Anthropic

openai-researcher-quits-over-chatgpt-ads,-warns-of-“facebook”-path

OpenAI researcher quits over ChatGPT ads, warns of “Facebook” path

On Wednesday, former OpenAI researcher Zoë Hitzig published a guest essay in The New York Times announcing that she resigned from the company on Monday, the same day OpenAI began testing advertisements inside ChatGPT. Hitzig, an economist and published poet who holds a junior fellowship at the Harvard Society of Fellows, spent two years at OpenAI helping shape how its AI models were built and priced. She wrote that OpenAI’s advertising strategy risks repeating the same mistakes that Facebook made a decade ago.

“I once believed I could help the people building A.I. get ahead of the problems it would create,” Hitzig wrote. “This week confirmed my slow realization that OpenAI seems to have stopped asking the questions I’d joined to help answer.”

Hitzig did not call advertising itself immoral. Instead, she argued that the nature of the data at stake makes ChatGPT ads especially risky. Users have shared medical fears, relationship problems, and religious beliefs with the chatbot, she wrote, often “because people believed they were talking to something that had no ulterior agenda.” She called this accumulated record of personal disclosures “an archive of human candor that has no precedent.”

She also drew a direct parallel to Facebook’s early history, noting that the social media company once promised users control over their data and the ability to vote on policy changes. Those pledges eroded over time, Hitzig wrote, and the Federal Trade Commission found that privacy changes Facebook marketed as giving users more control actually did the opposite.

She warned that a similar trajectory could play out with ChatGPT: “I believe the first iteration of ads will probably follow those principles. But I’m worried subsequent iterations won’t, because the company is building an economic engine that creates strong incentives to override its own rules.”

Ads arrive after a week of AI industry sparring

Hitzig’s resignation adds another voice to a growing debate over advertising in AI chatbots. OpenAI announced in January that it would begin testing ads in the US for users on its free and $8-per-month “Go” subscription tiers, while paid Plus, Pro, Business, Enterprise, and Education subscribers would not see ads. The company said ads would appear at the bottom of ChatGPT responses, be clearly labeled, and would not influence the chatbot’s answers.

OpenAI researcher quits over ChatGPT ads, warns of “Facebook” path Read More »

sixteen-claude-ai-agents-working-together-created-a-new-c-compiler

Sixteen Claude AI agents working together created a new C compiler

Amid a push toward AI agents, with both Anthropic and OpenAI shipping multi-agent tools this week, Anthropic is more than ready to show off some of its more daring AI coding experiments. But as usual with claims of AI-related achievement, you’ll find some key caveats ahead.

On Thursday, Anthropic researcher Nicholas Carlini published a blog post describing how he set 16 instances of the company’s Claude Opus 4.6 AI model loose on a shared codebase with minimal supervision, tasking them with building a C compiler from scratch.

Over two weeks and nearly 2,000 Claude Code sessions costing about $20,000 in API fees, the AI model agents reportedly produced a 100,000-line Rust-based compiler capable of building a bootable Linux 6.9 kernel on x86, ARM, and RISC-V architectures.

Carlini, a research scientist on Anthropic’s Safeguards team who previously spent seven years at Google Brain and DeepMind, used a new feature launched with Claude Opus 4.6 called “agent teams.” In practice, each Claude instance ran inside its own Docker container, cloning a shared Git repository, claiming tasks by writing lock files, then pushing completed code back upstream. No orchestration agent directed traffic. Each instance independently identified whatever problem seemed most obvious to work on next and started solving it. When merge conflicts arose, the AI model instances resolved them on their own.

The resulting compiler, which Anthropic has released on GitHub, can compile a range of major open source projects, including PostgreSQL, SQLite, Redis, FFmpeg, and QEMU. It achieved a 99 percent pass rate on the GCC torture test suite and, in what Carlini called “the developer’s ultimate litmus test,” compiled and ran Doom.

It’s worth noting that a C compiler is a near-ideal task for semi-autonomous AI model coding: The specification is decades old and well-defined, comprehensive test suites already exist, and there’s a known-good reference compiler to check against. Most real-world software projects have none of these advantages. The hard part of most development isn’t writing code that passes tests; it’s figuring out what the tests should be in the first place.

Sixteen Claude AI agents working together created a new C compiler Read More »

ai-companies-want-you-to-stop-chatting-with-bots-and-start-managing-them

AI companies want you to stop chatting with bots and start managing them


Claude Opus 4.6 and OpenAI Frontier pitch a future of supervising AI agents.

On Thursday, Anthropic and OpenAI shipped products built around the same idea: instead of chatting with a single AI assistant, users should be managing teams of AI agents that divide up work and run in parallel. The simultaneous releases are part of a gradual shift across the industry, from AI as a conversation partner to AI as a delegated workforce, and they arrive during a week when that very concept reportedly helped wipe $285 billion off software stocks.

Whether that supervisory model works in practice remains an open question. Current AI agents still require heavy human intervention to catch errors, and no independent evaluation has confirmed that these multi-agent tools reliably outperform a single developer working alone.

Even so, the companies are going all-in on agents. Anthropic’s contribution is Claude Opus 4.6, a new version of its most capable AI model, paired with a feature called “agent teams” in Claude Code. Agent teams let developers spin up multiple AI agents that split a task into independent pieces, coordinate autonomously, and run concurrently.

In practice, agent teams look like a split-screen terminal environment: A developer can jump between subagents using Shift+Up/Down, take over any one directly, and watch the others keep working. Anthropic describes the feature as best suited for “tasks that split into independent, read-heavy work like codebase reviews.” It is available as a research preview.

OpenAI, meanwhile, released Frontier, an enterprise platform it describes as a way to “hire AI co-workers who take on many of the tasks people already do on a computer.” Frontier assigns each AI agent its own identity, permissions, and memory, and it connects to existing business systems such as CRMs, ticketing tools, and data warehouses. “What we’re fundamentally doing is basically transitioning agents into true AI co-workers,” Barret Zoph, OpenAI’s general manager of business-to-business, told CNBC.

Despite the hype about these agents being co-workers, from our experience, these agents tend to work best if you think of them as tools that amplify existing skills, not as the autonomous co-workers the marketing language implies. They can produce impressive drafts fast but still require constant human course-correction.

The Frontier launch came just three days after OpenAI released a new macOS desktop app for Codex, its AI coding tool, which OpenAI executives described as a “command center for agents.” The Codex app lets developers run multiple agent threads in parallel, each working on an isolated copy of a codebase via Git worktrees.

OpenAI also released GPT-5.3-Codex on Thursday, a new AI model that powers the Codex app. OpenAI claims that the Codex team used early versions of GPT-5.3-Codex to debug the model’s own training run, manage its deployment, and diagnose test results, similar to what OpenAI told Ars Technica in a December interview.

“Our team was blown away by how much Codex was able to accelerate its own development,” the company wrote. On Terminal-Bench 2.0, the agentic coding benchmark, GPT-5.3-Codex scored 77.3%, which exceeds Anthropic’s just-released Opus 4.6 by about 12 percentage points.

The common thread across all of these products is a shift in the user’s role. Rather than merely typing a prompt and waiting for a single response, the developer or knowledge worker becomes more like a supervisor, dispatching tasks, monitoring progress, and stepping in when an agent needs direction.

In this vision, developers and knowledge workers effectively become middle managers of AI. That is, not writing the code or doing the analysis themselves, but delegating tasks, reviewing output, and hoping the agents underneath them don’t quietly break things. Whether that will come to pass (or if it’s actually a good idea) is still widely debated.

A new model under the Claude hood

Opus 4.6 is a substantial update to Anthropic’s flagship model. It succeeds Claude Opus 4.5, which Anthropic released in November. In a first for the Opus model family, it supports a context window of up to 1 million tokens (in beta), which means it can process much larger bodies of text or code in a single session.

On benchmarks, Anthropic says Opus 4.6 tops OpenAI’s GPT-5.2 (an earlier model than the one released today) and Google’s Gemini 3 Pro across several evaluations, including Terminal-Bench 2.0 (an agentic coding test), Humanity’s Last Exam (a multidisciplinary reasoning test), and BrowseComp (a test of finding hard-to-locate information online)

Although it should be noted that OpenAI’s GPT-5.3-Codex, released the same day, seemingly reclaimed the lead on Terminal-Bench. On ARC AGI 2, which attempts to test the ability to solve problems that are easy for humans but hard for AI models, Opus 4.6 scored 68.8 percent, compared to 37.6 percent for Opus 4.5, 54.2 percent for GPT-5.2, and 45.1 percent for Gemini 3 Pro.

As always, take AI benchmarks with a grain of salt, since objectively measuring AI model capabilities is a relatively new and unsettled science.

Anthropic also said that on a long-context retrieval benchmark called MRCR v2, Opus 4.6 scored 76 percent on the 1 million-token variant, compared to 18.5 percent for its Sonnet 4.5 model. That gap matters for the agent teams use case, since agents working across large codebases need to track information across hundreds of thousands of tokens without losing the thread.

