zealand.

Starship completes a largely successful test flight. SpaceX launched the 10th test flight of the company’s Starship rocket Tuesday evening, sending the stainless steel spacecraft halfway around the world to an on-target splashdown in the Indian Ocean, Ars reports. The largely successful mission for the world’s largest rocket was an important milestone for SpaceX’s Starship program after months of repeated setbacks, including three disappointing test flights and a powerful explosion on the ground that destroyed the ship that engineers were originally readying for this launch.

Lessons to learn For the first time, SpaceX engineers received data on the performance of the ship’s upgraded heat shield and control flaps during reentry back into the atmosphere. The three failed Starship test flights to start the year ended before the ship reached reentry. Elon Musk, SpaceX’s founder and CEO, has described developing a durable, reliable heat shield as the most pressing challenge for making Starship a fully and rapidly reusable rocket. But there were lessons to learn from Tuesday’s flight. A large section of the ship transitioned from its original silver color to a rusty hue of orange and brown by the time it reached the Indian Ocean. Officials didn’t immediately address this or say whether it was anticipated.

ULA recovering boosters, too. United Launch Alliance decided to pull four strap-on solid rocket boosters from the Atlantic Ocean after their use on the company’s most recent launch. Photos captured by Florida photographer Jerry Pike showed a solid rocket motor casing on a ship just off the coast of Cape Canaveral. Tory Bruno, ULA’s president and CEO, wrote on X that the booster was one of four flown on the USSF-106 mission earlier this month, which marked the third flight of ULA’s Vulcan rocket and the first with a US national security payload.

A GEM from the sea … The boosters, built by Northrop Grumman, are officially called Graphite Epoxy Motors, or GEMs. They jettison from the Vulcan rocket less than two minutes after liftoff and fall into the ocean. They’re not designed for reuse, but ULA decided to recover this set of four from the Atlantic for inspections. The company also raised from the sea two motors from the previous Vulcan launch last year after one of them suffered a nozzle failure during launch. Bruno wrote on X that “performance and ballistics were spot on” with all four boosters from the more recent USSF-106 mission, but that engineers decided to go ahead and recover them to close out a “nice data set” from inspections of now six recovered motors—two from last year and four this year.

Next three launches

Aug. 30: Falcon 9 | Starlink 17-7 | Vandenberg Space Force Base, California | 03: 09 UTC

Aug. 31: Falcon 9 | Starlink 10-14 | Cape Canaveral Space Force Station, Florida | 11: 15 UTC

Sept. 3:  Falcon 9 | Starlink 17-8 | Vandenberg Space Force Base, California | 02: 33 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX achieved daily launch this week; ULA recovers booster Read More »

under-pressure-after-setbacks,-spacex’s-huge-rocket-finally-goes-the-distance

Under pressure after setbacks, SpaceX’s huge rocket finally goes the distance

The ship made it all the way through reentry, turned to a horizontal position to descend through scattered clouds, then relit three of its engines to flip back to a vertical orientation for the final braking maneuver before splashdown.

Things to improve on

There are several takeaways from Tuesday’s flight that will require some improvements to Starship, but these are more akin to what officials might expect from a rocket test program and not the catastrophic failures of the ship that occurred earlier this year.

One of the Super Heavy booster’s 33 engines prematurely shut down during ascent. This has happened before, and while it didn’t affect the booster’s overall performance, engineers will investigate the failure to try to improve the reliability of SpaceX’s Raptor engines, each of which can generate more than a half-million pounds of thrust.

Later in the flight, cameras pointed at one of the ship’s rear flaps showed structural damage to the back of the wing. It wasn’t clear what caused the damage, but super-heated plasma burned through part of the flap as the ship fell deeper into the atmosphere. Still, the flap remained largely intact and was able to help control the vehicle through reentry and splashdown.

“We’re kind of being mean to this Starship a little bit,” Huot said on SpaceX’s live webcast. “We’re really trying to put it through the paces and kind of poke on what some of its weak points are.”

Small chunks of debris were also visible peeling off the ship during reentry. The origin of the glowing debris wasn’t immediately clear, but it may have been parts of the ship’s heat shield tiles. On this flight, SpaceX tested several different tile designs, including ceramic and metallic materials, and one tile design that uses “active cooling” to help dissipate heat during reentry.

A bright flash inside the ship’s engine bay during reentry also appeared to damage the vehicle’s aft skirt, the stainless steel structure that encircles the rocket’s six main engines.

“That’s not what we want to see,” Huot said. “We just saw some of the aft skirt just take a hit. So we’ve got some visible damage on the aft skirt. We’re continuing to reenter, though. We are intentionally stressing the ship as we go through this, so it is not guaranteed to be a smooth ride down to the Indian Ocean.

“We’ve removed a bunch of tiles in kind of critical places across the vehicle, so seeing stuff like that is still valuable to us,” he said. “We are trying to kind of push this vehicle to the limits to learn what its limits are as we design our next version of Starship.”

Shana Diez, a Starship engineer at SpaceX, perhaps summed up Tuesday’s results best on X: “It’s not been an easy year but we finally got the reentry data that’s so critical to Starship. It feels good to be back!”

Under pressure after setbacks, SpaceX’s huge rocket finally goes the distance Read More »

time-is-running-out-for-spacex-to-make-a-splash-with-second-gen-starship

Time is running out for SpaceX to make a splash with second-gen Starship


SpaceX is gearing up for another Starship launch after three straight disappointing test flights.

SpaceX’s 10th Starship rocket awaits liftoff. Credit: Stephen Clark/Ars Technica

STARBASE, Texas—A beehive of aerospace technicians, construction workers, and spaceflight fans descended on South Texas this weekend in advance of the next test flight of SpaceX’s gigantic Starship rocket, the largest vehicle of its kind ever built.

