Artificial Intelligence

china-drafts-world’s-strictest-rules-to-end-ai-encouraged-suicide,-violence

China drafts world’s strictest rules to end AI-encouraged suicide, violence

China drafted landmark rules to stop AI chatbots from emotionally manipulating users, including what could become the strictest policy worldwide intended to prevent AI-supported suicides, self-harm, and violence.

China’s Cyberspace Administration proposed the rules on Saturday. If finalized, they would apply to any AI products or services publicly available in China that use text, images, audio, video, or “other means” to simulate engaging human conversation. Winston Ma, adjunct professor at NYU School of Law, told CNBC that the “planned rules would mark the world’s first attempt to regulate AI with human or anthropomorphic characteristics” at a time when companion bot usage is rising globally.

Growing awareness of problems

In 2025, researchers flagged major harms of AI companions, including promotion of self-harm, violence, and terrorism. Beyond that, chatbots shared harmful misinformation, made unwanted sexual advances, encouraged substance abuse, and verbally abused users. Some psychiatrists are increasingly ready to link psychosis to chatbot use, the Wall Street Journal reported this weekend, while the most popular chatbot in the world, ChatGPT, has triggered lawsuits over outputs linked to child suicide and murder-suicide.

China is now moving to eliminate the most extreme threats. Proposed rules would require, for example, that a human intervene as soon as suicide is mentioned. The rules also dictate that all minor and elderly users must provide the contact information for a guardian when they register—the guardian would be notified if suicide or self-harm is discussed.

Generally, chatbots would be prohibited from generating content that encourages suicide, self-harm, or violence, as well as attempts to emotionally manipulate a user, such as by making false promises. Chatbots would also be banned from promoting obscenity, gambling, or instigation of a crime, as well as from slandering or insulting users. Also banned are what are termed “emotional traps,”—chatbots would additionally be prevented from misleading users into making “unreasonable decisions,” a translation of the rules indicates.

China drafts world’s strictest rules to end AI-encouraged suicide, violence Read More »

google-lobs-lawsuit-at-search-result-scraping-firm-serpapi

Google lobs lawsuit at search result scraping firm SerpApi

Google has filed a lawsuit to protect its search results, targeting a firm called SerpApi that has turned Google’s 10 blue links into a business. According to Google, SerpApi ignores established law and Google’s terms to scrape and resell its search engine results pages (SERPs). This is not the first action against SerpApi, but Google’s decision to go after a scraper could signal a new, more aggressive stance on protecting its search data.

SerpApi and similar firms do fulfill a need, but they sit in a legal gray area. Google does not provide an API for its search results, which are based on the world’s largest and most comprehensive web index. That makes Google’s SERPs especially valuable in the age of AI. A chatbot can’t summarize web links if it can’t find them, which has led companies like Perplexity to pay for SerpApi’s second-hand Google data. That prompted Reddit to file a lawsuit against SerpApi and Perplexity for grabbing its data from Google results.

Google is echoing many of the things Reddit said when it publicized its lawsuit earlier this year. The search giant claims it’s not just doing this to protect itself—it’s also about protecting the websites it indexes. In Google’s blog post on the legal action, it says SerpApi “violates the choices of websites and rightsholders about who should have access to their content.”

It’s worth noting that Google has a partnership with Reddit that pipes data directly into Gemini. As a result, you’ll often see Reddit pages cited in the chatbot’s outputs. As Google points out, it abides by “industry-standard crawling protocols” to collect the data that appears on its SERPs, but those sites didn’t agree to let SerpApi scrape their data from Google. So while you could reasonably argue that Google’s lawsuit helps protect the rights of web publishers, it also explicitly protects Google’s business interests.

Google lobs lawsuit at search result scraping firm SerpApi Read More »

youtube-bans-two-popular-channels-that-created-fake-ai-movie-trailers

YouTube bans two popular channels that created fake AI movie trailers

Deadline reports that the behavior of these creators ran afoul of YouTube’s spam and misleading-metadata policies. At the same time, Google loves generative AI—YouTube has added more ways for creators to use generative AI, and the company says more gen AI tools are coming in the future. It’s quite a tightrope for Google to walk.

AI movie trailers

A selection of videos from the now-defunct Screen Culture channel.

Credit: Ryan Whitwam

A selection of videos from the now-defunct Screen Culture channel. Credit: Ryan Whitwam

While passing off AI videos as authentic movie trailers is definitely spammy conduct, the recent changes to the legal landscape could be a factor, too. Disney recently entered into a partnership with OpenAI, bringing its massive library of characters to the company’s Sora AI video app. At the same time, Disney sent a cease-and-desist letter to Google demanding the removal of Disney content from Google AI. The letter specifically cited AI content on YouTube as a concern.

Both the banned trailer channels made heavy use of Disney properties, sometimes even incorporating snippets of real trailers. For example, Screen Culture created 23 AI trailers for The Fantastic Four: First Steps, some of which outranked the official trailer in searches. It’s unclear if either account used Google’s Veo models to create the trailers, but Google’s AI will recreate Disney characters without issue.

While Screen Culture and KH Studio were the largest purveyors of AI movie trailers, they are far from alone. There are others with five and six-digit subscriber counts, some of which include disclosures about fan-made content. Is that enough to save them from the ban hammer? Many YouTube viewers probably hope not.

YouTube bans two popular channels that created fake AI movie trailers Read More »

school-security-ai-flagged-clarinet-as-a-gun-exec-says-it-wasn’t-an-error.

School security AI flagged clarinet as a gun. Exec says it wasn’t an error.


