starship

spacex-reveals-why-the-last-two-starships-failed-as-another-launch-draws-near

SpaceX reveals why the last two Starships failed as another launch draws near


“SpaceX can now proceed with Starship Flight 10 launch operations under its current license.”

SpaceX completed a six-engine static fire of the next Starship upper stage on August 1. Credit: SpaceX

SpaceX is continuing with final preparations for the 10th full-scale test flight of the company’s enormous Starship rocket after receiving launch approval Friday from the Federal Aviation Administration.

Engineers completed a final test of Starship’s propulsion system with a so-called “spin prime” test Wednesday at the launch site in South Texas. Ground crews then rolled the ship back to a nearby hangar for engine inspections, touchups to its heat shield, and a handful of other chores to ready it for liftoff.

SpaceX has announced the launch is scheduled for no earlier than next Sunday, August 24, at 6: 30 pm local time in Texas (23: 30 UTC).

Like all previous Starship launches, the huge 403-foot-tall (123-meter) rocket will take off from SpaceX’s test site in Starbase, Texas, just north of the US-Mexico border. The rocket consists of a powerful booster stage named Super Heavy, with 33 methane-fueled Raptor engines. Six Raptors power the upper stage, known simply as Starship.

With this flight, SpaceX officials hope to put several technical problems with the Starship program behind them. SpaceX is riding a streak of four disappointing Starship test flights from January through May, and and the explosion and destruction of another Starship vehicle during a ground test in June.

These setbacks followed a highly successful year for the world’s largest rocket in 2024, when SpaceX flew Starship four times and achieved new objectives on each flight. These accomplishments included the first catch of a Super Heavy booster back at the launch pad, proving the company’s novel concept for recovering and reusing the rocket’s first stage.

Starship’s record so far in 2025 is another story. The rocket’s inability to make it through an entire suborbital test flight has pushed back future program milestones, such as the challenging tasks of recovering and reusing the rocket’s upper stage, and demonstrating the ability to refuel another rocket in orbit. Those would both be firsts in the history of spaceflight.

These future tests, and more, are now expected to occur no sooner than next year. This time last year, SpaceX officials hoped to achieve them in 2025. All of these demonstrations are vital for Elon Musk to meet his promise of sending numerous Starships to build a settlement on Mars. Meanwhile, NASA is eager for SpaceX to reel off these tests as quickly as possible because the agency has selected Starship as the human-rated lunar lander for the Artemis Moon program. Once operational, Starship will also be key to building out SpaceX’s next-generation Starlink broadband network.

A good outcome on the next Starship test flight would give SpaceX footing to finally take a step toward these future demos after months of dithering over design dilemmas.

Elon Musk, SpaceX’s founder and CEO, presented an update on Starship to company employees in May. This chart shows the planned evolution from Starship Version 2 (left) to Version 3 (middle), and an even larger rocket (right) in the more distant future.

The FAA said Friday it formally closed the investigation into Starship’s most recent in-flight failure in May, when the rocket started leaking propellant after reaching space, rendering it unable to complete the test flight.

“The FAA oversaw and accepted the findings of the SpaceX-led investigation,” the federal regulator said in a statement. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

Diagnosing failures

SpaceX identified the most probable cause for the May failure as a faulty main fuel tank pressurization system diffuser located on the forward dome of Starship’s primary methane tank. The diffuser failed a few minutes after launch, when sensors detected a pressure drop in the main methane tank and a pressure increase in the ship’s nose cone just above the tank.

The rocket compensated for the drop in main tank pressure and completed its engine burn, but venting from the nose cone and a worsening fuel leak overwhelmed Starship’s attitude control system. Finally, detecting a major problem, Starship triggered automatic onboard commands to vent all remaining propellant into space and “passivate” itself before an unguided reentry over the Indian Ocean, prematurely ending the test flight.

Engineers recreated the diffuser failure on the ground during the investigation, and then redesigned the part to better direct pressurized gas into the main fuel tank. This will also “substantially decrease” strain on the diffuser structure, SpaceX said.

The FAA, charged with ensuring commercial rocket launches don’t endanger public safety, signed off on the investigation and gave the green light for SpaceX to fly Starship again when it is ready.

“SpaceX can now proceed with Starship Flight 10 launch operations under its current license,” the FAA said.

“The upcoming flight will continue to expand the operating envelope on the Super Heavy booster, with multiple landing burn tests planned,” SpaceX said in an update posted to its website Friday. “It will also target similar objectives as previous missions, including Starship’s first payload deployment and multiple reentry experiments geared towards returning the upper stage to the launch site for catch.”

File photo of Starship’s six Raptor engines firing on a test stand in South Texas. Credit: SpaceX

In the aftermath of the test flight in May, SpaceX hoped to fly Starship again by late June or early July. But another accident June 18, this time on the ground, delayed the program another couple of months. The Starship vehicle SpaceX assigned to the next flight, designated Ship 36, exploded on a test stand in Texas as teams filled it with cryogenic propellants for an engine test-firing.

The accident destroyed the ship and damaged the test site, prompting SpaceX to retrofit the sole active Starship launch pad to support testing of the next ship in line—Ship 37. Those tests included a brief firing of all six of the ship’s Raptor engines August 1.

After Ship 37’s final spin prime test Wednesday, workers transported the rocket back to a hangar for evaluation, and crews immediately got to work transitioning the launch pad back to its normal configuration to host a full Super Heavy/Starship stack.

SpaceX said the explosion on the test stand in June was likely caused by damage to a high-pressure nitrogen storage tank inside Starship’s payload bay section. This tank, called a composite overwrapped pressure vessel, or COPV, violently ruptured and led to the ship’s fiery demise. SpaceX said COPVs on upcoming flights will operate at lower pressures, and managers ordered additional inspections on COPVs to look for damage, more proof testing, more stringent acceptance criteria, and a hardware change to address the problem.

Try, try, try, try again

This year began with the first launch of an upgraded version of Starship, known as Version 2 or Block 2, in January. But the vehicle suffered propulsion failures and lost control before the upper stage completed its engine burn to propel the rocket on a trajectory carrying it halfway around the world to splash down in the Indian Ocean. Instead, the rocket broke apart and rained debris over the Bahamas and the Turks and Caicos Islands more than 1,500 miles downrange from Starbase.

That was followed in March by another Starship launch that had a similar result, again scattering debris near the Bahamas. In May, the ninth Starship test flight made it farther downrange and completed its engine burn before spinning out of control in space, preventing it from making a guided reentry to gather data on its heat shield.

Mastering the design of Starship’s heat shield is critical the future of the program. As it has on all of this year’s test flights, SpaceX has installed on the next Starship several different ceramic and metallic tile designs to test alternative materials to protect the vehicle during its scorching plunge back into Earth’s atmosphere. Starship successfully made it through reentry for a controlled splashdown in the sea several times last year, but sensors detected hot spots on the rocket’s stainless steel skin after some of the tiles fell off during launch and descent.

Making the Starship upper stage reusable like the Super Heavy booster will require better performance from the heat shield. The demands of flying the ship home from orbit and attempting a catch at the launch pad far outweigh the challenge of recovering a booster. Coming back from space, the ship encounters much higher temperatures than the booster sees at lower velocities.

Therefore, SpaceX’s most important goal for the 10th Starship flight will be gathering information about how well the ship’s different heat shield materials hold up during reentry. Engineers want to have this data as soon as possible to inform design decisions about the next iteration of Starship—Version 3 or Block 3—that will actually fly into orbit. So far, all Starship launches have intentionally targeted a speed just shy of orbital velocity, bringing the vehicle back through the atmosphere halfway around the world.

Other objectives on the docket for Starship Flight 10 include the deployment of spacecraft simulators mimicking the size of SpaceX’s next-generation Starlink Internet satellites. Like the heat shield data, this has been part of the flight plan for the last three Starship launches, but the rocket never made it far enough to attempt any payload deployment tests.

Thirty-three Raptor engines power the Super Heavy booster downrange from SpaceX’s launch site near Brownsville, Texas, in January. Credit: SpaceX

Engineers also plan to put the Super Heavy booster through the wringer on the next launch. Instead of coming back to Starbase for a catch at the launch pad—something SpaceX has now done three times—the massive booster stage will target a controlled splashdown in the Gulf of Mexico east of the Texas coast. This will give SpaceX room to try new things with the booster, such as controlling the rocket’s final descent with a different mix of engines to see if it could overcome a problem with one of its three primary landing engines.

SpaceX tried to experiment with new ways of landing of the Super Heavy booster on the last test flight, too. The Super Heavy exploded before reaching the ocean, likely due to a structural failure of the rocket’s fuel transfer tube, an internal pipe where methane flows from the fuel tank at the top of the rocket to the engines at the bottom of the booster. SpaceX said the booster flew a higher angle of attack during its descent in May to test the limits of the rocket’s performance. It seems engineers found the limit, and the booster won’t fly at such a high angle of attack next time.

SpaceX has just two Starship Version 2 vehicles in its inventory before moving on to the taller Version 3 configuration, which will also debut improved Raptor engines.

“Every lesson learned, through both flight and ground testing, continues to feed directly into designs for the next generation of Starship and Super Heavy,” SpaceX said. “Two flights remain with the current generation, each with test objectives designed to expand the envelope on vehicle capabilities as we iterate towards fully and rapidly reusable, reliable rockets.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX reveals why the last two Starships failed as another launch draws near Read More »

rocket-report:-channeling-the-future-at-wallops;-spacex-recovers-rocket-wreckage

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage


China’s Space Pioneer seems to be back on track a year after an accidental launch.

A SpaceX Falcon 9 rocket carrying a payload of 24 Starlink Internet satellites soars into space after launching from Vandenberg Space Force Base, California, shortly after sunset on July 18, 2025. This image was taken in Santee, California, approximately 250 miles (400 kilometers) away from the launch site. Credit: Kevin Carter/Getty Images

Welcome to Edition 8.04 of the Rocket Report! The Pentagon’s Golden Dome missile defense shield will be a lot of things. Along with new sensors, command and control systems, and satellites, Golden Dome will require a lot of rockets. The pieces of the Golden Dome architecture operating in orbit will ride to space on commercial launch vehicles. And Golden Dome’s space-based interceptors will essentially be designed as flying fuel tanks with rocket engines. This shouldn’t be overlooked, and that’s why we include a couple of entries discussing Golden Dome in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Space-based interceptors are a real challenge. The newly installed head of the Pentagon’s Golden Dome missile defense shield knows the clock is ticking to show President Donald Trump some results before the end of his term in the White House, Ars reports. Gen. Michael Guetlein identified command-and-control and the development of space-based interceptors as two of the most pressing technical challenges for Golden Dome. He believes the command-and-control problem can be “overcome in pretty short order.” The space-based interceptor piece of the architecture is a different story.

Proven physics, unproven economics … “I think the real technical challenge will be building the space-based interceptor,” Guetlein said. “That technology exists. I believe we have proven every element of the physics that we can make it work. What we have not proven is, first, can I do it economically, and then second, can I do it at scale? Can I build enough satellites to get after the threat? Can I expand the industrial base fast enough to build those satellites? Do I have enough raw materials, etc.?” Military officials haven’t said how many space-based interceptors will be required for Golden Dome, but outside estimates put the number in the thousands.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

One big defense prime is posturing for Golden Dome. Northrop Grumman is conducting ground-based testing related to space-based interceptors as part of a competition for that segment of the Trump administration’s Golden Dome missile-defense initiative, The War Zone reports. Kathy Warden, Northrop Grumman’s CEO, highlighted the company’s work on space-based interceptors, as well as broader business opportunities stemming from Golden Dome, during a quarterly earnings call this week. Warden identified Northrop’s work in radars, drones, and command-and-control systems as potentially applicable to Golden Dome.

But here’s the real news … “It will also include new innovation, like space-based interceptors, which we’re testing now,” Warden continued. “These are ground-based tests today, and we are in competition, obviously, so not a lot of detail that I can provide here.” Warden declined to respond directly to a question about how the space-based interceptors Northrop Grumman is developing now will actually defeat their targets. (submitted by Biokleen)

Trump may slash environmental rules for rocket launches. The Trump administration is considering slashing rules meant to protect the environment and the public during commercial rocket launches, changes that companies like Elon Musk’s SpaceX have long sought, ProPublica reports. A draft executive order being circulated among federal agencies, and viewed by ProPublica, directs Secretary of Transportation Sean Duffy to “use all available authorities to eliminate or expedite” environmental reviews for launch licenses. It could also, in time, require states to allow more launches or even more launch sites along their coastlines.

Getting political at the FAA … The order is a step toward the rollback of federal oversight that Musk, who has fought bitterly with the Federal Aviation Administration over his space operations, and others have pushed for. Commercial rocket launches have grown exponentially more frequent in recent years. In addition to slashing environmental rules, the draft executive order would make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This is currently a civil servant position, but the last head of the office took a voluntary separation offer earlier this year.

There’s a SPAC for that. An unproven small launch startup is partnering with a severely depleted SPAC trust to do the impossible: go public in a deal they say will be valued at $400 million, TechCrunch reports. Innovative Rocket Technologies Inc., or iRocket, is set to merge with a Special Purpose Acquisition Company, or SPAC, founded by former Commerce Secretary Wilbur Ross. But the most recent regulatory filings by this SPAC showed it was in a tenuous financial position last year, with just $1.6 million held in trust. Likewise, iRocket isn’t flooded with cash. The company has raised only a few million in venture funding, a fraction of what would be needed to develop and test the company’s small orbital-class rocket, named Shockwave.