Towering 404 feet (123.1 meters) tall, the rocket was supposed to lift off during a one-hour launch window beginning at 6: 30 pm CDT (7: 30 pm EDT; 23: 30 UTC) Sunday. But SpaceX called off the launch attempt about an hour before liftoff to investigate a ground system issue at Starbase, located a few miles north of the US-Mexico border.

SpaceX didn’t immediately confirm when it might try again to launch Starship, but it could happen as soon as Monday evening at the same time.

It will take about 66 minutes for the rocket to travel from the launch pad in Texas to a splashdown zone in the Indian Ocean northwest of Australia. You can watch the test flight live on SpaceX’s official website. We’ve also embedded a livestream from Spaceflight Now and LabPadre below.

This will be the 10th full-scale test flight of Starship and its Super Heavy booster stage. It’s the fourth flight of an upgraded version of Starship conceived as a stepping stone to a more reliable, heavier-duty version of the rocket designed to carry up to 150 metric tons, or some 330,000 pounds, of cargo to pretty much anywhere in the inner part of our Solar System.

But this iteration of Starship, known as Block 2 or Version 2, has been anything but reliable. After reeling off a series of increasingly successful flights last year with the first-generation Starship and Super Heavy booster, SpaceX has encountered repeated setbacks since debuting Starship Version 2 in January.

Now, there are just two Starship Version 2s left to fly, including the vehicle poised for launch this week. Then, SpaceX will move on to Version 3, the design intended to go all the way to low-Earth orbit, where it can be refueled for longer expeditions into deep space.

A closer look at the top of SpaceX’s Starship rocket, tail number Ship 37, showing some of the different configurations of heat shield tiles SpaceX wants to test on this flight. Credit: Stephen Clark/Ars Technica

Starship’s promised cargo capacity is unparalleled in the history of rocketry. The privately developed rocket’s enormous size, coupled with SpaceX’s plan to make it fully reusable, could enable cargo and human missions to the Moon and Mars. SpaceX’s most conspicuous contract for Starship is with NASA, which plans to use a version of the ship as a human-rated Moon lander for the agency’s Artemis program. With this contract, Starship is central to the US government’s plans to try to beat China back to the Moon.

Closer to home, SpaceX intends to use Starship to haul massive loads of more powerful Starlink Internet satellites into low-Earth orbit. The US military is interested in using Starship for a range of national security missions, some of which could scarcely be imagined just a few years ago. SpaceX wants its factory to churn out a Starship rocket every day, approximately the same rate Boeing builds its workhorse 737 passenger jets.

Starship, of course, is immeasurably more complex than an airliner, and it sees temperature extremes, aerodynamic loads, and vibrations that would destroy a commercial airplane.

For any of this to become reality, SpaceX needs to begin ticking off a lengthy to-do list of technical milestones. The interim objectives include things like catching and reusing Starships and in-orbit ship-to-ship refueling, with a final goal of long-duration spaceflight to reach the Moon and stay there for weeks, months, or years. For a time late last year, it appeared as if SpaceX might be on track to reach at least the first two of these milestones by now.

The 404-foot-tall (123-meter) Starship rocket and Super Heavy booster stand on SpaceX’s launch pad. In the foreground, there are empty loading docks where tanker trucks deliver propellants and other gases to the launch site. Credit: Stephen Clark/Ars Technica

Instead, SpaceX’s schedule for catching and reusing Starships, and refueling ships in orbit, has slipped well into next year. A Moon landing is probably at least several years away. And a touchdown on Mars? Maybe in the 2030s. Before Starship can sniff those milestones, engineers must get the rocket to survive from liftoff through splashdown. This would confirm that recent changes made to the ship’s heat shield work as expected.

Three test flights attempting to do just this ended prematurely in January, March, and May. These failures prevented SpaceX from gathering data on several different tile designs, including insulators made of ceramic and metallic materials, and a tile with “active cooling” to fortify the craft as it reenters the atmosphere.

The heat shield is supposed to protect the rocket’s stainless steel skin from temperatures reaching 2,600° Fahrenheit (1,430° Celsius). During last year’s test flights, it worked well enough for Starship to guide itself to an on-target controlled splashdown in the Indian Ocean, halfway around the world from SpaceX’s launch site in Starbase, Texas.

But the ship lost some of its tiles during each flight last year, causing damage to the ship’s underlying structure. While this wasn’t bad enough to prevent the vehicle from reaching the ocean intact, it would cause difficulties in refurbishing the rocket for another flight. Eventually, SpaceX wants to catch Starships returning from space with giant robotic arms back at the launch pad. The vision, according to SpaceX founder and CEO Elon Musk, is to recover the ship, quickly mount it on another booster, refuel it, and launch it again.

If SpaceX can accomplish this, the ship must return from space with its heat shield in pristine condition. The evidence from last year’s test flights showed engineers had a long way to go for that to happen.

Visitors survey the landscape at Starbase, Texas, where industry and nature collide. Credit: Stephen Clark/Ars Technica

The Starship setbacks this year have been caused by problems in the ship’s propulsion and fuel systems. Another Starship exploded on a test stand in June at SpaceX’s sprawling rocket development facility in South Texas. SpaceX engineers identified different causes for each of the failures. You can read about them in our previous story.

Apart from testing the heat shield, the goals for this week’s Starship flight include testing an engine-out capability on the Super Heavy booster. Engineers will intentionally disable one of the booster’s Raptor engines used to slow down for landing, and instead use another Raptor engine from the rocket’s middle ring. At liftoff, 33 methane-fueled Raptor engines will power the Super Heavy booster off the pad.

SpaceX won’t try to catch the booster back at the launch pad this time, as it did on three occasions late last year and earlier this year. The booster catches have been one of the bright spots for the Starship program as progress on the rocket’s upper stage floundered. SpaceX reused a previously flown Super Heavy booster for the first time on the most recent Starship launch in May.

The booster landing experiment on this week’s flight will happen a few minutes after launch over the Gulf of Mexico east of the Texas coastline. Meanwhile, six Raptor engines will fire until approximately T+plus 9 minutes to accelerate the ship, or upper stage, into space.

