vehicle assembly building

nasa’s-next-moonship-reaches-last-stop-before-launch-pad

NASA’s next Moonship reaches last stop before launch pad

The Orion spacecraft, which will fly four people around the Moon, arrived inside the cavernous Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida late Thursday night, ready to be stacked on top of its rocket for launch early next year.

The late-night transfer covered about 6 miles (10 kilometers) from one facility to another at the Florida spaceport. NASA and its contractors are continuing preparations for the Artemis II mission after the White House approved the program as an exception to work through the ongoing government shutdown, which began on October 1.

The sustained work could set up Artemis II for a launch opportunity as soon as February 5 of next year. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will be the first humans to fly on the Orion spacecraft, a vehicle that has been in development for nearly two decades. The Artemis II crew will make history on their 10-day flight by becoming the first people to travel to the vicinity of the Moon since 1972.

Where things stand

The Orion spacecraft, developed by Lockheed Martin, has made several stops at Kennedy over the last few months since leaving its factory in May.

First, the capsule moved to a fueling facility, where technicians filled it with hydrazine and nitrogen tetroxide propellants, which will feed Orion’s main engine and maneuvering thrusters on the flight to the Moon and back. In the same facility, teams loaded high-pressure helium and ammonia coolant into Orion propulsion and thermal control systems.

The next stop was a nearby building where the Launch Abort System was installed on the Orion spacecraft. The tower-like abort system would pull the capsule away from its rocket in the event of a launch failure. Orion stands roughly 67 feet (20 meters) tall with its service module, crew module, and abort tower integrated together.

Teams at Kennedy also installed four ogive panels to serve as an aerodynamic shield over the Orion crew capsule during the first few minutes of launch.

The Orion spacecraft, with its Launch Abort System and ogive panels installed, is seen last month inside the Launch Abort System Facility at Kennedy Space Center, Florida. Credit: NASA/Frank Michaux

It was then time to move Orion to the Vehicle Assembly Building (VAB), where a separate team has worked all year to stack the elements of NASA’s Space Launch System rocket. In the coming days, cranes will lift the spacecraft, weighing 78,000 pounds (35 metric tons), dozens of stories above the VAB’s center aisle, then up and over the transom into the building’s northeast high bay to be lowered atop the SLS heavy-lift rocket.

NASA’s next Moonship reaches last stop before launch pad Read More »

nasa-closing-its-original-repository-for-columbia-artifacts-to-tours

NASA closing its original repository for Columbia artifacts to tours

NASA is changing the way that its employees come in contact with, and remember, one of its worst tragedies.

In the wake of the 2003 loss of the space shuttle Columbia and its STS-107 crew, NASA created a program to use the orbiter’s debris for research and education at Kennedy Space Center in Florida. Agency employees were invited to see what remained of the space shuttle as a powerful reminder as to why they had to be diligent in their work. Access to the Columbia Research and Preservation Office, though, was limited as a result of its location and related logistics.

To address that and open up the experience to more of the workforce at Kennedy, the agency has quietly begun work to establish a new facility.

“The room, titled Columbia Learning Center (CLC), is a whole new concept,” a NASA spokesperson wrote in an email. “There are no access requirements; anyone at NASA Kennedy can go in any day of the week and stay as long as they like. The CLC will be available whenever employees need the inspiration and message for generations to come.”

Debris depository

On February 1, 2003, Columbia was making its way back from a 16-day science mission in Earth orbit when the damage that it suffered during its launch resulted in the orbiter breaking apart over East Texas. Instead of landing at Kennedy as planned, Columbia fell to the ground in more than 85,000 pieces.

The tragedy claimed the lives of commander Rick Husband, pilot Willie McCool, mission specialists David Brown, Kalpana Chawla, Michael Anderson, and Laurel Clark, and payload specialist Ilan Ramon of Israel.

NASA closing its original repository for Columbia artifacts to tours Read More »

nasa-is-stacking-the-artemis-ii-rocket,-implying-a-simple-heat-shield-fix

NASA is stacking the Artemis II rocket, implying a simple heat shield fix

A good sign

The readiness of the Orion crew capsule, where the four Artemis II astronauts will live during their voyage around the Moon, is driving NASA’s schedule for the mission. Officially, Artemis II is projected to launch in September of next year, but there’s little chance of meeting that schedule.

At the beginning of this year, NASA officials ruled out any opportunity to launch Artemis II in 2024 due to several technical issues with the Orion spacecraft. Several of these issues are now resolved, but NASA has not released any meaningful updates on the most significant problem.

This problem involves the Orion spacecraft’s heat shield. During atmospheric reentry at the end of the uncrewed Artemis I test flight in 2022, the Orion capsule’s heat shield eroded and cracked in unexpected ways, prompting investigations by NASA engineers and an independent panel.

NASA’s Orion heat shield inquiry ran for nearly two years. The investigation has wrapped up, two NASA officials said last month, but they declined to discuss any details of the root cause of the heat shield issue or the actions required to resolve the problem on Artemis II.

These corrective options ranged from doing nothing to changing the Orion spacecraft’s reentry angle to mitigate heating or physically modifying the Artemis II heat shield. In the latter scenario, NASA would have to disassemble the Orion spacecraft, which is already put together and is undergoing environmental testing at Kennedy Space Center. This would likely delay the Artemis II launch by a couple of years.

In August, NASA’s top human exploration official told Ars that the agency would hold off on stacking the SLS rocket until engineers had a good handle on the heat shield problem. There are limits to how long the solid rocket boosters can remain stacked vertically. The joints connecting each segment of the rocket motors are certified for one year. This clock doesn’t actually start ticking until NASA stacks the next booster segments on top of the lowermost segments.

However, NASA waived this rule on Artemis I when the boosters were stacked nearly two years before the successful launch.

A NASA spokesperson told Ars on Wednesday that the agency had nothing new to share on the Orion heat shield or what changes, if any, are required for the Artemis II mission. This information should be released before the end of the year, she said. At the same time, NASA could announce a new target launch date for Artemis II at the end of 2025, or more likely in 2026.

But because NASA gave the “go” for SLS stacking now, it seems safe to rule out any major hardware changes on the Orion heat shield for Artemis II.

NASA is stacking the Artemis II rocket, implying a simple heat shield fix Read More »