SpaceX traces a path to orbit for NASA. Two NASA satellites soared into orbit from California aboard a SpaceX Falcon 9 rocket Wednesday, commencing a $170 million mission to study a phenomenon of space physics that has eluded researchers since the dawn of the Space Age, Ars reports. The twin spacecraft are part of the NASA-funded TRACERS mission, which will spend at least a year measuring plasma conditions in narrow regions of Earth’s magnetic field known as polar cusps. As the name suggests, these regions are located over the poles. They play an important but poorly understood role in creating colorful auroras as plasma streaming out from the Sun interacts with the magnetic field surrounding Earth. The same process drives geomagnetic storms capable of disrupting GPS navigation, radio communications, electrical grids, and satellite operations.

Plenty of room for more … The TRACERS satellites are relatively small, each about the size of a washing machine, so they filled only a fraction of the capacity of SpaceX’s Falcon 9 rocket. Three other small NASA tech demo payloads hitched a ride to orbit with TRACERS, kicking off missions to test an experimental communications terminal, demonstrate an innovative scalable satellite platform made of individual building blocks, and study the link between Earth’s atmosphere and the Van Allen radiation belts. In addition to those missions, the European Space Agency launched its own CubeSat to test 5G communications from orbit. Five smallsats from an Australian company rounded out the group. Still, the Falcon 9 rocket’s payload shroud was filled with less than a quarter of the payload mass it could have delivered to the TRACERS mission’s targeted Sun-synchronous orbit.

Tianlong launch pad ready for action. Chinese startup Space Pioneer has completed a launch pad at Jiuquan spaceport in northwestern China for its Tianlong 3 liquid propellent rocket ahead of a first orbital launch, Space News reports. Space Pioneer said the launch pad passed an acceptance test, and ground crews raised a full-scale model of the Tianlong 3 rocket on the launch pad. “The rehearsal test was successfully completed,” said Space Pioneer, one of China’s leading private launch companies. The activation of the launch pad followed a couple of weeks after Space Pioneer announced the completion of static loads testing on Tianlong 3.

More to come … While this is an important step forward for Space Pioneer, construction of the launch pad is just one element the company needs to finish before Tianlong 3 can lift off for the first time. In June 2024, the company ignited Tianlong 3’s nine-engine first stage on a test stand in China. But the rocket broke free of its moorings on the test stand and unexpectedly climbed into the sky before crashing in a fireball nearby. Space Pioneer says the “weak design of the rocket’s tail structure was the direct cause of the failure” last year. The company hasn’t identified next steps for Tianlong 3, or when it might be ready to fly. Tianlong 3 is a kerosene-fueled rocket with nine main engines, similar in design architecture and payload capacity to SpaceX’s Falcon 9. Also, like Falcon 9, Tianlong 3 is supposed to have a recoverable and reusable first stage booster.

Dredging up an issue at Wallops. Rocket Lab has asked regulators for permission to transport oversized Neutron rocket structures through shallow waters to a spaceport off the coast of Virginia as it races to meet a September delivery deadline, TechCrunch reports. The request, which was made in July, is a temporary stopgap while the company awaits federal clearance to dredge a permanent channel to the Wallops Island site. Rocket Lab plans to launch its Neutron medium-lift rocket from the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Virginia, a lower-traffic spaceport that’s surrounded by shallow channels and waterways. Rocket Lab has a sizable checklist to tick off before Neutron can make its orbital debut, like mating the rocket stages, performing a “wet dress” rehearsal, and getting its launch license from the Federal Aviation Administration. Before any of that can happen, the rocket hardware needs to make it onto the island from Rocket Lab’s factory on the nearby mainland.

Kedging bets … Access to the channel leading to Wallops Island is currently available only at low tides. So, Rocket Lab submitted an application earlier this year to dredge the channel. The dredging project was approved by the Virginia Marine Resources Commission in May, but the company has yet to start digging because it’s still awaiting federal sign-off from the Army Corps of Engineers. As the company waits for federal approval, Rocket Lab is seeking permission to use a temporary method called “kedging” to ensure the first five hardware deliveries can arrive on schedule starting in September. We don’t cover maritime issues in the Rocket Report, but if you’re interested in learning a little about kedging, here’s a link.

Any better ideas for an Exploration Upper Stage? Not surprisingly, Congress is pushing back against the Trump administration’s proposal to cancel the Space Launch System, the behemoth rocket NASA has developed to propel astronauts back to the Moon. But legislation making its way through the House of Representatives includes an interesting provision that would direct NASA to evaluate alternatives for the Boeing-built Exploration Upper Stage, an upgrade for the SLS rocket set to debut on its fourth flight, Ars reports. Essentially, the House Appropriations Committee is telling NASA to look for cheaper, faster options for a new SLS upper stage.

CYA EUS? The four-engine Exploration Upper Stage, or EUS, is an expensive undertaking. Last year, NASA’s inspector general reported that the new upper stage’s development costs had ballooned from $962 million to $2.8 billion, and the project had been delayed more than six years. That’s almost a year-for-year delay since NASA and Boeing started development of the EUS. So, what are the options if NASA went with a new upper stage for the SLS rocket? One possibility is a modified version of United Launch Alliance’s dual-engine Centaur V upper stage that flies on the Vulcan rocket. It’s no longer possible to keep flying the SLS rocket’s existing single-engine upper stage because ULA has shut down the production line for it.

Raising Super Heavy from the deep. For the second time, SpaceX has retrieved an engine section from one of its Super Heavy boosters from the Gulf of Mexico, NASASpaceflight.com reports. Images posted on social media showed the tail end of a Super Heavy booster being raised from the sea off the coast of northern Mexico. Most of the rocket’s 33 Raptor engines appear to still be attached to the lower section of the stainless steel booster. Online sleuths who closely track SpaceX’s activities at Starbase, Texas, have concluded the rocket recovered from the Gulf is Booster 13, which flew on the sixth test flight of the Starship mega-rocket last November. The booster ditched in the ocean after aborting an attempted catch back at the launch pad in South Texas.

But why? … SpaceX recovered the engine section of a different Super Heavy booster from the Gulf last year. The company’s motivation for salvaging the wreckage is unclear. “Speculated reasons include engineering research, environmental mitigation, or even historical preservation,” NASASpaceflight reports.

Next three launches

July 26: Vega C | CO3D & MicroCarb | Guiana Space Center, French Guiana | 02: 03 UTC

July 26: Falcon 9 | Starlink 10-26 | Cape Canaveral Space Force Station, Florida | 08: 34 UTC

July 27: Falcon 9 | Starlink 17-2 | Vandenberg Space Force Base, California | 03: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage Read More »

rocket-report:-spacex-to-make-its-own-propellant;-china’s-largest-launch-pad

Rocket Report: SpaceX to make its own propellant; China’s largest launch pad


United Launch Alliance begins stacking its third Vulcan rocket for the second time.

Visitors walk by models of a Long March 10 rocket, lunar lander, and crew spacecraft during an exhibition on February 24, 2023 in Beijing, China. Credit: Hou Yu/China News Service/VCG via Getty Images

Welcome to Edition 8.02 of the Rocket Report! It’s worth taking a moment to recognize an important anniversary in the history of human spaceflight next week. Fifty years ago, on July 15, 1975, NASA launched a three-man crew on an Apollo spacecraft from Florida and two Russian cosmonauts took off from Kazakhstan, on course to link up in low-Earth orbit two days later. This was the first joint US-Russian human spaceflight mission, laying the foundation for a strained but enduring partnership on the International Space Station. Operations on the ISS are due to wind down in 2030, and the two nations have no serious prospects to continue any partnership in space after decommissioning the station.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sizing up Europe’s launch challengers. The European Space Agency has selected five launch startups to become eligible for up to 169 million euros ($198 million) in funding to develop alternatives to Arianespace, the continent’s incumbent launch service provider, Ars reports. The five small launch companies ESA selected are Isar Aerospace, MaiaSpace, Rocket Factory Augsburg, PLD Space, and Orbex. Only one of these companies, Isar Aerospace, has attempted to launch a rocket into orbit. Isar’s Spectrum rocket failed moments after liftoff from Norway on a test flight in March. None of these companies is guaranteed an ESA contract or funding. Over the next several months, ESA and the five launch companies will negotiate with European governments for funding leading up to ESA’s ministerial council meeting in November, when ESA member states will set the agency’s budget for at least the next two years. Only then will ESA be ready to sign binding agreements.

Let’s rank ’em … Ars Technica’s space reporters ranked the five selectees for the European Launcher Challenge in order from most likely to least likely to reach orbit. We put Munich-based Isar Aerospace, the most well-funded of the group, at the top of the list after attempting its first orbital launch earlier this year. Paris-based MaiaSpace, backed by ArianeGroup, comes in second, with plans for a partially reusable rocket. Rocket Factory Augsburg, another German company, is in third place after getting close to a launch attempt last year before its first rocket blew up on a test stand. Spanish startup PLD Space is fourth, and Britain’s Orbex rounds out the list. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Japan’s Interstellar Technologies rakes in more cash. Interstellar Technologies raised 8.9 billion yen ($61.8 million) to boost the development of its Zero rocket and research and development of satellite systems, Space News reports. The money comes from Japanese financial institutions, venture capital funds, and debt financing. Interstellar previously received funding through agreements with the Japanese government and Toyota, which Interstellar says will add expertise to scale manufacturing of the Zero rocket for “high-frequency, cost-effective launches.” The methane-fueled Zero rocket is designed to deploy a payload of up to 1 metric ton (2,200 pounds) into low-Earth orbit. The unfortunate news from Interstellar’s fundraising announcement is that the company has pushed back the debut flight of the Zero rocket until 2027.

Straight up … Interstellar has aspirations beyond launch vehicles. The company is also developing a satellite communications business, and some of the money raised in the latest investment round will go toward this segment of the company. Interstellar is open about comparing its ambition to that of SpaceX. “On the satellite side, Interstellar is developing communications satellites that benefit from the company’s own launch capabilities,” the company said in a statement. “Backed by Japan’s Ministry of Internal Affairs and Communications and JAXA’s Space Strategy Fund, the company is building a vertically integrated model, similar to SpaceX’s approach with Starlink.”

Korean startup completes second-stage qual testing. South Korean launch services company Innospace says it has taken another step toward the inaugural launch of its Hanbit-Nano rocket by the year’s end with the qualification of the second stage, Aviation Week & Space Technology reports. The second stage uses an in-house-developed 34-kilonewton (7,643-pound-thrust) liquid methane engine. Innospace says the engine achieved a combustion time of 300 seconds, maintaining stability of the fuel and oxidizer supply system, structural integrity, and the launch vehicle integrated control system.

A true micro-launcher … Innospace’s rocket is modest in size and capacity, even among its cohorts in the small launch market. The Hanbit-Nano rocket is designed to launch approximately 200 pounds (90 kilograms) of payload into Sun-synchronous orbit. “With the success of this second stage engine certification test, we have completed the development of the upper stage of the Hanbit-Nano launch vehicle,” said Kim Soo-jong, CEO of Innospace. “This is a very symbolic and meaningful technological achievement that demonstrates the technological prowess and test operation capabilities that Innospace has accumulated over a long period of time, while also showing that we have entered the final stage for commercial launch. Currently, all executives and staff are doing their best to successfully complete the first stage certification test, which is the final gateway for launch, and we will make every effort to prepare for a smooth commercial launch in the second half of the year.”

Two companies forge unlikely alliance in Dubai. Two German entrepreneurs have joined forces with a team of Russian expats steeped in space history to design a rocket using computational AI models, Payload reports. The “strategic partnership” is between LEAP 71, an AI-enabled design startup, and Aspire Space, a company founded by the son of a Soviet engineer who was in charge of launching Zenit rockets from the Baikonur Cosmodrome in Kazakhstan in the 1980s. The companies will base their operations in Dubai. The unlikely pairing aims to develop a new large reusable launch vehicle capable of delivering up to 15 metric tons to low-Earth orbit. Aspire Space is a particularly interesting company if you’re a space history enthusiast. Apart from the connections of Aspire’s founder to Soviet space history, Aspire’s chief technology officer, Sergey Sopov, started his career at Baikonur working on the Energia heavy-lift rocket and Buran space shuttle, before becoming an executive at Sea Launch later in his career.

Trust the computer … It’s easy to be skeptical about this project, but it has attracted an interesting group of people. LEAP 71 has just two employees—its two German co-founders—but boasts lofty ambitions and calls itself a “pioneer in AI-driven engineering.” As part of the agreement with Aspire Space, LEAP 71 will use a proprietary software program called Noyron to design the entire propulsion stack for Aspire’s rockets. The company says its AI-enabled design approach for Aspire’s 450,000-pound-thrust engine will cut in half the time it took other rocket companies to begin test-firing a new engine of similar size. Rudenko forecasts Aspire’s entire project, including a launcher, reusable spacecraft, and ground infrastructure to support it all, will cost more than $1 billion. So far, the project is self-funded, Rudenko told Payload. (submitted by Lin Kayser)

Russia launches ISS resupply freighter. A Russian Progress supply ship launched July 3 from the Baikonur Cosmodrome in Kazakhstan atop a Soyuz-2.1a rocket, NASASpaceflight reports. Packed with 5,787 pounds (2,625 kilograms) of cargo and fuel, the Progress MS-31 spacecraft glided to an automated docking at the International Space Station two days later. The Russian cosmonauts living aboard the ISS will unpack the supplies carried inside the Progress craft’s pressurized compartment. This was the eighth orbital launch of the year by a Russian rocket, continuing a downward trend in launch activity for the Russian space program in recent years.