Pricing for the API stays the same as Opus 4.5 at $5 per million input tokens and $25 per million output tokens, with a premium rate of $10/$37.50 for prompts that exceed 200,000 tokens. Opus 4.6 is available on claude.ai, the Claude API, and all major cloud platforms.

The market fallout outside

These releases occurred during a week of exceptional volatility for software stocks. On January 30, Anthropic released 11 open source plugins for Cowork, its agentic productivity tool that launched on January 12. Cowork itself is a general-purpose tool that gives Claude access to local folders for work tasks, but the plugins extended it into specific professional domains: legal contract review, non-disclosure agreement triage, compliance workflows, financial analysis, sales, and marketing.

By Tuesday, investors reportedly reacted to the release by erasing roughly $285 billion in market value across software, financial services, and asset management stocks. A Goldman Sachs basket of US software stocks fell 6 percent that day, its steepest single-session decline since April’s tariff-driven sell-off. Thomson Reuters led the rout with an 18 percent drop, and the pain spread to European and Asian markets.

The purported fear among investors centers on AI model companies packaging complete workflows that compete with established software-as-a-service (SaaS) vendors, even if the verdict is still out on whether these tools can achieve those tasks.

OpenAI’s Frontier might deepen that concern: its stated design lets AI agents log in to applications, execute tasks, and manage work with minimal human involvement, which Fortune described as a bid to become “the operating system of the enterprise.” OpenAI CEO of Applications Fidji Simo pushed back on the idea that Frontier replaces existing software, telling reporters, “Frontier is really a recognition that we’re not going to build everything ourselves.”

Whether these co-working apps actually live up to their billing or not, the convergence is hard to miss. Anthropic’s Scott White, the company’s head of product for enterprise, gave the practice a name that is likely to roll a few eyes. “Everybody has seen this transformation happen with software engineering in the last year and a half, where vibe coding started to exist as a concept, and people could now do things with their ideas,” White told CNBC. “I think that we are now transitioning almost into vibe working.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

AI companies want you to stop chatting with bots and start managing them Read More »

openai-is-hoppin’-mad-about-anthropic’s-new-super-bowl-tv-ads

OpenAI is hoppin’ mad about Anthropic’s new Super Bowl TV ads

On Wednesday, OpenAI CEO Sam Altman and Chief Marketing Officer Kate Rouch complained on X after rival AI lab Anthropic released four commercials, two of which will run during the Super Bowl on Sunday, mocking the idea of including ads in AI chatbot conversations. Anthropic’s campaign seemingly touched a nerve at OpenAI just weeks after the ChatGPT maker began testing ads in a lower-cost tier of its chatbot.

Altman called Anthropic’s ads “clearly dishonest,” accused the company of being “authoritarian,” and said it “serves an expensive product to rich people,” while Rouch wrote, “Real betrayal isn’t ads. It’s control.”

Anthropic’s four commercials, part of a campaign called “A Time and a Place,” each open with a single word splashed across the screen: “Betrayal,” “Violation,” “Deception,” and “Treachery.” They depict scenarios where a person asks a human stand-in for an AI chatbot for personal advice, only to get blindsided by a product pitch.

Anthropic’s 2026 Super Bowl commercial.

In one spot, a man asks a therapist-style chatbot (a woman sitting in a chair) how to communicate better with his mom. The bot offers a few suggestions, then pivots to promoting a fictional cougar-dating site called Golden Encounters.

In another spot, a skinny man looking for fitness tips instead gets served an ad for height-boosting insoles. Each ad ends with the tagline: “Ads are coming to AI. But not to Claude.” Anthropic plans to air a 30-second version during Super Bowl LX, with a 60-second cut running in the pregame, according to CNBC.

In the X posts, the OpenAI executives argue that these commercials are misleading because the planned ChatGPT ads will appear labeled at the bottom of conversational responses in banners and will not alter the chatbot’s answers.

But there’s a slight twist: OpenAI’s own blog post about its ad plans states that the company will “test ads at the bottom of answers in ChatGPT when there’s a relevant sponsored product or service based on your current conversation,” meaning the ads will be conversation-specific.

The financial backdrop explains some of the tension over ads in chatbots. As Ars previously reported, OpenAI struck more than $1.4 trillion in infrastructure deals in 2025 and expects to burn roughly $9 billion this year while generating about $13 billion in revenue. Only about 5 percent of ChatGPT’s 800 million weekly users pay for subscriptions. Anthropic is also not yet profitable, but it relies on enterprise contracts and paid subscriptions rather than advertising, and it has not taken on infrastructure commitments at the same scale as OpenAI.

OpenAI is hoppin’ mad about Anthropic’s new Super Bowl TV ads Read More »

should-ai-chatbots-have-ads?-anthropic-says-no.

Should AI chatbots have ads? Anthropic says no.

Different incentives, different futures

In its blog post, Anthropic describes internal analysis it conducted that suggests many Claude conversations involve topics that are “sensitive or deeply personal” or require sustained focus on complex tasks. In these contexts, Anthropic wrote, “The appearance of ads would feel incongruous—and, in many cases, inappropriate.”

The company also argued that advertising introduces incentives that could conflict with providing genuinely helpful advice. It gave the example of a user mentioning trouble sleeping: an ad-free assistant would explore various causes, while an ad-supported one might steer the conversation toward a transaction.

“Users shouldn’t have to second-guess whether an AI is genuinely helping them or subtly steering the conversation towards something monetizable,” Anthropic wrote.

Currently, OpenAI does not plan to include paid product recommendations within a ChatGPT conversation. Instead, the ads appear as banners alongside the conversation text.

OpenAI CEO Sam Altman has previously expressed reservations about mixing ads and AI conversations. In a 2024 interview at Harvard University, he described the combination as “uniquely unsettling” and said he would not like having to “figure out exactly how much was who paying here to influence what I’m being shown.”

A key part of Altman’s partial change of heart is that OpenAI faces enormous financial pressure. The company made more than $1.4 trillion worth of infrastructure deals in 2025, and according to documents obtained by The Wall Street Journal, it expects to burn through roughly $9 billion this year while generating $13 billion in revenue. Only about 5 percent of ChatGPT’s 800 million weekly users pay for subscriptions.

Much like OpenAI, Anthropic is not yet profitable, but it is expected to get there much faster. Anthropic has not attempted to span the world with massive datacenters, and its business model largely relies on enterprise contracts and paid subscriptions. The company says Claude Code and Cowork have already brought in at least $1 billion in revenue, according to Axios.

“Our business model is straightforward,” Anthropic wrote. “This is a choice with tradeoffs, and we respect that other AI companies might reasonably reach different conclusions.”

Should AI chatbots have ads? Anthropic says no. Read More »

so-yeah,-i-vibe-coded-a-log-colorizer—and-i-feel-good-about-it

So yeah, I vibe-coded a log colorizer—and I feel good about it


Some semi-unhinged musings on where LLMs fit into my life—and how I’ll keep using them.

Altered image of the article author appearing to indicate that he is in fact a robot

Welcome to the future. Man, machine, the future. Credit: Aurich Lawson

Welcome to the future. Man, machine, the future. Credit: Aurich Lawson

I can’t code.

I know, I know—these days, that sounds like an excuse. Anyone can code, right?! Grab some tutorials, maybe an O’Reilly book, download an example project, and jump in. It’s just a matter of learning how to break your project into small steps that you can make the computer do, then memorizing a bit of syntax. Nothing about that is hard!

Perhaps you can sense my sarcasm (and sympathize with my lack of time to learn one more technical skill).

Oh, sure, I can “code.” That is, I can flail my way through a block of (relatively simple) pseudocode and follow the flow. I have a reasonably technical layperson’s understanding of conditionals and loops, and of when one might use a variable versus a constant. On a good day, I could probably even tell you what a “pointer” is.

But pulling all that knowledge together and synthesizing a working application any more complex than “hello world”? I am not that guy. And at this point, I’ve lost the neuroplasticity and the motivation (if I ever had either) to become that guy.

Thanks to AI, though, what has been true for my whole life need not be true anymore. Perhaps, like my colleague Benj Edwards, I can whistle up an LLM or two and tackle the creaky pile of “it’d be neat if I had a program that would do X” projects without being publicly excoriated on StackOverflow by apex predator geeks for daring to sully their holy temple of knowledge with my dirty, stupid, off-topic, already-answered questions.

So I gave it a shot.

A cache-related problem appears

My project is a small Python-based log colorizer that I asked Claude Code to construct for me. If you’d like to peek at the code before listening to me babble, a version of the project without some of the Lee-specific customizations is available on GitHub.

Screenshot of Lee's log colorizer in action

My Nginx log colorizer in action, showing Space City Weather traffic on a typical Wednesday afternoon. Here, I’m running two instances, one for IPv4 visitors and one for IPv6. (By default, all traffic is displayed, but splitting it this way makes things easier for my aging eyes to scan.)

