AI benchmarks

new-apple-study-challenges-whether-ai-models-truly-“reason”-through-problems

New Apple study challenges whether AI models truly “reason” through problems


Puzzle-based experiments reveal limitations of simulated reasoning, but others dispute findings.

An illustration of Tower of Hanoi from Popular Science in 1885. Credit: Public Domain

In early June, Apple researchers released a study suggesting that simulated reasoning (SR) models, such as OpenAI’s o1 and o3, DeepSeek-R1, and Claude 3.7 Sonnet Thinking, produce outputs consistent with pattern-matching from training data when faced with novel problems requiring systematic thinking. The researchers found similar results to a recent study by the United States of America Mathematical Olympiad (USAMO) in April, showing that these same models achieved low scores on novel mathematical proofs.

The new study, titled “The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity,” comes from a team at Apple led by Parshin Shojaee and Iman Mirzadeh, and it includes contributions from Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad Farajtabar.

The researchers examined what they call “large reasoning models” (LRMs), which attempt to simulate a logical reasoning process by producing a deliberative text output sometimes called “chain-of-thought reasoning” that ostensibly assists with solving problems in a step-by-step fashion.

To do that, they pitted the AI models against four classic puzzles—Tower of Hanoi (moving disks between pegs), checkers jumping (eliminating pieces), river crossing (transporting items with constraints), and blocks world (stacking blocks)—scaling them from trivially easy (like one-disk Hanoi) to extremely complex (20-disk Hanoi requiring over a million moves).

Figure 1 from Apple's

Figure 1 from Apple’s “The Illusion of Thinking” research paper. Credit: Apple

“Current evaluations primarily focus on established mathematical and coding benchmarks, emphasizing final answer accuracy,” the researchers write. In other words, today’s tests only care if the model gets the right answer to math or coding problems that may already be in its training data—they don’t examine whether the model actually reasoned its way to that answer or simply pattern-matched from examples it had seen before.

Ultimately, the researchers found results consistent with the aforementioned USAMO research, showing that these same models achieved mostly under 5 percent on novel mathematical proofs, with only one model reaching 25 percent, and not a single perfect proof among nearly 200 attempts. Both research teams documented severe performance degradation on problems requiring extended systematic reasoning.

Known skeptics and new evidence

AI researcher Gary Marcus, who has long argued that neural networks struggle with out-of-distribution generalization, called the Apple results “pretty devastating to LLMs.” While Marcus has been making similar arguments for years and is known for his AI skepticism, the new research provides fresh empirical support for his particular brand of criticism.

“It is truly embarrassing that LLMs cannot reliably solve Hanoi,” Marcus wrote, noting that AI researcher Herb Simon solved the puzzle in 1957 and many algorithmic solutions are available on the web. Marcus pointed out that even when researchers provided explicit algorithms for solving Tower of Hanoi, model performance did not improve—a finding that study co-lead Iman Mirzadeh argued shows “their process is not logical and intelligent.”

Figure 4 from Apple's

Figure 4 from Apple’s “The Illusion of Thinking” research paper. Credit: Apple

The Apple team found that simulated reasoning models behave differently from “standard” models (like GPT-4o) depending on puzzle difficulty. On easy tasks, such as Tower of Hanoi with just a few disks, standard models actually won because reasoning models would “overthink” and generate long chains of thought that led to incorrect answers. On moderately difficult tasks, SR models’ methodical approach gave them an edge. But on truly difficult tasks, including Tower of Hanoi with 10 or more disks, both types failed entirely, unable to complete the puzzles, no matter how much time they were given.

The researchers also identified what they call a “counterintuitive scaling limit.” As problem complexity increases, simulated reasoning models initially generate more thinking tokens but then reduce their reasoning effort beyond a threshold, despite having adequate computational resources.

The study also revealed puzzling inconsistencies in how models fail. Claude 3.7 Sonnet could perform up to 100 correct moves in Tower of Hanoi but failed after just five moves in a river crossing puzzle—despite the latter requiring fewer total moves. This suggests the failures may be task-specific rather than purely computational.