Celebrating a golden anniversary … The Soyuz rocket that launched Progress MS-31 was painted an unusual blue and white scheme, as it was originally intended for a commercial launch that was likely canceled after Russia’s invasion of Ukraine. It also sported a logo commemorating the 50th anniversary of the Apollo-Soyuz mission in July 1975.

Chinese rocket moves closer to first launch. Chinese commercial launch firm Orienspace is aiming for a late 2025 debut of its Gravity-2 rocket following a recent first-stage engine hot fire test, Space News reports. The “three-in-one” hot fire test verified the performance of the Gravity-2 rocket’s first stage engine, servo mechanisms, and valves that regulate the flow of propellants into the engine, according to a press release from Orienspace. The Gravity-2 rocket’s recoverable and reusable first stage will be powered by nine of these kerosene-fueled engines. The recent hot fire test “lays a solid foundation” for future tests leading up to the Gravity-2’s inaugural flight.

Extra medium … Orienspace’s first rocket, the solid-fueled Gravity-1, completed its first successful flight last year to place multiple small satellites into orbit. Gravity-2 is a much larger vehicle, standing 230 feet (70 meters) tall, the same height as SpaceX’s Falcon 9 rocket. Orienspace’s new rocket will fly in a core-only configuration or with the assistance of two solid rocket boosters. An infographic released by Orienspace in conjunction with the recent engine hot fire test indicates the Gravity-2 rocket will be capable of hauling up to 21.5 metric tons (47,400 pounds) of cargo into low-Earth orbit, placing its performance near the upper limit of medium-lift launchers.

Senator calls out Texas for trying to steal space shuttle. A political effort to remove space shuttle Discovery from the Smithsonian and place it on display in Texas encountered some pushback on Thursday, as a US senator questioned the expense of carrying out what he described as a theft, Ars reports. “This is not a transfer. It’s a heist,” said Sen. Dick Durbin (D-Ill.) during a budget markup hearing before the Senate Appropriations Committee. “A heist by Texas because they lost a competition 12 years ago.” In April, Republican Sens. John Cornyn and Ted Cruz, both representing Texas, introduced the “Bring the Space Shuttle Home Act” that called for Discovery to be relocated from the National Air and Space Museum’s Steven F. Udvar-Hazy Center in northern Virginia and displayed at Space Center Houston. They then inserted an $85 million provision for the shuttle relocation into the Senate version of the “One Big Beautiful Bill,” which, to comply with Senate rules, was more vaguely worded but was meant to achieve the same goal. That bill was enacted on July 4, when President Donald Trump signed it into law.

Dollar signs As ridiculous as it is to imagine spending $85 million on moving a space shuttle from one museum to another, it’ll actually cost a lot more to do it safely. Citing research by NASA and the Smithsonian, Durbin said that the total was closer to $305 million, and that did not include the estimated $178 million needed to build a facility to house and display Discovery once it was in Houston. Furthermore, it was unclear if Congress even has the right to remove an artifact, let alone a space shuttle, from the Smithsonian’s collection. The Washington, DC, institution, which serves as a trust instrumentality of the US, maintains that it owns Discovery. The paperwork signed by NASA in 2012 transferred “all rights, interest, title, and ownership” for the spacecraft to the Smithsonian. “This will be the first time ever in the history of the Smithsonian someone has taken one of their displays and forcibly taken possession of it. What are we doing here? They don’t have the right in Texas to claim this,” said Durbin.

Starbase keeps getting bigger. Cameron County, Texas, has given SpaceX the green light to build an air separator facility, which will be located less than 300 feet from the region’s sand dunes, frustrating locals concerned about the impact on vegetation and wildlife, the Texas Tribune reports. The commissioners voted 3–1 to give Elon Musk’s rocket company a beachfront construction certificate and dune protection permit, allowing the company to build a facility to produce gases needed for Starship launches. The factory will separate air into nitrogen and oxygen. SpaceX uses liquid oxygen as a propellant and liquid nitrogen for testing and operations.

Saving the roads … By having the facility on site, SpaceX hopes to make the delivery of those gases more efficient by eliminating the need to have dozens of trucks deliver them from Brownsville. The company says they need more than 200 trucks of liquid nitrogen and oxygen delivered for each launch, a SpaceX engineer told the county during a meeting last week. With their application, SpaceX submitted a plan to mitigate expected negative effects on 865 square feet of dune vegetation and 20 cubic yards of dunes, as well as compensate for expected permanent impacts to 7,735 square feet of dune vegetation and 465 cubic yards of dunes. While the project will be built on property owned by SpaceX, the county holds the authority to manage the construction that affects Boca Chica’s dunes.

ULA is stacking its third Vulcan rocket. A little more than a week after its most recent Atlas V rocket launch, United Launch Alliance rolled a Vulcan booster to the Vertical Integration Facility at Cape Canaveral Space Force Station in Florida on July 2 to begin stacking its first post-certification Vulcan rocket, Spaceflight Now reports. The operation, referred to by ULA as Launch Vehicle on Stand (LVOS), is the first major milestone toward the launch of the third Vulcan rocket. The upcoming launch will be the first operational flight of ULA’s new rocket with a pair of US military payloads, following two certification flights in 2024.

For the second time … This is the second time that this particular Vulcan booster was brought to Space Launch Complex 41 in anticipation of a launch campaign. It was previously readied in late October of last year in support of the USSF-106 mission, the Space Force’s designation for the first national security launch to use the Vulcan rocket. However, plans changed as the process of certifying Vulcan to fly government payloads took longer than expected, and ULA pivoted to launch two Atlas V rockets on commercial missions from the same pad before switching back to Vulcan launch preps.

Progress report on China’s Moon rocket. China’s self-imposed deadline of landing astronauts on the Moon by 2030 is now just five years away, and we’re starting to see some tangible progress. Construction of the launch pad for the Long March 10 rocket, the massive vehicle China will use to launch its first crews toward the Moon, is well along at the Wenchang Space Launch Site on Hainan Island. An image shared on the Chinese social media platform Weibo, and then reposted on X, shows the Long March 10’s launch tower near its final height. A mobile launch platform presumably for the Long March 10 is under construction nearby.

Super heavy … The Long March 10 will be China’s most powerful rocket to date, with the ability to dispatch 27 metric tons of payload toward the Moon, a number comparable to NASA’s Space Launch System. Designed for partial reusability, the Long March 10 will use an all-liquid propulsion system and stand more than 92 meters (300 feet) tall. The rocket will launch Chinese astronauts inside the nation’s next-generation Mengzhou crew capsule, along with a lunar lander to transport crew members from lunar orbit to the surface of the Moon using an architecture similar to NASA’s Apollo program.

Next three launches

July 11: Electron | JAKE 4 | Wallops Flight Facility, Virginia | 23: 45 UTC

July 13: Falcon 9 | Dror 1 | Cape Canaveral Space Force Station, Florida | 04: 31 UTC

July 14: Falcon 9 | Starlink 15-2 | Vandenberg Space Force Base, California | 02: 27 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX to make its own propellant; China’s largest launch pad Read More »

spacex’s-next-starship-just-blew-up-on-its-test-stand-in-south-texas

SpaceX’s next Starship just blew up on its test stand in South Texas


SpaceX had high hopes for Starship in 2025, but it’s been one setback after another.

A fireball erupts around SpaceX’s Starship rocket in South Texas late Wednesday night. Credit: LabPadre

SpaceX’s next Starship rocket exploded during a ground test in South Texas late Wednesday, dealing another blow to a program already struggling to overcome three consecutive failures in recent months.

The late-night explosion at SpaceX’s rocket development complex in Starbase, Texas, destroyed the bullet-shaped upper stage that was slated to launch on the next Starship test flight. The powerful blast set off fires around SpaceX’s Massey’s Test Site, located a few miles from the company’s Starship factory and launch pads.

Live streaming video from NASASpaceflight.com and LabPadremedia organizations with cameras positioned around Starbase—showed the 15-story-tall rocket burst into flames shortly after 11: 00 pm local time (12: 00 am EDT; 04: 00 UTC). Local residents as far as 30 miles away reported seeing and feeling the blast.

SpaceX confirmed the Starship, numbered Ship 36 in the company’s inventory, “experienced a major anomaly” on a test stand as the vehicle prepared to ignite its six Raptor engines for a static fire test. These hold-down test-firings are typically one of the final milestones in a Starship launch campaign before SpaceX moves the rocket to the launch pad.

The explosion occurred as SpaceX finished up loading super-cold methane and liquid oxygen propellants into Starship in preparation for the static fire test. The company said the area around the test site was evacuated of all personnel, and everyone was safe and accounted for after the incident. Firefighters from the Brownsville Fire Department were dispatched to the scene.

“Our Starbase team is actively working to safe the test site and the immediate surrounding area in conjunction with local officials,” SpaceX posted on X. “There are no hazards to residents in surrounding communities, and we ask that individuals do not attempt to approach the area while safing operations continue.”

Picking up the pieces

Earlier Wednesday, just hours before the late-night explosion at Starbase, an advisory released by the Federal Aviation Administration showed SpaceX had set June 29 as a tentative launch date for the next Starship test flight. That won’t happen now, and it’s anyone’s guess when SpaceX will have another Starship ready to fly.

Massey’s Test Site, named for a gun range that once occupied the property, is situated on a bend in the Rio Grande River, just a few hundred feet from the Mexican border. The test site is currently the only place where SpaceX can put Starships through proof testing and static fire tests before declaring the rockets are ready to fly.

The extent of the damage to ground equipment at Massey’s was not immediately clear, so it’s too soon to say how long the test site will be out of commission. For now, though, the explosion leaves SpaceX without a facility to support preflight testing on Starships.

The videos embedded below come from NASASpaceflight.com and LabPadre, showing multiple angles of the Starship blast.

The explosion at Massey’s is a reminder of SpaceX’s rocky path to get Starship to this point in its development. In 2020 and 2021, SpaceX lost several Starship prototypes to problems during ground and flight testing. The visual of Ship 36 going up in flames harkens back to those previous explosions, along with the fiery demise of a Falcon 9 rocket on its launch pad in 2016 under circumstances similar to Wednesday night’s incident.

SpaceX has now launched nine full-scale Starship rockets since April 2023, and before the explosion, the company hoped to launch the 10th test flight later this month. Starship’s track record has been dreadful so far this year, with the rocket’s three most recent test flights ending prematurely. These setbacks followed a triumphant 2024, when SpaceX made clear progress on each successive Starship suborbital test flight, culminating in the first catch of the rocket’s massive Super Heavy booster with giant robotic arms on the launch pad tower.

Stacked together, the Super Heavy booster stage and Starship upper stage stand more than 400 feet tall, creating the largest rocket ever built. SpaceX has already flown a reused Super Heavy booster, and the company has designed Starship itself to be recoverable and reusable, too.

After last year’s accomplishments, SpaceX appeared to be on track for a full orbital flight, an attempt to catch and recover Starship itself, and an important in-space refueling demonstration in 2025. The refueling demo has officially slipped into 2026, and it’s questionable whether SpaceX will make enough progress in the coming months to attempt recovery of a ship before the end of this year.

A Super Heavy booster and Starship upper stage are seen in March at SpaceX’s launch pad in South Texas, before the ship was stacked atop the booster for flight. The Super Heavy booster for the next Starship flight completed its static fire test earlier this month. Credit: Brandon Bell/Getty Images

Ambition meets reality

SpaceX debuted an upgraded Starship design, called Version 2 or Block 2, on a test flight in January. It’s been one setback after another since then.

The new Starship design is slightly taller than the version of Starship that SpaceX flew in 2023 and 2024. It has an improved heat shield to better withstand the extreme heat of atmospheric reentry. SpaceX also installed a new fuel feed line system to route methane fuel to the ship’s Raptor engines, and an improved propulsion avionics module controlling the vehicle’s valves and reading sensors.

Despite—or perhaps because ofall of these changes for Starship Version 2, SpaceX has been unable to replicate the successes it achieved with Starship in the last two years. Ships launched on test flights in January and March spun out of control minutes after liftoff, scattering debris over the sea, and in at least one case, onto a car in the Turks and Caicos Islands.

SpaceX engineers concluded the January failure was likely caused by intense vibrations that triggered fuel leaks and fires in the ship’s engine compartment, causing an early shutdown of the rocket’s engines. Engineers said the vibrations were likely in resonance with the vehicle’s natural frequency, intensifying the shaking beyond the levels SpaceX predicted.

The March flight failed in similar fashion, but SpaceX’s investigators determined the most probable root cause was a hardware failure in one of the ship’s engines, a different failure mode than two months before.

During SpaceX’s most recent Starship test flight last month, the rocket completed the ascent phase of the mission as planned, seemingly overcoming the problems that plagued the prior two launches. But soon after the Raptor engines shut down, a fuel leak caused the ship to begin tumbling in space, preventing the vehicle from completing a guided reentry to test the performance of new heat shield materials.

