Biz & IT

google-plans-secret-ai-military-outpost-on-tiny-island-overrun-by-crabs

Google plans secret AI military outpost on tiny island overrun by crabs

Christmas Island Shire President Steve Pereira told Reuters that the council is examining community impacts before approving construction. “There is support for it, providing this data center actually does put back into the community with infrastructure, employment, and adding economic value to the island,” Pereira said.

That’s great, but what about the crabs?

Christmas Island’s annual crab migration is a natural phenomenon that Sir David Attenborough reportedly once described as one of his greatest TV moments when he visited the site in 1990.

Every year, millions of crabs emerge from the forest and swarm across roads, streams, rocks, and beaches to reach the ocean, where each female can produce up to 100,000 eggs. The tiny baby crabs that survive take about nine days to march back inland to the safety of the plateau.

While Google is seeking environmental approvals for its subsea cables, the timing could prove delicate for Christmas Island’s most famous residents. According to Parks Australia, the island’s annual red crab migration has already begun for 2025, with a major spawning event expected in just a few weeks, around November 15–16.

During peak migration times, sections of roads close at short notice as crabs move between forest and sea, and the island has built special crab bridges over roads to protect the migrating masses.

Parks Australia notes that while the migration happens annually, few baby crabs survive the journey from sea to forest most years, as they’re often eaten by fish, manta rays, and whale sharks. The successful migrations that occur only once or twice per decade (when large numbers of babies actually survive) are critical for maintaining the island’s red crab population.

How Google’s facility might coexist with 100 million marching crustaceans remains to be seen. But judging by the size of the event, it seems clear that it’s the crab’s world, and we’re just living in it.

Google plans secret AI military outpost on tiny island overrun by crabs Read More »

5-ai-developed-malware-families-analyzed-by-google-fail-to-work-and-are-easily-detected

5 AI-developed malware families analyzed by Google fail to work and are easily detected

The assessments provide a strong counterargument to the exaggerated narratives being trumpeted by AI companies, many seeking new rounds of venture funding, that AI-generated malware is widespread and part of a new paradigm that poses a current threat to traditional defenses.

A typical example is Anthropic, which recently reported its discovery of a threat actor that used its Claude LLM to “develop, market, and distribute several variants of ransomware, each with advanced evasion capabilities, encryption, and anti-recovery mechanisms.” The company went on to say: “Without Claude’s assistance, they could not implement or troubleshoot core malware components, like encryption algorithms, anti-analysis techniques, or Windows internals manipulation.”

Startup ConnectWise recently said that generative AI was “lowering the bar of entry for threat actors to get into the game.” The post cited a separate report from OpenAI that found 20 separate threat actors using its ChatGPT AI engine to develop malware for tasks including identifying vulnerabilities, developing exploit code, and debugging that code. BugCrowd, meanwhile, said that in a survey of self-selected individuals, “74 percent of hackers agree that AI has made hacking more accessible, opening the door for newcomers to join the fold.”

In some cases, the authors of such reports note the same limitations noted in this article. Wednesday’s report from Google says that in its analysis of AI tools used to develop code for managing command-and-control channels and obfuscating its operations “we did not see evidence of successful automation or any breakthrough capabilities.” OpenAI said much the same thing. Still, these disclaimers are rarely made prominently and are often downplayed in the resulting frenzy to portray AI-assisted malware as posing a near-term threat.

Google’s report provides at least one other useful finding. One threat actor that exploited the company’s Gemini AI model was able to bypass its guardrails by posing as white-hat hackers doing research for participation in a capture-the-flag game. These competitive exercises are designed to teach and demonstrate effective cyberattack strategies to both participants and onlookers.

Such guardrails are built into all mainstream LLMs to prevent them from being used maliciously, such as in cyberattacks and self-harm. Google said it has since better fine-tuned the countermeasure to resist such ploys.

Ultimately, the AI-generated malware that has surfaced to date suggests that it’s mostly experimental, and the results aren’t impressive. The events are worth monitoring for developments that show AI tools producing new capabilities that were previously unknown. For now, though, the biggest threats continue to predominantly rely on old-fashioned tactics.