Competing interpretations emerge

However, not all researchers agree with the interpretation that these results demonstrate fundamental reasoning limitations. University of Toronto economist Kevin A. Bryan argued on X that the observed limitations may reflect deliberate training constraints rather than inherent inabilities.

“If you tell me to solve a problem that would take me an hour of pen and paper, but give me five minutes, I’ll probably give you an approximate solution or a heuristic. This is exactly what foundation models with thinking are RL’d to do,” Bryan wrote, suggesting that models are specifically trained through reinforcement learning (RL) to avoid excessive computation.

Bryan suggests that unspecified industry benchmarks show “performance strictly increases as we increase in tokens used for inference, on ~every problem domain tried,” but notes that deployed models intentionally limit this to prevent “overthinking” simple queries. This perspective suggests the Apple paper may be measuring engineered constraints rather than fundamental reasoning limits.

Figure 6 from Apple's

Figure 6 from Apple’s “The Illusion of Thinking” research paper. Credit: Apple

Software engineer Sean Goedecke offered a similar critique of the Apple paper on his blog, noting that when faced with Tower of Hanoi requiring over 1,000 moves, DeepSeek-R1 “immediately decides ‘generating all those moves manually is impossible,’ because it would require tracking over a thousand moves. So it spins around trying to find a shortcut and fails.” Goedecke argues this represents the model choosing not to attempt the task rather than being unable to complete it.

Other researchers also question whether these puzzle-based evaluations are even appropriate for LLMs. Independent AI researcher Simon Willison told Ars Technica in an interview that the Tower of Hanoi approach was “not exactly a sensible way to apply LLMs, with or without reasoning,” and suggested the failures might simply reflect running out of tokens in the context window (the maximum amount of text an AI model can process) rather than reasoning deficits. He characterized the paper as potentially overblown research that gained attention primarily due to its “irresistible headline” about Apple claiming LLMs don’t reason.

The Apple researchers themselves caution against over-extrapolating the results of their study, acknowledging in their limitations section that “puzzle environments represent a narrow slice of reasoning tasks and may not capture the diversity of real-world or knowledge-intensive reasoning problems.” The paper also acknowledges that reasoning models show improvements in the “medium complexity” range and continue to demonstrate utility in some real-world applications.

Implications remain contested

Have the credibility of claims about AI reasoning models been completely destroyed by these two studies? Not necessarily.

What these studies may suggest instead is that the kinds of extended context reasoning hacks used by SR models may not be a pathway to general intelligence, like some have hoped. In that case, the path to more robust reasoning capabilities may require fundamentally different approaches rather than refinements to current methods.

As Willison noted above, the results of the Apple study have so far been explosive in the AI community. Generative AI is a controversial topic, with many people gravitating toward extreme positions in an ongoing ideological battle over the models’ general utility. Many proponents of generative AI have contested the Apple results, while critics have latched onto the study as a definitive knockout blow for LLM credibility.

Apple’s results, combined with the USAMO findings, seem to strengthen the case made by critics like Marcus that these systems rely on elaborate pattern-matching rather than the kind of systematic reasoning their marketing might suggest. To be fair, much of the generative AI space is so new that even its inventors do not yet fully understand how or why these techniques work. In the meantime, AI companies might build trust by tempering some claims about reasoning and intelligence breakthroughs.

However, that doesn’t mean these AI models are useless. Even elaborate pattern-matching machines can be useful in performing labor-saving tasks for the people that use them, given an understanding of their drawbacks and confabulations. As Marcus concedes, “At least for the next decade, LLMs (with and without inference time “reasoning”) will continue have their uses, especially for coding and brainstorming and writing.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

New Apple study challenges whether AI models truly “reason” through problems Read More »

with-the-launch-of-o3-pro,-let’s-talk-about-what-ai-“reasoning”-actually-does

With the launch of o3-pro, let’s talk about what AI “reasoning” actually does


inquiring artificial minds want to know

New studies reveal pattern-matching reality behind the AI industry’s reasoning claims.

On Tuesday, OpenAI announced that o3-pro, a new version of its most capable simulated reasoning model, is now available to ChatGPT Pro and Team users, replacing o1-pro in the model picker. The company also reduced API pricing for o3-pro by 87 percent compared to o1-pro while cutting o3 prices by 80 percent. While “reasoning” is useful for some analytical tasks, new studies have posed fundamental questions about what the word actually means when applied to these AI systems.