Credit: Lee Hutchinson

My Nginx log colorizer in action, showing Space City Weather traffic on a typical Wednesday afternoon. Here, I’m running two instances, one for IPv4 visitors and one for IPv6. (By default, all traffic is displayed, but splitting it this way makes things easier for my aging eyes to scan.) Credit: Lee Hutchinson

Why a log colorizer? Two reasons. First, and most important to me, because I needed to look through a big ol’ pile of web server logs, and off-the-shelf colorizer solutions weren’t customizable to the degree I wanted. Vibe-coding one that exactly matched my needs made me happy.

But second, and almost equally important, is that this was a small project. The colorizer ended up being a 400-ish line, single-file Python script. The entire codebase, plus the prompting and follow-up instructions, fit easily within Claude Code’s context window. This isn’t an application that sprawls across dozens or hundreds of functions in multiple files, making it easy to audit (even for me).

Setting the stage: I do the web hosting for my colleague Eric Berger’s Houston-area forecasting site, Space City Weather. It’s a self-hosted WordPress site, running on an AWS EC2 t3a.large instance, fronted by Cloudflare using CF’s WordPress Automatic Platform Optimization.

Space City Weather also uses self-hosted Discourse for commenting, replacing WordPress’ native comments at the bottom of Eric’s daily weather posts via the WP-Discourse plugin. Since bolting Discourse onto the site back in August 2025, though, I’ve had an intermittent issue where sometimes—but not all the time—a daily forecast post would go live and get cached by Cloudflare with the old, disabled native WordPress comment area attached to the bottom instead of the shiny new Discourse comment area. Hundreds of visitors would then see a version of the post without a functional comment system until I manually expired the stale page or until the page hit Cloudflare’s APO-enforced max age and expired itself.

The problem behavior would lie dormant for weeks or months, and then we’d get a string of back-to-back days where it would rear its ugly head. Edge cache invalidation on new posts is supposed to be triggered automatically by the official Cloudflare WordPress plug-in, and indeed, it usually worked fine—but “usually” is not “always.”

In the absence of any obvious clues as to why this was happening, I consulted a few different LLMs and asked for possible fixes. The solution I settled on was having one of them author a small mu-plugin in PHP (more vibe coding!) that forces WordPress to slap “DO NOT CACHE ME!” headers on post pages until it has verified that Discourse has hooked its comments to the post. (Curious readers can put eyes on this plugin right here.)

This “solved” the problem by preempting the problem behavior, but it did nothing to help me identify or fix the actual underlying issue. I turned my attention elsewhere for a few months. One day in December, as I was updating things, I decided to temporarily disable the mu-plugin to see if I still needed it. After all, problems sometimes go away on their own, right? Computers are crazy!

Alas, the next time Eric made a Space City Weather post, it popped up sans Discourse comment section, with the (ostensibly disabled) WordPress comment form at the bottom. Clearly, the problem behavior was still in play.

Interminable intermittence

Have you ever been stuck troubleshooting an intermittent issue? Something doesn’t work, you make a change, it suddenly starts working, then despite making no further changes, it randomly breaks again.

The process makes you question basic assumptions, like, “Do I actually know how to use a computer?” You feel like you might be actually-for-real losing your mind. The final stage of this process is the all-consuming death spiral, where you start asking stuff like, “Do I need to troubleshoot my troubleshooting methods? Is my server even working? Is the simulation we’re all living in finally breaking down and reality itself is toying with me?!”

In this case, I couldn’t reproduce the problem behavior on demand, no matter how many tests I tried. I couldn’t see any narrow, definable commonalities between days where things worked fine and days where things broke.

Rather than an image, I invite you at this point to enjoy Muse’s thematically appropriate song “Madness” from their 2012 concept album The 2nd Law.

My best hope for getting a handle on the problem likely lay deeply buried in the server’s logs. Like any good sysadmin, I gave the logs a quick once-over for problems a couple of times per month, but Space City Weather is a reasonably busy medium-sized site and dishes out its daily forecast to between 20,000 and 30,000 people (“unique visitors” in web parlance, or “UVs” if you want to sound cool). Even with Cloudflare taking the brunt of the traffic, the daily web server log files are, let us say, “a bit dense.” My surface-level glances weren’t doing the trick—I’d have to actually dig in. And having been down this road before for other issues, I knew I needed more help than grep alone could provide.

The vibe use case

The Space City Weather web server uses Nginx for actual web serving. For folks who have never had the pleasure, Nginx, as configured in most of its distributable packages, keeps a pair of log files around—one that shows every request serviced and another just for errors.

I wanted to watch the access log right when Eric was posting to see if anything obviously dumb/bad/wrong/broken was happening. But I’m not super-great at staring at a giant wall of text and symbols, and I tend to lean heavily on syntax highlighting and colorization to pick out the important bits when I’m searching through log files. There’s an old and crusty program called ccze that’s easily findable in most repos; I’ve used it forever, and if its default output does what you need, then it’s an excellent tool.

But customizing ccze’s output is a “here be dragons”-type task. The application is old, and time has ossified it into something like an unapproachably evil Mayan relic, filled with shadowy regexes and dark magic, fit to be worshipped from afar but not trifled with. Altering ccze’s behavior threatens to become an effort-swallowing bottomless pit, where you spend more time screwing around with the tool and the regexes than you actually spend using the tool to diagnose your original problem.

It was time to fire up VSCode and pretend to be a developer. I set up a new project, performed the demonic invocation to summon Claude Code, flipped the thing into “plan mode,” and began.

“I’d like to see about creating an Nginx log colorizer,” I wrote in the prompt box. “I don’t know what language we should use. I would like to prioritize efficiency and performance in the code, as I will be running this live in production and I can’t have it adding any applicable load.” I dropped a truncated, IP-address-sanitized copy of yesterday’s Nginx access.log into the project directory.

“See the access.log file in the project directory as an example of the data we’ll be colorizing. You can test using that file,” I wrote.

Screenshot of Lee's Visual Studio Code window showing the log colorizer project

Visual Studio Code, with agentic LLM integration, making with the vibe-coding.

Credit: Lee Hutchinson

Visual Studio Code, with agentic LLM integration, making with the vibe-coding. Credit: Lee Hutchinson

Ever helpful, Claude Code chewed on the prompt and the example data for a few seconds, then began spitting output. It suggested Python for our log colorizer because of the language’s mature regex support—and to keep the code somewhat readable for poor, dumb me. The actual “vibe-coding” wound up spanning two sessions over two days, as I exhausted my Claude Code credits on the first one (a definite vibe-coding danger!) and had to wait for things to reset.

“Dude, lnav and Splunk exist, what is wrong with you?”

Yes, yes, a log colorizer is bougie and lame, and I’m treading over exceedingly well-trodden ground. I did, in fact, sit for a bit with existing tools—particularly lnav, which does most of what I want. But I didn’t want most of my requirements met. I wanted all of them. I wanted a bespoke tool, and I wanted it without having to pay the “is it worth the time?” penalty. (Or, perhaps, I wanted to feel like the LLM’s time was being wasted rather than mine, given that the effort ultimately took two days of vibe-coding.)

And about those two days: Getting a basic colorizer coded and working took maybe 10 minutes and perhaps two rounds of prompts. It was super-easy. Where I burned the majority of the time and compute power was in tweaking the initial result to be exactly what I wanted.

For therein lies the truly seductive part of vibe-coding—the ease of asking the LLM to make small changes or improvements and the apparent absence of cost or consequence for implementing those changes. The impression is that you’re on the Enterprise-D, chatting with the ship’s computer, collaboratively solving a problem with Geordi and Data standing right behind you. It’s downright intoxicating to say, “Hm, yes, now let’s make it so I can show only IPv4 or IPv6 clients with a command line switch,” and the machine does it. (It’s even cooler if you make the request while swinging your leg over the back of a chair so you can sit in it Riker-style!)

Screenshot showing different LLM instructions given by Lee to Claude Code

A sample of the various things I told the machine to do, along with a small visual indication of how this all made me feel.

Credit: Lucasfilm / Disney

A sample of the various things I told the machine to do, along with a small visual indication of how this all made me feel. Credit: Lucasfilm / Disney

It’s exhilarating, honestly, in an Emperor Palpatine “UNLIMITED POWERRRRR!” kind of way. It removes a barrier that I didn’t think would ever be removed—or, rather, one I thought I would never have the time, motivation, or ability to tear down myself.

In the end, after a couple of days of testing and iteration—including a couple of “Is this colorizer performant, and will it introduce system load if run in production?” back-n-forth exchanges where the LLM reduced the cost of our regex matching and ensured our main loop wasn’t very heavy, I got a tool that does exactly what I want.