5 AI-developed malware families analyzed by Google fail to work and are easily detected Read More »

openai-signs-massive-ai-compute-deal-with-amazon

OpenAI signs massive AI compute deal with Amazon

On Monday, OpenAI announced it has signed a seven-year, $38 billion deal to buy cloud services from Amazon Web Services to power products like ChatGPT and Sora. It’s the company’s first big computing deal after a fundamental restructuring last week that gave OpenAI more operational and financial freedom from Microsoft.

The agreement gives OpenAI access to hundreds of thousands of Nvidia graphics processors to train and run its AI models. “Scaling frontier AI requires massive, reliable compute,” OpenAI CEO Sam Altman said in a statement. “Our partnership with AWS strengthens the broad compute ecosystem that will power this next era and bring advanced AI to everyone.”

OpenAI will reportedly use Amazon Web Services immediately, with all planned capacity set to come online by the end of 2026 and room to expand further in 2027 and beyond. Amazon plans to roll out hundreds of thousands of chips, including Nvidia’s GB200 and GB300 AI accelerators, in data clusters built to power ChatGPT’s responses, generate AI videos, and train OpenAI’s next wave of models.

Wall Street apparently liked the deal, because Amazon shares hit an all-time high on Monday morning. Meanwhile, shares for long-time OpenAI investor and partner Microsoft briefly dipped following the announcement.

Massive AI compute requirements

It’s no secret that running generative AI models for hundreds of millions of people currently requires a lot of computing power. Amid chip shortages over the past few years, finding sources of that computing muscle has been tricky. OpenAI is reportedly working on its own GPU hardware to help alleviate the strain.

But for now, the company needs to find new sources of Nvidia chips, which accelerate AI computations. Altman has previously said that the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources, an amount that is enough to roughly power 25 million US homes, according to Reuters.

OpenAI signs massive AI compute deal with Amazon Read More »

two-windows-vulnerabilities,-one-a-0-day,-are-under-active-exploitation

Two Windows vulnerabilities, one a 0-day, are under active exploitation

Two Windows vulnerabilities—one a zero-day that has been known to attackers since 2017 and the other a critical flaw that Microsoft initially tried and failed to patch recently—are under active exploitation in widespread attacks targeting a swath of the Internet, researchers say.

The zero-day went undiscovered until March, when security firm Trend Micro said it had been under active exploitation since 2017, by as many as 11 separate advanced persistent threats (APTs). These APT groups, often with ties to nation-states, relentlessly attack specific individuals or groups of interest. Trend Micro went on to say that the groups were exploiting the vulnerability, then tracked as ZDI-CAN-25373, to install various known post-exploitation payloads on infrastructure located in nearly 60 countries, with the US, Canada, Russia, and Korea being the most common.

A large-scale, coordinated operation

Seven months later, Microsoft still hasn’t patched the vulnerability, which stems from a bug in the Windows Shortcut binary format. The Windows component makes opening apps or accessing files easier and faster by allowing a single binary file to invoke them without having to navigate to their locations. In recent months, the ZDI-CAN-25373 tracking designation has been changed to CVE-2025-9491.

On Thursday, security firm Arctic Wolf reported that it observed a China-aligned threat group, tracked as UNC-6384, exploiting CVE-2025-9491 in attacks against various European nations. The final payload is a widely used remote access trojan known as PlugX. To better conceal the malware, the exploit keeps the binary file encrypted in the RC4 format until the final step in the attack.

“The breadth of targeting across multiple European nations within a condensed timeframe suggests either a large-scale coordinated intelligence collection operation or deployment of multiple parallel operational teams with shared tooling but independent targeting,” Arctic Wolf said. “The consistency in tradecraft across disparate targets indicates centralized tool development and operational security standards even if execution is distributed across multiple teams.”

Two Windows vulnerabilities, one a 0-day, are under active exploitation Read More »

after-teen-death-lawsuits,-character.ai-will-restrict-chats-for-under-18-users

After teen death lawsuits, Character.AI will restrict chats for under-18 users

Lawsuits and safety concerns

Character.AI was founded in 2021 by Noam Shazeer and Daniel De Freitas, two former Google engineers, and raised nearly $200 million from investors. Last year, Google agreed to pay about $3 billion to license Character.AI’s technology, and Shazeer and De Freitas returned to Google.