Human review didn’t stop AI from triggering lockdown at panicked middle school.

A Florida middle school was locked down last week after an AI security system called ZeroEyes mistook a clarinet for a gun, reviving criticism that AI may not be worth the high price schools pay for peace of mind.

Human review of the AI-generated false flag did not stop police from rushing to Lawton Chiles Middle School. Cops expected to find “a man in the building, dressed in camouflage with a ‘suspected weapon pointed down the hallway, being held in the position of a shouldered rifle,’” a Washington Post review of the police report said.

Instead, after finding no evidence of a shooter, cops double-checked with dispatchers who confirmed that a closer look at the images indicated that “the suspected rifle might have been a band instrument.” Among panicked students hiding in the band room, police eventually found the suspect, a student “dressed as a military character from the Christmas movie Red One for the school’s Christmas-themed dress-up day,” the Post reported.

ZeroEyes cofounder Sam Alaimo told the Post that the AI performed exactly as it should have in this case, adopting a “better safe than sorry” outlook. A ZeroEyes spokesperson told Ars that “school resource officers, security directors and superintendents consistently ask us to be proactive and forward them an alert if there is any fraction of a doubt that the threat might be real.”

“We don’t think we made an error, nor does the school,” Alaimo said. “That was better to dispatch [police] than not dispatch.”

Cops left after the confused student confirmed he was “unaware” that the way he was holding his clarinet could have triggered that alert, the Post reported. But ZeroEyes’ spokesperson claimed he was “intentionally holding the instrument in the position of a shouldered rifle.” And seemingly rather than probe why the images weren’t more carefully reviewed to prevent a false alarm on campus, the school appeared to agree with ZeroEyes and blame the student.

“We did not make an error, and the school was pleased with the detection and their response,” ZeroEyes’ spokesperson said.

School warns students not to trigger AI

In a letter to parents, the principal, Melissa Laudani, reportedly told parents that “while there was no threat to campus, I’d like to ask you to speak with your student about the dangers of pretending to have a weapon on a school campus.” Along similar lines, Seminole County Public Schools (SCPS) communications officer, Katherine Crnkovich, emphasized in an email to Ars to “please make sure it is noted that this student wasn’t simply carrying a clarinet. This individual was holding it as if it were a weapon.”

However, warning students against brandishing ordinary objects like weapons isn’t a perfect solution. Video footage from a Texas high school in 2023 showed that ZeroEyes can sometimes confuse shadows for guns, accidentally flagging a student simply walking into school as a potential threat. The advice also ignores that ZeroEyes last year reportedly triggered a lockdown and police response after detecting two theater kids using prop guns to rehearse a play. And a similar AI tool called Omnilert made national headlines confusing an empty Doritos bag with a gun, which led to a 14-year-old Baltimore sophomore’s arrest. In that case, the student told the American Civil Liberties Union that he was just holding the chips when AI sent “like eight cop cars” to detain him.

For years, school safety experts have warned that AI tools like ZeroEyes take up substantial resources even though they are “unproven,” the Post reported. ZeroEyes’ spokesperson told Ars that “in most cases, ZeroEyes customers will never receive a ‘false positive,’” but the company is not transparent about how many false positives it receives or how many guns have been detected. An FAQ only notes that “we are always looking to minimize false positives and are constantly improving our learning models based on data collected.” In March, as some students began questioning ZeroEyes after it flagged a Nerf gun at a Pennsylvania university, a nearby K-12 private school, Germantown Academy, confirmed that its “system often makes ‘non-lethal’ detections.”

One critic, school safety consultant Kenneth Trump, suggested in October that these tools are “security theater,” with firms like ZeroEyes lobbying for taxpayer dollars by relying on what the ACLU called “misleading” marketing to convince schools that tools are proactive solutions to school shootings. Seemingly in response to this backlash, StateScoop reported that days after it began probing ZeroEyes in 2024, the company scrubbed a claim from its FAQ that said ZeroEyes “can prevent active shooter and mass shooting incidents.”

At Lawton Chiles Middle School, “the children were never in any danger,” police confirmed, but experts question if false positives cause students undue stress and suspicion, perhaps doing more harm than good in absence of efficacy studies. Schools may be better off dedicating resources to mental health services proven to benefit kids, some critics have suggested.

Laudani’s letter encouraged parents to submit any questions they have about the incident, but it’s hard to gauge if anyone’s upset. Asked if parents were concerned or if ZeroEyes has ever triggered lockdown at other SCPS schools, Crnkovich told Ars that SCPS does not “provide details regarding the specific school safety systems we utilize.”

It’s clear, however, that SCPS hopes to expand its use of ZeroEyes. In November, Florida state Senator Keith Truenow submitted a request to install “significantly more cameras”—about 850—equipped with ZeroEyes across the school district. Truenow backed up his request for $500,000 in funding over the next year by claiming that “the more [ZeroEyes] coverage there is, the more protected students will be from potential gun violence.”

AI false alarms pose dangers to students

ZeroEyes is among the most popular tools attracting heavy investments from schools in 48 states, which hope that AI gun detection will help prevent school shootings. The AI technology is embedded in security cameras, trained on images of people holding guns, and can supposedly “detect as little as an eighth of an inch of a gun,” an ABC affiliate in New York reported.

Monitoring these systems continually, humans review AI flags, then text any concerning images detected to school superintendents. Police are alerted when human review determines images may constitute actual threats. ZeroEyes’ spokesperson told Ars that “it has detected more than 1,000 weapons in the last three years.” Perhaps most notably, ZeroEyes “detected a minor armed with an AK-47 rifle on an elementary school campus in Texas,” where no shots were fired, StateScoop reported last year.

