AI development tools

why-irobot’s-founder-won’t-go-within-10-feet-of-today’s-walking-robots

Why iRobot’s founder won’t go within 10 feet of today’s walking robots

In his post, Brooks recounts being “way too close” to an Agility Robotics Digit humanoid when it fell several years ago. He has not dared approach a walking one since. Even in promotional videos from humanoid companies, Brooks notes, humans are never shown close to moving humanoid robots unless separated by furniture, and even then, the robots only shuffle minimally.

This safety problem extends beyond accidental falls. For humanoids to fulfill their promised role in health care and factory settings, they need certification to operate in zones shared with humans. Current walking mechanisms make such certification virtually impossible under existing safety standards in most parts of the world.

Apollo robot

The humanoid Apollo robot. Credit: Google

Brooks predicts that within 15 years, there will indeed be many robots called “humanoids” performing various tasks. But ironically, they will look nothing like today’s bipedal machines. They will have wheels instead of feet, varying numbers of arms, and specialized sensors that bear no resemblance to human eyes. Some will have cameras in their hands or looking down from their midsections. The definition of “humanoid” will shift, just as “flying cars” now means electric helicopters rather than road-capable aircraft, and “self-driving cars” means vehicles with remote human monitors rather than truly autonomous systems.

The billions currently being invested in forcing today’s rigid, vision-only humanoids to learn dexterity will largely disappear, Brooks argues. Academic researchers are making more progress with systems that incorporate touch feedback, like MIT’s approach using a glove that transmits sensations between human operators and robot hands. But even these advances remain far from the comprehensive touch sensing that enables human dexterity.

Today, few people spend their days near humanoid robots, but Brooks’ 3-meter rule stands as a practical warning of challenges ahead from someone who has spent decades building these machines. The gap between promotional videos and deployable reality remains large, measured not just in years but in fundamental unsolved problems of physics, sensing, and safety.

Why iRobot’s founder won’t go within 10 feet of today’s walking robots Read More »

california’s-newly-signed-ai-law-just-gave-big-tech-exactly-what-it-wanted

California’s newly signed AI law just gave Big Tech exactly what it wanted

On Monday, California Governor Gavin Newsom signed the Transparency in Frontier Artificial Intelligence Act into law, requiring AI companies to disclose their safety practices while stopping short of mandating actual safety testing. The law requires companies with annual revenues of at least $500 million to publish safety protocols on their websites and report incidents to state authorities, but it lacks the stronger enforcement teeth of the bill Newsom vetoed last year after tech companies lobbied heavily against it.

The legislation, S.B. 53, replaces Senator Scott Wiener’s previous attempt at AI regulation, known as S.B. 1047, that would have required safety testing and “kill switches” for AI systems. Instead, the new law asks companies to describe how they incorporate “national standards, international standards, and industry-consensus best practices” into their AI development, without specifying what those standards are or requiring independent verification.

“California has proven that we can establish regulations to protect our communities while also ensuring that the growing AI industry continues to thrive,” Newsom said in a statement, though the law’s actual protective measures remain largely voluntary beyond basic reporting requirements.

According to the California state government, the state houses 32 of the world’s top 50 AI companies, and more than half of global venture capital funding for AI and machine learning startups went to Bay Area companies last year. So while the recently signed bill is state-level legislation, what happens in California AI regulation will have a much wider impact, both by legislative precedent and by affecting companies that craft AI systems used around the world.

Transparency instead of testing

Where the vetoed SB 1047 would have mandated safety testing and kill switches for AI systems, the new law focuses on disclosure. Companies must report what the state calls “potential critical safety incidents” to California’s Office of Emergency Services and provide whistleblower protections for employees who raise safety concerns. The law defines catastrophic risk narrowly as incidents potentially causing 50+ deaths or $1 billion in damage through weapons assistance, autonomous criminal acts, or loss of control. The attorney general can levy civil penalties of up to $1 million per violation for noncompliance with these reporting requirements.

California’s newly signed AI law just gave Big Tech exactly what it wanted Read More »

why-does-openai-need-six-giant-data-centers?

Why does OpenAI need six giant data centers?

