AI benchmarks

cmu-research-shows-compression-alone-may-unlock-ai-puzzle-solving-abilities

CMU research shows compression alone may unlock AI puzzle-solving abilities


Tis the season for a squeezin’

New research challenges prevailing idea that AI needs massive datasets to solve problems.

A pair of Carnegie Mellon University researchers recently discovered hints that the process of compressing information can solve complex reasoning tasks without pre-training on a large number of examples. Their system tackles some types of abstract pattern-matching tasks using only the puzzles themselves, challenging conventional wisdom about how machine learning systems acquire problem-solving abilities.

“Can lossless information compression by itself produce intelligent behavior?” ask Isaac Liao, a first-year PhD student, and his advisor Professor Albert Gu from CMU’s Machine Learning Department. Their work suggests the answer might be yes. To demonstrate, they created CompressARC and published the results in a comprehensive post on Liao’s website.

The pair tested their approach on the Abstraction and Reasoning Corpus (ARC-AGI), an unbeaten visual benchmark created in 2019 by machine learning researcher François Chollet to test AI systems’ abstract reasoning skills. ARC presents systems with grid-based image puzzles where each provides several examples demonstrating an underlying rule, and the system must infer that rule to apply it to a new example.

For instance, one ARC-AGI puzzle shows a grid with light blue rows and columns dividing the space into boxes. The task requires figuring out which colors belong in which boxes based on their position: black for corners, magenta for the middle, and directional colors (red for up, blue for down, green for right, and yellow for left) for the remaining boxes. Here are three other example ARC-AGI puzzles, taken from Liao’s website:

Three example ARC-AGI benchmarking puzzles.

Three example ARC-AGI benchmarking puzzles. Credit: Isaac Liao / Albert Gu

The puzzles test capabilities that some experts believe may be fundamental to general human-like reasoning (often called “AGI” for artificial general intelligence). Those properties include understanding object persistence, goal-directed behavior, counting, and basic geometry without requiring specialized knowledge. The average human solves 76.2 percent of the ARC-AGI puzzles, while human experts reach 98.5 percent.

OpenAI made waves in December for the claim that its o3 simulated reasoning model earned a record-breaking score on the ARC-AGI benchmark. In testing with computational limits, o3 scored 75.7 percent on the test, while in high-compute testing (basically unlimited thinking time), it reached 87.5 percent, which OpenAI says is comparable to human performance.

CompressARC achieves 34.75 percent accuracy on the ARC-AGI training set (the collection of puzzles used to develop the system) and 20 percent on the evaluation set (a separate group of unseen puzzles used to test how well the approach generalizes to new problems). Each puzzle takes about 20 minutes to process on a consumer-grade RTX 4070 GPU, compared to top-performing methods that use heavy-duty data center-grade machines and what the researchers describe as “astronomical amounts of compute.”

Not your typical AI approach

CompressARC takes a completely different approach than most current AI systems. Instead of relying on pre-training—the process where machine learning models learn from massive datasets before tackling specific tasks—it works with no external training data whatsoever. The system trains itself in real-time using only the specific puzzle it needs to solve.

“No pretraining; models are randomly initialized and trained during inference time. No dataset; one model trains on just the target ARC-AGI puzzle and outputs one answer,” the researchers write, describing their strict constraints.

When the researchers say “No search,” they’re referring to another common technique in AI problem-solving where systems try many different possible solutions and select the best one. Search algorithms work by systematically exploring options—like a chess program evaluating thousands of possible moves—rather than directly learning a solution. CompressARC avoids this trial-and-error approach, relying solely on gradient descent—a mathematical technique that incrementally adjusts the network’s parameters to reduce errors, similar to how you might find the bottom of a valley by always walking downhill.

A block diagram of the CompressARC architecture, created by the researchers.

A block diagram of the CompressARC architecture, created by the researchers. Credit: Isaac Liao / Albert Gu

The system’s core principle uses compression—finding the most efficient way to represent information by identifying patterns and regularities—as the driving force behind intelligence. CompressARC searches for the shortest possible description of a puzzle that can accurately reproduce the examples and the solution when unpacked.

While CompressARC borrows some structural principles from transformers (like using a residual stream with representations that are operated upon), it’s a custom neural network architecture designed specifically for this compression task. It’s not based on an LLM or standard transformer model.

Unlike typical machine learning methods, CompressARC uses its neural network only as a decoder. During encoding (the process of converting information into a compressed format), the system fine-tunes the network’s internal settings and the data fed into it, gradually making small adjustments to minimize errors. This creates the most compressed representation while correctly reproducing known parts of the puzzle. These optimized parameters then become the compressed representation that stores the puzzle and its solution in an efficient format.