We’ll take a deeper look at “reasoning” in a minute, but first, let’s examine what’s new. While OpenAI originally launched o3 (non-pro) in April, the o3-pro model focuses on mathematics, science, and coding while adding new capabilities like web search, file analysis, image analysis, and Python execution. Since these tool integrations slow response times (longer than the already slow o1-pro), OpenAI recommends using the model for complex problems where accuracy matters more than speed. However, they do not necessarily confabulate less than “non-reasoning” AI models (they still introduce factual errors), which is a significant caveat when seeking accurate results.

Beyond the reported performance improvements, OpenAI announced a substantial price reduction for developers. O3-pro costs $20 per million input tokens and $80 per million output tokens in the API, making it 87 percent cheaper than o1-pro. The company also reduced the price of the standard o3 model by 80 percent.

These reductions address one of the main concerns with reasoning models—their high cost compared to standard models. The original o1 cost $15 per million input tokens and $60 per million output tokens, while o3-mini cost $1.10 per million input tokens and $4.40 per million output tokens.

Why use o3-pro?

Unlike general-purpose models like GPT-4o that prioritize speed, broad knowledge, and making users feel good about themselves, o3-pro uses a chain-of-thought simulated reasoning process to devote more output tokens toward working through complex problems, making it generally better for technical challenges that require deeper analysis. But it’s still not perfect.

An OpenAI's o3-pro benchmark chart.

An OpenAI’s o3-pro benchmark chart. Credit: OpenAI

Measuring so-called “reasoning” capability is tricky since benchmarks can be easy to game by cherry-picking or training data contamination, but OpenAI reports that o3-pro is popular among testers, at least. “In expert evaluations, reviewers consistently prefer o3-pro over o3 in every tested category and especially in key domains like science, education, programming, business, and writing help,” writes OpenAI in its release notes. “Reviewers also rated o3-pro consistently higher for clarity, comprehensiveness, instruction-following, and accuracy.”

An OpenAI's o3-pro benchmark chart.

An OpenAI’s o3-pro benchmark chart. Credit: OpenAI

OpenAI shared benchmark results showing o3-pro’s reported performance improvements. On the AIME 2024 mathematics competition, o3-pro achieved 93 percent pass@1 accuracy, compared to 90 percent for o3 (medium) and 86 percent for o1-pro. The model reached 84 percent on PhD-level science questions from GPQA Diamond, up from 81 percent for o3 (medium) and 79 percent for o1-pro. For programming tasks measured by Codeforces, o3-pro achieved an Elo rating of 2748, surpassing o3 (medium) at 2517 and o1-pro at 1707.

When reasoning is simulated

Structure made of cubes in the shape of a thinking or contemplating person that evolves from simple to complex, 3D render.


It’s easy for laypeople to be thrown off by the anthropomorphic claims of “reasoning” in AI models. In this case, as with the borrowed anthropomorphic term “hallucinations,” “reasoning” has become a term of art in the AI industry that basically means “devoting more compute time to solving a problem.” It does not necessarily mean the AI models systematically apply logic or possess the ability to construct solutions to truly novel problems. This is why we at Ars Technica continue to use the term “simulated reasoning” (SR) to describe these models. They are simulating a human-style reasoning process that does not necessarily produce the same results as human reasoning when faced with novel challenges.

While simulated reasoning models like o3-pro often show measurable improvements over general-purpose models on analytical tasks, research suggests these gains come from allocating more computational resources to traverse their neural networks in smaller, more directed steps. The answer lies in what researchers call “inference-time compute” scaling. When these models use what are called “chain-of-thought” techniques, they dedicate more computational resources to exploring connections between concepts in their neural network data. Each intermediate “reasoning” output step (produced in tokens) serves as context for the next token prediction, effectively constraining the model’s outputs in ways that tend to improve accuracy and reduce mathematical errors (though not necessarily factual ones).