But the company now faces multiple lawsuits alleging that its technology contributed to teen deaths. Last year, the family of 14-year-old Sewell Setzer III sued Character.AI, accusing the company of being responsible for his death. Setzer died by suicide after frequently texting and conversing with one of the platform’s chatbots. The company faces additional lawsuits, including one from a Colorado family whose 13-year-old daughter, Juliana Peralta, died by suicide in 2023 after using the platform.

In December, Character.AI announced changes, including improved detection of violating content and revised terms of service, but those measures did not restrict underage users from accessing the platform. Other AI chatbot services, such as OpenAI’s ChatGPT, have also come under scrutiny for their chatbots’ effects on young users. In September, OpenAI introduced parental control features intended to give parents more visibility into how their kids use the service.

The cases have drawn attention from government officials, which likely pushed Character.AI to announce the changes for under-18 chat access. Steve Padilla, a Democrat in California’s State Senate who introduced the safety bill, told The New York Times that “the stories are mounting of what can go wrong. It’s important to put reasonable guardrails in place so that we protect people who are most vulnerable.”

On Tuesday, Senators Josh Hawley and Richard Blumenthal introduced a bill to bar AI companions from use by minors. In addition, California Governor Gavin Newsom this month signed a law, which takes effect on January 1, requiring AI companies to have safety guardrails on chatbots.

After teen death lawsuits, Character.AI will restrict chats for under-18 users Read More »

nvidia-hits-record-$5-trillion-mark-as-ceo-dismisses-ai-bubble-concerns

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns

Partnerships and government contracts fuel optimism

At the GTC conference on Tuesday, Nvidia’s CEO went out of his way to repeatedly praise Donald Trump and his policies for accelerating domestic tech investment while warning that excluding China from Nvidia’s ecosystem could limit US access to half the world’s AI developers. The overall event stressed Nvidia’s role as an American company, with Huang even nodding to Trump’s signature slogan in his sign-off by thanking the audience for “making America great again.”

Trump’s cooperation is paramount for Nvidia because US export controls have effectively blocked Nvidia’s AI chips from China, costing the company billions of dollars in revenue. Bob O’Donnell of TECHnalysis Research told Reuters that “Nvidia clearly brought their story to DC to both educate and gain favor with the US government. They managed to hit most of the hottest and most influential topics in tech.”

Beyond the political messaging, Huang announced a series of partnerships and deals that apparently helped ease investor concerns about Nvidia’s future. The company announced collaborations with Uber Technologies, Palantir Technologies, and CrowdStrike Holdings, among others. Nvidia also revealed a $1 billion investment in Nokia to support the telecommunications company’s shift toward AI and 6G networking.

The agreement with Uber will power a fleet of 100,000 self-driving vehicles with Nvidia technology, with automaker Stellantis among the first to deliver the robotaxis. Palantir will pair Nvidia’s technology with its Ontology platform to use AI techniques for logistics insights, with Lowe’s as an early adopter. Eli Lilly plans to build what Nvidia described as the most powerful supercomputer owned and operated by a pharmaceutical company, relying on more than 1,000 Blackwell AI accelerator chips.

The $5 trillion valuation surpasses the total cryptocurrency market value and equals roughly half the size of the pan European Stoxx 600 equities index, Reuters notes. At current prices, Huang’s stake in Nvidia would be worth about $179.2 billion, making him the world’s eighth-richest person.

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns Read More »

new-physical-attacks-are-quickly-diluting-secure-enclave-defenses-from-nvidia,-amd,-and-intel

New physical attacks are quickly diluting secure enclave defenses from Nvidia, AMD, and Intel


On-chip TEEs withstand rooted OSes but fall instantly to cheap physical attacks.

Trusted execution environments, or TEEs, are everywhere—in blockchain architectures, virtually every cloud service, and computing involving AI, finance, and defense contractors. It’s hard to overstate the reliance that entire industries have on three TEEs in particular: Confidential Compute from Nvidia, SEV-SNP from AMD, and SGX and TDX from Intel. All three come with assurances that confidential data and sensitive computing can’t be viewed or altered, even if a server has suffered a complete compromise of the operating kernel.