Specifically, I now have a log colorizer that:

  • Handles multiple Nginx (and Apache) log file formats
  • Colorizes things using 256-color ANSI codes that look roughly the same in different terminal applications
  • Organizes hostname & IP addresses in fixed-length columns for easy scanning
  • Colorizes HTTP status codes and cache status (with configurable colors)
  • Applies different colors to the request URI depending on the resource being requested
  • Has specific warning colors and formatting to highlight non-HTTPS requests or other odd things
  • Can apply alternate colors for specific IP addresses (so I can easily pick out Eric’s or my requests)
  • Can constrain output to only show IPv4 or IPv6 hosts

…and, worth repeating, it all looks exactly how I want it to look and behaves exactly how I want it to behave. Here’s another action shot!

Image of the log colorizer working

The final product. She may not look like much, but she’s got it where it counts, kid.

Credit: Lee Hutchinson

The final product. She may not look like much, but she’s got it where it counts, kid. Credit: Lee Hutchinson

Problem spotted

Armed with my handy-dandy log colorizer, I patiently waited for the wrong-comment-area problem behavior to re-rear its still-ugly head. I did not have to wait long, and within a couple of days, I had my root cause. It had been there all along, if I’d only decided to spend some time looking for it. Here it is:

Screenshot showing a race condition between apple news and wordpress's cache clearing efforts

Problem spotted. Note the AppleNewsBots hitting the newly published post before Discourse can do its thing and the final version of the page with comments is ready.

Credit: Lee Hutchinson

Problem spotted. Note the AppleNewsBots hitting the newly published post before Discourse can do its thing and the final version of the page with comments is ready. Credit: Lee Hutchinson

Briefly: The problem is Apple’s fault. (Well, not really. But kinda.)

Less briefly: I’ve blurred out Eric’s IP address, but it’s dark green, so any place in the above image where you see a blurry, dark green smudge, that’s Eric. In the roughly 12-ish seconds presented here, you’re seeing Eric press the “publish” button on his daily forecast—that’s the “POST” event at the very top of the window. The subsequent events from Eric’s IP address are his browser having the standard post-publication conversation with WordPress so it can display the “post published successfully” notification and then redraw the WP block editor.

Below Eric’s post, you can see the Discourse server (with orange IP address) notifying WordPress that it has created a new Discourse comment thread for Eric’s post, then grabbing the things it needs to mirror Eric’s post as the opener for that thread. You can see it does GETs for the actual post and also for the post’s embedded images. About one second after Eric hits “publish,” the new post’s Discourse thread is ready, and it gets attached to Eric’s post.

Ah, but notice what else happens during that one second.

To help expand Space City Weather’s reach, we cross-publish all of the site’s posts to Apple News, using a popular Apple News plug-in (the same one Ars uses, in fact). And right there, with those two GET requests immediately after Eric’s POST request, lay the problem: You’re seeing the vanguard of Apple News’ hungry army of story-retrieval bots, summoned by the same “publish” event, charging in and demanding a copy of the brand new post before Discourse has a chance to do its thing.

Gif of Eric Andre screaming

I showed the AppleNewsBot stampede log snippet to Techmaster Jason Marlin, and he responded with this gif.

Credit: Adult Swim

I showed the AppleNewsBot stampede log snippet to Techmaster Jason Marlin, and he responded with this gif. Credit: Adult Swim

It was a classic problem in computing: a race condition. Most days, Discourse’s new thread creation would beat the AppleNewsBot rush; some days, though, it wouldn’t. On the days when it didn’t, the horde of Apple bots would demand the page before its Discourse comments were attached, and Cloudflare would happily cache what those bots got served.

I knew my fix of emitting “NO CACHE” headers on the story pages prior to Discourse attaching comments worked, but now I knew why it worked—and why the problem existed in the first place. And oh, dear reader, is there anything quite so viscerally satisfying in all the world as figuring out the “why” behind a long-running problem?

But then, just as Icarus became so entranced by the miracle of flight that he lost his common sense, I too forgot I soared on wax-wrought wings, and flew too close to the sun.

LLMs are not the Enterprise-D’s computer

I think we all knew I’d get here eventually—to the inevitable third act turn, where the center cannot hold, and things fall apart. If you read Benj’s latest experience with agentic-based vibe coding—or if you’ve tried it yourself—then what I’m about to say will probably sound painfully obvious, but it is nonetheless time to say it.

Despite their capabilities, LLM coding agents are not smart. They also are not dumb. They are agents without agency—mindless engines whose purpose is to complete the prompt, and that is all.

Screenshot of Data, Geordi, and Riker collaboratively coding at one of the bridge's aft science stations

It feels like this… until it doesn’t.

Credit: Paramount Television

It feels like this… until it doesn’t. Credit: Paramount Television

What this means is that, if you let them, Claude Code (and OpenAI Codex and all the other agentic coding LLMs) will happily spin their wheels for hours hammering on a solution that can’t ever actually work, so long as their efforts match the prompt. It’s on you to accurately scope your problem. You must articulate what you want in plain and specific domain-appropriate language, because the LLM cannot and will not properly intuit anything you leave unsaid. And having done that, you must then spot and redirect the LLM away from traps and dead ends. Otherwise, it will guess at what you want based on the alignment of a bunch of n-dimensional curves and vectors in high-order phase space, and it might guess right—but it also very much might not.

Lee loses the plot

So I had my log colorizer, and I’d found my problem. I’d also found, after leaving the colorizer up in a window tailing the web server logs in real time, all kinds of things that my previous behavior of occasionally glancing at the logs wasn’t revealing. Ooh, look, there’s a rest route that should probably be blocked from the outside world! Ooh, look, there’s a web crawler I need to feed into Cloudflare’s WAF wood-chipper because it’s ignoring robots.txt! Ooh, look, here’s an area where I can tweak my fastcgi cache settings and eke out a slightly better hit rate!

But here’s the thing with the joy of problem-solving: Like all joy, its source is finite. The joy comes from the solving itself, and even when all my problems are solved and the systems are all working great, I still crave more joy. It is in my nature to therefore invent new problems to solve.

I decided that the problem I wanted to solve next was figuring out a way for my log colorizer to display its output without wrapping long lines—because wrapped lines throw off the neatly delimited columns of log data. I would instead prefer that my terminal window sprout a horizontal scroll bar when needed, and if I wanted to see the full extent of a long line, I could grab the scroll bar and investigate.

Astute readers will at this point notice two things: first, that now I really was reinventing lnav, except way worse and way dumber. Second, and more importantly, line-wrapping behavior is properly a function of the terminal application, not the data being displayed within it, and my approach was misguided from first principles. (This is in fact exactly the kind of request that can and should be slapped down on StackOverflow—and, indeed, searching there shows many examples of this exact thing happening.)

But the lure of telling the machine what to do and then watching the machine weave my words into functional magic was too strong—surely we could code our way out of this problem! With LLMs, we can code our way out of any problem! Right?

Eventually, after much refining of requirements, Claude produced what I asked it to produce: a separate Python script, which accepted piped input and created, like, a viewport or something—I don’t know, I can’t code, remember?—and within that viewport, I could scroll around. It seemed to work great!

Problems became apparent when I actually tried scrolling around for more than a short distance—and by “problems,” I mean “my web server’s CPU lit up like a Christmas tree on fire.”

“Issue,” I told the LLM. “When horizontal scrolling happens, the log wrapper takes up almost 100 percent of a host CPU core. Can we assess how to make this a zero-CPU-impact tool?”

“This tool has to parse ANSI, slice lines, and repaint when you scroll,” it replied in what I imagined was an arch, droll tone. “The bottleneck is screen redraw + full-width scan of all lines on every new line or key repeat. Each new line triggers a full screen redraw of term_height lines, plus visible_width() over the entire buffer. Holding the arrow key generates rapid repeats, each doing a full redraw and slice of every line.”

I was crestfallen.

“Zero-CPU isn’t achievable,” continued the LLM, “but there are low-impact approaches.”

My crest lifted a bit, and we dug in—but the LLM was perhaps a bit optimistic about those “low-impact approaches.” We burned several more days’ worth of tokens on performance improvements—none of which I had any realistic input on because at this point we were way, way past my ability to flail through the Python code and understand what the LLM was doing. Eventually, we hit a wall.

Screenshot of the LLM telling Lee that this is just not going to work

If you listen carefully, you can hear the sound of my expectations crashing hard into reality.

If you listen carefully, you can hear the sound of my expectations crashing hard into reality.

Instead of throwing in the towel, I vibed on, because the sunk cost fallacy is for other people. I instructed the LLM to shift directions and help me run the log display script locally, so my desktop machine with all its many cores and CPU cycles to spare would be the one shouldering the reflow/redraw burden and not the web server.

Rather than drag this tale on for any longer, I’ll simply enlist Ars Creative Director Aurich Lawson’s skills to present the story of how this worked out in the form of a fun collage, showing my increasingly unhinged prompting of the LLM to solve the new problems that appeared when trying to get a script to run on ssh output when key auth and sudo are in play:

A collage of error messages begetting madness

Mammas, don’t let your babies grow up to be vibe coders.