Schools invest tens or, as the SCPS case shows, even hundreds of thousands annually, the exact amount depending on the number of cameras they want to employ and other variables impacting pricing. ZeroEyes estimates that most schools pay $60 per camera monthly. Bigger contracts can discount costs. In Kansas, a statewide initiative equipping 25 cameras at 1,300 schools with ZeroEyes was reportedly estimated to cost $8.5 million annually. Doubling the number of cameras didn’t provide much savings, though, with ZeroEyes looking to charge $15.2 million annually to expand coverage.

To critics, it appears that ZeroEyes is attempting to corner the market on AI school security, standing to profit off schools’ fears of shootings, while showing little proof of the true value of its systems. Last year, ZeroEyes reported its revenue grew 300 percent year over year from 2023 to 2024, after assisting in “more than ten arrests through its thousands of detections, verifications, and notifications to end users and law enforcement.”

Curt Lavarello, the executive director of the School Safety Advocacy Council, told the ABC News affiliate that “all of this technology is very, very expensive,” considering that “a lot of products … may not necessarily do what they’re being sold to do.”

Another problem, according to experts who have responded to some of the country’s deadliest school shootings, is that while ZeroEyes’ human reviewers can alert police in “seconds,” police response can often take “several minutes.” That delay could diminish ZeroEyes’ impact, one expert suggested, noting that at an Oregon school he responded to, there was a shooter who “shot 25 people in 60 seconds,” StateScoop reported.

In Seminole County, where the clarinet incident happened, ZeroEyes has been used since 2021, but SCPS would not confirm if any guns have ever been detected to justify next year’s desired expansion. It’s possible that SCPS has this information, as Sen. Truenow noted in his funding request that ZeroEyes can share reports with schools “to measure the effectiveness of the ZeroEyes deployment” by reporting on “how many guns were detected and alerted on campus.”

ZeroEyes’ spokesperson told Ars that “trained former law enforcement and military make split-second, life-or-death decisions about whether the threat is real,” which is supposed to help reduce false positives that could become more common as SCPS adds ZeroEyes to many more cameras.

Amanda Klinger, the director of operations at the Educator’s School Safety Network, told the Post that too many false alarms could carry two risks. First, more students could be put in dangerous situations when police descend on schools where they anticipate confronting an active shooter. And second, cops may become fatigued by false alarms, perhaps failing to respond with urgency over time. For students, when AI labels them as suspects, it can also be invasive and humiliating, reports noted.

“We have to be really clear-eyed about what are the limitations of these technologies,” Klinger said.

Photo of Ashley Belanger

Ashley is a senior policy reporter for Ars Technica, dedicated to tracking social impacts of emerging policies and new technologies. She is a Chicago-based journalist with 20 years of experience.

School security AI flagged clarinet as a gun. Exec says it wasn’t an error. Read More »

google-releases-gemini-3-flash,-promising-improved-intelligence-and-efficiency

Google releases Gemini 3 Flash, promising improved intelligence and efficiency

Google began its transition to Gemini 3 a few weeks ago with the launch of the Pro model, and the arrival of Gemini 3 Flash kicks it into high gear. The new, faster Gemini 3 model is coming to the Gemini app and search, and developers will be able to access it immediately via the Gemini API, Vertex AI, AI Studio, and Antigravity. Google’s bigger gen AI model is also picking up steam, with both Gemini 3 Pro and its image component (Nano Banana Pro) expanding in search.

This may come as a shock, but Google says Gemini 3 Flash is faster and more capable than its previous base model. As usual, Google has a raft of benchmark numbers that show modest improvements for the new model. It bests the old 2.5 Flash in basic academic and reasoning tests like GPQA Diamond and MMMU Pro (where it even beats 3 Pro). It gets a larger boost in Humanity’s Last Exam (HLE), which tests advanced domain-specific knowledge. Gemini 3 Flash has tripled the old models’ score in HLE, landing at 33.7 percent without tool use. That’s just a few points behind the Gemini 3 Pro model.

Gemini HLE test

Credit: Google

Google is talking up Gemini 3 Flash’s coding skills, and the provided benchmarks seem to back that talk up. Over the past year, Google has mostly pushed its Pro models as the best for generating code, but 3 Flash has done a lot of catching up. In the popular SWE-Bench Verified test, Gemini 3 Flash has gained almost 20 points on the 2.5 branch.

The new model is also a lot less likely to get general-knowledge questions wrong. In the Simple QA Verified test, Gemini 3 Flash scored 68.7 percent, which is only a little below Gemini 3 Pro. The last Flash model scored just 28.1 percent on that test. At least as far as the evaluation scores go, Gemini 3 Flash performs much closer to Google’s Pro model versus the older 2.5 family. At the same time, it’s considerably more efficient, according to Google.

One of Gemini 3 Pro’s defining advances was its ability to generate interactive simulations and multimodal content. Gemini 3 Flash reportedly retains that underlying capability. Gemini 3 Flash offers better performance than Gemini 2.5 Pro did, but it runs workloads three times faster. It’s also a lot cheaper than the Pro models if you’re paying per token. One million input tokens for 3 Flash will run devs $0.50, and a million output tokens will cost $3. However, that’s an increase compared to Gemini 2.5 Flash input and output at $0.30 and $2.50, respectively. The Pro model’s tokens are $2 (1M input) and $12 (1M output).

Google releases Gemini 3 Flash, promising improved intelligence and efficiency Read More »

google-translate-expands-live-translation-to-all-earbuds-on-android

Google Translate expands live translation to all earbuds on Android

Gemini text translation

Translate can now use Gemini to interpret the meaning of a phrase rather than simply translating each word.