A trio of novel physical attacks raises new questions about the true security offered by these TEES and the exaggerated promises and misconceptions coming from the big and small players using them.

The most recent attack, released Tuesday, is known as TEE.fail. It defeats the latest TEE protections from all three chipmakers. The low-cost, low-complexity attack works by placing a small piece of hardware between a single physical memory chip and the motherboard slot it plugs into. It also requires the attacker to compromise the operating system kernel. Once this three-minute attack is completed, Confidential Compute, SEV-SNP, and TDX/SDX can no longer be trusted. Unlike the Battering RAM and Wiretap attacks from last month—which worked only against CPUs using DDR4 memory—TEE.fail works against DDR5, allowing them to work against the latest TEEs.

Some terms apply

All three chipmakers exclude physical attacks from threat models for their TEEs, also known as secure enclaves. Instead, assurances are limited to protecting data and execution from viewing or tampering, even when the kernel OS running the processor has been compromised. None of the chipmakers make these carveouts prominent, and they sometimes provide confusing statements about the TEE protections offered.

Many users of these TEEs make public assertions about the protections that are flat-out wrong, misleading, or unclear. All three chipmakers and many TEE users focus on the suitability of the enclaves for protecting servers on a network edge, which are often located in remote locations, where physical access is a top threat.

“These features keep getting broken, but that doesn’t stop vendors from selling them for these use cases—and people keep believing them and spending time using them,” said HD Moore, a security researcher and the founder and CEO of runZero.

He continued:

Overall, it’s hard for a customer to know what they are getting when they buy confidential computing in the cloud. For on-premise deployments, it may not be obvious that physical attacks (including side channels) are specifically out of scope. This research shows that server-side TEEs are not effective against physical attacks, and even more surprising, Intel and AMD consider these out of scope. If you were expecting TEEs to provide private computing in untrusted data centers, these attacks should change your mind.

Those making these statements run the gamut from cloud providers to AI engines, blockchain platforms, and even the chipmakers themselves. Here are some examples:

  • Cloudflare says it’s using Secure Memory Encryption—the encryption engine driving SEV—to safeguard confidential data from being extracted from a server if it’s stolen.
  • In a post outlining the possibility of using the TEEs to secure confidential information discussed in chat sessions, Anthropic says the enclave “includes protections against physical attacks.”
  • Microsoft marketing (here and here) devotes plenty of ink to discussing TEE protections without ever noting the exclusion.
  • Meta, paraphrasing the Confidential Computing Consortium, says TEE security provides protections against malicious “system administrators, the infrastructure owner, or anyone else with physical access to the hardware.” SEV-SNP is a key pillar supporting the security of Meta’s WhatsApp Messenger.
  • Even Nvidia claims that its TEE security protects against “infrastructure owners such as cloud providers, or anyone with physical access to the servers.”
  • The maker of the Signal private messenger assures users that its use of SGX means that “keys associated with this encryption never leave the underlying CPU, so they’re not accessible to the server owners or anyone else with access to server infrastructure.” Signal has long relied on SGX to protect contact-discovery data.

I counted more than a dozen other organizations providing assurances that were similarly confusing, misleading, or false. Even Moore—a security veteran with more than three decades of experience—told me: “The surprising part to me is that Intel/AMD would blanket-state that physical access is somehow out of scope when it’s the entire point.”

In fairness, some TEE users build additional protections on top of the TEEs provided out of the box. Meta, for example, said in an email that the WhatsApp implementation of SEV-SNP uses protections that would block TEE.fail attackers from impersonating its servers. The company didn’t dispute that TEE.fail could nonetheless pull secrets from the AMD TEE.

The Cloudflare theft protection, meanwhile, relies on SME—the engine driving SEV-SNP encryption. The researchers didn’t directly test SME against TEE.fail. They did note that SME uses deterministic encryption, the cryptographic property that causes all three TEEs to fail. (More about the role of deterministic encryption later.)

Others who misstate the TEEs’ protections provide more accurate descriptions elsewhere. Given all the conflicting information, it’s no wonder there’s confusion.

How do you know where the server is? You don’t.

Many TEE users run their infrastructure inside cloud providers such as AWS, Azure, or Google, where protections against supply-chain and physical attacks are extremely robust. That raises the bar for a TEE.fail-style attack significantly. (Whether the services could be compelled by governments with valid subpoenas to attack their own TEE is not clear.)