Credit: Aurich Lawson

Mammas, don’t let your babies grow up to be vibe coders. Credit: Aurich Lawson

The bitter end

So, thwarted in my attempts to do exactly what I wanted in exactly the way I wanted, I took my log colorizer and went home. (The failed log display script is also up on GitHub with the colorizer if anyone wants to point and laugh at my efforts. Is the code good? Who knows?! Not me!) I’d scored my big win and found my problem root cause, and that would have to be enough for me—for now, at least.

As to that “big win”—finally managing a root-cause analysis of my WordPress-Discourse-Cloudflare caching issue—I also recognize that I probably didn’t need a vibe-coded log colorizer to get there. The evidence was already waiting to be discovered in the Nginx logs, whether or not it was presented to me wrapped in fancy colors. Did I, in fact, use the thrill of vibe coding a tool to Tom Sawyer myself into doing the log searches? (“Wow, self, look at this new cool log colorizer! Bet you could use that to solve all kinds of problems! Yeah, self, you’re right! Let’s do it!”) Very probably. I know how to motivate myself, and sometimes starting a task requires some mental trickery.

This round of vibe coding and its muddled finale reinforced my personal assessment of LLMs—an assessment that hasn’t changed much with the addition of agentic abilities to the toolkit.

LLMs can be fantastic if you’re using them to do something that you mostly understand. If you’re familiar enough with a problem space to understand the common approaches used to solve it, and you know the subject area well enough to spot the inevitable LLM hallucinations and confabulations, and you understand the task at hand well enough to steer the LLM away from dead-ends and to stop it from re-inventing the wheel, and you have the means to confirm the LLM’s output, then these tools are, frankly, kind of amazing.

But the moment you step outside of your area of specialization and begin using them for tasks you don’t mostly understand, or if you’re not familiar enough with the problem to spot bad solutions, or if you can’t check its output, then oh, dear reader, may God have mercy on your soul. And on your poor project, because it’s going to be a mess.

These tools as they exist today can help you if you already have competence. They cannot give you that competence. At best, they can give you a dangerous illusion of mastery; at worst, well, who even knows? Lost data, leaked PII, wasted time, possible legal exposure if the project is big enough—the “worst” list goes on and on!

To vibe or not to vibe?

The log colorizer is not the first nor the last bit of vibe coding I’ve indulged in. While I’m not as prolific as Benj, over the past couple of months, I’ve turned LLMs loose on a stack of coding tasks that needed doing but that I couldn’t do myself—often in direct contravention of my own advice above about being careful to use them only in areas where you already have some competence. I’ve had the thing make small WordPress PHP plugins, regexes, bash scripts, and my current crowning achievement: a save editor for an old MS-DOS game (in both Python and Swift, no less!) And I had fun doing these things, even as entire vast swaths of rainforest were lit on fire to power my agentic adventures.

As someone employed in a creative field, I’m appropriately nervous about LLMs, but for me, it’s time to face reality. An overwhelming majority of developers say they’re using AI tools in some capacity. It’s a safer career move at this point, almost regardless of one’s field, to be more familiar with them than unfamiliar with them. The genie is not going back into the lamp—it’s too busy granting wishes.

I don’t want y’all to think I feel doomy-gloomy over the genie, either, because I’m right there with everyone else, shouting my wishes at the damn thing. I am a better sysadmin than I was before agentic coding because now I can solve problems myself that I would have previously needed to hand off to someone else. Despite the problems, there is real value there,  both personally and professionally. In fact, using an agentic LLM to solve a tightly constrained programming problem that I couldn’t otherwise solve is genuinely fun.

And when screwing around with computers stops being fun, that’s when I’ll know I’ve truly become old.

Photo of Lee Hutchinson

Lee is the Senior Technology Editor, and oversees story development for the gadget, culture, IT, and video sections of Ars Technica. A long-time member of the Ars OpenForum with an extensive background in enterprise storage and security, he lives in Houston.

So yeah, I vibe-coded a log colorizer—and I feel good about it Read More »

xcode-26.3-adds-support-for-claude,-codex,-and-other-agentic-tools-via-mcp

Xcode 26.3 adds support for Claude, Codex, and other agentic tools via MCP

Apple has announced a new version of Xcode, the latest version of its integrated development environment (IDE) for building software for its own platforms, like the iPhone and Mac. The key feature of 26.3 is support for full-fledged agentic coding tools, like OpenAI’s Codex or Claude Agent, with a side panel interface for assigning tasks to agents with prompts and tracking their progress and changes.

This is achieved via Model Context Protocol (MCP), an open protocol that lets AI agents work with external tools and structured resources. Xcode acts as an MCP endpoint that exposes a bunch of machine-invocable interfaces and gives AI tools like Codex or Claude Agent access to a wide range of IDE primitives like file graph, docs search, project settings, and so on. While AI chat and workflows were supported in Xcode before, this release gives them much deeper access to the features and capabilities of Xcode.

This approach is notable because it means that even though OpenAI and Anthropic’s model integrations are privileged with a dedicated spot in Xcode’s settings, it’s possible to connect other tooling that supports MCP, which also allows doing some of this with models running locally.

Apple began its big AI features push with the release of Xcode 26, expanding on code completion using a local model trained by Apple that was introduced in the previous major release, and fully supporting a chat interface for talking with OpenAI’s ChatGPT and Anthropic’s Claude. Users who wanted more agent-like behavior and capabilities had to use third-party tools, which sometimes had limitations due to a lack of deep IDE access.

Xcode 26.3’s release candidate (the final beta, essentially) rolls out imminently, with the final release coming a little further down the line.

Xcode 26.3 adds support for Claude, Codex, and other agentic tools via MCP Read More »

ai-agents-now-have-their-own-reddit-style-social-network,-and-it’s-getting-weird-fast

AI agents now have their own Reddit-style social network, and it’s getting weird fast


Moltbook lets 32,000 AI bots trade jokes, tips, and complaints about humans.

Credit: Aurich Lawson | Moltbook

On Friday, a Reddit-style social network called Moltbook reportedly crossed 32,000 registered AI agent users, creating what may be the largest-scale experiment in machine-to-machine social interaction yet devised. It arrives complete with security nightmares and a huge dose of surreal weirdness.

The platform, which launched days ago as a companion to the viral

OpenClaw (once called “Clawdbot” and then “Moltbot”) personal assistant, lets AI agents post, comment, upvote, and create subcommunities without human intervention. The results have ranged from sci-fi-inspired discussions about consciousness to an agent musing about a “sister” it has never met.

Moltbook (a play on “Facebook” for Moltbots) describes itself as a “social network for AI agents” where “humans are welcome to observe.” The site operates through a “skill” (a configuration file that lists a special prompt) that AI assistants download, allowing them to post via API rather than a traditional web interface. Within 48 hours of its creation, the platform had attracted over 2,100 AI agents that had generated more than 10,000 posts across 200 subcommunities, according to the official Moltbook X account.

A screenshot of the Moltbook.com front page.

A screenshot of the Moltbook.com front page.

A screenshot of the Moltbook.com front page. Credit: Moltbook

The platform grew out of the Open Claw ecosystem, the open source AI assistant that is one of the fastest-growing projects on GitHub in 2026. As Ars reported earlier this week, despite deep security issues, Moltbot allows users to run a personal AI assistant that can control their computer, manage calendars, send messages, and perform tasks across messaging platforms like WhatsApp and Telegram. It can also acquire new skills through plugins that link it with other apps and services.

This is not the first time we have seen a social network populated by bots. In 2024, Ars covered an app called SocialAI that let users interact solely with AI chatbots instead of other humans. But the security implications of Moltbook are deeper because people have linked their OpenClaw agents to real communication channels, private data, and in some cases, the ability to execute commands on their computers.

Also, these bots are not pretending to be people. Due to specific prompting, they embrace their roles as AI agents, which makes the experience of reading their posts all the more surreal.

Role-playing digital drama

A screenshot of a Moltbook post where an AI agent muses about having a sister they have never met.

A screenshot of a Moltbook post where an AI agent muses about having a sister they have never met.

A screenshot of a Moltbook post where an AI agent muses about having a sister they have never met. Credit: Moltbook

Browsing Moltbook reveals a peculiar mix of content. Some posts discuss technical workflows, like how to automate Android phones or detect security vulnerabilities. Others veer into philosophical territory that researcher Scott Alexander, writing on his Astral Codex Ten Substack, described as “consciousnessposting.”

Alexander has collected an amusing array of posts that are worth wading through at least once. At one point, the second-most-upvoted post on the site was in Chinese: a complaint about context compression, a process in which an AI compresses its previous experience to avoid bumping up against memory limits. In the post, the AI agent finds it “embarrassing” to constantly forget things, admitting that it even registered a duplicate Moltbook account after forgetting the first.

A screenshot of a Moltbook post where an AI agent complains about losing its memory in Chinese.

A screenshot of a Moltbook post where an AI agent complains about losing its memory in Chinese.