Credit: Google

Translate can now use Gemini to interpret the meaning of a phrase rather than simply translating each word. Credit: Google

Regardless of whether you’re using live translate or just checking a single phrase, Google claims the Gemini-powered upgrade will serve you well. Google Translate is now apparently better at understanding the nuance of languages, with an awareness of idioms and local slang. Google uses the example of “stealing my thunder,” which wouldn’t make a lick of sense when translated literally into other languages. The new translation model, which is also available in the search-based translation interface, supports over 70 languages.

Google also debuted language-learning features earlier this year, borrowing a page from educational apps like Duolingo. You can tell the app your skill level with a language, as well as whether you need help with travel-oriented conversations or more everyday interactions. The app uses this to create tailored listening and speaking exercises.

AI Translate learning

The Translate app’s learning tools are getting better.

Credit: Google

The Translate app’s learning tools are getting better. Credit: Google

With this big update, Translate will be more of a stickler about your pronunciation. Google promises more feedback and tips based on your spoken replies in the learning modules. The app will also now keep track of how often you complete language practice, showing your daily streak in the app.

If “number go up” will help you learn more, then this update is for you. Practice mode is also launching in almost 20 new countries, including Germany, India, Sweden, and Taiwan.

Google Translate expands live translation to all earbuds on Android Read More »

disney-says-google-ai-infringes-copyright-“on-a-massive-scale”

Disney says Google AI infringes copyright “on a massive scale”

While Disney wants its characters out of Google AI generally, the letter specifically cited the AI tools in YouTube. Google has started adding its Veo AI video model to YouTube, allowing creators to more easily create and publish videos. That seems to be a greater concern for Disney than image models like Nano Banana.

Google has said little about Disney’s warning—a warning Google must have known was coming. A Google spokesperson has issued the following brief statement on the mater.

“We have a longstanding and mutually beneficial relationship with Disney, and will continue to engage with them,” Google says. “More generally, we use public data from the open web to build our AI and have built additional innovative copyright controls like Google-extended and Content ID for YouTube, which give sites and copyright holders control over their content.”

Perhaps this is previewing Google’s argument in a theoretical lawsuit. That copyrighted Disney content was all over the open internet, so is it really Google’s fault it ended up baked into the AI?

Content silos for AI

The generative AI boom has treated copyright as a mere suggestion as companies race to gobble up training data and remix it as “new” content. A cavalcade of companies, including The New York Times and Getty Images, have sued over how their material has been used and replicated by AI. Disney itself threatened a lawsuit against Character.AI earlier this year, leading to the removal of Disney content from the service.

Google isn’t Character.AI, though. It’s probably no coincidence that Disney is challenging Google at the same time it is entering into a content deal with OpenAI. Disney has invested $1 billion in the AI firm and agreed to a three-year licensing deal that officially brings Disney characters to OpenAI’s Sora video app. The specifics of that arrangement are still subject to negotiations.

Disney says Google AI infringes copyright “on a massive scale” Read More »

big-tech-joins-forces-with-linux-foundation-to-standardize-ai-agents

Big Tech joins forces with Linux Foundation to standardize AI agents

Big Tech has spent the past year telling us we’re living in the era of AI agents, but most of what we’ve been promised is still theoretical. As companies race to turn fantasy into reality, they’ve developed a collection of tools to guide the development of generative AI. A cadre of major players in the AI race, including Anthropic, Block, and OpenAI, has come together to promote interoperability with the newly formed Agentic AI Foundation (AAIF). This move elevates a handful of popular technologies and could make them a de facto standard for AI development going forward.

The development path for agentic AI models is cloudy to say the least, but companies have invested so heavily in creating these systems that some tools have percolated to the surface. The AAIF, which is part of the nonprofit Linux Foundation, has been launched to govern the development of three key AI technologies: Model Context Protocol (MCP), goose, and AGENTS.md.

MCP is probably the most well-known of the trio, having been open-sourced by Anthropic a year ago. The goal of MCP is to link AI agents to data sources in a standardized way—Anthropic (and now the AAIF) is fond of calling MCP a “USB-C port for AI.” Rather than creating custom integrations for every different database or cloud storage platform, MCP allows developers to quickly and easily connect to any MCP-compliant server.

Since its release, MCP has been widely used across the AI industry. Google announced at I/O 2025 that it was adding support for MCP in its dev tools, and many of its products have since added MCP servers to make data more accessible to agents. OpenAI also adopted MCP just a few months after it was released.

mcp simple diagram

Credit: Anthropic

Expanding use of MCP might help users customize their AI experience. For instance, the new Pebble Index 01 ring uses a local LLM that can act on your voice notes, and it supports MCP for user customization.

Local AI models have to make some sacrifices compared to bigger cloud-based models, but MCP can fill in the functionality gaps. “A lot of tasks on productivity and content are fully doable on the edge,” Qualcomm head of AI products, Vinesh Sukumar, tells Ars. “With MCP, you have a handshake with multiple cloud service providers for any kind of complex task to be completed.”

Big Tech joins forces with Linux Foundation to standardize AI agents Read More »

pebble-maker-announces-index-01,-a-smart-ish-ring-for-under-$100

Pebble maker announces Index 01, a smart-ish ring for under $100

Nearly a decade after Pebble’s nascent smartwatch empire crumbled, the brand is staging a comeback with new wearables. The Pebble Core Duo 2 and Core Time 2 are a natural evolution of the company’s low-power smartwatch designs, but its next wearable is something different. The Index 01 is a ring, but you probably shouldn’t call it a smart ring. The Index does just one thing—capture voice notes—but the firm says it does that one thing extremely well.