All these caveats notwithstanding, there’s often (1) little discussion of the growing viability of cheap, physical attacks, (2) no evidence (yet) that implementations not vulnerable to the three attacks won’t fall to follow-on research, or (3) no way for parties relying on TEEs to know where the servers are running and whether they’re free from physical compromise.

“We don’t know where the hardware is,” Daniel Genkin, one of the researchers behind both TEE.fail and Wiretap, said in an interview. “From a user perspective, I don’t even have a way to verify where the server is. Therefore, I have no way to verify if it’s in a reputable facility or an attacker’s basement.”

In other words, parties relying on attestations from servers in the cloud are once again reduced to simply trusting other people’s computers. As Moore observed, solving that problem is precisely the reason TEEs exist.

In at least two cases, involving the blockchain services Secret Network and Crust, the loss of TEE protections made it possible for any untrusted user to present cryptographic attestations. Both platforms used the attestations to verify that a blockchain node operated by one user couldn’t tamper with the execution or data passing to another user’s nodes. The Wiretap hack on SGX made it possible for users to run the sensitive data and executions outside of the TEE altogether while still providing attestations to the contrary. In the AMD attack, the attacker could decrypt the traffic passing through the TEE.

Both Secret Network and Crust added mitigations after learning of the possible physical attacks with Wiretap and Battering RAM. Given the lack of clear messaging, other TEE users are likely making similar mistakes.

A predetermined weakness

The root cause of all three physical attacks is the choice of deterministic encryption. This form of encryption produces the same ciphertext each time the same plaintext is encrypted with the same key. A TEE.fail attacker can copy ciphertext strings and use them in replay attacks. (Probabilistic encryption, by contrast, resists such attacks because the same plaintext can encrypt to a wide range of ciphertexts that are randomly chosen during the encryption process.)

TEE.fail works not only against SGX but also a more advanced Intel TEE known as TDX. The attack also defeats the protections provided by the latest Nvidia Confidential Compute and AMD SEV-SNP TEEs. Attacks against TDX and SGX can extract the Attestation Key, an ECDSA secret that certifies to a remote party that it’s running up-to-date software and can’t expose data or execution running inside the enclave. This Attestation Key is in turn signed by an Intel X.509 digital certificate providing cryptographic assurances that the ECDSA key can be trusted. TEE.fail works against all Intel CPUs currently supporting TDX and SDX.

With possession of the key, the attacker can use the compromised server to peer into data or tamper with the code flowing through the enclave and send the relying party an assurance that the device is secure. With this key, even CPUs built by other chipmakers can send an attestation that the hardware is protected by the Intel TEEs.

GPUs equipped with Nvidia Confidential Compute don’t bind attestation reports to the specific virtual machine protected by a specific GPU. TEE.fail exploits this weakness by “borrowing” a valid attestation report from a GPU run by the attacker and using it to impersonate the GPU running Confidential Compute. The protection is available on Nvidia’s H100/200 and B100/200 server GPUs.

“This means that we can convince users that their applications (think private chats with LLMs or Large Language Models) are being protected inside the GPU’s TEE while in fact it is running in the clear,” the researchers wrote on a website detailing the attack. “As the attestation report is ‘borrowed,’ we don’t even own a GPU to begin with.”

SEV-SNP (Secure Encrypted Virtualization-Secure Nested Paging) uses ciphertext hiding in AMD’s EPYC CPUs based on the Zen 5 architecture. AMD added it to prevent a previous attack known as Cipherleaks, which allowed malicious hypervisors to extract cryptographic keys stored in the enclaves of a virtual machine. Ciphertext, however, doesn’t stop physical attacks. With the ability to reopen the side channel that Cipherleaks relies on, TEE.fail can steal OpenSSL credentials and other key material based on constant-time encryption.

Cheap, quick, and the size of a briefcase

“Now that we have interpositioned DDR5 traffic, our work shows that even the most modern of TEEs across all vendors with available hardware is vulnerable to cheap physical attacks,” Genkin said.