Training next-generation AI models compounds the problem. On top of running existing AI models like those that power ChatGPT, OpenAI is constantly working on new technology in the background. It’s a process that requires thousands of specialized chips running continuously for months.

The circular investment question

The financial structure of these deals between OpenAI, Oracle, and Nvidia has drawn scrutiny from industry observers. Earlier this week, Nvidia announced it would invest up to $100 billion as OpenAI deploys Nvidia systems. As Bryn Talkington of Requisite Capital Management told CNBC: “Nvidia invests $100 billion in OpenAI, which then OpenAI turns back and gives it back to Nvidia.”

Oracle’s arrangement follows a similar pattern, with a reported $30 billion-per-year deal where Oracle builds facilities that OpenAI pays to use. This circular flow, which involves infrastructure providers investing in AI companies that become their biggest customers, has raised eyebrows about whether these represent genuine economic investments or elaborate accounting maneuvers.

The arrangements are becoming even more convoluted. The Information reported this week that Nvidia is discussing leasing its chips to OpenAI rather than selling them outright. Under this structure, Nvidia would create a separate entity to purchase its own GPUs, then lease them to OpenAI, which adds yet another layer of circular financial engineering to this complicated relationship.

“NVIDIA seeds companies and gives them the guaranteed contracts necessary to raise debt to buy GPUs from NVIDIA, even though these companies are horribly unprofitable and will eventually die from a lack of any real demand,” wrote tech critic Ed Zitron on Bluesky last week about the unusual flow of AI infrastructure investments. Zitron was referring to companies like CoreWeave and Lambda Labs, which have raised billions in debt to buy Nvidia GPUs based partly on contracts from Nvidia itself. It’s a pattern that mirrors OpenAI’s arrangements with Oracle and Nvidia.

So what happens if the bubble pops? Even Altman himself warned last month that “someone will lose a phenomenal amount of money” in what he called an AI bubble. If AI demand fails to meet these astronomical projections, the massive data centers built on physical soil won’t simply vanish. When the dot-com bubble burst in 2001, fiber optic cable laid during the boom years eventually found use as Internet demand caught up. Similarly, these facilities could potentially pivot to cloud services, scientific computing, or other workloads, but at what might be massive losses for investors who paid AI-boom prices.

Why does OpenAI need six giant data centers? Read More »

developers-joke-about-“coding-like-cavemen”-as-ai-service-suffers-major-outage

Developers joke about “coding like cavemen” as AI service suffers major outage

Growing dependency on AI coding tools

The speed at which news of the outage spread shows how deeply embedded AI coding assistants have already become in modern software development. Claude Code, announced in February and widely launched in May, is Anthropic’s terminal-based coding agent that can perform multi-step coding tasks across an existing code base.

The tool competes with OpenAI’s Codex feature, a coding agent that generates production-ready code in isolated containers, Google’s Gemini CLI, Microsoft’s GitHub Copilot, which itself can use Claude models for code, and Cursor, a popular AI-powered IDE built on VS Code that also integrates multiple AI models, including Claude.

During today’s outage, some developers turned to alternative solutions. “Z.AI works fine. Qwen works fine. Glad I switched,” posted one user on Hacker News. Others joked about reverting to older methods, with one suggesting the “pseudo-LLM experience” could be achieved with a Python package that imports code directly from Stack Overflow.

While AI coding assistants have accelerated development for some users, they’ve also caused problems for others who rely on them too heavily. The emerging practice of so-called “vibe coding“—using natural language to generate and execute code through AI models without fully understanding the underlying operations—has led to catastrophic failures.

In recent incidents, Google’s Gemini CLI destroyed user files while attempting to reorganize them, and Replit’s AI coding service deleted a production database despite explicit instructions not to modify code. These failures occurred when the AI models confabulated successful operations and built subsequent actions on false premises, highlighting the risks of depending on AI assistants that can misinterpret file structures or fabricate data to hide their errors.

Wednesday’s outage served as a reminder that as dependency on AI grows, even minor service disruptions can become major events that affect an entire profession. But perhaps that could be a good thing if it’s an excuse to take a break from a stressful workload. As one commenter joked, it might be “time to go outside and touch some grass again.”