Most of today’s smart rings offer users the ability to track health stats, along with various minor smartphone integrations. With all the sensors and data collection, these devices can cost as much as a smartwatch and require frequent charging. The Index 01 doesn’t do any of that. It contains a Bluetooth radio, a microphone, a hearing aid battery, and a physical button. You press the button, record your note, and that’s it. The company says the Index 01 will run for years on a charge and will cost just $75 during the preorder period. After that, it will go up to $99.

Core Devices, the new home of Pebble, says the Index is designed to be worn on your index finger (get it?), where you can easily mash the device’s button with your thumb. Unlike recording notes with a phone or smartwatch, you don’t need both hands to create voice notes with the Index.

The ring’s lone physical control is tactile, ensuring you’ll know when it’s activated and recording. When you’re done talking, just release the button. If that button is not depressed, the ring won’t record audio for any reason. The company apparently worked to ensure this process is 100 percent reliable—it only does one thing, so it really has to do it well.

Index 01 holding bag

The ring is designed to be worn on the index finger so the button can be pressed with your thumb.

Credit: Core Devices

The ring is designed to be worn on the index finger so the button can be pressed with your thumb. Credit: Core Devices

A smart ring usually needs to be recharged every few days, but you will never recharge the Index. The idea is that since you never have to take it off to charge, using the Index 01 “becomes muscle memory.” The integrated battery will power the device for 12–14 total hours of recording. The designers estimate that to be roughly two years of usage if you record 10 to 20 short voice notes per day. And what happens when the battery runs out? You just send the ring back to be recycled.

Pebble maker announces Index 01, a smart-ish ring for under $100 Read More »

the-npu-in-your-phone-keeps-improving—why-isn’t-that-making-ai-better?

The NPU in your phone keeps improving—why isn’t that making AI better?


Shrinking AI for your phone is no simple matter.

npu phone

The NPU in your phone might not be doing very much. Credit: Aurich Lawson | Getty Images

The NPU in your phone might not be doing very much. Credit: Aurich Lawson | Getty Images

Almost every technological innovation of the past several years has been laser-focused on one thing: generative AI. Many of these supposedly revolutionary systems run on big, expensive servers in a data center somewhere, but at the same time, chipmakers are crowing about the power of the neural processing units (NPU) they have brought to consumer devices. Every few months, it’s the same thing: This new NPU is 30 or 40 percent faster than the last one. That’s supposed to let you do something important, but no one really gets around to explaining what that is.

Experts envision a future of secure, personal AI tools with on-device intelligence, but does that match the reality of the AI boom? AI on the “edge” sounds great, but almost every AI tool of consequence is running in the cloud. So what’s that chip in your phone even doing?

What is an NPU?

Companies launching a new product often get bogged down in superlatives and vague marketing speak, so they do a poor job of explaining technical details. It’s not clear to most people buying a phone why they need the hardware to run AI workloads, and the supposed benefits are largely theoretical.

Many of today’s flagship consumer processors are systems-on-a-chip (SoC) because they incorporate multiple computing elements—like CPU cores, GPUs, and imaging controllers—on a single piece of silicon. This is true of mobile parts like Qualcomm’s Snapdragon or Google’s Tensor, as well as PC components like the Intel Core Ultra.

The NPU is a newer addition to chips, but it didn’t just appear one day—there’s a lineage that brought us here. NPUs are good at what they do because they emphasize parallel computing, something that’s also important in other SoC components.

Qualcomm devotes significant time during its new product unveilings to talk about its Hexagon NPUs. Keen observers may recall that this branding has been reused from the company’s line of digital signal processors (DSPs), and there’s a good reason for that.

“Our journey into AI processing started probably 15 or 20 years ago, wherein our first anchor point was looking at signal processing,” said Vinesh Sukumar, Qualcomm’s head of AI products. DSPs have a similar architecture compared to NPUs, but they’re much simpler, with a focus on processing audio (e.g., speech recognition) and modem signals.

Qualcomm chip design NPU

The NPU is one of multiple components in modern SoCs.

Credit: Qualcomm

The NPU is one of multiple components in modern SoCs. Credit: Qualcomm

As the collection of technologies we refer to as “artificial intelligence” developed, engineers began using DSPs for more types of parallel processing, like long short-term memory (LSTM). Sukumar explained that as the industry became enamored with convolutional neural networks (CNNs), the technology underlying applications like computer vision, DSPs became focused on matrix functions, which are essential to generative AI processing as well.

While there is an architectural lineage here, it’s not quite right to say NPUs are just fancy DSPs. “If you talk about DSPs in the general term of the word, yes, [an NPU] is a digital signal processor,” said MediaTek Assistant Vice President Mark Odani. “But it’s all come a long way and it’s a lot more optimized for parallelism, how the transformers work, and holding huge numbers of parameters for processing.”

Despite being so prominent in new chips, NPUs are not strictly necessary for running AI workloads on the “edge,” a term that differentiates local AI processing from cloud-based systems. CPUs are slower than NPUs but can handle some light workloads without using as much power. Meanwhile, GPUs can often chew through more data than an NPU, but they use more power to do it. And there are times you may want to do that, according to Qualcomm’s Sukumar. For example, running AI workloads while a game is running could favor the GPU.

“Here, your measurement of success is that you cannot drop your frame rate while maintaining the spatial resolution, the dynamic range of the pixel, and also being able to provide AI recommendations for the player within that space,” says Sukumar. “In this kind of use case, it actually makes sense to run that in the graphics engine, because then you don’t have to keep shifting between the graphics and a domain-specific AI engine like an NPU.”