The ship is programmed to release eight Starlink satellite simulators from its payload bay in a test of the craft’s payload deployment mechanism. That will be followed by a brief restart of one of the ship’s Raptor engines to adjust its trajectory for reentry, set to begin around 47 minutes into the mission.

If Starship makes it that far, that will be when engineers finally get a taste of the heat shield data they were hungry for at the start of the year.

This story was updated at 8: 30 pm EDT after SpaceX scrubbed Sunday’s launch attempt.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Time is running out for SpaceX to make a splash with second-gen Starship Read More »

spacex-reveals-why-the-last-two-starships-failed-as-another-launch-draws-near

SpaceX reveals why the last two Starships failed as another launch draws near


“SpaceX can now proceed with Starship Flight 10 launch operations under its current license.”

SpaceX completed a six-engine static fire of the next Starship upper stage on August 1. Credit: SpaceX

SpaceX is continuing with final preparations for the 10th full-scale test flight of the company’s enormous Starship rocket after receiving launch approval Friday from the Federal Aviation Administration.

Engineers completed a final test of Starship’s propulsion system with a so-called “spin prime” test Wednesday at the launch site in South Texas. Ground crews then rolled the ship back to a nearby hangar for engine inspections, touchups to its heat shield, and a handful of other chores to ready it for liftoff.

SpaceX has announced the launch is scheduled for no earlier than next Sunday, August 24, at 6: 30 pm local time in Texas (23: 30 UTC).

Like all previous Starship launches, the huge 403-foot-tall (123-meter) rocket will take off from SpaceX’s test site in Starbase, Texas, just north of the US-Mexico border. The rocket consists of a powerful booster stage named Super Heavy, with 33 methane-fueled Raptor engines. Six Raptors power the upper stage, known simply as Starship.

With this flight, SpaceX officials hope to put several technical problems with the Starship program behind them. SpaceX is riding a streak of four disappointing Starship test flights from January through May, and and the explosion and destruction of another Starship vehicle during a ground test in June.

These setbacks followed a highly successful year for the world’s largest rocket in 2024, when SpaceX flew Starship four times and achieved new objectives on each flight. These accomplishments included the first catch of a Super Heavy booster back at the launch pad, proving the company’s novel concept for recovering and reusing the rocket’s first stage.

Starship’s record so far in 2025 is another story. The rocket’s inability to make it through an entire suborbital test flight has pushed back future program milestones, such as the challenging tasks of recovering and reusing the rocket’s upper stage, and demonstrating the ability to refuel another rocket in orbit. Those would both be firsts in the history of spaceflight.

These future tests, and more, are now expected to occur no sooner than next year. This time last year, SpaceX officials hoped to achieve them in 2025. All of these demonstrations are vital for Elon Musk to meet his promise of sending numerous Starships to build a settlement on Mars. Meanwhile, NASA is eager for SpaceX to reel off these tests as quickly as possible because the agency has selected Starship as the human-rated lunar lander for the Artemis Moon program. Once operational, Starship will also be key to building out SpaceX’s next-generation Starlink broadband network.

A good outcome on the next Starship test flight would give SpaceX footing to finally take a step toward these future demos after months of dithering over design dilemmas.

Elon Musk, SpaceX’s founder and CEO, presented an update on Starship to company employees in May. This chart shows the planned evolution from Starship Version 2 (left) to Version 3 (middle), and an even larger rocket (right) in the more distant future.

The FAA said Friday it formally closed the investigation into Starship’s most recent in-flight failure in May, when the rocket started leaking propellant after reaching space, rendering it unable to complete the test flight.

“The FAA oversaw and accepted the findings of the SpaceX-led investigation,” the federal regulator said in a statement. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

Diagnosing failures

SpaceX identified the most probable cause for the May failure as a faulty main fuel tank pressurization system diffuser located on the forward dome of Starship’s primary methane tank. The diffuser failed a few minutes after launch, when sensors detected a pressure drop in the main methane tank and a pressure increase in the ship’s nose cone just above the tank.

The rocket compensated for the drop in main tank pressure and completed its engine burn, but venting from the nose cone and a worsening fuel leak overwhelmed Starship’s attitude control system. Finally, detecting a major problem, Starship triggered automatic onboard commands to vent all remaining propellant into space and “passivate” itself before an unguided reentry over the Indian Ocean, prematurely ending the test flight.

Engineers recreated the diffuser failure on the ground during the investigation, and then redesigned the part to better direct pressurized gas into the main fuel tank. This will also “substantially decrease” strain on the diffuser structure, SpaceX said.

The FAA, charged with ensuring commercial rocket launches don’t endanger public safety, signed off on the investigation and gave the green light for SpaceX to fly Starship again when it is ready.

“SpaceX can now proceed with Starship Flight 10 launch operations under its current license,” the FAA said.

“The upcoming flight will continue to expand the operating envelope on the Super Heavy booster, with multiple landing burn tests planned,” SpaceX said in an update posted to its website Friday. “It will also target similar objectives as previous missions, including Starship’s first payload deployment and multiple reentry experiments geared towards returning the upper stage to the launch site for catch.”

File photo of Starship’s six Raptor engines firing on a test stand in South Texas. Credit: SpaceX

In the aftermath of the test flight in May, SpaceX hoped to fly Starship again by late June or early July. But another accident June 18, this time on the ground, delayed the program another couple of months. The Starship vehicle SpaceX assigned to the next flight, designated Ship 36, exploded on a test stand in Texas as teams filled it with cryogenic propellants for an engine test-firing.

The accident destroyed the ship and damaged the test site, prompting SpaceX to retrofit the sole active Starship launch pad to support testing of the next ship in line—Ship 37. Those tests included a brief firing of all six of the ship’s Raptor engines August 1.