But fundamentally, all Transformer-based AI models are pattern-matching marvels. They borrow reasoning patterns from examples in the training data that researchers use to create them. Recent studies on Math Olympiad problems reveal that SR models still function as sophisticated pattern-matching machines—they cannot catch their own mistakes or adjust failing approaches, often producing confidently incorrect solutions without any “awareness” of errors.

Apple researchers found similar limitations when testing SR models on controlled puzzle environments. Even when provided explicit algorithms for solving puzzles like Tower of Hanoi, the models failed to execute them correctly—suggesting their process relies on pattern matching from training data rather than logical reasoning. As problem complexity increased, these models showed a “counterintuitive scaling limit,” reducing their reasoning effort despite having adequate computational resources. This aligns with the USAMO findings showing that models made basic logical errors and continued with flawed approaches even when generating contradictory results.

However, there’s some serious nuance here that you may miss if you’re reaching quickly for a pro-AI or anti-AI take. Pattern-matching and reasoning aren’t necessarily mutually exclusive. Since it’s difficult to mechanically define human reasoning at a fundamental level, we can’t definitively say whether sophisticated pattern-matching is categorically different from “genuine” reasoning or just a different implementation of similar underlying processes. The Tower of Hanoi failures are compelling evidence of current limitations, but they don’t resolve the deeper philosophical question of what reasoning actually is.

Illustration of a robot standing on a latter in front of a large chalkboard solving mathematical problems. A red question mark hovers over its head.

And understanding these limitations doesn’t diminish the genuine utility of SR models. For many real-world applications—debugging code, solving math problems, or analyzing structured data—pattern matching from vast training sets is enough to be useful. But as we consider the industry’s stated trajectory toward artificial general intelligence and even superintelligence, the evidence so far suggests that simply scaling up current approaches or adding more “thinking” tokens may not bridge the gap between statistical pattern recognition and what might be called generalist algorithmic reasoning.

But the technology is evolving rapidly, and new approaches are already being developed to address those shortcomings. For example, self-consistency sampling allows models to generate multiple solution paths and check for agreement, while self-critique prompts attempt to make models evaluate their own outputs for errors. Tool augmentation represents another useful direction already used by o3-pro and other ChatGPT models—by connecting LLMs to calculators, symbolic math engines, or formal verification systems, researchers can compensate for some of the models’ computational weaknesses. These methods show promise, though they don’t yet fully address the fundamental pattern-matching nature of current systems.

For now, o3-pro is a better, cheaper version of what OpenAI previously provided. It’s good at solving familiar problems, struggles with truly new ones, and still makes confident mistakes. If you understand its limitations, it can be a powerful tool, but always double-check the results.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

With the launch of o3-pro, let’s talk about what AI “reasoning” actually does Read More »

cmu-research-shows-compression-alone-may-unlock-ai-puzzle-solving-abilities

CMU research shows compression alone may unlock AI puzzle-solving abilities


Tis the season for a squeezin’

New research challenges prevailing idea that AI needs massive datasets to solve problems.

A pair of Carnegie Mellon University researchers recently discovered hints that the process of compressing information can solve complex reasoning tasks without pre-training on a large number of examples. Their system tackles some types of abstract pattern-matching tasks using only the puzzles themselves, challenging conventional wisdom about how machine learning systems acquire problem-solving abilities.

“Can lossless information compression by itself produce intelligent behavior?” ask Isaac Liao, a first-year PhD student, and his advisor Professor Albert Gu from CMU’s Machine Learning Department. Their work suggests the answer might be yes. To demonstrate, they created CompressARC and published the results in a comprehensive post on Liao’s website.

The pair tested their approach on the Abstraction and Reasoning Corpus (ARC-AGI), an unbeaten visual benchmark created in 2019 by machine learning researcher François Chollet to test AI systems’ abstract reasoning skills. ARC presents systems with grid-based image puzzles where each provides several examples demonstrating an underlying rule, and the system must infer that rule to apply it to a new example.

For instance, one ARC-AGI puzzle shows a grid with light blue rows and columns dividing the space into boxes. The task requires figuring out which colors belong in which boxes based on their position: black for corners, magenta for the middle, and directional colors (red for up, blue for down, green for right, and yellow for left) for the remaining boxes. Here are three other example ARC-AGI puzzles, taken from Liao’s website:

Three example ARC-AGI benchmarking puzzles.