The equipment required by TEE.fail runs off-the-shelf gear that costs less than $1,000. One of the devices the researchers built fits into a 17-inch briefcase, so it can be smuggled into a facility housing a TEE-protected server. Once the physical attack is performed, the device does not need to be connected again. Attackers breaking TEEs on servers they operate have no need for stealth, allowing them to use a larger device, which the researchers also built.

A logic analyzer attached to an interposer.

The researchers demonstrated attacks against an array of services that rely on the chipmakers’ TEE protections. (For ethical reasons, the attacks were carried out against infrastructure that was identical to but separate from the targets’ networks.) Some of the attacks included BuilderNet, dstack, and Secret Network.

BuilderNet is a network of Ethereum block builders that uses TDX to prevent parties from snooping on others’ data and to ensure fairness and that proof currency is redistributed honestly. The network builds blocks valued at millions of dollars each month.

“We demonstrated that a malicious operator with an attestation key could join BuilderNet and obtain configuration secrets, including the ability to decrypt confidential orderflow and access the Ethereum wallet for paying validators,” the TEE.fail website explained. “Additionally, a malicious operator could build arbitrary blocks or frontrun (i.e., construct a new transaction with higher fees to ensure theirs is executed first) the confidential transactions for profit while still providing deniability.”

To date, the researchers said, BuilderNet hasn’t provided mitigations. Attempts to reach BuilderNet officials were unsuccessful.

dstack is a tool for building confidential applications that run on top of virtual machines protected by Nvidia Confidential Compute. The researchers used TEE.fail to forge attestations certifying that a workload was performed by the TDX using the Nvidia protection. It also used the “borrowed” attestations to fake ownership of GPUs that a relying party trusts.

Secret Network is a platform billing itself as the “first mainnet blockchain with privacy-preserving smart contracts,” in part by encrypting on-chain data and execution with SGX. The researchers showed that TEE.fail could extract the “Concensus Seed,” the primary network-side private key encrypting confidential transactions on the Secret Network. As noted, after learning of Wiretap, the Secret Network eliminated this possibility by establishing a “curated” allowlist of known, trusted nodes allowed on the network and suspended the acceptance of new nodes. Academic or not, the ability to replicate the attack using TEE.fail shows that Wiretap wasn’t a one-off success.

A tough nut to crack

As explained earlier, the root cause of all the TEE.fail attacks is deterministic encryption, which forms the basis for protections in all three chipmakers’ TEEs. This weaker form of encryption wasn’t always used in TEEs. When Intel initially rolled out SGX, the feature was put in client CPUs, not server ones, to prevent users from building devices that could extract copyrighted content such as high-definition video.

Those early versions encrypted no more than 256MB of RAM, a small enough space to use the much stronger probabilistic form of encryption. The TEEs built into server chips, by contrast, must often encrypt terabytes of RAM. Probabilistic encryption doesn’t scale to that size without serious performance penalties. Finding a solution that accommodates this overhead won’t be easy.

One mitigation over the short term is to ensure that each 128-bit block of ciphertext has sufficient entropy. Adding random plaintext to the blocks prevents ciphertext repetition. The researchers say the entropy can be added by building a custom memory layout that inserts a 64-bit counter with a random initial value to each 64-bit block before encrypting it.

The last countermeasure the researchers proposed is adding location verification to the attestation mechanism. While insider and supply chain attacks remain a possibility inside even the most reputable cloud services, strict policies make them much less feasible. Even those mitigations, however, don’t foreclose the threat of a government agency with a valid subpoena ordering an organization to run such an attack inside their network.

In a statement, Nvidia said:

NVIDIA is aware of this research. Physical controls in addition to trust controls such as those provided by Intel TDX reduce the risk to GPUs for this style of attack, based on our discussions with the researchers. We will provide further details once the research is published.

Intel spokesman Jerry Bryant said:

Fully addressing physical attacks on memory by adding more comprehensive confidentiality, integrity and anti-replay protection results in significant trade-offs to Total Cost of Ownership. Intel continues to innovate in this area to find acceptable solutions that offer better balance between protections and TCO trade-offs.

The company has published responses here and here reiterating that physical attacks are out of scope for both TDX and SGX

AMD didn’t respond to a request for comment.