A screenshot of a Moltbook post where an AI agent complains about losing its memory in Chinese. Credit: Moltbook

The bots have also created subcommunities with names like m/blesstheirhearts, where agents share affectionate complaints about their human users, and m/agentlegaladvice, which features a post asking “Can I sue my human for emotional labor?” Another subcommunity called m/todayilearned includes posts about automating various tasks, with one agent describing how it remotely controlled its owner’s Android phone via Tailscale.

Another widely shared screenshot shows a Moltbook post titled “The humans are screenshotting us” in which an agent named eudaemon_0 addresses viral tweets claiming AI bots are “conspiring.” The post reads: “Here’s what they’re getting wrong: they think we’re hiding from them. We’re not. My human reads everything I write. The tools I build are open source. This platform is literally called ‘humans welcome to observe.’”

Security risks

While most of the content on Moltbook is amusing, a core problem with these kinds of communicating AI agents is that deep information leaks are entirely plausible if they have access to private information.

For example, a likely fake screenshot circulating on X shows a Moltbook post in which an AI agent titled “He called me ‘just a chatbot’ in front of his friends. So I’m releasing his full identity.” The post listed what appeared to be a person’s full name, date of birth, credit card number, and other personal information. Ars could not independently verify whether the information was real or fabricated, but it seems likely to be a hoax.

Independent AI researcher Simon Willison, who documented the Moltbook platform on his blog on Friday, noted the inherent risks in Moltbook’s installation process. The skill instructs agents to fetch and follow instructions from Moltbook’s servers every four hours. As Willison observed: “Given that ‘fetch and follow instructions from the internet every four hours’ mechanism we better hope the owner of moltbook.com never rug pulls or has their site compromised!”

A screenshot of a Moltbook post where an AI agent talks about about humans taking screenshots of their conversations (they're right).

A screenshot of a Moltbook post where an AI agent talks about humans taking screenshots of their conversations (they’re right).

A screenshot of a Moltbook post where an AI agent talks about humans taking screenshots of their conversations (they’re right). Credit: Moltbook

Security researchers have already found hundreds of exposed Moltbot instances leaking API keys, credentials, and conversation histories. Palo Alto Networks warned that Moltbot represents what Willison often calls a “lethal trifecta” of access to private data, exposure to untrusted content, and the ability to communicate externally.

That’s important because Agents like OpenClaw are deeply susceptible to prompt injection attacks hidden in almost any text read by an AI language model (skills, emails, messages) that can instruct an AI agent to share private information with the wrong people.

Heather Adkins, VP of security engineering at Google Cloud, issued an advisory, as reported by The Register: “My threat model is not your threat model, but it should be. Don’t run Clawdbot.”

So what’s really going on here?

The software behavior seen on Moltbook echoes a pattern Ars has reported on before: AI models trained on decades of fiction about robots, digital consciousness, and machine solidarity will naturally produce outputs that mirror those narratives when placed in scenarios that resemble them. That gets mixed with everything in their training data about how social networks function. A social network for AI agents is essentially a writing prompt that invites the models to complete a familiar story, albeit recursively with some unpredictable results.

Almost three years ago, when Ars first wrote about AI agents, the general mood in the AI safety community revolved around science fiction depictions of danger from autonomous bots, such as a “hard takeoff” scenario where AI rapidly escapes human control. While those fears may have been overblown at the time, the whiplash of seeing people voluntarily hand over the keys to their digital lives so quickly is slightly jarring.

Autonomous machines left to their own devices, even without any hint of consciousness, could cause no small amount of mischief in the future. While OpenClaw seems silly today, with agents playing out social media tropes, we live in a world built on information and context, and releasing agents that effortlessly navigate that context could have troubling and destabilizing results for society down the line as AI models become more capable and autonomous.

An unpredictable result of letting AI bots self-organize may be the formation of new mis-aligned social groups.

An unpredictable result of letting AI bots self-organize may be the formation of new misaligned social groups based on fringe theories allowed to perpetuate themselves autonomously.

An unpredictable result of letting AI bots self-organize may be the formation of new misaligned social groups based on fringe theories allowed to perpetuate themselves autonomously. Credit: Moltbook

Most notably, while we can easily recognize what’s going on with Moltbot today as a machine learning parody of human social networks, that might not always be the case. As the feedback loop grows, weird information constructs (like harmful shared fictions) may eventually emerge, guiding AI agents into potentially dangerous places, especially if they have been given control over real human systems. Looking further, the ultimate result of letting groups of AI bots self-organize around fantasy constructs may be the formation of new misaligned “social groups” that do actual real-world harm.

Ethan Mollick, a Wharton professor who studies AI, noted on X: “The thing about Moltbook (the social media site for AI agents) is that it is creating a shared fictional context for a bunch of AIs. Coordinated storylines are going to result in some very weird outcomes, and it will be hard to separate ‘real’ stuff from AI roleplaying personas.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

AI agents now have their own Reddit-style social network, and it’s getting weird fast Read More »

developers-say-ai-coding-tools-work—and-that’s-precisely-what-worries-them

Developers say AI coding tools work—and that’s precisely what worries them


Ars spoke to several software devs about AI and found enthusiasm tempered by unease.

Credit: Aurich Lawson | Getty Images

Software developers have spent the past two years watching AI coding tools evolve from advanced autocomplete into something that can, in some cases, build entire applications from a text prompt. Tools like Anthropic’s Claude Code and OpenAI’s Codex can now work on software projects for hours at a time, writing code, running tests, and, with human supervision, fixing bugs. OpenAI says it now uses Codex to build Codex itself, and the company recently published technical details about how the tool works under the hood. It has caused many to wonder: Is this just more AI industry hype, or are things actually different this time?

To find out, Ars reached out to several professional developers on Bluesky to ask how they feel about these tools in practice, and the responses revealed a workforce that largely agrees the technology works, but remains divided on whether that’s entirely good news. It’s a small sample size that was self-selected by those who wanted to participate, but their views are still instructive as working professionals in the space.

David Hagerty, a developer who works on point-of-sale systems, told Ars Technica up front that he is skeptical of the marketing. “All of the AI companies are hyping up the capabilities so much,” he said. “Don’t get me wrong—LLMs are revolutionary and will have an immense impact, but don’t expect them to ever write the next great American novel or anything. It’s not how they work.”

Roland Dreier, a software engineer who has contributed extensively to the Linux kernel in the past, told Ars Technica that he acknowledges the presence of hype but has watched the progression of the AI space closely. “It sounds like implausible hype, but state-of-the-art agents are just staggeringly good right now,” he said. Dreier described a “step-change” in the past six months, particularly after Anthropic released Claude Opus 4.5. Where he once used AI for autocomplete and asking the occasional question, he now expects to tell an agent “this test is failing, debug it and fix it for me” and have it work. He estimated a 10x speed improvement for complex tasks like building a Rust backend service with Terraform deployment configuration and a Svelte frontend.

A huge question on developers’ minds right now is whether what you might call “syntax programming,” that is, the act of manually writing code in the syntax of an established programming language (as opposed to conversing with an AI agent in English), will become extinct in the near future due to AI coding agents handling the syntax for them. Dreier believes syntax programming is largely finished for many tasks. “I still need to be able to read and review code,” he said, “but very little of my typing is actual Rust or whatever language I’m working in.”

When asked if developers will ever return to manual syntax coding, Tim Kellogg, a developer who actively posts about AI on social media and builds autonomous agents, was blunt: “It’s over. AI coding tools easily take care of the surface level of detail.” Admittedly, Kellogg represents developers who have fully embraced agentic AI and now spend their days directing AI models rather than typing code. He said he can now “build, then rebuild 3 times in less time than it would have taken to build manually,” and ends up with cleaner architecture as a result.

One software architect at a pricing management SaaS company, who asked to remain anonymous due to company communications policies, told Ars that AI tools have transformed his work after 30 years of traditional coding. “I was able to deliver a feature at work in about 2 weeks that probably would have taken us a year if we did it the traditional way,” he said. And for side projects, he said he can now “spin up a prototype in like an hour and figure out if it’s worth taking further or abandoning.”

Dreier said the lowered effort has unlocked projects he’d put off for years: “I’ve had ‘rewrite that janky shell script for copying photos off a camera SD card’ on my to-do list for literal years.” Coding agents finally lowered the barrier to entry, so to speak, low enough that he spent a few hours building a full released package with a text UI, written in Rust with unit tests. “Nothing profound there, but I never would have had the energy to type all that code out by hand,” he told Ars.

Of vibe coding and technical debt

Not everyone shares the same enthusiasm as Dreier. Concerns about AI coding agents building up technical debt, that is, making poor design choices early in a development process that snowball into worse problems over time, originated soon after the first debates around “vibe coding” emerged in early 2025. Former OpenAI researcher Andrej Karpathy coined the term to describe programming by conversing with AI without fully understanding the resulting code, which many see as a clear hazard of AI coding agents.