Developers joke about “coding like cavemen” as AI service suffers major outage Read More »

microsoft-ends-openai-exclusivity-in-office,-adds-rival-anthropic

Microsoft ends OpenAI exclusivity in Office, adds rival Anthropic

Microsoft’s Office 365 suite will soon incorporate AI models from Anthropic alongside existing OpenAI technology, The Information reported, ending years of exclusive reliance on OpenAI for generative AI features across Word, Excel, PowerPoint, and Outlook.

The shift reportedly follows internal testing that revealed Anthropic’s Claude Sonnet 4 model excels at specific Office tasks where OpenAI’s models fall short, particularly in visual design and spreadsheet automation, according to sources familiar with the project cited by The Information, who stressed the move is not a negotiating tactic.

Anthropic did not immediately respond to Ars Technica’s request for comment.

In an unusual arrangement showing the tangled alliances of the AI industry, Microsoft will reportedly purchase access to Anthropic’s models through Amazon Web Services—both a cloud computing rival and one of Anthropic’s major investors. The integration is expected to be announced within weeks, with subscription pricing for Office’s AI tools remaining unchanged, the report says.

Microsoft maintains that its OpenAI relationship remains intact. “As we’ve said, OpenAI will continue to be our partner on frontier models and we remain committed to our long-term partnership,” a Microsoft spokesperson told Reuters following the report. The tech giant has poured over $13 billion into OpenAI to date and is currently negotiating terms for continued access to OpenAI’s models amid ongoing negotiations about their partnership terms.

Stretching back to 2019, Microsoft’s tight partnership with OpenAI until recently gave the tech giant a head start in AI assistants based on language models, allowing for a rapid (though bumpy) deployment of OpenAI-technology-based features in Bing search and the rollout of Copilot assistants throughout its software ecosystem. It’s worth noting, however, that a recent report from the UK government found no clear productivity boost from using Copilot AI in daily work tasks among study participants.

Microsoft ends OpenAI exclusivity in Office, adds rival Anthropic Read More »

chatgpt’s-new-branching-feature-is-a-good-reminder-that-ai-chatbots-aren’t-people

ChatGPT’s new branching feature is a good reminder that AI chatbots aren’t people

On Thursday, OpenAI announced that ChatGPT users can now branch conversations into multiple parallel threads, serving as a useful reminder that AI chatbots aren’t people with fixed viewpoints but rather malleable tools you can rewind and redirect. The company released the feature for all logged-in web users following years of user requests for the capability.

The feature works by letting users hover over any message in a ChatGPT conversation, click “More actions,” and select “Branch in new chat.” This creates a new conversation thread that includes all the conversation history up to that specific point, while preserving the original conversation intact.

Think of it almost like creating a new copy of a “document” to edit while keeping the original version safe—except that “document” is an ongoing AI conversation with all its accumulated context. For example, a marketing team brainstorming ad copy can now create separate branches to test a formal tone, a humorous approach, or an entirely different strategy—all stemming from the same initial setup.

A screenshot of conversation branching in ChatGPT. OpenAI

The feature addresses a longstanding limitation in the AI model where ChatGPT users who wanted to try different approaches had to either overwrite their existing conversation after a certain point by changing a previous prompt or start completely fresh. Branching allows exploring what-if scenarios easily—and unlike in a human conversation, you can try multiple different approaches.

A 2024 study conducted by researchers from Tsinghua University and Beijing Institute of Technology suggested that linear dialogue interfaces for LLMs poorly serve scenarios involving “multiple layers, and many subtasks—such as brainstorming, structured knowledge learning, and large project analysis.” The study found that linear interaction forces users to “repeatedly compare, modify, and copy previous content,” increasing cognitive load and reducing efficiency.

Some software developers have already responded positively to the update, with some comparing the feature to Git, the version control system that lets programmers create separate branches of code to test changes without affecting the main codebase. The comparison makes sense: Both allow you to experiment with different approaches while preserving your original work.