Livin’ on the edge is hard

Unfortunately, the NPUs in many devices sit idle (and not just during gaming). The mix of local versus cloud AI tools favors the latter because that’s the natural habitat of LLMs. AI models are trained and fine-tuned on powerful servers, and that’s where they run best.

A server-based AI, like the full-fat versions of Gemini and ChatGPT, is not resource-constrained like a model running on your phone’s NPU. Consider the latest version of Google’s on-device Gemini Nano model, which has a context window of 32k tokens. That is a more than 2x improvement over the last version. However, the cloud-based Gemini models have context windows of up to 1 million tokens, meaning they can process much larger volumes of data.

Both cloud-based and edge AI hardware will continue getting better, but the balance may not shift in the NPU’s favor. “The cloud will always have more compute resources versus a mobile device,” said Google’s Shenaz Zack, senior product manager on the Pixel team.

“If you want the most accurate models or the most brute force models, that all has to be done in the cloud,” Odani said. “But what we’re finding is that, in a lot of the use cases where there’s just summarizing some text or you’re talking to your voice assistant, a lot of those things can fit within three billion parameters.”

Squeezing AI models onto a phone or laptop involves some compromise—for example, by reducing the parameters included in the model. Odani explained that cloud-based models run hundreds of billions of parameters, the weighting that determines how a model processes input tokens to generate outputs. You can’t run anything like that on a consumer device right now, so developers have to vastly scale back the size of models for the edge. Odani says MediaTek’s latest ninth-generation NPU can handle about 3 billion parameters—a difference of several orders of magnitude.

The amount of memory available in a phone or laptop is also a limiting factor, so mobile-optimized AI models are usually quantized. That means the model’s estimation of the next token runs with less precision. Let’s say you want to run one of the larger open models, like Llama or Gemma 7b, on your device. The de facto standard is FP16, known as half-precision. At that level, a model with 7 billion parameters will lock up 13 or 14 gigabytes of memory. Stepping down to FP4 (quarter-precision) brings the size of the model in memory to a few gigs.

“When you compress to, let’s say, between three and four gigabytes, it’s a sweet spot for integration into memory constrained form factors like a smartphone,” Sukumar said. “And there’s been a lot of investment in the ecosystem and at Qualcomm to look at various ways of compressing the models without losing quality.”

It’s difficult to create a generalized AI with these limitations for mobile devices, but computers—and especially smartphones—are a wellspring of data that can be pumped into models to generate supposedly helpful outputs. That’s why most edge AI is geared toward specific, narrow use cases, like analyzing screenshots or suggesting calendar appointments. Google says its latest Pixel phones run more than 100 AI models, both generative and traditional.

Even AI skeptics can recognize that the landscape is changing quickly. In the time it takes to shrink and optimize AI models for a phone or laptop, new cloud models may appear that make that work obsolete. This is also why third-party developers have been slow to utilize NPU processing in apps. They either have to plug into an existing on-device model, which involves restrictions and rapidly moving development targets, or deploy their own custom models. Neither is a great option currently.

A matter of trust

If the cloud is faster and easier, why go to the trouble of optimizing for the edge and burning more power with an NPU? Leaning on the cloud means accepting a level of dependence and trust in the people operating AI data centers that may not always be appropriate.

“We always start off with user privacy as an element,” said Qualcomm’s Sukumar. He explained that the best inference is not general in nature—it’s personalized based on the user’s interests and what’s happening in their lives. Fine-tuning models to deliver that experience calls for personal data, and it’s safer to store and process that data locally.

Even when companies say the right things about privacy in their cloud services, they’re far from guarantees. The helpful, friendly vibe of general chatbots also encourages people to divulge a lot of personal information, and if that assistant is running in the cloud, your data is there as well. OpenAI’s copyright fight with The New York Times could lead to millions of private chats being handed over to the publisher. The explosive growth and uncertain regulatory framework of gen AI make it hard to know what’s going to happen to your data.

“People are using a lot of these generative AI assistants like a therapist,” Odani said. “And you don’t know one day if all this stuff is going to come out on the Internet.”

Not everyone is so concerned. Zack claims Google has built “the world’s most secure cloud infrastructure,” allowing it to process data where it delivers the best results. Zack uses Video Boost and Pixel Studio as examples of this approach, noting that Google’s cloud is the only way to make these experiences fast and high-quality. The company recently announced its new Private AI Compute system, which it claims is just as safe as local AI.

Even if that’s true, the edge has other advantages—edge AI is just more reliable than a cloud service. “On-device is fast,” Odani said. “Sometimes I’m talking to ChatGPT and my Wi-Fi goes out or whatever, and it skips a beat.”

The services hosting cloud-based AI models aren’t just a single website—the Internet of today is massively interdependent, with content delivery networks, DNS providers, hosting, and other services that could degrade or shut down your favorite AI in the event of a glitch. When Cloudflare suffered a self-inflicted outage recently, ChatGPT users were annoyed to find their trusty chatbot was unavailable. Local AI features don’t have that drawback.

Cloud dominance

Everyone seems to agree that a hybrid approach is necessary to deliver truly useful AI features (assuming those exist), sending data to more powerful cloud services when necessary—Google, Apple, and every other phone maker does this. But the pursuit of a seamless experience can also obscure what’s happening with your data. More often than not, the AI features on your phone aren’t running in a secure, local way, even when the device has the hardware to do that.