After Ship 37’s final spin prime test Wednesday, workers transported the rocket back to a hangar for evaluation, and crews immediately got to work transitioning the launch pad back to its normal configuration to host a full Super Heavy/Starship stack.

SpaceX said the explosion on the test stand in June was likely caused by damage to a high-pressure nitrogen storage tank inside Starship’s payload bay section. This tank, called a composite overwrapped pressure vessel, or COPV, violently ruptured and led to the ship’s fiery demise. SpaceX said COPVs on upcoming flights will operate at lower pressures, and managers ordered additional inspections on COPVs to look for damage, more proof testing, more stringent acceptance criteria, and a hardware change to address the problem.

Try, try, try, try again

This year began with the first launch of an upgraded version of Starship, known as Version 2 or Block 2, in January. But the vehicle suffered propulsion failures and lost control before the upper stage completed its engine burn to propel the rocket on a trajectory carrying it halfway around the world to splash down in the Indian Ocean. Instead, the rocket broke apart and rained debris over the Bahamas and the Turks and Caicos Islands more than 1,500 miles downrange from Starbase.

That was followed in March by another Starship launch that had a similar result, again scattering debris near the Bahamas. In May, the ninth Starship test flight made it farther downrange and completed its engine burn before spinning out of control in space, preventing it from making a guided reentry to gather data on its heat shield.

Mastering the design of Starship’s heat shield is critical the future of the program. As it has on all of this year’s test flights, SpaceX has installed on the next Starship several different ceramic and metallic tile designs to test alternative materials to protect the vehicle during its scorching plunge back into Earth’s atmosphere. Starship successfully made it through reentry for a controlled splashdown in the sea several times last year, but sensors detected hot spots on the rocket’s stainless steel skin after some of the tiles fell off during launch and descent.

Making the Starship upper stage reusable like the Super Heavy booster will require better performance from the heat shield. The demands of flying the ship home from orbit and attempting a catch at the launch pad far outweigh the challenge of recovering a booster. Coming back from space, the ship encounters much higher temperatures than the booster sees at lower velocities.

Therefore, SpaceX’s most important goal for the 10th Starship flight will be gathering information about how well the ship’s different heat shield materials hold up during reentry. Engineers want to have this data as soon as possible to inform design decisions about the next iteration of Starship—Version 3 or Block 3—that will actually fly into orbit. So far, all Starship launches have intentionally targeted a speed just shy of orbital velocity, bringing the vehicle back through the atmosphere halfway around the world.

Other objectives on the docket for Starship Flight 10 include the deployment of spacecraft simulators mimicking the size of SpaceX’s next-generation Starlink Internet satellites. Like the heat shield data, this has been part of the flight plan for the last three Starship launches, but the rocket never made it far enough to attempt any payload deployment tests.

Thirty-three Raptor engines power the Super Heavy booster downrange from SpaceX’s launch site near Brownsville, Texas, in January. Credit: SpaceX

Engineers also plan to put the Super Heavy booster through the wringer on the next launch. Instead of coming back to Starbase for a catch at the launch pad—something SpaceX has now done three times—the massive booster stage will target a controlled splashdown in the Gulf of Mexico east of the Texas coast. This will give SpaceX room to try new things with the booster, such as controlling the rocket’s final descent with a different mix of engines to see if it could overcome a problem with one of its three primary landing engines.

SpaceX tried to experiment with new ways of landing of the Super Heavy booster on the last test flight, too. The Super Heavy exploded before reaching the ocean, likely due to a structural failure of the rocket’s fuel transfer tube, an internal pipe where methane flows from the fuel tank at the top of the rocket to the engines at the bottom of the booster. SpaceX said the booster flew a higher angle of attack during its descent in May to test the limits of the rocket’s performance. It seems engineers found the limit, and the booster won’t fly at such a high angle of attack next time.

SpaceX has just two Starship Version 2 vehicles in its inventory before moving on to the taller Version 3 configuration, which will also debut improved Raptor engines.

“Every lesson learned, through both flight and ground testing, continues to feed directly into designs for the next generation of Starship and Super Heavy,” SpaceX said. “Two flights remain with the current generation, each with test objectives designed to expand the envelope on vehicle capabilities as we iterate towards fully and rapidly reusable, reliable rockets.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX reveals why the last two Starships failed as another launch draws near Read More »

rocket-report:-channeling-the-future-at-wallops;-spacex-recovers-rocket-wreckage

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage


China’s Space Pioneer seems to be back on track a year after an accidental launch.

A SpaceX Falcon 9 rocket carrying a payload of 24 Starlink Internet satellites soars into space after launching from Vandenberg Space Force Base, California, shortly after sunset on July 18, 2025. This image was taken in Santee, California, approximately 250 miles (400 kilometers) away from the launch site. Credit: Kevin Carter/Getty Images

Welcome to Edition 8.04 of the Rocket Report! The Pentagon’s Golden Dome missile defense shield will be a lot of things. Along with new sensors, command and control systems, and satellites, Golden Dome will require a lot of rockets. The pieces of the Golden Dome architecture operating in orbit will ride to space on commercial launch vehicles. And Golden Dome’s space-based interceptors will essentially be designed as flying fuel tanks with rocket engines. This shouldn’t be overlooked, and that’s why we include a couple of entries discussing Golden Dome in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Space-based interceptors are a real challenge. The newly installed head of the Pentagon’s Golden Dome missile defense shield knows the clock is ticking to show President Donald Trump some results before the end of his term in the White House, Ars reports. Gen. Michael Guetlein identified command-and-control and the development of space-based interceptors as two of the most pressing technical challenges for Golden Dome. He believes the command-and-control problem can be “overcome in pretty short order.” The space-based interceptor piece of the architecture is a different story.