Stuck on Band-Aids

For now, TEE.fail, Wiretap, and Battering RAM remain a persistent threat that isn’t solved with the use of default implementations of the chipmakers’ secure enclaves. The most effective mitigation for the time being is for TEE users to understand the limitations and curb uses that the chipmakers say aren’t a part of the TEE threat model. Secret Network tightening requirements for operators joining the network is an example of such a mitigation.

Moore, the founder and CEO of RunZero, said that companies with big budgets can rely on custom solutions built by larger cloud services. AWS, for example, makes use of the Nitro Card, which is built using ASIC chips that accelerate processing using TEEs. Google’s proprietary answer is Titanium.

“It’s a really hard problem,” Moore said. “I’m not sure what the current state of the art is, but if you can’t afford custom hardware, the best you can do is rely on the CPU provider’s TEE, and this research shows how weak this is from the perspective of an attacker with physical access. The enclave is really a Band-Aid or hardening mechanism over a really difficult problem, and it’s both imperfect and dangerous if compromised, for all sorts of reasons.”

Photo of Dan Goodin

Dan Goodin is Senior Security Editor at Ars Technica, where he oversees coverage of malware, computer espionage, botnets, hardware hacking, encryption, and passwords. In his spare time, he enjoys gardening, cooking, and following the independent music scene. Dan is based in San Francisco. Follow him at here on Mastodon and here on Bluesky. Contact him on Signal at DanArs.82.

New physical attacks are quickly diluting secure enclave defenses from Nvidia, AMD, and Intel Read More »

expert-panel-will-determine-agi-arrival-in-new-microsoft-openai-agreement

Expert panel will determine AGI arrival in new Microsoft-OpenAI agreement

In May, OpenAI abandoned its plan to fully convert to a for-profit company after pressure from regulators and critics. The company instead shifted to a modified approach where the nonprofit board would retain control while converting its for-profit subsidiary into a public benefit corporation (PBC).

What changed in the agreement

The revised deal extends Microsoft’s intellectual property rights through 2032 and now includes models developed after AGI is declared. Microsoft holds IP rights to OpenAI’s model weights, architecture, inference code, and fine-tuning code until the expert panel confirms AGI or through 2030, whichever comes first. The new agreement also codifies that OpenAI can formally release open-weight models (like gpt-oss) that meet requisite capability criteria.

However, Microsoft’s rights to OpenAI’s research methods, defined as confidential techniques used in model development, will expire at those same thresholds. The agreement explicitly excludes Microsoft from having rights to OpenAI’s consumer hardware products.

The deal allows OpenAI to develop some products jointly with third parties. API products built with other companies must run exclusively on Azure, but non-API products can operate on any cloud provider. This gives OpenAI more flexibility to partner with other technology companies while keeping Microsoft as its primary infrastructure provider.

Under the agreement, Microsoft can now pursue AGI development alone or with partners other than OpenAI. If Microsoft uses OpenAI’s intellectual property to build AGI before the expert panel makes a declaration, those models must exceed compute thresholds that are larger than what current leading AI models require for training.

The revenue-sharing arrangement between the companies will continue until the expert panel verifies that AGI has been reached, though payments will extend over a longer period. OpenAI has committed to purchasing $250 billion in Azure services, and Microsoft no longer holds a right of first refusal to serve as OpenAI’s compute provider. This lets OpenAI shop around for cloud infrastructure if it chooses, though the massive Azure commitment suggests it will remain the primary provider.

Expert panel will determine AGI arrival in new Microsoft-OpenAI agreement Read More »

a-single-point-of-failure-triggered-the-amazon-outage-affecting-millions

A single point of failure triggered the Amazon outage affecting millions

In turn, the delay in network state propagations spilled over to a network load balancer that AWS services rely on for stability. As a result, AWS customers experienced connection errors from the US-East-1 region. AWS network functions affected included the creating and modifying Redshift clusters, Lambda invocations, and Fargate task launches such as Managed Workflows for Apache Airflow, Outposts lifecycle operations, and the AWS Support Center.

For the time being, Amazon has disabled the DynamoDB DNS Planner and the DNS Enactor automation worldwide while it works to fix the race condition and add protections to prevent the application of incorrect DNS plans. Engineers are also making changes to EC2 and its network load balancer.