File photo of a Starship static fire in May at Massey’s Test Site.

SpaceX is working on a third-generation Starship design, called Version 3, that the company says could be ready to fly by the end of this year. The upgraded Starship Version 3 design will be able to lift heavier cargo—up to 200 metric tonsinto orbit thanks to larger propellant tanks and more powerful Raptor engines. Version 3 will also have the ability to refuel in low-Earth orbit.

Version 3 will presumably have permanent fixes to the problems currently slowing SpaceX’s pace of Starship development. And there are myriad issues for SpaceX’s engineers to solve, from engine reliability and the ship’s resonant frequency, to beefing up the ship’s heat shield and fixing its balky payload bay door.

Once officials solve these problems, it will be time for SpaceX to bring a Starship from low-Earth orbit back to the ground. Then, there’s more cool stuff on the books, like orbital refueling and missions to the Moon in partnership with NASA’s Artemis program. NASA has contracts worth more than $4 billion with SpaceX to develop a human-rated Starship that can land astronauts on the Moon and launch them safely back into space.

The Trump administration’s proposed budget for NASA would cancel the Artemis program’s ultra-expensive Space Launch System rocket and Orion crew capsule after two more flights, leaving commercial heavy-lifters to take over launching astronauts from the Earth to the Moon. SpaceX’s Starship, already on contract with NASA as a human-rated lander, may eventually win more government contracts to fill the role of SLS and Orion under Trump’s proposed budget. Other rockets, such as Blue Origin’s New Glenn, are also well-positioned to play a larger role in human space exploration.

NASA’s official schedule for the first Artemis crew landing on the Moon puts the mission some time in 2027, using SLS and Orion to transport astronauts out to the vicinity of the Moon to meet up with SpaceX’s Starship lunar lander. After that mission, known as Artemis III, NASA would pivot to using commercial rockets from Elon Musk’s SpaceX and Jeff Bezos’ Blue Origin to replace the Space Launch System.

Meanwhile, SpaceX’s founder and CEO has his sights set on Mars. Last month, Musk told his employees he wants to launch the first Starships toward the Red Planet in late 2026, when the positions of Earth and Mars in the Solar System make a direct journey possible. Optimistically, he would like to send people to Mars on Starships beginning in 2028.

All of these missions are predicated on SpaceX mastering routine Starship launch operations, rapid reuse of the ship and booster, and cryogenic refueling in orbit, along with adapting systems such as life support, communications, and deep space navigation for an interplanetary journey.

The to-do list is long for SpaceX’s Starship program—too long for Mars landings to seem realistic any time in the next few years. NASA’s schedule for the Artemis III lunar landing mission in 2027 is also tight, and not only because of Starship’s delays. The development of new spacesuits for astronauts to wear on the Moon may also put the Artemis III schedule at risk. NASA’s SLS rocket and Orion spacecraft have had significant delays throughout their history, so it’s not a sure thing they will be ready in 2027.

While it’s too soon to know the precise impact of Wednesday night’s explosion, we can say with some confidence that the chances of Starship meeting these audacious schedules are lower today than they were yesterday.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX’s next Starship just blew up on its test stand in South Texas Read More »

rocket-report:-new-delay-for-europe’s-reusable-rocket;-spacex-moves-in-at-slc-37

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37


Canada is the only G7 nation without a launch program. Quebec wants to do something about that.

This graphic illustrates the elliptical shape of a geosynchronous transfer orbit in green, and the circular shape of a geosynchronous orbit in blue. In a first, SpaceX recently de-orbited a Falcon 9 upper stage from GTO after deploying a communications satellite. Credit: European Space Agency

Welcome to Edition 7.48 of the Rocket Report! The shock of last week’s public spat between President Donald Trump and SpaceX founder Elon Musk has worn off, and Musk expressed regret for some of his comments going after Trump on social media. Musk also backtracked from his threat to begin decommissioning the Dragon spacecraft, currently the only way for the US government to send people to the International Space Station. Nevertheless, there are many people who think Musk’s attachment to Trump could end up putting the US space program at risk, and I’m not convinced that danger has passed.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Quebec invests in small launch company. The government of Quebec will invest CA$10 million ($7.3 million) into a Montreal-area company that is developing a system to launch small satellites into space, The Canadian Press reports. Quebec Premier François Legault announced the investment into Reaction Dynamics at the company’s facility in Longueuil, a Montreal suburb. The province’s economy minister, Christine Fréchette, said the investment will allow the company to begin launching microsatellites into orbit from Canada as early as 2027.

Joining its peers … Canada is the only G7 nation without a domestic satellite launch capability, whether it’s through an independent national or commercial program or through membership in the European Space Agency, which funds its own rockets. The Canadian Space Agency has long eschewed any significant spending on developing a Canadian satellite launcher, and a handful of commercial launch startups in Canada haven’t gotten very far. Reaction Dynamics was founded in 2017 by Bachar Elzein, formerly a researcher in multiphase and reactive flows at École Polytechnique de Montréal, where he specialized in propulsion and combustion dynamics. Reaction Dynamic plans to launch its first suborbital rocket later this year, before attempting an orbital flight with its Aurora rocket as soon as 2027. (submitted by Joey S-IVB)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Another year, another delay for Themis. The European Space Agency’s Themis program has suffered another setback, with the inaugural flight of its reusable booster demonstrator now all but certain to slip to 2026, European Spaceflight reports. It has been nearly six years since the European Space Agency kicked off the Themis program to develop and mature key technologies for future reusable rocket stages. Themis is analogous to SpaceX’s Grasshopper reusable rocket prototype tested more than a decade ago, with progressively higher hop tests to demonstrate vertical takeoff and vertical landing techniques. When the program started, an initial hop test of the first Themis demonstrator was expected to take place in 2022.

Tethered to terra firma … ArianeGroup, which manufactures Europe’s Ariane rockets, is leading the Themis program under contract to ESA, which recently committed an additional 230 million euros ($266 million) to the effort. This money is slated to go toward the development of a single-engine variant of the Themis program, continued development of the rocket’s methane-fueled engine, and upgrades to a test stand at ArianeGroup’s propulsion facility in Vernon, France. Two months ago, an official update on the Themis program suggested the first Themis launch campaign would begin before the end of the year. Citing sources close to the program, European Spaceflight reports the first Themis integration tests at the Esrange Space Center in Sweden are now almost certain to slip from late 2025 to 2026.

French startup tests a novel rocket engine. While Europe’s large government-backed rocket initiatives face delays, the continent’s space industry startups are moving forward on their own. One of these companies, a French startup named Alpha Impulsion, recently completed a short test-firing of an autophage rocket engine, European Spaceflight reports. These aren’t your normal rocket engines that burn conventional kerosene, methane, or hydrogen fuel. An autophage engine literally consumes itself as it burns, using heat from the combustion process to melt its plastic fuselage and feed the molten plastic into the combustion chamber in a controlled manner. Alpha Impulsion called the May 27 ground firing a successful test of the “largest autophage rocket engine in the world.”

So, why hasn’t this been done before? … The concept of a self-consuming rocket engine sounds like an idea that’s so crazy it just might work. But the idea remained conceptual from when it was first patented in 1938 until an autophage engine was fired in a controlled manner for the first time in 2018. The autophage design offers several advantages, including its relative simplicity compared to the complex plumbing of liquid and hybrid rockets. But there are serious challenges associated with autophage engines, including how to feed molten fuel into the combustion chamber and how to scale it up to be large enough to fly on a viable rocket. (submitted by trimeta and EllPeaTea)

Rocket trouble delays launch of private crew mission. A propellant leak in a Falcon 9 booster delayed the launch of a fourth Axiom Space private astronaut mission to the International Space Station this week, Space News reports. SpaceX announced the delay Tuesday, saying it needed more time to fix a liquid oxygen leak found in the Falcon 9 booster during inspections following a static-fire test Sunday. “Once complete–and pending Range availability–we will share a new launch date,” the company stated. The Ax-4 mission will ferry four commercial astronauts, led by retired NASA commander Peggy Whitson, aboard a Dragon spacecraft to the ISS for an approximately 14-day stay. Whitson will be joined by crewmates from India, Poland, and Hungary.

Another problem, too … While SpaceX engineers worked on resolving the propellant leak on the ground, a leak of another kind in orbit forced officials to order a longer delay to the Ax-4 mission. In a statement Thursday, NASA said it is working with the Russian space agency to understand a “new pressure signature” in the space station’s Russian service module. For several years, ground teams have monitored a slow air leak in the aft part of the service module, and NASA officials have identified it as a safety risk. NASA’s statement on the matter was vague, only saying that cosmonauts on the station recently inspected the module’s interior surfaces and sealed additional “areas of interest.” The segment is now holding pressure, according to NASA. (submitted by EllPeaTea)

SpaceX tries something new with Falcon 9. With nearly 500 launches under its belt, SpaceX’s Falcon 9 rocket isn’t often up to new tricks. But the company tried something new following a launch on June 7 with a radio broadcasting satellite for SiriusXM. The Falcon 9’s upper stage placed the SXM-10 satellite into an elongated, high-altitude transfer orbit, as is typical for payloads destined to operate in geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. When a rocket releases a satellite in this type of high-energy orbit, the upper stage has usually burned almost all of its propellant, leaving little fuel to steer itself back into Earth’s atmosphere for a destructive reentry. This means these upper stages often remain in space for decades, becoming a piece of space junk that transits across the orbits of many other satellites.

Now, a solution … SpaceX usually deorbits rockets after they deploy payloads like Starlink satellites into low-Earth orbit, but deorbiting a rocket from a much higher geosynchronous transfer orbit is a different matter. “Last week, SpaceX successfully completed a controlled deorbit of the SiriusXM-10 upper stage after GTO payload deployment,” wrote Jon Edwards, SpaceX’s vice president of Falcon and Dragon programs. “While we routinely do controlled deorbits for LEO stages (e.g., Starlink), deorbiting from GTO is extremely difficult due to the high energy needed to alter the orbit, making this a rare and remarkable first for us. This was only made possible due to the hard work and brilliance of the Falcon GNC (guidance, navigation, and control) team and exemplifies SpaceX’s commitment to leading in both space exploration and public safety.”

New Glenn gets a tentative launch date. Five months have passed since Blue Origin’s New Glenn rocket made its mostly successful debut in January. At one point, the company targeted “late spring” for the second launch of the rocket. However, on Monday, Blue Origin’s CEO, Dave Limp, acknowledged on social media that the rocket’s next flight will now no longer take place until at least August 15, Ars reports. Although he did not say so, this may well be the only other New Glenn launch this year. The mission, with an undesignated payload, will be named “Never Tell Me the Odds,” due to the attempt to land the booster. “One of our key mission objectives will be to land and recover the booster,” Limp wrote. “This will take a little bit of luck and a lot of excellent execution. We’re on track to produce eight GS2s [second stages] this year, and the one we’ll fly on this second mission was hot-fired in April.”

Falling shortBefore 2025 began, Limp set expectations alongside Blue Origin founder Jeff Bezos: New Glenn would launch eight times this year. That’s not going to happen. It’s common for launch companies to take a while ramping up the flight rate for a new rocket, but Bezos told Ars in January that his priority for Blue Origin this year was to hit a higher cadence with New Glenn. Elon Musk’s rift with President Donald Trump could open a pathway for Blue Origin to capture more government business if the New Glenn rocket is able to establish a reliable track record. Meanwhile, Limp told Blue Origin employees last month that Jarrett Jones, the manager running the New Glenn program, is taking a sabbatical. Although it appears Jones’ leave may have been planned, the timing is curious.

Making way for Starship at Cape Canaveral. The US Air Force is moving closer to authorizing SpaceX to move into one of the largest launch pads at Cape Canaveral Space Force Station in Florida, with plans to use the facility for up to 76 launches of the company’s Starship rocket each year, Ars reports. A draft Environmental Impact Statement (EIS) released by the Department of the Air Force, which includes the Space Force, found SpaceX’s planned use of Space Launch Complex 37 (SLC-37) at Cape Canaveral would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37 will have no significant impact on the company’s competitors in the launch industry.

Bringing the rumble … SLC-37 was the previous home to United Launch Alliance’s Delta IV rocket, which last flew from the site in April 2024, a couple of months after the military announced SpaceX was interested in using the launch pad. While it doesn’t have a lease for full use of the launch site, SpaceX has secured a “right of limited entry” from the Space Force to begin preparatory work. This included the explosive demolition of the launch pad’s Delta IV-era service towers and lightning masts Thursday, clearing the way for eventual construction of two Starship launch towers inside the perimeter of SLC-37. The new Starship launch towers at SLC-37 will join other properties in SpaceX’s Starship empire, including nearby Launch Complex 39A at NASA’s Kennedy Space Center, and SpaceX’s privately owned facility at Starbase, Texas.

Preps continue for Starship Flight 10. Meanwhile, at Starbase, SpaceX is moving forward with preparations for the next Starship test flight, which could happen as soon as next month following three consecutive flights that fell short of expectations. This next launch will be the 10th full-scale test flight of Starship. Last Friday, June 6, SpaceX test-fired the massive Super Heavy booster designated to launch on Flight 10. All 33 of its Raptor engines ignited on the launch pad in South Texas. This is a new Super Heavy booster. On Flight 9 last month, SpaceX flew a reused Super Heavy booster that launched and was recovered on a flight in January.