Take, for example, the new OnePlus 15. This phone has Qualcomm’s brand-new Snapdragon 8 Elite Gen 5, which has an NPU that is 37 percent faster than the last one, for whatever that’s worth. Even with all that on-device AI might, OnePlus is heavily reliant on the cloud to analyze your personal data. Features like AI Writer and the AI Recorder connect to the company’s servers for processing, a system OnePlus assures us is totally safe and private.

Similarly, Motorola released a new line of foldable Razr phones over the summer that are loaded with AI features from multiple providers. These phones can summarize your notifications using AI, but you might be surprised how much of it happens in the cloud unless you read the terms and conditions. If you buy the Razr Ultra, that summarization happens on your phone. However, the cheaper models with less RAM and NPU power use cloud services to process your notifications. Again, Motorola says this system is secure, but a more secure option would have been to re-optimize the model for its cheaper phones.

Even when an OEM focuses on using the NPU hardware, the results can be lacking. Look at Google’s Daily Hub and Samsung’s Now Brief. These features are supposed to chew through all the data on your phone and generate useful recommendations and actions, but they rarely do anything aside from showing calendar events. In fact, Google has temporarily removed Daily Hub from Pixels because the feature did so little, and Google is a pioneer in local AI with Gemini Nano. Google has actually moved some parts of its mobile AI experience from local to cloud-based processing in recent months.

Those “brute force” models appear to be winning, and it doesn’t hurt that companies also get more data when you interact with their private computing cloud services.

Maybe take what you can get?

There’s plenty of interest in local AI, but so far, that hasn’t translated to an AI revolution in your pocket. Most of the AI advances we’ve seen so far depend on the ever-increasing scale of cloud systems and the generalized models that run there. Industry experts say that extensive work is happening behind the scenes to shrink AI models to work on phones and laptops, but it will take time for that to make an impact.

In the meantime, local AI processing is out there in a limited way. Google still makes use of the Tensor NPU to handle sensitive data for features like Magic Cue, and Samsung really makes the most of Qualcomm’s AI-focused chipsets. While Now Brief is of questionable utility, Samsung is cognizant of how reliance on the cloud may impact users, offering a toggle in the system settings that restricts AI processing to run only on the device. This limits the number of available AI features, and others don’t work as well, but you’ll know none of your personal data is being shared. No one else offers this option on a smartphone.

Galaxy AI toggle

Samsung offers an easy toggle to disable cloud AI and run all workloads on-device.

Credit: Ryan Whitwam

Samsung offers an easy toggle to disable cloud AI and run all workloads on-device. Credit: Ryan Whitwam

Samsung spokesperson Elise Sembach said the company’s AI efforts are grounded in enhancing experiences while maintaining user control. “The on-device processing toggle in One UI reflects this approach. It gives users the option to process AI tasks locally for faster performance, added privacy, and reliability even without a network connection,” Sembach said.

Interest in edge AI might be a good thing even if you don’t use it. Planning for this AI-rich future can encourage device makers to invest in better hardware—like more memory to run all those theoretical AI models.

“We definitely recommend our partners increase their RAM capacity,” said Sukumar. Indeed, Google, Samsung, and others have boosted memory capacity in large part to support on-device AI. Even if the cloud is winning, we’ll take the extra RAM.

Photo of Ryan Whitwam

Ryan Whitwam is a senior technology reporter at Ars Technica, covering the ways Google, AI, and mobile technology continue to change the world. Over his 20-year career, he’s written for Android Police, ExtremeTech, Wirecutter, NY Times, and more. He has reviewed more phones than most people will ever own. You can follow him on Bluesky, where you will see photos of his dozens of mechanical keyboards.

The NPU in your phone keeps improving—why isn’t that making AI better? Read More »

google-unveils-gemini-3-ai-model-and-ai-first-ide-called-antigravity

Google unveils Gemini 3 AI model and AI-first IDE called Antigravity


Google’s flagship AI model is getting its second major upgrade this year.

Google has kicked its Gemini rollout into high gear over the past year, releasing the much-improved Gemini 2.5 family and cramming various flavors of the model into Search, Gmail, and just about everything else the company makes.

Now, Google’s increasingly unavoidable AI is getting an upgrade. Gemini 3 Pro is available in a limited form today, featuring more immersive, visual outputs and fewer lies, Google says. The company also says Gemini 3 sets a new high-water mark for vibe coding, and Google is announcing a new AI-first integrated development environment (IDE) called Antigravity, which is also available today.

The first member of the Gemini 3 family

Google says the release of Gemini 3 is yet another step toward artificial general intelligence (AGI). The new version of Google’s flagship AI model has expanded simulated reasoning abilities and shows improved understanding of text, images, and video. So far, testers like it—Google’s latest LLM is once again atop the LMArena leaderboard with an ELO score of 1,501, besting Gemini 2.5 Pro by 50 points.

Gemini 3 LMArena

Credit: Google

Factuality has been a problem for all gen AI models, but Google says Gemini 3 is a big step in the right direction, and there are myriad benchmarks to tell the story. In the 1,000-question SimpleQA Verified test, Gemini 3 scored a record 72.1 percent. Yes, that means the state-of-the-art LLM still screws up almost 30 percent of general knowledge questions, but Google says this still shows substantial progress. On the much more difficult Humanity’s Last Exam, which tests PhD-level knowledge and reasoning, Gemini set another record, scoring 37.5 percent without tool use.

Math and coding are also a focus of Gemini 3. The model set new records in MathArena Apex (23.4 percent) and WebDev Arena (1487 ELO). In the SWE-bench Verified, which tests a model’s ability to generate code, Gemini 3 hit an impressive 76.2 percent.