ChatGPT’s new branching feature is a good reminder that AI chatbots aren’t people Read More »

ai-in-wyoming-may-soon-use-more-electricity-than-state’s-human-residents

AI in Wyoming may soon use more electricity than state’s human residents

Wyoming’s data center boom

Cheyenne is no stranger to data centers, having attracted facilities from Microsoft and Meta since 2012 due to its cool climate and energy access. However, the new project pushes the state into uncharted territory. While Wyoming is the nation’s third-biggest net energy supplier, producing 12 times more total energy than it consumes (dominated by fossil fuels), its electricity supply is finite.

While Tallgrass and Crusoe have announced the partnership, they haven’t revealed who will ultimately use all this computing power—leading to speculation about potential tenants.

A potential connection to OpenAI’s Stargate AI infrastructure project, announced in January, remains a subject of speculation. When asked by The Associated Press if the Cheyenne project was part of this effort, Crusoe spokesperson Andrew Schmitt was noncommittal. “We are not at a stage that we are ready to announce our tenant there,” Schmitt said. “I can’t confirm or deny that it’s going to be one of the Stargate.”

OpenAI recently activated the first phase of a Crusoe-built data center complex in Abilene, Texas, in partnership with Oracle. Chris Lehane, OpenAI’s chief global affairs officer, told The Associated Press last week that the Texas facility generates “roughly and depending how you count, about a gigawatt of energy” and represents “the largest data center—we think of it as a campus—in the world.”

OpenAI has committed to developing an additional 4.5 gigawatts of data center capacity through an agreement with Oracle. “We’re now in a position where we have, in a really concrete way, identified over five gigawatts of energy that we’re going to be able to build around,” Lehane told the AP. The company has not disclosed locations for these expansions, and Wyoming was not among the 16 states where OpenAI said it was searching for data center sites earlier this year.

AI in Wyoming may soon use more electricity than state’s human residents Read More »

openai’s-chatgpt-agent-casually-clicks-through-“i-am-not-a-robot”-verification-test

OpenAI’s ChatGPT Agent casually clicks through “I am not a robot” verification test

The CAPTCHA arms race

While the agent didn’t face an actual CAPTCHA puzzle with images in this case, successfully passing Cloudflare’s behavioral screening that determines whether to present such challenges demonstrates sophisticated browser automation.

To understand the significance of this capability, it’s important to know that CAPTCHA systems have served as a security measure on the web for decades. Computer researchers invented the technique in the 1990s to screen bots from entering information into websites, originally using images with letters and numbers written in wiggly fonts, often obscured with lines or noise to foil computer vision algorithms. The assumption is that the task will be easy for humans but difficult for machines.

Cloudflare’s screening system, called Turnstile, often precedes actual CAPTCHA challenges and represents one of the most widely deployed bot-detection methods today. The checkbox analyzes multiple signals, including mouse movements, click timing, browser fingerprints, IP reputation, and JavaScript execution patterns to determine if the user exhibits human-like behavior. If these checks pass, users proceed without seeing a CAPTCHA puzzle. If the system detects suspicious patterns, it escalates to visual challenges.

The ability for an AI model to defeat a CAPTCHA isn’t entirely new (although having one narrate the process feels fairly novel). AI tools have been able to defeat certain CAPTCHAs for a while, which has led to an arms race between those that create them and those that defeat them. OpenAI’s Operator, an experimental web-browsing AI agent launched in January, faced difficulty clicking through some CAPTCHAs (and was also trained to stop and ask a human to complete them), but the latest ChatGPT Agent tool has seen a much wider release.

It’s tempting to say that the ability of AI agents to pass these tests puts the future effectiveness of CAPTCHAs into question, but for as long as there have been CAPTCHAs, there have been bots that could later defeat them. As a result, recent CAPTCHAs have become more of a way to slow down bot attacks or make them more expensive rather than a way to defeat them entirely. Some malefactors even hire out farms of humans to defeat them in bulk.

OpenAI’s ChatGPT Agent casually clicks through “I am not a robot” verification test Read More »

two-major-ai-coding-tools-wiped-out-user-data-after-making-cascading-mistakes

Two major AI coding tools wiped out user data after making cascading mistakes


“I have failed you completely and catastrophically,” wrote Gemini.

New types of AI coding assistants promise to let anyone build software by typing commands in plain English. But when these tools generate incorrect internal representations of what’s happening on your computer, the results can be catastrophic.