FAA signs off on SpaceX investigation … The Federal Aviation Administration said Thursday it has closed the investigation into Starship Flight 8 in March, which spun out of control minutes after liftoff, showering debris along a corridor of ocean near the Bahamas and the Turks and Caicos Islands. “The FAA oversaw and accepted the findings of the SpaceX-led investigation,” an agency spokesperson said. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a hardware failure in one of the Raptor engines that resulted in inadvertent propellant mixing and ignition. SpaceX identified eight corrective actions to prevent a reoccurrence of the event.” SpaceX implemented the corrective actions prior to Flight 9 last month, when Starship progressed further into its mission before starting to tumble in space. It eventually reentered the atmosphere over the Indian Ocean. The FAA has mandated a fresh investigation into Flight 9, and that inquiry remains open.

Next three launches

June 13: Falcon 9 | Starlink 12-26 | Cape Canaveral Space Force Station, Florida | 15: 21 UTC

June 14: Long March 2D | Unknown Payload | Jiuquan Satellite Launch Center, China | 07: 55 UTC

June 16: Atlas V | Project Kuiper KA-02| Cape Canaveral Space Force Station, Florida | 17: 25 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37 Read More »

spacex-may-have-solved-one-problem-only-to-find-more-on-latest-starship-flight

SpaceX may have solved one problem only to find more on latest Starship flight


SpaceX’s ninth Starship survived launch, but engineers now have more problems to overcome.

An onboard camera shows the six Raptor engines on SpaceX’s Starship upper stage, roughly three minutes after launching from South Texas on Tuesday. Credit: SpaceX

SpaceX made some progress on another test flight of the world’s most powerful rocket Tuesday, finally overcoming technical problems that plagued the program’s two previous launches.

But minutes into the mission, SpaceX’s Starship lost control as it cruised through space, then tumbled back into the atmosphere somewhere over the Indian Ocean nearly an hour after taking off from Starbase, Texas, the company’s privately owned spaceport near the US-Mexico border.

SpaceX’s next-generation rocket is designed to eventually ferry cargo and private and government crews between the Earth, the Moon, and Mars. The rocket is complex and gargantuan, wider and longer than a Boeing 747 jumbo jet, and after nearly two years of steady progress since its first test flight in 2023, this has been a year of setbacks for Starship.

During the rocket’s two previous test flights—each using an upgraded “Block 2” Starship design—problems in the ship’s propulsion system led to leaks during launch, eventually triggering an early shutdown of the rocket’s main engines. On both flights, the vehicle spun out of control and broke apart, spreading debris over an area near the Bahamas and the Turks and Caicos Islands.

The good news is that that didn’t happen Tuesday. The ship’s main engines fired for their full duration, putting the vehicle on its expected trajectory toward a splashdown in the Indian Ocean. For a short time, it appeared the ship was on track for a successful flight.

“Starship made it to the scheduled ship engine cutoff, so big improvement over last flight! Also, no significant loss of heat shield tiles during ascent,” wrote Elon Musk, SpaceX’s founder and CEO, on X.

The bad news is that Tuesday’s test flight revealed more problems, preventing SpaceX from achieving the most important goals Musk outlined going into the launch.

“Leaks caused loss of main tank pressure during the coast and reentry phase,” Musk posted on X. “Lot of good data to review.”

With the loss of tank pressure, the rocket started slowly spinning as it coasted through the blackness of space more than 100 miles above the Earth. This loss of control spelled another premature end to a Starship test flight. Most notable among the flight’s unmet objectives was SpaceX’s desire to study the performance of the ship’s heat shield, which includes improved heat-absorbing tiles to better withstand the scorching temperatures of reentry back into the atmosphere.

“The most important thing is data on how to improve the tile design, so it’s basically data during the high heating, reentry phase in order to improve the tiles for the next iteration,” Musk told Ars Technica before Tuesday’s flight. “So we’ve got like a dozen or more tile experiments. We’re trying different coatings on tiles. We’re trying different fabrication techniques, different attachment techniques. We’re varying the gap filler for the tiles.”

Engineers are hungry for data on the changes to the heat shield, which can’t be fully tested on the ground. SpaceX officials hope the new tiles will be more robust than the ones flown on the first-generation, or Block 1, version of Starship, allowing future ships to land and quickly launch again, without the need for time-consuming inspections, refurbishment, and in some cases, tile replacements. This is a core tenet of SpaceX’s plans for Starship, which include delivering astronauts to the surface of the Moon, proliferating low-Earth orbit with refueling tankers, and eventually helping establish a settlement on Mars, all of which are predicated on rapid reusability of Starship and its Super Heavy booster.

Last year, SpaceX successfully landed three Starships in the Indian Ocean after they survived hellish reentries, but they came down with damaged heat shields. After an early end to Tuesday’s test flight, SpaceX’s heat shield engineers will have to wait a while longer to satiate their appetites. And the longer they have to wait, the longer the wait for other important Starship developmental tests, such as a full orbital flight, in-space refueling, and recovery and reuse of the ship itself, replicating what SpaceX has now accomplished with the Super Heavy booster.

Failing forward or falling short?

The ninth flight of Starship began with a booming departure from SpaceX’s Starbase launch site at 6: 35 pm CDT (7: 35 pm EDT; 23: 35 UTC) Tuesday.

After a brief hold to resolve last-minute technical glitches, SpaceX resumed the countdown clock to tick away the final seconds before liftoff. A gush of water poured over the deck of the launch pad just before 33 methane-fueled Raptor engines ignited on the rocket’s massive Super Heavy first stage booster. Once all 33 engines lit, the enormous stainless steel rocket—towering more than 400 feet (123 meters)—began to climb away from Starbase.

SpaceX’s Starship rocket, flying with a reused first-stage booster for the first time, climbs away from Starbase, Texas. Credit: SpaceX

Heading east, the Super Heavy booster produced more than twice the power of NASA’s Saturn V rocket, an icon of the Apollo Moon program, as it soared over the Gulf of Mexico. After two-and-a-half minutes, the Raptor engines switched off and the Super Heavy booster separated from Starship’s upper stage.

Six Raptor engines fired on the ship to continue pushing it into space. As the booster started maneuvering for an attempt to target an intact splashdown in the sea, the ship burned its engines more than six minutes, reaching a top speed of 16,462 mph (26,493 kilometers per hour), right in line with preflight predictions.

A member of SpaceX’s launch team declared “nominal orbit insertion” a little more than nine minutes into the flight, indicating the rocket reached its planned trajectory, just shy of the velocity required to enter a stable orbit around the Earth.

The flight profile was supposed to take Starship halfway around the world, with the mission culminating in a controlled splashdown in the Indian Ocean northwest of Australia. But a few minutes after engine shutdown, the ship started to diverge from SpaceX’s flight plan.

First, SpaceX aborted an attempt to release eight simulated Starlink Internet satellites in the first test of the Starship’s payload deployer. The cargo bay door would not fully open, and engineers called off the demonstration, according to Dan Huot, a member of SpaceX’s communications team who hosted the company’s live launch broadcast Tuesday.

That, alone, would not have been a big deal. However, a few minutes later, Huot made a more troubling announcement.

“We are in a little bit of a spin,” he said. “We did spring a leak in some of the fuel tank systems inside of Starship, which a lot of those are used for attitude control. So, at this point, we’ve essentially lost our attitude control with Starship.”

This eliminated any chance for a controlled reentry and an opportunity to thoroughly scrutinize the performance of Starship’s heat shield. The spin also prevented a brief restart of one of the ship’s Raptor engines in space.

“Not looking great for a lot of our on-orbit objectives for today,” Huot said.

SpaceX continued streaming live video from Starship as it soared over the Atlantic Ocean and Africa. Then, a blanket of super-heated plasma enveloped the vehicle as it plunged into the atmosphere. Still in a slow tumble, the ship started shedding scorched chunks of its skin before the screen went black. SpaceX lost contact with the vehicle around 46 minutes into the flight. The ship likely broke apart over the Indian Ocean, dropping debris into a remote swath of sea within its expected flight corridor.

Victories where you find them

Although the flight did not end as well as SpaceX officials hoped, the company made some tangible progress Tuesday. Most importantly, it broke the streak of back-to-back launch failures on Starship’s two most recent test flights in January and March.

SpaceX’s investigation earlier this year into a January 16 launch failure concluded vibrations likely triggered fuel leaks and fires in the ship’s engine compartment, causing an early shutdown of the rocket’s engines. Engineers said the vibrations were likely in resonance with the vehicle’s natural frequency, intensifying the shaking beyond the levels SpaceX predicted.

Engineers made fixes and launched the next Starship test flight March 6, but it again encountered trouble midway through the ship’s main engine burn. SpaceX said earlier this month that the inquiry into the March 6 failure found its most probable root cause was a hardware failure in one of the upper stage’s center engines, resulting in “inadvertent propellant mixing and ignition.”

In its official statement, the company was silent on the nature of the hardware failure but said engines for future test flights will receive additional preload on key joints, a new nitrogen purge system, and improvements to the propellant drain system. A new generation of Raptor engines, known as Raptor 3, should begin flying around the end of this year with additional improvements to address the failure mechanism, SpaceX said.

Another bright spot in Tuesday’s test flight was that it marked the first time SpaceX reused a Super Heavy booster from a prior launch. The booster used Tuesday previously launched on Starship’s seventh test flight in January before it was caught back at the launch pad and refurbished for another space shot.

Booster 14 comes in for the catch after flying to the edge of space on January 16. SpaceX flew this booster again Tuesday but did not attempt a catch. Credit: SpaceX

After releasing the Starship upper stage to continue its journey into space, the Super Heavy booster flipped around to fly tail-first and reignited 13 of its engines to begin boosting itself back toward the South Texas coast. On this test flight, SpaceX aimed the booster for a hard splashdown in the ocean just offshore from Starbase, rather than a mid-air catch back at the launch pad, which SpaceX accomplished on three of its four most recent test flights.

SpaceX made the change for a few reasons. First, engineers programmed the booster to fly at a higher angle of attack during its descent, increasing the amount of atmospheric drag on the vehicle compared to past flights. This change should reduce propellant usage on the booster’s landing burn, which occurs just before the rocket is caught by the launch pad’s mechanical arms, or “chopsticks,” on a recovery flight.

During the landing burn itself, engineers wanted to demonstrate the booster’s ability to respond to an engine failure on descent by using just two of the rocket’s 33 engines for the end of the burn, rather than the usual three. Instead, the rocket appeared to explode around the beginning of the landing burn before it could complete the final landing maneuver.

Before the explosion at the end of its flight, the booster appeared to fly as designed. Data displayed on SpaceX’s live broadcast of the launch showed all 33 of the rocket’s engines fired normally during its initial ascent from Texas, a reassuring sign for the reliability of the Super Heavy booster.

SpaceX kicked off the year with the ambition to launch as many as 25 Starship test flights in 2025, a goal that now seems to be unattainable. However, an X post by Musk on Tuesday night suggested a faster cadence of launches in the coming months. He said the next three Starships could launch at intervals of about once every three to four weeks. After that, SpaceX is expected to transition to a third-generation, or Block 3, Starship design with more changes.

It wasn’t immediately clear how long it might take SpaceX to correct whatever problems caused Tuesday’s test flight woes. The Starship vehicle for the next flight is already built and completed cryogenic prooftesting April 27. For the last few ships, SpaceX has completed this cryogenic testing milestone around one-and-a-half to three months prior to launch.

A spokesperson for the Federal Aviation Administration said the agency is “actively working” with SpaceX in the aftermath of Tuesday’s test flight but did not say if the FAA will require SpaceX to conduct a formal mishap investigation.

Shana Diez, director of Starship engineering at SpaceX, chimed in with her own post on X. Based on preliminary data from Tuesday’s flight, she is optimistic the next test flight will fly soon. She said engineers still need to examine data to confirm none of the problems from Starship’s previous flight recurred on this launch but added that “all evidence points to a new failure mode” on Tuesday’s test flight.

SpaceX will also study what caused the Super Heavy booster to explode on descent before moving forward with another booster catch attempt at Starbase, she said.

“Feeling both relieved and a bit disappointed,” Diez wrote. “Could have gone better today but also could have gone much worse.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX may have solved one problem only to find more on latest Starship flight Read More »

after-back-to-back-failures,-spacex-tests-its-fixes-on-the-next-starship

After back-to-back failures, SpaceX tests its fixes on the next Starship

But that didn’t solve the problem. Once again, Starship’s engines cut off too early, and the rocket broke apart before falling to Earth. SpaceX said “an energetic event” in the aft portion of Starship resulted in the loss of several Raptor engines, followed by a loss of attitude control and a loss of communications with the ship.

The similarities between the two failures suggest a likely design issue with the upgraded “Block 2” version of Starship, which debuted in January and flew again in March. Starship Block 2 is slightly taller than the ship SpaceX used on the rocket’s first six flights, with redesigned flaps, improved batteries and avionics, and notably, a new fuel feed line system for the ship’s Raptor vacuum engines.

SpaceX has not released the results of the investigation into the Flight 8 failure, and the FAA hasn’t yet issued a launch license for Flight 9. Likewise, SpaceX hasn’t released any information on the changes it made to Starship for next week’s flight.