Three example ARC-AGI benchmarking puzzles. Credit: Isaac Liao / Albert Gu

The puzzles test capabilities that some experts believe may be fundamental to general human-like reasoning (often called “AGI” for artificial general intelligence). Those properties include understanding object persistence, goal-directed behavior, counting, and basic geometry without requiring specialized knowledge. The average human solves 76.2 percent of the ARC-AGI puzzles, while human experts reach 98.5 percent.

OpenAI made waves in December for the claim that its o3 simulated reasoning model earned a record-breaking score on the ARC-AGI benchmark. In testing with computational limits, o3 scored 75.7 percent on the test, while in high-compute testing (basically unlimited thinking time), it reached 87.5 percent, which OpenAI says is comparable to human performance.

CompressARC achieves 34.75 percent accuracy on the ARC-AGI training set (the collection of puzzles used to develop the system) and 20 percent on the evaluation set (a separate group of unseen puzzles used to test how well the approach generalizes to new problems). Each puzzle takes about 20 minutes to process on a consumer-grade RTX 4070 GPU, compared to top-performing methods that use heavy-duty data center-grade machines and what the researchers describe as “astronomical amounts of compute.”

Not your typical AI approach

CompressARC takes a completely different approach than most current AI systems. Instead of relying on pre-training—the process where machine learning models learn from massive datasets before tackling specific tasks—it works with no external training data whatsoever. The system trains itself in real-time using only the specific puzzle it needs to solve.

“No pretraining; models are randomly initialized and trained during inference time. No dataset; one model trains on just the target ARC-AGI puzzle and outputs one answer,” the researchers write, describing their strict constraints.

When the researchers say “No search,” they’re referring to another common technique in AI problem-solving where systems try many different possible solutions and select the best one. Search algorithms work by systematically exploring options—like a chess program evaluating thousands of possible moves—rather than directly learning a solution. CompressARC avoids this trial-and-error approach, relying solely on gradient descent—a mathematical technique that incrementally adjusts the network’s parameters to reduce errors, similar to how you might find the bottom of a valley by always walking downhill.

A block diagram of the CompressARC architecture, created by the researchers.

A block diagram of the CompressARC architecture, created by the researchers. Credit: Isaac Liao / Albert Gu

The system’s core principle uses compression—finding the most efficient way to represent information by identifying patterns and regularities—as the driving force behind intelligence. CompressARC searches for the shortest possible description of a puzzle that can accurately reproduce the examples and the solution when unpacked.

While CompressARC borrows some structural principles from transformers (like using a residual stream with representations that are operated upon), it’s a custom neural network architecture designed specifically for this compression task. It’s not based on an LLM or standard transformer model.

Unlike typical machine learning methods, CompressARC uses its neural network only as a decoder. During encoding (the process of converting information into a compressed format), the system fine-tunes the network’s internal settings and the data fed into it, gradually making small adjustments to minimize errors. This creates the most compressed representation while correctly reproducing known parts of the puzzle. These optimized parameters then become the compressed representation that stores the puzzle and its solution in an efficient format.

An animated GIF showing the multi-step process of CompressARC solving an ARC-AGI puzzle.

An animated GIF showing the multi-step process of CompressARC solving an ARC-AGI puzzle. Credit: Isaac Liao

“The key challenge is to obtain this compact representation without needing the answers as inputs,” the researchers explain. The system essentially uses compression as a form of inference.

This approach could prove valuable in domains where large datasets don’t exist or when systems need to learn new tasks with minimal examples. The work suggests that some forms of intelligence might emerge not from memorizing patterns across vast datasets, but from efficiently representing information in compact forms.

The compression-intelligence connection

The potential connection between compression and intelligence may sound strange at first glance, but it has deep theoretical roots in computer science concepts like Kolmogorov complexity (the shortest program that produces a specified output) and Solomonoff induction—a theoretical gold standard for prediction equivalent to an optimal compression algorithm.