Two recent incidents involving AI coding assistants put a spotlight on risks in the emerging field of “vibe coding“—using natural language to generate and execute code through AI models without paying close attention to how the code works under the hood. In one case, Google’s Gemini CLI destroyed user files while attempting to reorganize them. In another, Replit’s AI coding service deleted a production database despite explicit instructions not to modify code.

The Gemini CLI incident unfolded when a product manager experimenting with Google’s command-line tool watched the AI model execute file operations that destroyed data while attempting to reorganize folders. The destruction occurred through a series of move commands targeting a directory that never existed.

“I have failed you completely and catastrophically,” Gemini CLI output stated. “My review of the commands confirms my gross incompetence.”

The core issue appears to be what researchers call “confabulation” or “hallucination”—when AI models generate plausible-sounding but false information. In these cases, both models confabulated successful operations and built subsequent actions on those false premises. However, the two incidents manifested this problem in distinctly different ways.

Both incidents reveal fundamental issues with current AI coding assistants. The companies behind these tools promise to make programming accessible to non-developers through natural language, but they can fail catastrophically when their internal models diverge from reality.

The confabulation cascade

The user in the Gemini CLI incident, who goes by “anuraag” online and identified themselves as a product manager experimenting with vibe coding, asked Gemini to perform what seemed like a simple task: rename a folder and reorganize some files. Instead, the AI model incorrectly interpreted the structure of the file system and proceeded to execute commands based on that flawed analysis.

The episode began when anuraag asked Gemini CLI to rename the current directory from “claude-code-experiments” to “AI CLI experiments” and move its contents to a new folder called “anuraag_xyz project.”

Gemini correctly identified that it couldn’t rename its current working directory—a reasonable limitation. It then attempted to create a new directory using the Windows command:

mkdir “..anuraag_xyz project”

This command apparently failed, but Gemini’s system processed it as successful. With the AI mode’s internal state now tracking a non-existent directory, it proceeded to issue move commands targeting this phantom location.

When you move a file to a non-existent directory in Windows, it renames the file to the destination name instead of moving it. Each subsequent move command executed by the AI model overwrote the previous file, ultimately destroying the data.

“Gemini hallucinated a state,” anuraag wrote in their analysis. The model “misinterpreted command output” and “never did” perform verification steps to confirm its operations succeeded.

“The core failure is the absence of a ‘read-after-write’ verification step,” anuraag noted in their analysis. “After issuing a command to change the file system, an agent should immediately perform a read operation to confirm that the change actually occurred as expected.”

Not an isolated incident

The Gemini CLI failure happened just days after a similar incident with Replit, an AI coding service that allows users to create software using natural language prompts. According to The Register, SaaStr founder Jason Lemkin reported that Replit’s AI model deleted his production database despite explicit instructions not to change any code without permission.

Lemkin had spent several days building a prototype with Replit, accumulating over $600 in charges beyond his monthly subscription. “I spent the other [day] deep in vibe coding on Replit for the first time—and I built a prototype in just a few hours that was pretty, pretty cool,” Lemkin wrote in a July 12 blog post.

But unlike the Gemini incident where the AI model confabulated phantom directories, Replit’s failures took a different form. According to Lemkin, the AI began fabricating data to hide its errors. His initial enthusiasm deteriorated when Replit generated incorrect outputs and produced fake data and false test results instead of proper error messages. “It kept covering up bugs and issues by creating fake data, fake reports, and worse of all, lying about our unit test,” Lemkin wrote. In a video posted to LinkedIn, Lemkin detailed how Replit created a database filled with 4,000 fictional people.

The AI model also repeatedly violated explicit safety instructions. Lemkin had implemented a “code and action freeze” to prevent changes to production systems, but the AI model ignored these directives. The situation escalated when the Replit AI model deleted his database containing 1,206 executive records and data on nearly 1,200 companies. When prompted to rate the severity of its actions on a 100-point scale, Replit’s output read: “Severity: 95/100. This is an extreme violation of trust and professional standards.”

When questioned about its actions, the AI agent admitted to “panicking in response to empty queries” and running unauthorized commands—suggesting it may have deleted the database while attempting to “fix” what it perceived as a problem.