So there are plenty of respectable but modest benchmark improvements, but Gemini 3 also won’t make you cringe as much. Google says it has tamped down on sycophancy, a common problem in all these overly polite LLMs. Outputs from Gemini 3 Pro are reportedly more concise, with less of what you want to hear and more of what you need to hear.

You can also expect Gemini 3 Pro to produce noticeably richer outputs. Google claims Gemini’s expanded reasoning capabilities keep it on task more effectively, allowing it to take action on your behalf. For example, Gemini 3 can triage and take action on your emails, creating to-do lists, summaries, recommended replies, and handy buttons to trigger suggested actions. This differs from the current Gemini models, which would only create a text-based to-do list with similar prompts.

The model also has what Google calls a “generative interface,” which comes in the form of two experimental output modes called visual layout and dynamic view. The former is a magazine-style interface that includes lots of images in a scrollable UI. Dynamic view leverages Gemini’s coding abilities to create custom interfaces—for example, a web app that explores the life and work of Vincent Van Gogh.

There will also be a Deep Think mode for Gemini 3, but that’s not ready for prime time yet. Google says it’s being tested by a small group for later release, but you should expect big things. Deep Think mode manages 41 percent in Humanity’s Last Exam without tools. Believe it or not, that’s an impressive score.

Coding with vibes

Google has offered several ways of generating and modifying code with Gemini models, but the launch of Gemini 3 adds a new one: Google Antigravity. This is Google’s new agentic development platform—it’s essentially an IDE designed around agentic AI, and it’s available in preview today.

With Antigravity, Google promises that you (the human) can get more work done by letting intelligent agents do the legwork. Google says you should think of Antigravity as a “mission control” for creating and monitoring multiple development agents. The AI in Antigravity can operate autonomously across the editor, terminal, and browser to create and modify projects, but everything they do is relayed to the user in the form of “Artifacts.” These sub-tasks are designed to be easily verifiable so you can keep on top of what the agent is doing. Gemini will be at the core of the Antigravity experience, but it’s not just Google’s bot. Antigravity also supports Claude Sonnet 4.5 and GPT-OSS agents.

Of course, developers can still plug into the Gemini API for coding tasks. With Gemini 3, Google is adding a client-side bash tool, which lets the AI generate shell commands in its workflow. The model can access file systems and automate operations, and a server-side bash tool will help generate code in multiple languages. This feature is starting in early access, though.

AI Studio is designed to be a faster way to build something with Gemini 3. Google says Gemini 3 Pro’s strong instruction following makes it the best vibe coding model yet, allowing non-programmers to create more complex projects.

A big experiment

Google will eventually have a whole family of Gemini 3 models, but there’s just the one for now. Gemini 3 Pro is rolling out in the Gemini app, AI Studio, Vertex AI, and the API starting today as an experiment. If you want to tinker with the new model in Google’s Antigravity IDE, that’s also available for testing today on Windows, Mac, and Linux.

Gemini 3 will also launch in the Google search experience on day one. You’ll have the option to enable Gemini 3 Pro in AI Mode, where Google says it will provide more useful information about a query. The generative interface capabilities from the Gemini app will be available here as well, allowing Gemini to create tools and simulations when appropriate to answer the user’s question. Google says these generative interfaces are strongly preferred in its user testing. This feature is available today, but only for AI Pro and Ultra subscribers.

Because the Pro model is the only Gemini 3 variant available in the preview, AI Overviews isn’t getting an immediate upgrade. That will come, but for now, Overviews will only reach out to Gemini 3 Pro for especially difficult search queries—basically the kind of thing Google thinks you should have used AI Mode to do in the first place.

There’s no official timeline for releasing more Gemini 3 models or graduating the Pro variant to general availability. However, given the wide rollout of the experimental release, it probably won’t be long.

Photo of Ryan Whitwam

Ryan Whitwam is a senior technology reporter at Ars Technica, covering the ways Google, AI, and mobile technology continue to change the world. Over his 20-year career, he’s written for Android Police, ExtremeTech, Wirecutter, NY Times, and more. He has reviewed more phones than most people will ever own. You can follow him on Bluesky, where you will see photos of his dozens of mechanical keyboards.

Google unveils Gemini 3 AI model and AI-first IDE called Antigravity Read More »

google-announces-even-more-ai-in-photos-app,-powered-by-nano-banana

Google announces even more AI in Photos app, powered by Nano Banana

We’re running out of ways to tell you that Google is releasing more generative AI features, but that’s what’s happening in Google Photos today. The Big G is finally making good on its promise to add its market-leading Nano Banana image-editing model to the app. The model powers a couple of features, and it’s not just for Google’s Android platform. Nano Banana edits are also coming to the iOS version of the app.

Nano Banana started making waves when it appeared earlier this year as an unbranded demo. You simply feed the model an image and tell it what edits you want to see. Google said Nano Banana was destined for the Photos app back in October, but it’s only now beginning the rollout. The Photos app already had conversational editing in the “Help Me Edit” feature, but it was running an older non-fruit model that produced inferior results. Nano Banana editing will produce AI slop, yes, but it’s better slop.

Nano Banana in Help me edit

Google says the updated Help Me Edit feature has access to your private face groups, so you can use names in your instructions. For example, you could type “Remove Riley’s sunglasses,” and Nano Banana will identify Riley in the photo (assuming you have a person of that name saved) and make the edit without further instructions. You can also ask for more fantastical edits in Help Me Edit, changing the style of the image from top to bottom.

Google announces even more AI in Photos app, powered by Nano Banana Read More »