Proven physics, unproven economics … “I think the real technical challenge will be building the space-based interceptor,” Guetlein said. “That technology exists. I believe we have proven every element of the physics that we can make it work. What we have not proven is, first, can I do it economically, and then second, can I do it at scale? Can I build enough satellites to get after the threat? Can I expand the industrial base fast enough to build those satellites? Do I have enough raw materials, etc.?” Military officials haven’t said how many space-based interceptors will be required for Golden Dome, but outside estimates put the number in the thousands.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

One big defense prime is posturing for Golden Dome. Northrop Grumman is conducting ground-based testing related to space-based interceptors as part of a competition for that segment of the Trump administration’s Golden Dome missile-defense initiative, The War Zone reports. Kathy Warden, Northrop Grumman’s CEO, highlighted the company’s work on space-based interceptors, as well as broader business opportunities stemming from Golden Dome, during a quarterly earnings call this week. Warden identified Northrop’s work in radars, drones, and command-and-control systems as potentially applicable to Golden Dome.

But here’s the real news … “It will also include new innovation, like space-based interceptors, which we’re testing now,” Warden continued. “These are ground-based tests today, and we are in competition, obviously, so not a lot of detail that I can provide here.” Warden declined to respond directly to a question about how the space-based interceptors Northrop Grumman is developing now will actually defeat their targets. (submitted by Biokleen)

Trump may slash environmental rules for rocket launches. The Trump administration is considering slashing rules meant to protect the environment and the public during commercial rocket launches, changes that companies like Elon Musk’s SpaceX have long sought, ProPublica reports. A draft executive order being circulated among federal agencies, and viewed by ProPublica, directs Secretary of Transportation Sean Duffy to “use all available authorities to eliminate or expedite” environmental reviews for launch licenses. It could also, in time, require states to allow more launches or even more launch sites along their coastlines.

Getting political at the FAA … The order is a step toward the rollback of federal oversight that Musk, who has fought bitterly with the Federal Aviation Administration over his space operations, and others have pushed for. Commercial rocket launches have grown exponentially more frequent in recent years. In addition to slashing environmental rules, the draft executive order would make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This is currently a civil servant position, but the last head of the office took a voluntary separation offer earlier this year.

There’s a SPAC for that. An unproven small launch startup is partnering with a severely depleted SPAC trust to do the impossible: go public in a deal they say will be valued at $400 million, TechCrunch reports. Innovative Rocket Technologies Inc., or iRocket, is set to merge with a Special Purpose Acquisition Company, or SPAC, founded by former Commerce Secretary Wilbur Ross. But the most recent regulatory filings by this SPAC showed it was in a tenuous financial position last year, with just $1.6 million held in trust. Likewise, iRocket isn’t flooded with cash. The company has raised only a few million in venture funding, a fraction of what would be needed to develop and test the company’s small orbital-class rocket, named Shockwave.

SpaceX traces a path to orbit for NASA. Two NASA satellites soared into orbit from California aboard a SpaceX Falcon 9 rocket Wednesday, commencing a $170 million mission to study a phenomenon of space physics that has eluded researchers since the dawn of the Space Age, Ars reports. The twin spacecraft are part of the NASA-funded TRACERS mission, which will spend at least a year measuring plasma conditions in narrow regions of Earth’s magnetic field known as polar cusps. As the name suggests, these regions are located over the poles. They play an important but poorly understood role in creating colorful auroras as plasma streaming out from the Sun interacts with the magnetic field surrounding Earth. The same process drives geomagnetic storms capable of disrupting GPS navigation, radio communications, electrical grids, and satellite operations.

Plenty of room for more … The TRACERS satellites are relatively small, each about the size of a washing machine, so they filled only a fraction of the capacity of SpaceX’s Falcon 9 rocket. Three other small NASA tech demo payloads hitched a ride to orbit with TRACERS, kicking off missions to test an experimental communications terminal, demonstrate an innovative scalable satellite platform made of individual building blocks, and study the link between Earth’s atmosphere and the Van Allen radiation belts. In addition to those missions, the European Space Agency launched its own CubeSat to test 5G communications from orbit. Five smallsats from an Australian company rounded out the group. Still, the Falcon 9 rocket’s payload shroud was filled with less than a quarter of the payload mass it could have delivered to the TRACERS mission’s targeted Sun-synchronous orbit.

Tianlong launch pad ready for action. Chinese startup Space Pioneer has completed a launch pad at Jiuquan spaceport in northwestern China for its Tianlong 3 liquid propellent rocket ahead of a first orbital launch, Space News reports. Space Pioneer said the launch pad passed an acceptance test, and ground crews raised a full-scale model of the Tianlong 3 rocket on the launch pad. “The rehearsal test was successfully completed,” said Space Pioneer, one of China’s leading private launch companies. The activation of the launch pad followed a couple of weeks after Space Pioneer announced the completion of static loads testing on Tianlong 3.

More to come … While this is an important step forward for Space Pioneer, construction of the launch pad is just one element the company needs to finish before Tianlong 3 can lift off for the first time. In June 2024, the company ignited Tianlong 3’s nine-engine first stage on a test stand in China. But the rocket broke free of its moorings on the test stand and unexpectedly climbed into the sky before crashing in a fireball nearby. Space Pioneer says the “weak design of the rocket’s tail structure was the direct cause of the failure” last year. The company hasn’t identified next steps for Tianlong 3, or when it might be ready to fly. Tianlong 3 is a kerosene-fueled rocket with nine main engines, similar in design architecture and payload capacity to SpaceX’s Falcon 9. Also, like Falcon 9, Tianlong 3 is supposed to have a recoverable and reusable first stage booster.

Dredging up an issue at Wallops. Rocket Lab has asked regulators for permission to transport oversized Neutron rocket structures through shallow waters to a spaceport off the coast of Virginia as it races to meet a September delivery deadline, TechCrunch reports. The request, which was made in July, is a temporary stopgap while the company awaits federal clearance to dredge a permanent channel to the Wallops Island site. Rocket Lab plans to launch its Neutron medium-lift rocket from the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Virginia, a lower-traffic spaceport that’s surrounded by shallow channels and waterways. Rocket Lab has a sizable checklist to tick off before Neutron can make its orbital debut, like mating the rocket stages, performing a “wet dress” rehearsal, and getting its launch license from the Federal Aviation Administration. Before any of that can happen, the rocket hardware needs to make it onto the island from Rocket Lab’s factory on the nearby mainland.