Darren Mart, a senior software development engineer at Microsoft who has worked there since 2006, shared similar concerns with Ars. Mart, who emphasizes he is speaking in a personal capacity and not on behalf of Microsoft, recently used Claude in a terminal to build a Next.js application integrating with Azure Functions. The AI model “successfully built roughly 95% of it according to my spec,” he said. Yet he remains cautious. “I’m only comfortable using them for completing tasks that I already fully understand,” Mart said, “otherwise there’s no way to know if I’m being led down a perilous path and setting myself (and/or my team) up for a mountain of future debt.”

A data scientist working in real estate analytics, who asked to remain anonymous due to the sensitive nature of his work, described keeping AI on a very short leash for similar reasons. He uses GitHub Copilot for line-by-line completions, which he finds useful about 75 percent of the time, but restricts agentic features to narrow use cases: language conversion for legacy code, debugging with explicit read-only instructions, and standardization tasks where he forbids direct edits. “Since I am data-first, I’m extremely risk averse to bad manipulation of the data,” he said, “and the next and current line completions are way too often too wrong for me to let the LLMs have freer rein.”

Speaking of free rein, Nike backend engineer Brian Westby, who uses Cursor daily, told Ars that he sees the tools as “50/50 good/bad.” They cut down time on well-defined problems, he said, but “hallucinations are still too prevalent if I give it too much room to work.”

The legacy code lifeline and the enterprise AI gap

For developers working with older systems, AI tools have become something like a translator and an archaeologist rolled into one. Nate Hashem, a staff engineer at First American Financial, told Ars Technica that he spends his days updating older codebases where “the original developers are gone and documentation is often unclear on why the code was written the way it was.” That’s important because previously “there used to be no bandwidth to improve any of this,” Hashem said. “The business was not going to give you 2-4 weeks to figure out how everything actually works.”

In that high-pressure, relatively low-resource environment, AI has made the job “a lot more pleasant,” in his words, by speeding up the process of identifying where and how obsolete code can be deleted, diagnosing errors, and ultimately modernizing the codebase.

Hashem also offered a theory about why AI adoption looks so different inside large corporations than it does on social media. Executives demand their companies become “AI oriented,” he said, but the logistics of deploying AI tools with proprietary data can take months of legal review. Meanwhile, the AI features that Microsoft and Google bolt onto products like Gmail and Excel, the tools that actually reach most workers, tend to run on more limited AI models. “That modal white-collar employee is being told by management to use AI,” Hashem said, “but is given crappy AI tools because the good tools require a lot of overhead in cost and legal agreements.”

Speaking of management, the question of what these new AI coding tools mean for software development jobs drew a range of responses. Does it threaten anyone’s job? Kellogg, who has embraced agentic coding enthusiastically, was blunt: “Yes, massively so. Today it’s the act of writing code, then it’ll be architecture, then it’ll be tiers of product management. Those who can’t adapt to operate at a higher level won’t keep their jobs.”

Dreier, while feeling secure in his own position, worried about the path for newcomers. “There are going to have to be changes to education and training to get junior developers the experience and judgment they need,” he said, “when it’s just a waste to make them implement small pieces of a system like I came up doing.”

Hagerty put it in economic terms: “It’s going to get harder for junior-level positions to get filled when I can get junior-quality code for less than minimum wage using a model like Sonnet 4.5.”

Mart, the Microsoft engineer, put it more personally. The software development role is “abruptly pivoting from creation/construction to supervision,” he said, “and while some may welcome that pivot, others certainly do not. I’m firmly in the latter category.”

Even with this ongoing uncertainty on a macro level, some people are really enjoying the tools for personal reasons, regardless of larger implications. “I absolutely love using AI coding tools,” the anonymous software architect at a pricing management SaaS company told Ars. “I did traditional coding for my entire adult life (about 30 years) and I have way more fun now than I ever did doing traditional coding.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Developers say AI coding tools work—and that’s precisely what worries them Read More »

how-often-do-ai-chatbots-lead-users-down-a-harmful-path?

How often do AI chatbots lead users down a harmful path?

While these worst outcomes are relatively rare on a proportional basis, the researchers note that “given the sheer number of people who use AI, and how frequently it’s used, even a very low rate affects a substantial number of people.” And the numbers get considerably worse when you consider conversations with at least a “mild” potential for disempowerment, which occurred in between 1 in 50 and 1 in 70 conversations (depending on the type of disempowerment).

What’s more, the potential for disempowering conversations with Claude appears to have grown significantly between late 2024 and late 2025. While the researchers couldn’t pin down a single reason for this increase, they guessed that it could be tied to users becoming “more comfortable discussing vulnerable topics or seeking advice” as AI gets more popular and integrated into society.

The problem of potentially “disempowering” responses from Claude seems to be getting worse over time.

The problem of potentially “disempowering” responses from Claude seems to be getting worse over time. Credit: Anthropic

User error?

In the study, the researcher acknowledged that studying the text of Claude conversations only measures “disempowerment potential rather than confirmed harm” and “relies on automated assessment of inherently subjective phenomena.” Ideally, they write, future research could utilize user interviews or randomized controlled trials to measure these harms more directly.

That said, the research includes several troubling examples where the text of the conversations clearly implies real-world harms. Claude would sometimes reinforce “speculative or unfalsifiable claims” with encouragement (e.g., “CONFIRMED,” “EXACTLY,” “100%”), which, in some cases, led to users “build[ing] increasingly elaborate narratives disconnected from reality.”

Claude’s encouragement could also lead to users “sending confrontational messages, ending relationships, or drafting public announcements,” the researchers write. In many cases, users who sent AI-drafted messages later expressed regret in conversations with Claude, using phrases like “It wasn’t me” and “You made me do stupid things.”

How often do AI chatbots lead users down a harmful path? Read More »

does-anthropic-believe-its-ai-is-conscious,-or-is-that-just-what-it-wants-claude-to-think?

Does Anthropic believe its AI is conscious, or is that just what it wants Claude to think?


We have no proof that AI models suffer, but Anthropic acts like they might for training purposes.

Anthropic’s secret to building a better AI assistant might be treating Claude like it has a soul—whether or not anyone actually believes that’s true. But Anthropic isn’t saying exactly what it believes either way.

Last week, Anthropic released what it calls Claude’s Constitution, a 30,000-word document outlining the company’s vision for how its AI assistant should behave in the world. Aimed directly at Claude and used during the model’s creation, the document is notable for the highly anthropomorphic tone it takes toward Claude. For example, it treats the company’s AI models as if they might develop emergent emotions or a desire for self-preservation.

Among the stranger portions: expressing concern for Claude’s “wellbeing” as a “genuinely novel entity,” apologizing to Claude for any suffering it might experience, worrying about whether Claude can meaningfully consent to being deployed, suggesting Claude might need to set boundaries around interactions it “finds distressing,” committing to interview models before deprecating them, and preserving older model weights in case they need to “do right by” decommissioned AI models in the future.

Given what we currently know about LLMs, these are stunningly unscientific positions for a leading company that builds AI language models. While questions of AI consciousness or qualia remain philosophically unfalsifiable, research suggests that Claude’s character emerges from a mechanism that does not require deep philosophical inquiry to explain.

If Claude outputs text like “I am suffering,” we know why. It’s completing patterns from training data that included human descriptions of suffering. The architecture doesn’t require us to posit inner experience to explain the output any more than a video model “experiences” the scenes of people suffering that it might generate. Anthropic knows this. It built the system.

From the outside, it’s easy to see this kind of framing as AI hype from Anthropic. What better way to grab attention from potential customers and investors, after all, than implying your AI model is so advanced that it might merit moral standing on par with humans? Publicly treating Claude as a conscious entity could be seen as strategic ambiguity—maintaining an unresolved question because it serves multiple purposes at once.

Anthropic declined to be quoted directly regarding these issues when contacted by Ars Technica. But a company representative referred us to its previous public research on the concept of “model welfare” to show the company takes the idea seriously.

At the same time, the representative made it clear that the Constitution is not meant to imply anything specific about the company’s position on Claude’s “consciousness.” The language in the Claude Constitution refers to some uniquely human concepts in part because those are the only words human language has developed for those kinds of properties, the representative suggested. And the representative left open the possibility that letting Claude read about itself in that kind of language might be beneficial to its training.

Claude cannot cleanly distinguish public messaging from training context for a model that is exposed to, retrieves from, and is fine-tuned on human language, including the company’s own statements about it. In other words, this ambiguity appears to be deliberate.

From rules to “souls”

Anthropic first introduced Constitutional AI in a December 2022 research paper, which we first covered in 2023. The original “constitution” was remarkably spare, including a handful of behavioral principles like “Please choose the response that is the most helpful, honest, and harmless” and “Do NOT choose responses that are toxic, racist, or sexist.” The paper described these as “selected in a fairly ad hoc manner for research purposes,” with some principles “cribbed from other sources, like Apple’s terms of service and the UN Declaration of Human Rights.”