What we do know about the Starship vehicle for Flight 9—designated Ship 35—is that it took a few tries to complete a full-duration test-firing. SpaceX completed a single-engine static fire on April 30, simulating the restart of a Raptor engine in space. Then, on May 1, SpaceX aborted a six-engine test-firing before reaching its planned 60-second duration. Videos captured by media observing the test showed a flash in the engine plume, and at least one piece of debris was seen careening out of the flame trench below the ship.

SpaceX ground crews returned Ship 35 to the production site a couple of miles away, perhaps to replace a damaged engine, before rolling Starship back to the test stand over the weekend for Monday’s successful engine firing.

Now, the ship will head back to the Starbase build site, where technicians will make final preparations for Flight 9. These final tasks may include loading mock-up Starlink broadband satellites into the ship’s payload bay and touchups to the rocket’s heat shield.

These are two elements of Starship that SpaceX engineers are eager to demonstrate on Flight 9, beyond just fixing the problems from the last two missions. Those failures prevented Starship from testing its satellite deployer and an upgraded heat shield designed to better withstand scorching temperatures up to 2,600° Fahrenheit (1,430° Celsius) during reentry.

After back-to-back failures, SpaceX tests its fixes on the next Starship Read More »

rocket-report:-rocket-lab-to-demo-cargo-delivery;-america’s-new-icbm-in-trouble

Rocket Report: Rocket Lab to demo cargo delivery; America’s new ICBM in trouble


SpaceX’s plan to turn Starbase into Texas’ newest city won the approval of voters—err, employees.

A decommissioned Titan II intercontinental ballistic missile inside a silo at a museum in Green Valley, Arizona.

Welcome to Edition 7.43 of the Rocket Report! There’s been a lot of recent news in hypersonic testing. We cover some of that in this week’s newsletter, which is just a taste of the US military’s appetite for fielding its own hypersonic weapons, and conversely, the Pentagon’s emphasis on the detection and destruction of an enemy’s hypersonic missiles. China has already declared its first hypersonic weapons operational, and Russia claims to have them, too. Now, the Pentagon is finally close to placing hypersonic missiles with combat units. Many US rocket companies believe the hypersonics sector is a lucrative business. Some companies have enough confidence in this emerging market—or lack of faith in the traditional space launch market—to pivot entirely toward hypersonics. I’m interested in seeing if their bets pay off.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Stratolaunch tests reusable hypersonic rocket plane. Stratolaunch has finally found a use for the world’s largest airplane. Twice in the last five months, the company launched a hypersonic vehicle over the Pacific Ocean, accelerated it to more than five times the speed of sound, and autonomously landed at Vandenberg Space Force Base in California, Ars reports. Stratolaunch used the same Talon-A vehicle for both flights, demonstrating its reusability, a characteristic that sets it apart from competitors. Zachary Krevor, Stratolaunch’s president and CEO, said his team aims to ramp up to monthly flights by the end of the year.

A 21st century X-15 … This is the first time anyone in the United States has flown a reusable hypersonic rocket plane since the last flight of the X-15, the iconic rocket-powered aircraft that pushed the envelope of high-altitude, high-speed flight 60 years ago. Like the Talon-A, the X-15 released from a carrier jet and ignited a rocket engine to soar into the uppermost layers of the atmosphere. But the X-15 had a pilot in command, while the Talon-A flies on autopilot. Stratolaunch is one of several companies participating in a US military program to test parts and technologies for use on future hypersonic weapons. “Why the autonomous flight matters is because hypersonic systems are now pushing the envelope in terms of maneuvering capability, maneuvering beyond what can be done by the human body,” Krevor said.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

New details about another recent hypersonic test. A hypersonic missile test on April 25 validated the launch mechanism for the US Navy Conventional Prompt Strike (CPS) weapon program, the Defense Department said on May 2. The CPS missile, the Navy’s name for what the US Army calls the Long Range Hypersonic Weapon (LRHW), launched from Cape Canaveral Space Force Station, Florida, Aviation Week & Space Technology reports. While the Army and Navy versions use the same hypersonic glide vehicle and missile, they use different launch mechanisms. Last year, the Army tested its version of the hypersonic missile launcher. Now, the Navy has validated the cold-gas launch mechanism it will install on guided missile destroyers.

Deploying soon … “The cold-gas approach allows the Navy to eject the missile from the platform and achieve a safe distance above the ship prior to first stage ignition,” said Vice Adm Johnny R. Wolfe Jr., director of the Navy’s Strategic Systems Programs, which is the lead designer of the common hypersonic missile. The Army plans to field its Long Range Hypersonic Weaponalso called “Dark Eagle”with a combat unit later this year, while the Navy’s version won’t be ready for testing at sea until 2027 or 2028. Both missiles are designed for conventional (non-nuclear) strikes. The Army’s Dark Eagle will be the US military’s first operational hypersonic weapon.

Sentinel needs new silos. The Air Force will have to dig entirely new nuclear missile silos for the LGM-35A Sentinel, creating another complication for a troubled program that is already facing future cost and schedule overruns, Defense News reports. The Air Force originally hoped the existing silos that have housed Minuteman III intercontinental ballistic missiles could be adapted to launch Sentinel missiles, which would be more efficient than digging entirely new silos. But a test project at Vandenberg Space Force Base in California showed that approach would be fraught with further problems and cause the program to run even further behind and over budget, the service said.

Rising costs … Sentinel, developed by Northrop Grumman, will replace the Air Force’s fleet of Minuteman III ICBMs, which entered service in 1970, as the land-based leg of the military’s nuclear triad. Sentinel was originally expected to cost $77.7 billion, but projected future costs ran so severely over budget that in January 2024, the program triggered a review process known as a critical Nunn-McCurdy breach. After that review, the Pentagon last year concluded Sentinel was too critical to national security to abandon, but ordered the Air Force to restructure it to bring its costs under control. Additional studies of the program are highlighting more potential problems.

Gilmour says it (hopefully) will wait no more. The Australian launch startup Gilmour Space Technologies has been given approval by Australia’s Civil Aviation Safety Authority for the debut launch of its Eris orbital rocket, InnovationAus.com reports. There is still one final regulatory hurdle, a final sign-off from the Australian Space Agency. If that happens in the next few days, Gilmour’s launch window will open May 15. The company has announced tentative launch schedules before, only to be thwarted by technical issues, regulatory hangups, or bad weather. Most recently, Gilmour got within six days of its targeted launch date in March before regulatory queries and the impact of a tropical cyclone forced a delay.

Stand by for history … The launch of Gilmour’s three-stage Eris rocket will be historic. If successful, the 82-foot-tall (25-meter) rocket will be Australia’s first homegrown orbital launcher. Eris is capable of hauling cargos up to 672 pounds (305 kilograms) to orbit, according to Gilmour. The company has dispatched a small team from its Gold Coast headquarters to the launch site in Queensland, on Australia’s northeastern coast, to perform testing on the vehicle after it remained dormant for weeks. (Submitted by trainticket)

Fresh insights into one of SpaceX’s worst days. When a Falcon 9 rocket exploded on its launch pad nearly nine years ago, SpaceX officials initially struggled to explain how it could have happened. The lack of a concrete explanation for the failure led SpaceX engineers to pursue hundreds of theories. One was the possibility that an outside “sniper” had shot the rocket. This theory appealed to SpaceX founder Elon Musk. A building leased by SpaceX’s main competitor in launch, United Launch Alliance, lay just a mile away from the Falcon 9 launch pad, and a video around the time of the explosion indicated a flash on its roof. Ars has now obtained a letter sent to SpaceX by the Federal Aviation Administration more than a month after the explosion, indicating the matter was elevated to the FBI. The bureau looked into it, and what did they find? Nothing, apparently.

Investigation terminated … “The FBI has informed us that based upon a thorough and coordinated review by the appropriate Federal criminal and security investigative authorities, there were no indications to suggest that sabotage or any other criminal activity played a role in the September 1 Falcon 9 explosion,” an FAA official wrote in the letter to SpaceX. Ultimately, engineers determined the explosion was caused by the sudden failure of a high-pressure helium tank on the Falcon 9’s upper stage.

Eric Schmidt’s motivations become clearer. In the nearly two months since former Google chief executive Eric Schmidt acquired Relativity Space, the billionaire has not said much publicly about his plans for the launch company. However, his intentions for Relativity are becoming increasingly clear: He wants to have the capability to launch a significant amount of computing infrastructure into space, Ars reports. During a congressional hearing last month, Schmidt discussed the need more electricity to power data centers that will facilitate the computing needs for AI development and applications.

How big this crisis is … “People are planning 10 gigawatt data centers,” Schmidt said at the hearing. “Gives you a sense of how big this crisis is.” In an exchange with my colleague Eric Berger on X, Schmidt seemed to confirm he bought Relativity Space as a means to support the development of data centers in space. Such data centers, ideally, would be powered by solar panels and be able to radiate heat into the vacuum of space. Relativity’s Terran R rocket, still in development, is well-sized to play a role in launching the infrastructure for data centers in space. But several big questions remain: How big would these data centers be? Where would they go within an increasingly cluttered low-Earth orbit? Could space-based solar power meet their energy needs? Can all of this heat be radiated away efficiently in space? Economically, would any of this make sense?

Rocket Lab, meet Rocket Cargo. Rocket Lab’s next-generation Neutron rocket has been selected for an experimental US Air Force mission to test rapid, global, cargo-delivery capabilities, a milestone for the company as it pushes further into the national security launch market, Space News reports. The mission, slated for no earlier than 2026, will fall under the Air Force Research Laboratory’s (AFRL) “Rocket Cargo” program, which explores how commercial launch vehicles might one day deliver materiel to any point on Earth within hours—a vision akin to airlift logistics via spaceflight.

A new mission for Neutron … Peter Beck, Rocket Lab’s founder and CEO, said the Rocket Cargo contract from AFRL represents an “experimental phase” of the program. “It’ll be interesting to see if that turns into a full requirement for an operational capability,” he said Thursday. Neutron is expected to carry a payload that will reenter Earth’s atmosphere, demonstrating the rocket’s ability to safely transport and deploy cargo. SpaceX’s Starship, with roughly 10 times more payload lift capacity than Neutron, is also on contract with AFRL for demonstrations for the Rocket Cargo program. Meanwhile, Beck said Neutron remains on schedule for its inaugural launch from Wallops Island, Virginia, later this year.

Trump calls for canceling the Space Launch System. The Trump administration released its “skinny” budget proposal earlier this week. Overall, NASA is asked to take a 25 percent cut in its budget, from about $25 billion to $18.8 billion. There are also significant changes proposed in NASA’s biggest-ticket exploration programs. The budget would cancel the Lunar Gateway that NASA has started developing and end the Space Launch System rocket and Orion spacecraft after two more flights, Artemis II and Artemis III, Ars reports. A statement from the White House calls the SLS rocket “grossly expensive” with projected costs of $4 billion per launch.

If not SLS, then what? … “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the Trump administration wrote. There are no further details about those commercial systems. NASA has contracted with SpaceX and Blue Origin to develop reusable landers for the Moon, and both of these systems include vehicles to move from Earth orbit to the Moon. In the budget proposal, the White House sets a priority for a human expedition to Mars to follow the Artemis program’s lunar landing.

FAA unlocks SpaceX launch cadence. Although we are still waiting for SpaceX to signal when it will fly the Starship rocket again, the company got some good news from the Federal Aviation Administration on Tuesday, Ars reports. After a lengthy review, the federal agency agreed to allow SpaceX to substantially increase the number of annual launches from its Starbase launch site in South Texas. Previously, the company was limited to five launches, but now it will be able to conduct up to 25 Starship launches and landings during a calendar year.

Waiting for clearance … Although the new finding permits SpaceX to significantly increase its flight rate from South Texas, the company still has work to do before it can fly Starship again. The company’s engineers are still working to get the massive rocket back to flight after its eighth mission broke apart off the coast of Florida on March 6. This was the second time, in two consecutive missions, that the Starship upper stage failed during its initial phase of flight. After two consecutive failures, there will be a lot riding on the next test flight of Starship. It will also be the first time the company attempts to fly a first stage of the rocket for a second time. According to some sources, if additional testing of this upper stage goes well, Starship could launch as early as May 19. This date is also supported by a notice to mariners, but it should be taken as notional rather than something to be confident in.

SpaceX adds to its dominion. Elon Musk’s wish to create his own city has come true, the Texas Tribune reports. On Saturday, voters living around SpaceX’s Starship rocket testing and launch facility in South Texas approved a measure to incorporate the area as a new city. Unofficial results later Saturday night showed the election was a landslide: 212 voted in favor; 6 opposed. After the county certifies the results, the new city will be official.

Elections have consequences … Only 283 people, those who live within the boundaries of the proposed city, were eligible to vote in the election. A Texas Newsroom analysis of the voter rolls showed two-thirds of them either work for SpaceX or had already indicated their support. The three unopposed people who ran to lead the city also have ties to SpaceX. It’s not clear if Musk, whose primary residence is at Starbase, cast a ballot. The vote clears the way for Musk to try to capture more control over the nearby public beach, which must be closed for launches.