Kedging bets … Access to the channel leading to Wallops Island is currently available only at low tides. So, Rocket Lab submitted an application earlier this year to dredge the channel. The dredging project was approved by the Virginia Marine Resources Commission in May, but the company has yet to start digging because it’s still awaiting federal sign-off from the Army Corps of Engineers. As the company waits for federal approval, Rocket Lab is seeking permission to use a temporary method called “kedging” to ensure the first five hardware deliveries can arrive on schedule starting in September. We don’t cover maritime issues in the Rocket Report, but if you’re interested in learning a little about kedging, here’s a link.

Any better ideas for an Exploration Upper Stage? Not surprisingly, Congress is pushing back against the Trump administration’s proposal to cancel the Space Launch System, the behemoth rocket NASA has developed to propel astronauts back to the Moon. But legislation making its way through the House of Representatives includes an interesting provision that would direct NASA to evaluate alternatives for the Boeing-built Exploration Upper Stage, an upgrade for the SLS rocket set to debut on its fourth flight, Ars reports. Essentially, the House Appropriations Committee is telling NASA to look for cheaper, faster options for a new SLS upper stage.

CYA EUS? The four-engine Exploration Upper Stage, or EUS, is an expensive undertaking. Last year, NASA’s inspector general reported that the new upper stage’s development costs had ballooned from $962 million to $2.8 billion, and the project had been delayed more than six years. That’s almost a year-for-year delay since NASA and Boeing started development of the EUS. So, what are the options if NASA went with a new upper stage for the SLS rocket? One possibility is a modified version of United Launch Alliance’s dual-engine Centaur V upper stage that flies on the Vulcan rocket. It’s no longer possible to keep flying the SLS rocket’s existing single-engine upper stage because ULA has shut down the production line for it.

Raising Super Heavy from the deep. For the second time, SpaceX has retrieved an engine section from one of its Super Heavy boosters from the Gulf of Mexico, NASASpaceflight.com reports. Images posted on social media showed the tail end of a Super Heavy booster being raised from the sea off the coast of northern Mexico. Most of the rocket’s 33 Raptor engines appear to still be attached to the lower section of the stainless steel booster. Online sleuths who closely track SpaceX’s activities at Starbase, Texas, have concluded the rocket recovered from the Gulf is Booster 13, which flew on the sixth test flight of the Starship mega-rocket last November. The booster ditched in the ocean after aborting an attempted catch back at the launch pad in South Texas.

But why? … SpaceX recovered the engine section of a different Super Heavy booster from the Gulf last year. The company’s motivation for salvaging the wreckage is unclear. “Speculated reasons include engineering research, environmental mitigation, or even historical preservation,” NASASpaceflight reports.

Next three launches

July 26: Vega C | CO3D & MicroCarb | Guiana Space Center, French Guiana | 02: 03 UTC

July 26: Falcon 9 | Starlink 10-26 | Cape Canaveral Space Force Station, Florida | 08: 34 UTC

July 27: Falcon 9 | Starlink 17-2 | Vandenberg Space Force Base, California | 03: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage Read More »

rocket-report:-spacex-to-make-its-own-propellant;-china’s-largest-launch-pad

Rocket Report: SpaceX to make its own propellant; China’s largest launch pad


United Launch Alliance begins stacking its third Vulcan rocket for the second time.

Visitors walk by models of a Long March 10 rocket, lunar lander, and crew spacecraft during an exhibition on February 24, 2023 in Beijing, China. Credit: Hou Yu/China News Service/VCG via Getty Images

Welcome to Edition 8.02 of the Rocket Report! It’s worth taking a moment to recognize an important anniversary in the history of human spaceflight next week. Fifty years ago, on July 15, 1975, NASA launched a three-man crew on an Apollo spacecraft from Florida and two Russian cosmonauts took off from Kazakhstan, on course to link up in low-Earth orbit two days later. This was the first joint US-Russian human spaceflight mission, laying the foundation for a strained but enduring partnership on the International Space Station. Operations on the ISS are due to wind down in 2030, and the two nations have no serious prospects to continue any partnership in space after decommissioning the station.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sizing up Europe’s launch challengers. The European Space Agency has selected five launch startups to become eligible for up to 169 million euros ($198 million) in funding to develop alternatives to Arianespace, the continent’s incumbent launch service provider, Ars reports. The five small launch companies ESA selected are Isar Aerospace, MaiaSpace, Rocket Factory Augsburg, PLD Space, and Orbex. Only one of these companies, Isar Aerospace, has attempted to launch a rocket into orbit. Isar’s Spectrum rocket failed moments after liftoff from Norway on a test flight in March. None of these companies is guaranteed an ESA contract or funding. Over the next several months, ESA and the five launch companies will negotiate with European governments for funding leading up to ESA’s ministerial council meeting in November, when ESA member states will set the agency’s budget for at least the next two years. Only then will ESA be ready to sign binding agreements.

Let’s rank ’em … Ars Technica’s space reporters ranked the five selectees for the European Launcher Challenge in order from most likely to least likely to reach orbit. We put Munich-based Isar Aerospace, the most well-funded of the group, at the top of the list after attempting its first orbital launch earlier this year. Paris-based MaiaSpace, backed by ArianeGroup, comes in second, with plans for a partially reusable rocket. Rocket Factory Augsburg, another German company, is in third place after getting close to a launch attempt last year before its first rocket blew up on a test stand. Spanish startup PLD Space is fourth, and Britain’s Orbex rounds out the list. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Japan’s Interstellar Technologies rakes in more cash. Interstellar Technologies raised 8.9 billion yen ($61.8 million) to boost the development of its Zero rocket and research and development of satellite systems, Space News reports. The money comes from Japanese financial institutions, venture capital funds, and debt financing. Interstellar previously received funding through agreements with the Japanese government and Toyota, which Interstellar says will add expertise to scale manufacturing of the Zero rocket for “high-frequency, cost-effective launches.” The methane-fueled Zero rocket is designed to deploy a payload of up to 1 metric ton (2,200 pounds) into low-Earth orbit. The unfortunate news from Interstellar’s fundraising announcement is that the company has pushed back the debut flight of the Zero rocket until 2027.