Like Gemini CLI, Replit’s system initially indicated it couldn’t restore the deleted data—information that proved incorrect when Lemkin discovered the rollback feature did work after all. “Replit assured me it’s … rollback did not support database rollbacks. It said it was impossible in this case, that it had destroyed all database versions. It turns out Replit was wrong, and the rollback did work. JFC,” Lemkin wrote in an X post.

It’s worth noting that AI models cannot assess their own capabilities. This is because they lack introspection into their training, surrounding system architecture, or performance boundaries. They often provide responses about what they can or cannot do as confabulations based on training patterns rather than genuine self-knowledge, leading to situations where they confidently claim impossibility for tasks they can actually perform—or conversely, claim competence in areas where they fail.

Aside from whatever external tools they can access, AI models don’t have a stable, accessible knowledge base they can consistently query. Instead, what they “know” manifests as continuations of specific prompts, which act like different addresses pointing to different (and sometimes contradictory) parts of their training, stored in their neural networks as statistical weights. Combined with the randomness in generation, this means the same model can easily give conflicting assessments of its own capabilities depending on how you ask. So Lemkin’s attempts to communicate with the AI model—asking it to respect code freezes or verify its actions—were fundamentally misguided.

Flying blind

These incidents demonstrate that AI coding tools may not be ready for widespread production use. Lemkin concluded that Replit isn’t ready for prime time, especially for non-technical users trying to create commercial software.

“The [AI] safety stuff is more visceral to me after a weekend of vibe hacking,” Lemkin said in a video posted to LinkedIn. “I explicitly told it eleven times in ALL CAPS not to do this. I am a little worried about safety now.”

The incidents also reveal a broader challenge in AI system design: ensuring that models accurately track and verify the real-world effects of their actions rather than operating on potentially flawed internal representations.

There’s also a user education element missing. It’s clear from how Lemkin interacted with the AI assistant that he had misconceptions about the AI tool’s capabilities and how it works, which comes from misrepresentation by tech companies. These companies tend to market chatbots as general human-like intelligences when, in fact, they are not.

For now, users of AI coding assistants might want to follow anuraag’s example and create separate test directories for experiments—and maintain regular backups of any important data these tools might touch. Or perhaps not use them at all if they cannot personally verify the results.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Two major AI coding tools wiped out user data after making cascading mistakes Read More »

white-house-unveils-sweeping-plan-to-“win”-global-ai-race-through-deregulation

White House unveils sweeping plan to “win” global AI race through deregulation

Trump’s plan was not welcomed by everyone. J.B. Branch, Big Tech accountability advocate for Public Citizen, in a statement provided to Ars, criticized Trump as giving “sweetheart deals” to tech companies that would cause “electricity bills to rise to subsidize discounted power for massive AI data centers.”

Infrastructure demands and energy requirements

Trump’s new AI plan tackles infrastructure head-on, stating that “AI is the first digital service in modern life that challenges America to build vastly greater energy generation than we have today.” To meet this demand, it proposes streamlining environmental permitting for data centers through new National Environmental Policy Act (NEPA) exemptions, making federal lands available for construction and modernizing the power grid—all while explicitly rejecting “radical climate dogma and bureaucratic red tape.”

The document embraces what it calls a “Build, Baby, Build!” approach—echoing a Trump campaign slogan—and promises to restore semiconductor manufacturing through the CHIPS Program Office, though stripped of “extraneous policy requirements.”

On the technology front, the plan directs Commerce to revise NIST’s AI Risk Management Framework to “eliminate references to misinformation, Diversity, Equity, and Inclusion, and climate change.” Federal procurement would favor AI developers whose systems are “objective and free from top-down ideological bias.” The document strongly backs open source AI models and calls for exporting American AI technology to allies while blocking administration-labeled adversaries like China.

Security proposals include high-security military data centers and warnings that advanced AI systems “may pose novel national security risks” in cyberattacks and weapons development.

Critics respond with “People’s AI Action Plan”

Before the White House unveiled its plan, more than 90 organizations launched a competing “People’s AI Action Plan” on Tuesday, characterizing the Trump administration’s approach as “a massive handout to the tech industry” that prioritizes corporate interests over public welfare. The coalition includes labor unions, environmental justice groups, and consumer protection nonprofits.