To compress information efficiently, a system must recognize patterns, find regularities, and “understand” the underlying structure of the data—abilities that mirror what many consider intelligent behavior. A system that can predict what comes next in a sequence can compress that sequence efficiently. As a result, some computer scientists over the decades have suggested that compression may be equivalent to general intelligence. Based on these principles, the Hutter Prize has offered awards to researchers who can compress a 1GB file to the smallest size.

We previously wrote about intelligence and compression in September 2023, when a DeepMind paper discovered that large language models can sometimes outperform specialized compression algorithms. In that study, researchers found that DeepMind’s Chinchilla 70B model could compress image patches to 43.4 percent of their original size (beating PNG’s 58.5 percent) and audio samples to just 16.4 percent (outperforming FLAC’s 30.3 percent).

Photo of a C-clamp compressing books.

That 2023 research suggested a deep connection between compression and intelligence—the idea that truly understanding patterns in data enables more efficient compression, which aligns with this new CMU research. While DeepMind demonstrated compression capabilities in an already-trained model, Liao and Gu’s work takes a different approach by showing that the compression process can generate intelligent behavior from scratch.

This new research matters because it challenges the prevailing wisdom in AI development, which typically relies on massive pre-training datasets and computationally expensive models. While leading AI companies push toward ever-larger models trained on more extensive datasets, CompressARC suggests intelligence emerging from a fundamentally different principle.

“CompressARC’s intelligence emerges not from pretraining, vast datasets, exhaustive search, or massive compute—but from compression,” the researchers conclude. “We challenge the conventional reliance on extensive pretraining and data, and propose a future where tailored compressive objectives and efficient inference-time computation work together to extract deep intelligence from minimal input.”

Limitations and looking ahead

Even with its successes, Liao and Gu’s system comes with clear limitations that may prompt skepticism. While it successfully solves puzzles involving color assignments, infilling, cropping, and identifying adjacent pixels, it struggles with tasks requiring counting, long-range pattern recognition, rotations, reflections, or simulating agent behavior. These limitations highlight areas where simple compression principles may not be sufficient.

The research has not been peer-reviewed, and the 20 percent accuracy on unseen puzzles, though notable without pre-training, falls significantly below both human performance and top AI systems. Critics might argue that CompressARC could be exploiting specific structural patterns in the ARC puzzles that might not generalize to other domains, challenging whether compression alone can serve as a foundation for broader intelligence rather than just being one component among many required for robust reasoning capabilities.

And yet as AI development continues its rapid advance, if CompressARC holds up to further scrutiny, it offers a glimpse of a possible alternative path that might lead to useful intelligent behavior without the resource demands of today’s dominant approaches. Or at the very least, it might unlock an important component of general intelligence in machines, which is still poorly understood.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

CMU research shows compression alone may unlock AI puzzle-solving abilities Read More »

new-secret-math-benchmark-stumps-ai-models-and-phds-alike

New secret math benchmark stumps AI models and PhDs alike

Epoch AI allowed Fields Medal winners Terence Tao and Timothy Gowers to review portions of the benchmark. “These are extremely challenging,” Tao said in feedback provided to Epoch. “I think that in the near term basically the only way to solve them, short of having a real domain expert in the area, is by a combination of a semi-expert like a graduate student in a related field, maybe paired with some combination of a modern AI and lots of other algebra packages.”

A chart showing AI model success on the FrontierMath problems, taken from Epoch AI's research paper.

A chart showing AI models’ limited success on the FrontierMath problems, taken from Epoch AI’s research paper. Credit: Epoch AI

To aid in the verification of correct answers during testing, the FrontierMath problems must have answers that can be automatically checked through computation, either as exact integers or mathematical objects. The designers made problems “guessproof” by requiring large numerical answers or complex mathematical solutions, with less than a 1 percent chance of correct random guesses.

Mathematician Evan Chen, writing on his blog, explained how he thinks that FrontierMath differs from traditional math competitions like the International Mathematical Olympiad (IMO). Problems in that competition typically require creative insight while avoiding complex implementation and specialized knowledge, he says. But for FrontierMath, “they keep the first requirement, but outright invert the second and third requirement,” Chen wrote.