Straight up … Interstellar has aspirations beyond launch vehicles. The company is also developing a satellite communications business, and some of the money raised in the latest investment round will go toward this segment of the company. Interstellar is open about comparing its ambition to that of SpaceX. “On the satellite side, Interstellar is developing communications satellites that benefit from the company’s own launch capabilities,” the company said in a statement. “Backed by Japan’s Ministry of Internal Affairs and Communications and JAXA’s Space Strategy Fund, the company is building a vertically integrated model, similar to SpaceX’s approach with Starlink.”

Korean startup completes second-stage qual testing. South Korean launch services company Innospace says it has taken another step toward the inaugural launch of its Hanbit-Nano rocket by the year’s end with the qualification of the second stage, Aviation Week & Space Technology reports. The second stage uses an in-house-developed 34-kilonewton (7,643-pound-thrust) liquid methane engine. Innospace says the engine achieved a combustion time of 300 seconds, maintaining stability of the fuel and oxidizer supply system, structural integrity, and the launch vehicle integrated control system.

A true micro-launcher … Innospace’s rocket is modest in size and capacity, even among its cohorts in the small launch market. The Hanbit-Nano rocket is designed to launch approximately 200 pounds (90 kilograms) of payload into Sun-synchronous orbit. “With the success of this second stage engine certification test, we have completed the development of the upper stage of the Hanbit-Nano launch vehicle,” said Kim Soo-jong, CEO of Innospace. “This is a very symbolic and meaningful technological achievement that demonstrates the technological prowess and test operation capabilities that Innospace has accumulated over a long period of time, while also showing that we have entered the final stage for commercial launch. Currently, all executives and staff are doing their best to successfully complete the first stage certification test, which is the final gateway for launch, and we will make every effort to prepare for a smooth commercial launch in the second half of the year.”

Two companies forge unlikely alliance in Dubai. Two German entrepreneurs have joined forces with a team of Russian expats steeped in space history to design a rocket using computational AI models, Payload reports. The “strategic partnership” is between LEAP 71, an AI-enabled design startup, and Aspire Space, a company founded by the son of a Soviet engineer who was in charge of launching Zenit rockets from the Baikonur Cosmodrome in Kazakhstan in the 1980s. The companies will base their operations in Dubai. The unlikely pairing aims to develop a new large reusable launch vehicle capable of delivering up to 15 metric tons to low-Earth orbit. Aspire Space is a particularly interesting company if you’re a space history enthusiast. Apart from the connections of Aspire’s founder to Soviet space history, Aspire’s chief technology officer, Sergey Sopov, started his career at Baikonur working on the Energia heavy-lift rocket and Buran space shuttle, before becoming an executive at Sea Launch later in his career.

Trust the computer … It’s easy to be skeptical about this project, but it has attracted an interesting group of people. LEAP 71 has just two employees—its two German co-founders—but boasts lofty ambitions and calls itself a “pioneer in AI-driven engineering.” As part of the agreement with Aspire Space, LEAP 71 will use a proprietary software program called Noyron to design the entire propulsion stack for Aspire’s rockets. The company says its AI-enabled design approach for Aspire’s 450,000-pound-thrust engine will cut in half the time it took other rocket companies to begin test-firing a new engine of similar size. Rudenko forecasts Aspire’s entire project, including a launcher, reusable spacecraft, and ground infrastructure to support it all, will cost more than $1 billion. So far, the project is self-funded, Rudenko told Payload. (submitted by Lin Kayser)

Russia launches ISS resupply freighter. A Russian Progress supply ship launched July 3 from the Baikonur Cosmodrome in Kazakhstan atop a Soyuz-2.1a rocket, NASASpaceflight reports. Packed with 5,787 pounds (2,625 kilograms) of cargo and fuel, the Progress MS-31 spacecraft glided to an automated docking at the International Space Station two days later. The Russian cosmonauts living aboard the ISS will unpack the supplies carried inside the Progress craft’s pressurized compartment. This was the eighth orbital launch of the year by a Russian rocket, continuing a downward trend in launch activity for the Russian space program in recent years.

Celebrating a golden anniversary … The Soyuz rocket that launched Progress MS-31 was painted an unusual blue and white scheme, as it was originally intended for a commercial launch that was likely canceled after Russia’s invasion of Ukraine. It also sported a logo commemorating the 50th anniversary of the Apollo-Soyuz mission in July 1975.

Chinese rocket moves closer to first launch. Chinese commercial launch firm Orienspace is aiming for a late 2025 debut of its Gravity-2 rocket following a recent first-stage engine hot fire test, Space News reports. The “three-in-one” hot fire test verified the performance of the Gravity-2 rocket’s first stage engine, servo mechanisms, and valves that regulate the flow of propellants into the engine, according to a press release from Orienspace. The Gravity-2 rocket’s recoverable and reusable first stage will be powered by nine of these kerosene-fueled engines. The recent hot fire test “lays a solid foundation” for future tests leading up to the Gravity-2’s inaugural flight.