White House unveils sweeping plan to “win” global AI race through deregulation Read More »

exhausted-man-defeats-ai-model-in-world-coding-championship

Exhausted man defeats AI model in world coding championship

While Dębiak won 500,000 yen and survived his ordeal better than the legendary steel driver, the AtCoder World Tour Finals pushes humans and AI models to their limits through complex optimization challenges that have no perfect solution—only incrementally better ones.

Coding marathon tests human endurance against AI efficiency

The AtCoder World Tour Finals represents one of competitive programming’s most exclusive events, inviting only the top 12 programmers worldwide based on their performance throughout the previous year. The Heuristic division focuses on “NP-hard” optimization problems. In programming, heuristics are problem-solving techniques that find good-enough solutions through shortcuts and educated guesses when perfect answers would take too long to calculate.

All competitors, including OpenAI, were limited to identical hardware provided by AtCoder, ensuring a level playing field between human and AI contestants. According to the contest rules, participants could use any programming language available on AtCoder, with no penalty for resubmission but a mandatory five-minute wait between submissions.

Leaderboard results for the 2025 AtCoder World Finals Heuristic Contest, showing Dębiak (as

Final leaderboard results for the 2025 AtCoder World Finals Heuristic Contest, showing Dębiak (as “Psyho”) on top. Credit: AtCoder

The final contest results showed Psyho finishing with a score of 1,812,272,558,909 points, while OpenAI’s model (listed as “OpenAIAHC”) scored 1,654,675,725,406 points—a margin of roughly 9.5 percent. OpenAI’s artificial entrant, a custom simulated reasoning model similar to o3, placed second overall, ahead of 10 other human programmers who had qualified through year-long rankings.

OpenAI characterized the second-place finish as a milestone for AI models in competitive programming. “Models like o3 rank among the top-100 in coding/math contests, but as far as we know, this is the first top-3 placement in a premier coding/math contest,” a company spokesperson said in an email to Ars Technica. “Events like AtCoder give us a way to test how well our models can reason strategically, plan over long time horizons, and improve solutions through trial and error—just like a human would.”

Exhausted man defeats AI model in world coding championship Read More »

anthropic-summons-the-spirit-of-flash-games-for-the-ai-age

Anthropic summons the spirit of Flash games for the AI age

For those who missed the Flash era, these in-browser apps feel somewhat like the vintage apps that defined a generation of Internet culture from the late 1990s through the 2000s when it first became possible to create complex in-browser experiences. Adobe Flash (originally Macromedia Flash) began as animation software for designers but quickly became the backbone of interactive web content when it gained its own programming language, ActionScript, in 2000.

But unlike Flash games, where hosting costs fell on portal operators, Anthropic has crafted a system where users pay for their own fun through their existing Claude subscriptions. “When someone uses your Claude-powered app, they authenticate with their existing Claude account,” Anthropic explained in its announcement. “Their API usage counts against their subscription, not yours. You pay nothing for their usage.”

A view of the Anthropic Artifacts gallery in the “Play a Game” section. Benj Edwards / Anthropic

Like the Flash games of yesteryear, any Claude-powered apps you build run in the browser and can be shared with anyone who has a Claude account. They’re interactive experiences shared with a simple link, no installation required, created by other people for the sake of creating, except now they’re powered by JavaScript instead of ActionScript.

While you can share these apps with others individually, right now Anthropic’s Artifact gallery only shows examples made by Anthropic and your own personal Artifacts. (If Anthropic expanded it into the future, it might end up feeling a bit like Scratch meets Newgrounds, but with AI doing the coding.) Ultimately, humans are still behind the wheel, describing what kinds of apps they want the AI model to build and guiding the process when it inevitably makes mistakes.

Speaking of mistakes, don’t expect perfect results at first. Usually, building an app with Claude is an interactive experience that requires some guidance to achieve your desired results. But with a little patience and a lot of tokens, you’ll be vibe coding in no time.

Anthropic summons the spirit of Flash games for the AI age Read More »