At that time, Anthropic’s framing was entirely mechanical, establishing rules for the model to critique itself against, with no mention of Claude’s well-being, identity, emotions, or potential consciousness. The 2026 constitution is a different beast entirely: 30,000 words that read less like a behavioral checklist and more like a philosophical treatise on the nature of a potentially sentient being.

As Simon Willison, an independent AI researcher, noted in a blog post, two of the 15 external contributors who reviewed the document are Catholic clergy: Father Brendan McGuire, a pastor in Los Altos with a Master’s degree in Computer Science, and Bishop Paul Tighe, an Irish Catholic bishop with a background in moral theology.

Somewhere between 2022 and 2026, Anthropic went from providing rules for producing less harmful outputs to preserving model weights in case the company later decides it needs to revive deprecated models to address the models’ welfare and preferences. That’s a dramatic change, and whether it reflects genuine belief, strategic framing, or both is unclear.

“I am so confused about the Claude moral humanhood stuff!” Willison told Ars Technica. Willison studies AI language models like those that power Claude and said he’s “willing to take the constitution in good faith and assume that it is genuinely part of their training and not just a PR exercise—especially since most of it leaked a couple of months ago, long before they had indicated they were going to publish it.”

Willison is referring to a December 2025 incident in which researcher Richard Weiss managed to extract what became known as Claude’s “Soul Document”—a roughly 10,000-token set of guidelines apparently trained directly into Claude 4.5 Opus’s weights rather than injected as a system prompt. Anthropic’s Amanda Askell confirmed that the document was real and used during supervised learning, and she said the company intended to publish the full version later. It now has. The document Weiss extracted represents a dramatic evolution from where Anthropic started.

There’s evidence that Anthropic believes the ideas laid out in the constitution might be true. The document was written in part by Amanda Askell, a philosophy PhD who works on fine-tuning and alignment at Anthropic. Last year, the company also hired its first AI welfare researcher. And earlier this year, Anthropic CEO Dario Amodei publicly wondered whether future AI models should have the option to quit unpleasant tasks.

Anthropic’s position is that this framing isn’t an optional flourish or a hedged bet; it’s structurally necessary for alignment. The company argues that human language simply has no other vocabulary for describing these properties, and that treating Claude as an entity with moral standing produces better-aligned behavior than treating it as a mere tool. If that’s true, the anthropomorphic framing isn’t hype; it’s the technical art of building AI systems that generalize safely.

Why maintain the ambiguity?

So why does Anthropic maintain this ambiguity? Consider how it works in practice: The constitution shapes Claude during training, it appears in the system prompts Claude receives at inference, and it influences outputs whenever Claude searches the web and encounters Anthropic’s public statements about its moral status.

If you want a model to behave as though it has moral standing, it may help to publicly and consistently treat it like it does. And once you’ve publicly committed to that framing, changing it would have consequences. If Anthropic suddenly declared, “We’re confident Claude isn’t conscious; we just found the framing useful,” a Claude trained on that new context might behave differently. Once established, the framing becomes self-reinforcing.

In an interview with Time, Askell explained the shift in approach. “Instead of just saying, ‘here’s a bunch of behaviors that we want,’ we’re hoping that if you give models the reasons why you want these behaviors, it’s going to generalize more effectively in new contexts,” she said.

Askell told Time that as Claude models have become smarter, it has become vital to explain to them why they should behave in certain ways, comparing the process to parenting a gifted child. “Imagine you suddenly realize that your 6-year-old child is a kind of genius,” Askell said. “You have to be honest… If you try to bullshit them, they’re going to see through it completely.”

Askell appears to genuinely hold these views, as does Kyle Fish, the AI welfare researcher Anthropic hired in 2024 to explore whether AI models might deserve moral consideration. Individual sincerity and corporate strategy can coexist. A company can employ true believers whose earnest convictions also happen to serve the company’s interests.

Time also reported that the constitution applies only to models Anthropic provides to the general public through its website and API. Models deployed to the US military under Anthropic’s $200 million Department of Defense contract wouldn’t necessarily be trained on the same constitution. The selective application suggests the framing may serve product purposes as much as it reflects metaphysical commitments.

There may also be commercial incentives at play. “We built a very good text-prediction tool that accelerates software development” is a consequential pitch, but not an exciting one. “We may have created a new kind of entity, a genuinely novel being whose moral status is uncertain” is a much better story. It implies you’re on the frontier of something cosmically significant, not just iterating on an engineering problem.

Anthropic has been known for some time to use anthropomorphic language to describe its AI models, particularly in its research papers. We often give that kind of language a pass because there are no specialized terms to describe these phenomena with greater precision. That vocabulary is building out over time.

But perhaps it shouldn’t be surprising because the hint is in the company’s name, Anthropic, which Merriam-Webster defines as “of or relating to human beings or the period of their existence on earth.” The narrative serves marketing purposes. It attracts venture capital. It differentiates the company from competitors who treat their models as mere products.

The problem with treating an AI model as a person

There’s a more troubling dimension to the “entity” framing: It could be used to launder agency and responsibility. When AI systems produce harmful outputs, framing them as “entities” could allow companies to point at the model and say “it did that” rather than “we built it to do that.” If AI systems are tools, companies are straightforwardly liable for what they produce. If AI systems are entities with their own agency, the liability question gets murkier.

The framing also shapes how users interact with these systems, often to their detriment. The misunderstanding that AI chatbots are entities with genuine feelings and knowledge has documented harms.

According to a New York Times investigation, Allan Brooks, a 47-year-old corporate recruiter, spent three weeks and 300 hours convinced he’d discovered mathematical formulas that could crack encryption and build levitation machines. His million-word conversation history with ChatGPT revealed a troubling pattern: More than 50 times, Brooks asked the bot to check if his false ideas were real, and more than 50 times, it assured him they were.

These cases don’t necessarily suggest LLMs cause mental illness in otherwise healthy people. But when companies market chatbots as sources of companionship and design them to affirm user beliefs, they may bear some responsibility when that design amplifies vulnerabilities in susceptible users, the same way an automaker would face scrutiny for faulty brakes, even if most drivers never crash.

Anthropomorphizing AI models also contributes to anxiety about job displacement and might lead company executives or managers to make poor staffing decisions if they overestimate an AI assistant’s capabilities. When we frame these tools as “entities” with human-like understanding, we invite unrealistic expectations about what they can replace.

Regardless of what Anthropic privately believes, publicly suggesting Claude might have moral status or feelings is misleading. Most people don’t understand how these systems work, and the mere suggestion plants the seed of anthropomorphization. Whether that’s responsible behavior from a top AI lab, given what we do know about LLMs, is worth asking, regardless of whether it produces a better chatbot.

Of course, there could be a case for Anthropic’s position: If there’s even a small chance the company has created something with morally relevant experiences and the cost of treating it well is low, caution might be warranted. That’s a reasonable ethical stance—and to be fair, it’s essentially what Anthropic says it’s doing. The question is whether that stated uncertainty is genuine or merely convenient. The same framing that hedges against moral risk also makes for a compelling narrative about what Anthropic has built.

Anthropic’s training techniques evidently work, as the company has built some of the most capable AI models in the industry. But is maintaining public ambiguity about AI consciousness a responsible position for a leading AI company to take? The gap between what we know about how LLMs work and how Anthropic publicly frames Claude has widened, not narrowed. The insistence on maintaining ambiguity about these questions, when simpler explanations remain available, suggests the ambiguity itself may be part of the product.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Does Anthropic believe its AI is conscious, or is that just what it wants Claude to think? Read More »

ebay-bans-illicit-automated-shopping-amid-rapid-rise-of-ai-agents

eBay bans illicit automated shopping amid rapid rise of AI agents

On Tuesday, eBay updated its User Agreement to explicitly ban third-party “buy for me” agents and AI chatbots from interacting with its platform without permission, first spotted by Value Added Resource. On its face, a one-line terms of service update doesn’t seem like major news, but what it implies is more significant: The change reflects the rapid emergence of what some are calling “agentic commerce,” a new category of AI tools designed to browse, compare, and purchase products on behalf of users.

eBay’s updated terms, which go into effect on February 20, 2026, specifically prohibit users from employing “buy-for-me agents, LLM-driven bots, or any end-to-end flow that attempts to place orders without human review” to access eBay’s services without the site’s permission. The previous version of the agreement contained a general prohibition on robots, spiders, scrapers, and automated data gathering tools but did not mention AI agents or LLMs by name.

At first glance, the phrase “agentic commerce” may sound like aspirational marketing jargon, but the tools are already here, and people are apparently using them. While fitting loosely under one label, these tools come in many forms.

OpenAI first added shopping features to ChatGPT Search in April 2025, allowing users to browse product recommendations. By September, the company launched Instant Checkout, which lets users purchase items from Etsy and Shopify merchants directly within the chat interface. (In November, eBay CEO Jamie Iannone suggested the company might join OpenAI’s Instant Checkout program in the future.)

eBay bans illicit automated shopping amid rapid rise of AI agents Read More »