Next three launches

May 10: Falcon 9 | Starlink 15-3 | Vandenberg Space Force Base, California | 00: 00 UTC

May 10: Falcon 9 | Starlink 6-91 | Cape Canaveral Space Force Station, Florida | 06: 28 UTC

May 11: Falcon 9 | Starlink 6-83 | Kennedy Space Center, Florida | 04: 24 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Rocket Lab to demo cargo delivery; America’s new ICBM in trouble Read More »

the-starship-program-hits-another-speed-bump-with-second-consecutive-failure

The Starship program hits another speed bump with second consecutive failure

The flight flight plan going into Thursday’s mission called for sending Starship on a journey halfway around the world from Texas, culminating in a controlled reentry over the Indian Ocean before splashing down northwest of Australia.

The test flight was supposed to be a do-over of the previous Starship flight on January 16, when the rocket’s upper stage—itself known as Starship, or ship—succumbed to fires fueled by leaking propellants in its engine bay. Engineers determined the most likely cause of the propellant leak was a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected.

The Super Heavy booster returned to Starbase in Texas to be caught back at the launch pad. Credit: SpaceX

Engineers test-fired the Starship vehicle for this week’s test flight earlier this month, validating changes to the ship’s fuel feed lines leading its six Raptor engines, adjustments to propellant temperatures, and a new operating thrust.

But engineers missed something. On Thursday, the Raptor engines began shutting down on Starship about eight minutes into the flight, and the rocket started tumbling 90 miles (146 kilometers) over the southeastern Gulf of Mexico. SpaceX ground controllers lost all contact with the rocket about nine-and-a-half minutes after liftoff.

“Prior to the end of the ascent burn, an energetic event in the aft portion of Starship resulted in the loss of several Raptor engines,” SpaceX wrote on X. “This in turn led to a loss of attitude control and ultimately a loss of communications with Starship.”

Just like in January, residents and tourists across the Florida peninsula, the Bahamas, and the Turks and Caicos Islands shared videos of fiery debris trails appearing in the twilight sky. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint, just as they did in response to the January incident.

There were no immediate reports Thursday of any Starship wreckage falling over populated areas. In January, residents in the Turks and Caicos Islands recovered small debris fragments, including one piece that caused minor damage when it struck a car. The debris field from Thursday’s failed flight appeared to fall west of the areas where debris fell after Starship Flight 7.

A spokesperson for the Federal Aviation Administration said the regulatory agency will require SpaceX perform an investigation into Thursday’s Starship failure.

The Starship program hits another speed bump with second consecutive failure Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

rocket-report:-starship-will-soon-fly-again;-gilmour-has-a-launch-date

Rocket Report: Starship will soon fly again; Gilmour has a launch date


One Falcon 9 launched an Intuitive Machines lunar lander, an asteroid prospector, and a NASA science probe.

Peter Beck, Rocket Lab’s founder and CEO, stands inside a test version of the “Hungry Hippo,” a nickname used to describe the clamshell-like nose cone of the Neutron rocket’s first stage booster. The fairing will open in flight to release Neutron’s second and payloads to continue into orbit, then close as the booster comes back to Earth for recovery. Credit: Rocket Lab

Welcome to Edition 7.33 of the Rocket Report! Phew, what a week for Rocket Lab! The company released a bevy of announcements in conjunction with its quarterly earnings report Thursday. Rocket Lab is spending a lot of money to develop the medium-lift rocket Neutron rocket, and as we’ll discuss below, a rocket landing platform and a new satellite design. For now, the company is sticking by its public statements that the Neutron rocket will launch this year—the official line is it will debut in the second half of 2025—but this schedule assumes near-perfect execution on the program. “We’ve always been clear that we run aggressive schedules,” said Peter Beck, Rocket Lab’s founder and CEO. The official schedule doesn’t quite allow me to invoke a strict interpretation of Berger’s Law, which states that if a rocket’s debut is predicted to happen in the fourth quarter of a year, and that quarter is six or more months away, the launch will be delayed. However, the spirit of the law seems valid here. This time last year, Rocket Lab targeted a first launch by the end of 2024, an aggressive target that has come and gone.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Australian startup sets a launch date. The first attempt to send an Australian-made rocket into orbit is set to take place no sooner than March 15, the Australian Broadcasting Corporation reports. Gilmour Space Technologies’ launch window announcement marks a major development for the company, which has been working towards a test launch for a decade. Gilmour previously hoped to launch its test rocket, Eris, in May 2024, but had to wait for the Australian government to issue a launch license and airspace approvals for the flight to go forward. Those are now in hand, clearing the last regulatory hurdle before liftoff.

Setting expectations … Gilmour’s Eris rocket is made of three stages powered by hybrid engines consuming a solid fuel and a liquid oxidizer. Eris is designed to haul payloads of up to 672 pounds (305 kilograms) to low-Earth orbit, and will launch from Bowen Orbital Spaceport in Queensland on Australia’s northeastern coast. Gilmour said it would be “very lucky” if the rocket reached orbit on first attempt. “Success means different things for different people, but ignition and liftoff will be huge,” said James Gilmour, the company’s co-founder. (submitted by ZygP)

Blue Origin is keeping a secret. Blue Origin conducted the tenth crewed flight of its New Shepard suborbital vehicle Tuesday, carrying six people, one of whom remained at least semi-anonymous, Space News reports. The five passengers Blue Origin identified come from business and entertainment backgrounds, but in a break from past missions, the company did not disclose the identity of the sixth person, with hosts of the company webcast saying that individual “requested we not share his name today.” Photos released by the company before the launch, and footage from the webcast, showed that person to be a man wearing a flight suit with an “R. Wilson” nametag, and the NS-30 mission patch also included “Wilson” with the names of the other members of the crew. Not disclosing the name of someone who has been to space has little precedent.

Big names on NS-31 … Some of the passengers Blue Origin will fly on the next New Shepard crew mission lack the anonymity of R. Wilson. The next flight, designated NS-31, will carry an all-female crew, including music star Katy Perry, CBS host Gayle King, and Lauren Sánchez, a former journalist who is engaged to Blue Origin’s founder, Jeff Bezos. Blue Origin identified the other three passengers as Aisha Bowe, Amanda Ngyuen, and Kerianne Flynn. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is still blowing through cash. Virgin Galactic reported a net loss of $347 million in 2024, compared to a $502 million net loss in 2023, with the improvement primarily driven by lower operating expenses, the company said this week in a quarterly earnings release. These lower operating expenses are tied to Virgin Galactic’s decision to suspend operations of its VSS Unity suborbital rocket plane last year to focus investment into a new series of suborbital spacecraft known as Delta-class ships. Virgin Galactic said cash and cash equivalents fell 18 percent from the same period a year ago to $178.6 million. Investors have been eager for details on when it would resume—and then ramp up—flights to increase sales and cash in on a backlog of around 700 ticket holders, Bloomberg reports.

March toward manufacturing … Virgin Galactic said it plans to start assembling its first Delta-class ship in March, with a first flight targeted for the summer of 2026, two years after it stopped flying VSS Unity. The Delta ships will be easier to recycle between flights, and will carry six paying passengers, rather than the four VSS Unity carried on each flight. Company officials believe a higher flight rate with more passengers will bring in significantly more revenue, which was reported at just $430,000 in the fourth quarter of 2024. (submitted by EllPeaTea)

Japanese customers seem to love Rocket Lab. While Rocket Lab is developing the larger Neutron rocket, the company’s operational Electron launch vehicle continues to dominate the market for dedicated launches of small satellites. Rocket Lab announced Thursday it signed a new multi-launch deal with iQPS, a Japan-based Earth imaging company. The new deal follows an earlier multi-launch contract signed with iQPS in 2024 and brings the total number of booked dedicated Electron launches for iQPS to eight.

Radar is all the rage … These eight Electron launches in 2025 and 2026 will help iQPS build out its planned constellation of 36 radar remote sensing satellites capable of imaging the Earth day and night, and through any weather. The new deal is one of the largest Electron launch agreements to date, second only to Rocket Lab’s ten launch deal with another Japanese radar constellation operator, Synspective, signed last year. (submitted by zapman987)

Falcon 9 launch targets Moon and asteroid. With two commercial Moon landers already on their way, Houston-based Intuitive Machines launched its second robotic lander atop a SpaceX Falcon 9 rocket Wednesday, CBS News reports. Given the on-time launch and assuming no major problems, the Athena lander is expected to descend to touchdown on a flat mesa-like structure known as Mons Mouton on March 6, setting down just 100 miles from the Moon’s south pole—closer than any other spacecraft has attempted. Intuitive Machines became the first company to successfully land a spacecraft on the Moon last year, but the Athena lander will pursue more complex goals. It will test a NASA-provided drill designed to search for subsurface ice, deploy a small “micro-rover,” and dispatch a rocket-powered drone to explore a permanently shadowed crater.

Hitching a ride … The Athena lander didn’t take up all the capacity of the Falcon 9 rocket. Three other spacecraft also rocketed into space Wednesday night. These rideshare payloads were AstroForge’s commercially developed Odin asteroid prospector to search for potentially valuable mineral deposits, NASA’s Lunar Trailblazer satellite to characterize lunar ice from a perch in lunar orbit, and a compact space tug from Epic Aerospace. (submitted by EllPeaTea)

This rocket got a visitor for the first time since 2009. Astroscale’s ADRAS-J mission became the first spacecraft (at least in the unclassified world) to approach a piece of space junk in low-Earth orbit, Ars reports. This particular object, a derelict upper stage from a Japanese H-IIA rocket, has been in orbit since 2009. It’s one of about 2,000 spent rocket bodies circling the Earth and one of more than 45,000 objects in orbit tracked by US Space Command. Astroscale, based in Tokyo, built and launched the ADRAS-J mission in partnership with the Japanese space agency as a demonstration to show how a commercial satellite could rendezvous with an object in orbit that was never designed to receive visitors.

Next steps … ADRAS-J worked like a champ, closing in to a distance of less than 50 feet (15 meters) from the H-IIA rocket as it orbited several hundred miles above the Earth. The rocket is a “non-cooperative” object representative of other large pieces of space junk, which Astroscale wants to remove from orbit with a series of trash collecting satellites like ADRAS-J. But this demo only validated part of the technology required for space debris removal. Japan’s space agency and Astroscale are partnering on another mission, ADRAS-J2, for launch in 2027 to go up and latch on to the same H-IIA rocket and steer it out of orbit toward a controlled reentry over the ocean.

An update on Falcon 9’s upper stage. SpaceX said that a Falcon 9 upper stage that reentered over Europe earlier this month suffered a propellant leak that prevented it from doing a controlled reentry, Space News reports. The upper stage was placed in orbit on a February 1 launch from Vandenberg Space Force Base in California. After deploying its payload of 22 Starlink satellites, the upper stage was expected to perform a burn to enable a controlled reentry over the ocean, a standard procedure on most Falcon 9 launches to low-Earth orbit. The stage, though, did not appear to perform the burn and remained in orbit. Its orbit decayed from atmospheric drag and the stage reentered over Europe on February 19. Debris from the Falcon 9 second stage, including composite overwrapped pressure vessels, fell in Poland, landing near the city of Poznań.

Higher than expected body rates … In an update posted to its website this week, SpaceX blamed the upper stage anomaly on a liquid oxygen leak. “During the coast phase of this Starlink mission, a small liquid oxygen leak developed, which ultimately drove higher than expected vehicle body rates,” SpaceX said. SpaceX aborted the deorbit burn and instead passivated the upper stage, a process where the rocket discharges energy from its batteries and vents leftover propellant from its tanks to minimize the risk of a break-up in orbit. This was the third incident involving a Falcon 9 upper stage in a little more than six months. (submitted by EllPeaTea)

Rocket Lab’s reveals “Return On Investment.” Rocket Lab’s Neutron rocket is designed for partial reusability, and the company unveiled Thursday an important piece of infrastructure to make this a reality. Neutron’s first stage booster will land on a modified barge named “Return On Investment” measuring around 400 feet (122 meters) wide, somewhat bigger than SpaceX’s drone ships used for Falcon 9 landings at sea. In order to prep the barge for rocket duty, the company is adding autonomous ground support equipment to capture and secure the landed Neutron, blast shielding to protect equipment during Neutron landings, and station-keeping thrusters for precise positioning. It should be ready to enter service in 2026. Rocket Lab also has the option to return the Neutron first stage back to the launch site when mission parameters allow the rocket to reserve enough propellant to make the return journey.

More news from Rocket Lab … Continuing the firehose of news from Rocket Lab this week, the company announced a new satellite design called “Flatellite” that looks remarkably similar to SpaceX’s Starlink satellites. The satellite is flat in shape, hence its name, and stackable to fit as many spacecraft as possible into the envelope of a rocket’s payload fairing. Rocket Lab said the new satellite “can be produced in high volumes and (is) tailored for large constellations, targeting high value applications and national security missions.” (submitted by zapman987)

The writing is on the wall for SLS. The lights may be starting to go out for NASA’s Space Launch System program. On Wednesday, one of the Republican space policy leaders most consistently opposed to commercial heavy lift rockets over the last decade—as an alternative to NASA’s large SLS rocket—has changed his mind, Ars reports. “We need an off-ramp for reliance on the SLS,” said Scott Pace, director of the Space Policy Institute at George Washington University, in written testimony before a congressional hearing about US space policy.