Extra medium … Orienspace’s first rocket, the solid-fueled Gravity-1, completed its first successful flight last year to place multiple small satellites into orbit. Gravity-2 is a much larger vehicle, standing 230 feet (70 meters) tall, the same height as SpaceX’s Falcon 9 rocket. Orienspace’s new rocket will fly in a core-only configuration or with the assistance of two solid rocket boosters. An infographic released by Orienspace in conjunction with the recent engine hot fire test indicates the Gravity-2 rocket will be capable of hauling up to 21.5 metric tons (47,400 pounds) of cargo into low-Earth orbit, placing its performance near the upper limit of medium-lift launchers.

Senator calls out Texas for trying to steal space shuttle. A political effort to remove space shuttle Discovery from the Smithsonian and place it on display in Texas encountered some pushback on Thursday, as a US senator questioned the expense of carrying out what he described as a theft, Ars reports. “This is not a transfer. It’s a heist,” said Sen. Dick Durbin (D-Ill.) during a budget markup hearing before the Senate Appropriations Committee. “A heist by Texas because they lost a competition 12 years ago.” In April, Republican Sens. John Cornyn and Ted Cruz, both representing Texas, introduced the “Bring the Space Shuttle Home Act” that called for Discovery to be relocated from the National Air and Space Museum’s Steven F. Udvar-Hazy Center in northern Virginia and displayed at Space Center Houston. They then inserted an $85 million provision for the shuttle relocation into the Senate version of the “One Big Beautiful Bill,” which, to comply with Senate rules, was more vaguely worded but was meant to achieve the same goal. That bill was enacted on July 4, when President Donald Trump signed it into law.

Dollar signs As ridiculous as it is to imagine spending $85 million on moving a space shuttle from one museum to another, it’ll actually cost a lot more to do it safely. Citing research by NASA and the Smithsonian, Durbin said that the total was closer to $305 million, and that did not include the estimated $178 million needed to build a facility to house and display Discovery once it was in Houston. Furthermore, it was unclear if Congress even has the right to remove an artifact, let alone a space shuttle, from the Smithsonian’s collection. The Washington, DC, institution, which serves as a trust instrumentality of the US, maintains that it owns Discovery. The paperwork signed by NASA in 2012 transferred “all rights, interest, title, and ownership” for the spacecraft to the Smithsonian. “This will be the first time ever in the history of the Smithsonian someone has taken one of their displays and forcibly taken possession of it. What are we doing here? They don’t have the right in Texas to claim this,” said Durbin.

Starbase keeps getting bigger. Cameron County, Texas, has given SpaceX the green light to build an air separator facility, which will be located less than 300 feet from the region’s sand dunes, frustrating locals concerned about the impact on vegetation and wildlife, the Texas Tribune reports. The commissioners voted 3–1 to give Elon Musk’s rocket company a beachfront construction certificate and dune protection permit, allowing the company to build a facility to produce gases needed for Starship launches. The factory will separate air into nitrogen and oxygen. SpaceX uses liquid oxygen as a propellant and liquid nitrogen for testing and operations.

Saving the roads … By having the facility on site, SpaceX hopes to make the delivery of those gases more efficient by eliminating the need to have dozens of trucks deliver them from Brownsville. The company says they need more than 200 trucks of liquid nitrogen and oxygen delivered for each launch, a SpaceX engineer told the county during a meeting last week. With their application, SpaceX submitted a plan to mitigate expected negative effects on 865 square feet of dune vegetation and 20 cubic yards of dunes, as well as compensate for expected permanent impacts to 7,735 square feet of dune vegetation and 465 cubic yards of dunes. While the project will be built on property owned by SpaceX, the county holds the authority to manage the construction that affects Boca Chica’s dunes.

ULA is stacking its third Vulcan rocket. A little more than a week after its most recent Atlas V rocket launch, United Launch Alliance rolled a Vulcan booster to the Vertical Integration Facility at Cape Canaveral Space Force Station in Florida on July 2 to begin stacking its first post-certification Vulcan rocket, Spaceflight Now reports. The operation, referred to by ULA as Launch Vehicle on Stand (LVOS), is the first major milestone toward the launch of the third Vulcan rocket. The upcoming launch will be the first operational flight of ULA’s new rocket with a pair of US military payloads, following two certification flights in 2024.

For the second time … This is the second time that this particular Vulcan booster was brought to Space Launch Complex 41 in anticipation of a launch campaign. It was previously readied in late October of last year in support of the USSF-106 mission, the Space Force’s designation for the first national security launch to use the Vulcan rocket. However, plans changed as the process of certifying Vulcan to fly government payloads took longer than expected, and ULA pivoted to launch two Atlas V rockets on commercial missions from the same pad before switching back to Vulcan launch preps.

Progress report on China’s Moon rocket. China’s self-imposed deadline of landing astronauts on the Moon by 2030 is now just five years away, and we’re starting to see some tangible progress. Construction of the launch pad for the Long March 10 rocket, the massive vehicle China will use to launch its first crews toward the Moon, is well along at the Wenchang Space Launch Site on Hainan Island. An image shared on the Chinese social media platform Weibo, and then reposted on X, shows the Long March 10’s launch tower near its final height. A mobile launch platform presumably for the Long March 10 is under construction nearby.

Super heavy … The Long March 10 will be China’s most powerful rocket to date, with the ability to dispatch 27 metric tons of payload toward the Moon, a number comparable to NASA’s Space Launch System. Designed for partial reusability, the Long March 10 will use an all-liquid propulsion system and stand more than 92 meters (300 feet) tall. The rocket will launch Chinese astronauts inside the nation’s next-generation Mengzhou crew capsule, along with a lunar lander to transport crew members from lunar orbit to the surface of the Moon using an architecture similar to NASA’s Apollo program.

Next three launches

July 11: Electron | JAKE 4 | Wallops Flight Facility, Virginia | 23: 45 UTC

July 13: Falcon 9 | Dror 1 | Cape Canaveral Space Force Station, Florida | 04: 31 UTC

July 14: Falcon 9 | Starlink 15-2 | Vandenberg Space Force Base, California | 02: 27 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX to make its own propellant; China’s largest launch pad Read More »