An animated GIF showing the multi-step process of CompressARC solving an ARC-AGI puzzle.

An animated GIF showing the multi-step process of CompressARC solving an ARC-AGI puzzle. Credit: Isaac Liao

“The key challenge is to obtain this compact representation without needing the answers as inputs,” the researchers explain. The system essentially uses compression as a form of inference.

This approach could prove valuable in domains where large datasets don’t exist or when systems need to learn new tasks with minimal examples. The work suggests that some forms of intelligence might emerge not from memorizing patterns across vast datasets, but from efficiently representing information in compact forms.

The compression-intelligence connection

The potential connection between compression and intelligence may sound strange at first glance, but it has deep theoretical roots in computer science concepts like Kolmogorov complexity (the shortest program that produces a specified output) and Solomonoff induction—a theoretical gold standard for prediction equivalent to an optimal compression algorithm.

To compress information efficiently, a system must recognize patterns, find regularities, and “understand” the underlying structure of the data—abilities that mirror what many consider intelligent behavior. A system that can predict what comes next in a sequence can compress that sequence efficiently. As a result, some computer scientists over the decades have suggested that compression may be equivalent to general intelligence. Based on these principles, the Hutter Prize has offered awards to researchers who can compress a 1GB file to the smallest size.

We previously wrote about intelligence and compression in September 2023, when a DeepMind paper discovered that large language models can sometimes outperform specialized compression algorithms. In that study, researchers found that DeepMind’s Chinchilla 70B model could compress image patches to 43.4 percent of their original size (beating PNG’s 58.5 percent) and audio samples to just 16.4 percent (outperforming FLAC’s 30.3 percent).

Photo of a C-clamp compressing books.

That 2023 research suggested a deep connection between compression and intelligence—the idea that truly understanding patterns in data enables more efficient compression, which aligns with this new CMU research. While DeepMind demonstrated compression capabilities in an already-trained model, Liao and Gu’s work takes a different approach by showing that the compression process can generate intelligent behavior from scratch.

This new research matters because it challenges the prevailing wisdom in AI development, which typically relies on massive pre-training datasets and computationally expensive models. While leading AI companies push toward ever-larger models trained on more extensive datasets, CompressARC suggests intelligence emerging from a fundamentally different principle.

“CompressARC’s intelligence emerges not from pretraining, vast datasets, exhaustive search, or massive compute—but from compression,” the researchers conclude. “We challenge the conventional reliance on extensive pretraining and data, and propose a future where tailored compressive objectives and efficient inference-time computation work together to extract deep intelligence from minimal input.”

Limitations and looking ahead

Even with its successes, Liao and Gu’s system comes with clear limitations that may prompt skepticism. While it successfully solves puzzles involving color assignments, infilling, cropping, and identifying adjacent pixels, it struggles with tasks requiring counting, long-range pattern recognition, rotations, reflections, or simulating agent behavior. These limitations highlight areas where simple compression principles may not be sufficient.

The research has not been peer-reviewed, and the 20 percent accuracy on unseen puzzles, though notable without pre-training, falls significantly below both human performance and top AI systems. Critics might argue that CompressARC could be exploiting specific structural patterns in the ARC puzzles that might not generalize to other domains, challenging whether compression alone can serve as a foundation for broader intelligence rather than just being one component among many required for robust reasoning capabilities.

And yet as AI development continues its rapid advance, if CompressARC holds up to further scrutiny, it offers a glimpse of a possible alternative path that might lead to useful intelligent behavior without the resource demands of today’s dominant approaches. Or at the very least, it might unlock an important component of general intelligence in machines, which is still poorly understood.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

CMU research shows compression alone may unlock AI puzzle-solving abilities Read More »

new-secret-math-benchmark-stumps-ai-models-and-phds-alike

New secret math benchmark stumps AI models and PhDs alike

Epoch AI allowed Fields Medal winners Terence Tao and Timothy Gowers to review portions of the benchmark. “These are extremely challenging,” Tao said in feedback provided to Epoch. “I think that in the near term basically the only way to solve them, short of having a real domain expert in the area, is by a combination of a semi-expert like a graduate student in a related field, maybe paired with some combination of a modern AI and lots of other algebra packages.”

A chart showing AI model success on the FrontierMath problems, taken from Epoch AI's research paper.

A chart showing AI models’ limited success on the FrontierMath problems, taken from Epoch AI’s research paper. Credit: Epoch AI

To aid in the verification of correct answers during testing, the FrontierMath problems must have answers that can be automatically checked through computation, either as exact integers or mathematical objects. The designers made problems “guessproof” by requiring large numerical answers or complex mathematical solutions, with less than a 1 percent chance of correct random guesses.