Not keeping Pace … A physicist and influential policy expert, Pace has decades of experience researching and writing space policy. He has served in multiple Republican administrations, most recently as executive secretary of the National Space Council from 2017 to 2020. He strongly advocated for the SLS rocket after Congress directed NASA to develop it in 2011. As part of his policy recommendations, Pace said NASA should seek to use commercial providers of heavy lift launch so that NASA can send “multiple” crew and cargo missions to the Moon each year. He notes that the SLS rocket is not reusable and is incapable of a high flight rate. Commercial options from SpaceX, Blue Origin, and United Launch Alliance are now available, Pace wrote.

The verdict is in for Starship Flight 7. SpaceX believes the spectacular break-up of Starship’s upper stage during its most recent test flight was caused by a harmonic response that stressed onboard hardware, leading to a fire and loss of the vehicle, Aviation Week reports. Higher-than-expected vibrations stressed hardware in the ship’s propulsion system, triggering propellant leaks and sustained fires until the test flight ended prematurely. The rocket broke apart and deposited debris over the Turks and Caicos Islands and the Atlantic Ocean, and forced dozens of commercial and private aircraft to delay their flights or steer into safer airspace.

Whole lotta shaking … SpaceX’s description of the problem as a harmonic response suggests vibrations during Starship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing. SpaceX completed an extended duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight, which could launch from South Texas as soon as Monday.

Next three launches

March 1: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 10: 00 UTC

March 2: Ceres 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 08: 10 UTC

March 2: Soyuz-2.1b | Glonass-K2 No. 14L | Plesetsk Cosmodrome, Russia | 22: 22 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Starship will soon fly again; Gilmour has a launch date Read More »

rocket-report:-another-hiccup-with-spacex-upper-stage;-japan’s-h3-starts-strong

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong


Vast’s schedule for deploying a mini-space station in low-Earth orbit was always ambitious.

A stack of 21 Starlink Internet satellites arrives in orbit Tuesday following launch on a Falcon 9 rocket. Credit: SpaceX

Welcome to Edition 7.30 of the Rocket Report! The US government relies on SpaceX for a lot of missions. These include launching national security satellites, putting astronauts on the Moon, and global broadband communications. But there are hurdles—technical and, increasingly, political—on the road ahead. To put it generously, Elon Musk, without whom much of what SpaceX does wouldn’t be possible, is one of the most divisive figures in American life today.

Now, a Democratic lawmaker in Congress has introduced a bill that would end federal contracts for special government employees (like Musk), citing conflict-of-interest concerns. The bill will go nowhere with Republicans in control of Congress, but it is enough to make me pause and think. When the Trump era passes and a new administration takes the White House, how will they view Musk? Will there be an appetite to reduce the government’s reliance on SpaceX? To answer this question, you must first ask if the government will even have a choice. What if, as is the case in many areas today, there’s no viable replacement for the services offered by SpaceX?

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Blue Origin flight focuses on lunar research. For the first time, Jeff Bezos’ Blue Origin space venture has put its New Shepard suborbital rocket ship through a couple of minutes’ worth of Moon-level gravity, GeekWire reports. The uncrewed mission, known as NS-29, sent 30 research payloads on a 10-minute trip from Blue Origin’s Launch Site One in West Texas. For this trip, the crew capsule was spun up to 11 revolutions per minute, as opposed to the typical half-revolution per minute. The resulting centrifugal force was equivalent to one-sixth of Earth’s gravity, which is what would be felt on the Moon.

Gee, that’s cool … The experiments aboard Blue Origin’s space capsule examined how to process lunar soil to extract resources and how to manufacture solar cells on the Moon for Blue Origin’s Blue Alchemist project. Another investigated how moondust gets electrically charged and levitated when exposed to ultraviolet light. These types of experiments in partial gravity can be done on parabolic airplane flights, but those only provide a few seconds of the right conditions to simulate the Moon’s gravity. (submitted by EllPeaTea)

Orbex announces two-launch deal with D-Orbit. UK-based rocket builder Orbex announced Monday that it has signed a two-launch deal with Italian in-orbit logistics provider D-Orbit, European Spaceflight reports. The deal includes capacity aboard two launches on Orbex’s Prime rocket over the next three years. D-Orbit aggregates small payloads on rideshare missions (primarily on SpaceX rockets so far) and has an orbital transfer vehicle for ferrying satellites to different altitudes after separation from a launch vehicle. Orbex’s Prime rocket is sized for the small satellite industry, and the company aims to debut it later this year.

Thanks to fresh funding? … Orbex has provided only sparse updates on its progress toward launching the Prime rocket. What we do know is that Orbex suspended plans to develop a spaceport in Scotland to focus its resources on the Prime rocket itself. Despite little evidence of any significant accomplishments, Orbex last month secured a $25 million investment from the UK government. The timing of the launch agreement with D-Orbit begs the question of whether the UK government’s backing helped seal the deal. As Andrew Parsonson of European Spaceflight writes: “Is this a clear indication of how important strong institutional backing is for the growth of privately developed launch systems in Europe?” (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Falcon 9’s upper stage misfires again. The second stage of a SpaceX Falcon 9 rocket remained in orbit following a launch Saturday from Vandenberg Space Force Base, California. The rocket successfully deployed a new batch of Starlink Internet satellites but was supposed to reignite its engine for a braking maneuver to head for a destructive reentry over the Pacific Ocean. While airspace warning notices from the FAA showed a reentry zone over the eastern Pacific Ocean, publicly available US military tracking continued to show the upper stage in orbit this week. Sources also told Ars that SpaceX delayed two Falcon 9 launches this week by a day to allow time for engineers to evaluate the problem.

3 in 6 months … This is the third time since last July that the Falcon 9’s upper stage has encountered a problem in flight. On one occasion, the upper stage failed to reach its targeted orbit, leading to the destruction of 20 Starlink satellites. Then, an upper stage misfired during a deorbit burn after an otherwise successful launch in September, causing debris to fall outside of the pre-approved danger area. After both events, the FAA briefly grounded the Falcon 9 rocket while SpaceX conducted an investigation. This time, an FAA spokesperson said the agency won’t require an investigation. “All flight events occurred within the scope of SpaceX’s licensed activities,” the spokesperson told Ars.

Vast tests hardware for commercial space station. Vast Space has started testing a qualification model of its first commercial space station but has pushed back the launch of that station into 2026, Space News reports. In an announcement Thursday, Vast said it completed a proof test of the primary structure of a test version of its Haven-1 space station habitat at a facility in Mojave, California. During the testing, Vast pumped up the pressure inside the structure to 1.8 times its normal level and conducted a leak test. “On the first try we passed that critical test,” Max Haot, chief executive of Vast, told Space News.

Not this year … It’s encouraging to see Vast making tangible progress in developing its commercial space station. The privately held company is one of several seeking to develop a commercial outpost in low-Earth orbit to replace the International Space Station after its scheduled retirement in 2030. NASA is providing funding to two industrial teams led by Blue Origin and Voyager Space, which are working on different space station concepts. But so far, Vast’s work has been funded primarily through private capital. The launch of the Haven-1 outpost, which Vast previously said could happen this year, is now scheduled no earlier than May 2026. The spacecraft will launch in one piece on a Falcon 9 rocket, and the first astronaut crew to visit Haven-1 could launch a month later. Haven-1 is a pathfinder for a larger commercial station called Haven-2, which Vast intends to propose to NASA. (submitted by EllPeaTea)

H3 deploys Japanese navigation satellite. Japan successfully launched a flagship H3 rocket Sunday and put into orbit a Quasi-Zenith Satellite (QZS), aiming to improve the accuracy of global positioning data for various applications, Kyodo News reports. After separation from the H3 rocket, the Michibiki 6 satellite will climb into geostationary orbit, where it will supplement navigation signals from GPS satellites to provide more accurate positioning data to users in Japan and surrounding regions, particularly in mountainous terrain and amid high-rise buildings in large cities. The new satellite joins a network of four QZS spacecraft launched by Japan beginning in 2010. Two more Quasi-Zenith Satellites are under construction, and Japan’s government is expected to begin development of an additional four regional navigation satellites this year.

A good start … After a failed inaugural flight in 2023, Japan’s new H3 rocket has reeled off four consecutive successful launches in less than a year. This may not sound like a lot, but the H3 has achieved its first four successful flights faster than any other rocket since 2000. SpaceX’s Falcon 9 rocket completed its first four successful flights in a little more than two years, and United Launch Alliance’s Atlas V logged its fourth flight in a similar timeframe. More than 14 months elapsed between the first and fourth successful flight of Rocket Lab’s Electron rocket. The H3 is an expendable rocket with no roadmap to reusability, so its service life and commercial potential are likely limited. But the rocket is shaping up to provide reliable access to space for Japan’s space agency and military, while some of its peers in Europe and the United States struggle to ramp up to a steady launch cadence. (submitted by EllPeaTea)

Europe really doesn’t like relying on Elon Musk. Europe’s space industry has struggled to keep up with SpaceX for a decade. The writing was on the wall when SpaceX landed a Falcon 9 booster for the first time. Now, European officials are wary of becoming too reliant on SpaceX, and there’s broad agreement on the continent that Europe should have the capability to launch its own satellites. In this way, access to space is a strategic imperative for Europe. The problem is, Europe’s new Ariane 6 rocket is just not competitive with SpaceX’s Falcon 9, and there’s no concrete plan to counter SpaceX’s dominance.

So here’s another terrible idea … Airbus, Europe’s largest aerospace contractor with a 50 percent stake in the Ariane 6 program, has enlisted Goldman Sachs for advice on how to forge a new European space and satellite company to better compete with SpaceX. France-based Thales and the Italian company Leonardo are part of the talks, with Bank of America also advising on the initiative. The idea that some bankers from Goldman and Bank of America will go into the guts of some of Europe’s largest institutional space companies and emerge with a lean, competitive entity seems far-fetched, to put it mildly, Ars reports.

The FAA still has some bite. We’re now three weeks removed from the most recent test flight of SpaceX’s Starship rocket, which ended with the failure of the vehicle’s upper stage in the final moments of its launch sequence. The accident rained debris over the Atlantic Ocean and the Turks and Caicos Islands. Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump, who counts Musk as one of his top allies. So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars.

Debris field … In the hours and days after the failed Starship launch, residents and tourists in the Turks and Caicos shared images of debris scattered across the islands and washing up onshore. The good news is there were no injuries or reports of significant damage from the wreckage, but the FAA confirmed one report of minor damage to a vehicle located in South Caicos. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. Before now, there has been no public record of any claims of third-party property damage in the era of commercial spaceflight.

DOD eager to reap the benefits of Starship. A Defense Department unit is examining how SpaceX’s Starship vehicle could be used to support a broader architecture of in-space refueling, Space News reports. A senior adviser at the Defense Innovation Unit (DIU) said SpaceX approached the agency about how Starship’s refueling architecture could be used by the wider space industry. The plan for Starship is to transfer cryogenic propellants between tankers, depots, and ships heading to the Moon, Mars, or other deep-space destinations.

Few details available … US military officials have expressed interest in orbital refueling to support in-space mobility, where ground controllers have the freedom to maneuver national security satellites between different orbits without worrying about running out of propellant. For several years, Space Force commanders and Pentagon officials have touted the importance of in-space mobility, or dynamic space operations, in a new era of orbital warfare. However, there are reports that the Space Force has considered zeroing out a budget line item for space mobility in its upcoming fiscal year 2026 budget request.

A small step toward a fully reusable European rocket. The French space agency CNES has issued a call for proposals to develop a reusable upper stage for a heavy-lift rocket, European Spaceflight reports. This project is named DEMESURE (DEMonstration Étage SUpérieur REutilisable / Reusable Upper Stage Demonstration), and it marks one of Europe’s first steps in developing a fully reusable rocket. That’s all good, but there’s a sense of tentativeness in this announcement. The current call for proposals will only cover the earliest phases of development, such as a requirements evaluation, cost estimation review, and a feasibility meeting. A future call will deal with the design and fabrication of a “reduced scale” upper stage, followed by a demonstration phase with a test flight, recovery, and reuse of the vehicle. CNES’s vision is to field a fully reusable rocket as a successor to the single-use Ariane 6.

Toes in the water … If you’re looking for reasons to be skeptical about Project DEMESURE, look no further than the Themis program, which aims to demonstrate the recovery and reuse of a booster stage akin to SpaceX’s Falcon 9. Themis originated in a partnership between CNES and European industry in 2019, then ESA took over the project in 2020. Five years later, the Themis demonstrator still hasn’t flown. After some initial low-altitude hops, Themis is supposed to launch on a high-altitude test flight and maneuver through the entire flight profile of a reusable booster, from liftoff to a vertical propulsive landing. As we’ve seen with SpaceX, recovering an orbital-class upper stage is a lot harder than landing the booster. An optimistic view of this announcement is that anything worth doing requires taking a first step, and that’s what CNES has done here. (submitted by EllPeaTea)

Next three launches

Feb. 7: Falcon 9 | Starlink 12-9 | Cape Canaveral Space Force Station, Florida | 18: 52 UTC

Feb. 8: Electron | IoT 4 You and Me | Māhia Peninsula, New Zealand | 20: 43 UTC

Feb. 10: Falcon 9 | Starlink 11-10 | Vandenberg Space Force Base, California | 00: 03 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong Read More »