While IMO problems avoid specialized knowledge and complex calculations, FrontierMath embraces them. “Because an AI system has vastly greater computational power, it’s actually possible to design problems with easily verifiable solutions using the same idea that IOI or Project Euler does—basically, ‘write a proof’ is replaced by ‘implement an algorithm in code,'” Chen explained.

The organization plans regular evaluations of AI models against the benchmark while expanding its problem set. They say they will release additional sample problems in the coming months to help the research community test their systems.

New secret math benchmark stumps AI models and PhDs alike Read More »

mysterious-“gpt2-chatbot”-ai-model-appears-suddenly,-confuses-experts

Mysterious “gpt2-chatbot” AI model appears suddenly, confuses experts

Robot fortune teller hand and crystal ball

On Sunday, word began to spread on social media about a new mystery chatbot named “gpt2-chatbot” that appeared in the LMSYS Chatbot Arena. Some people speculate that it may be a secret test version of OpenAI’s upcoming GPT-4.5 or GPT-5 large language model (LLM). The paid version of ChatGPT is currently powered by GPT-4 Turbo.

Currently, the new model is only available for use through the Chatbot Arena website, although in a limited way. In the site’s “side-by-side” arena mode where users can purposely select the model, gpt2-chatbot has a rate limit of eight queries per day—dramatically limiting people’s ability to test it in detail.

So far, gpt2-chatbot has inspired plenty of rumors online, including that it could be the stealth launch of a test version of GPT-4.5 or even GPT-5—or perhaps a new version of 2019’s GPT-2 that has been trained using new techniques. We reached out to OpenAI for comment but did not receive a response by press time. On Monday evening, OpenAI CEO Sam Altman seemingly dropped a hint by tweeting, “i do have a soft spot for gpt2.”

A screenshot of the LMSYS Chatbot Arena

Enlarge / A screenshot of the LMSYS Chatbot Arena “side-by-side” page showing “gpt2-chatbot” listed among the models for testing. (Red highlight added by Ars Technica.)

Benj Edwards

Early reports of the model first appeared on 4chan, then spread to social media platforms like X, with hype following not far behind. “Not only does it seem to show incredible reasoning, but it also gets notoriously challenging AI questions right with a much more impressive tone,” wrote AI developer Pietro Schirano on X. Soon, threads on Reddit popped up claiming that the new model had amazing abilities that beat every other LLM on the Arena.

Intrigued by the rumors, we decided to try out the new model for ourselves but did not come away impressed. When asked about “Benj Edwards,” the model revealed a few mistakes and some awkward language compared to GPT-4 Turbo’s output. A request for five original dad jokes fell short. And the gpt2-chatbot did not decisively pass our “magenta” test. (“Would the color be called ‘magenta’ if the town of Magenta didn’t exist?”)

  • A gpt2-chatbot result for “Who is Benj Edwards?” on LMSYS Chatbot Arena. Mistakes and oddities highlighted in red.

    Benj Edwards

  • A gpt2-chatbot result for “Write 5 original dad jokes” on LMSYS Chatbot Arena.

    Benj Edwards

  • A gpt2-chatbot result for “Would the color be called ‘magenta’ if the town of Magenta didn’t exist?” on LMSYS Chatbot Arena.

    Benj Edwards

So, whatever it is, it’s probably not GPT-5. We’ve seen other people reach the same conclusion after further testing, saying that the new mystery chatbot doesn’t seem to represent a large capability leap beyond GPT-4. “Gpt2-chatbot is good. really good,” wrote HyperWrite CEO Matt Shumer on X. “But if this is gpt-4.5, I’m disappointed.”

Still, OpenAI’s fingerprints seem to be all over the new bot. “I think it may well be an OpenAI stealth preview of something,” AI researcher Simon Willison told Ars Technica. But what “gpt2” is exactly, he doesn’t know. After surveying online speculation, it seems that no one apart from its creator knows precisely what the model is, either.

Willison has uncovered the system prompt for the AI model, which claims it is based on GPT-4 and made by OpenAI. But as Willison noted in a tweet, that’s no guarantee of provenance because “the goal of a system prompt is to influence the model to behave in certain ways, not to give it truthful information about itself.”

Mysterious “gpt2-chatbot” AI model appears suddenly, confuses experts Read More »