Mathematician Evan Chen, writing on his blog, explained how he thinks that FrontierMath differs from traditional math competitions like the International Mathematical Olympiad (IMO). Problems in that competition typically require creative insight while avoiding complex implementation and specialized knowledge, he says. But for FrontierMath, “they keep the first requirement, but outright invert the second and third requirement,” Chen wrote.

While IMO problems avoid specialized knowledge and complex calculations, FrontierMath embraces them. “Because an AI system has vastly greater computational power, it’s actually possible to design problems with easily verifiable solutions using the same idea that IOI or Project Euler does—basically, ‘write a proof’ is replaced by ‘implement an algorithm in code,'” Chen explained.

The organization plans regular evaluations of AI models against the benchmark while expanding its problem set. They say they will release additional sample problems in the coming months to help the research community test their systems.

New secret math benchmark stumps AI models and PhDs alike Read More »

mysterious-“gpt2-chatbot”-ai-model-appears-suddenly,-confuses-experts

Mysterious “gpt2-chatbot” AI model appears suddenly, confuses experts

Robot fortune teller hand and crystal ball

On Sunday, word began to spread on social media about a new mystery chatbot named “gpt2-chatbot” that appeared in the LMSYS Chatbot Arena. Some people speculate that it may be a secret test version of OpenAI’s upcoming GPT-4.5 or GPT-5 large language model (LLM). The paid version of ChatGPT is currently powered by GPT-4 Turbo.

Currently, the new model is only available for use through the Chatbot Arena website, although in a limited way. In the site’s “side-by-side” arena mode where users can purposely select the model, gpt2-chatbot has a rate limit of eight queries per day—dramatically limiting people’s ability to test it in detail.

So far, gpt2-chatbot has inspired plenty of rumors online, including that it could be the stealth launch of a test version of GPT-4.5 or even GPT-5—or perhaps a new version of 2019’s GPT-2 that has been trained using new techniques. We reached out to OpenAI for comment but did not receive a response by press time. On Monday evening, OpenAI CEO Sam Altman seemingly dropped a hint by tweeting, “i do have a soft spot for gpt2.”

A screenshot of the LMSYS Chatbot Arena

Enlarge / A screenshot of the LMSYS Chatbot Arena “side-by-side” page showing “gpt2-chatbot” listed among the models for testing. (Red highlight added by Ars Technica.)

Benj Edwards

Early reports of the model first appeared on 4chan, then spread to social media platforms like X, with hype following not far behind. “Not only does it seem to show incredible reasoning, but it also gets notoriously challenging AI questions right with a much more impressive tone,” wrote AI developer Pietro Schirano on X. Soon, threads on Reddit popped up claiming that the new model had amazing abilities that beat every other LLM on the Arena.

Intrigued by the rumors, we decided to try out the new model for ourselves but did not come away impressed. When asked about “Benj Edwards,” the model revealed a few mistakes and some awkward language compared to GPT-4 Turbo’s output. A request for five original dad jokes fell short. And the gpt2-chatbot did not decisively pass our “magenta” test. (“Would the color be called ‘magenta’ if the town of Magenta didn’t exist?”)

  • A gpt2-chatbot result for “Who is Benj Edwards?” on LMSYS Chatbot Arena. Mistakes and oddities highlighted in red.

    Benj Edwards

  • A gpt2-chatbot result for “Write 5 original dad jokes” on LMSYS Chatbot Arena.

    Benj Edwards

  • A gpt2-chatbot result for “Would the color be called ‘magenta’ if the town of Magenta didn’t exist?” on LMSYS Chatbot Arena.

    Benj Edwards

So, whatever it is, it’s probably not GPT-5. We’ve seen other people reach the same conclusion after further testing, saying that the new mystery chatbot doesn’t seem to represent a large capability leap beyond GPT-4. “Gpt2-chatbot is good. really good,” wrote HyperWrite CEO Matt Shumer on X. “But if this is gpt-4.5, I’m disappointed.”

Still, OpenAI’s fingerprints seem to be all over the new bot. “I think it may well be an OpenAI stealth preview of something,” AI researcher Simon Willison told Ars Technica. But what “gpt2” is exactly, he doesn’t know. After surveying online speculation, it seems that no one apart from its creator knows precisely what the model is, either.

Willison has uncovered the system prompt for the AI model, which claims it is based on GPT-4 and made by OpenAI. But as Willison noted in a tweet, that’s no guarantee of provenance because “the goal of a system prompt is to influence the model to behave in certain ways, not to give it truthful information about itself.”

Mysterious “gpt2-chatbot” AI model appears suddenly, confuses experts Read More »