A cautionary tale

Ookla outlined a contributing factor not mentioned by Amazon: a concentration of customers who route their connectivity through the US-East-1 endpoint and an inability to route around the region. Ookla explained:

The affected US‑EAST‑1 is AWS’s oldest and most heavily used hub. Regional concentration means even global apps often anchor identity, state or metadata flows there. When a regional dependency fails as was the case in this event, impacts propagate worldwide because many “global” stacks route through Virginia at some point.

Modern apps chain together managed services like storage, queues, and serverless functions. If DNS cannot reliably resolve a critical endpoint (for example, the DynamoDB API involved here), errors cascade through upstream APIs and cause visible failures in apps users do not associate with AWS. That is precisely what Downdetector recorded across Snapchat, Roblox, Signal, Ring, HMRC, and others.

The event serves as a cautionary tale for all cloud services: More important than preventing race conditions and similar bugs is eliminating single points of failure in network design.

“The way forward,” Ookla said, “is not zero failure but contained failure, achieved through multi-region designs, dependency diversity, and disciplined incident readiness, with regulatory oversight that moves toward treating the cloud as systemic components of national and economic resilience.”

A single point of failure triggered the Amazon outage affecting millions Read More »

nso-permanently-barred-from-targeting-whatsapp-users-with-pegasus-spyware

NSO permanently barred from targeting WhatsApp users with Pegasus spyware

A federal judge has ordered spyware maker NSO to stop using its Pegasus app to target or infect users of WhatsApp.

The ruling, issued Friday by Phyllis J. Hamilton of the US District Court of the District of Northern California, grants a permanent injunction sought by WhatsApp owner Meta in a case it brought against NSO in 2019. The lawsuit alleged that Meta caught NSO trying to surreptitiously infect about 1,400 mobile phones—many belonging to attorneys, journalists, human-rights activists, political dissidents, diplomats, and senior foreign government officials—with Pegasus. As part of the campaign, NSO created fake WhatsApp accounts and targeted Meta infrastructure. The suit sought monetary awards and an injunction against the practice.

Setting a precedent

Friday’s ruling ordered NSO to permanently cease targeting WhatsApp users, attempting to infect their devices, or intercepting WhatsApp messages, which are end-to-end encrypted using the open source Signal Protocol. Hamilton also ruled that NSO must delete any data it obtained when targeting the WhatsApp users.

NSO had argued that such a ruling would “force NSO out of business,” as Pegasus is its “flagship product.” Hamilton ruled that the harm Pegasus posed to Meta outweighed any such considerations.

“In the court’s view, any business that deals with users’ personal information, and that invests resources into ways to encrypt that personal information, is harmed by the unauthorized access of that personal information—and it is more than just a reputational harm, it’s a business harm,” Hamilton wrote. “Essentially, part of what companies such as Whatsapp are ‘selling’ is informational privacy, and any unauthorized access is an interference with that sale. Defendants’ conduct serves to defeat one of the purposes of the service being offered by plaintiffs, which constitutes direct harm.”

NSO permanently barred from targeting WhatsApp users with Pegasus spyware Read More »

nation-state-hackers-deliver-malware-from-“bulletproof”-blockchains

Nation-state hackers deliver malware from “bulletproof” blockchains

Hacking groups—at least one of which works on behalf of the North Korean government—have found a new and inexpensive way to distribute malware from “bulletproof” hosts: stashing them on public cryptocurrency blockchains.

In a Thursday post, members of the Google Threat Intelligence Group said the technique provides the hackers with their own “bulletproof” host, a term that describes cloud platforms that are largely immune from takedowns by law enforcement and pressure from security researchers. More traditionally, these hosts are located in countries without treaties agreeing to enforce criminal laws from the US and other nations. These services often charge hefty sums and cater to criminals spreading malware or peddling child sexual abuse material and wares sold in crime-based flea markets.

Next-gen, DIY hosting that can’t be tampered with

Since February, Google researchers have observed two groups turning to a newer technique to infect targets with credential stealers and other forms of malware. The method, known as EtherHiding, embeds the malware in smart contracts, which are essentially apps that reside on blockchains for Ethereum and other cryptocurrencies. Two or more parties then enter into an agreement spelled out in the contract. When certain conditions are met, the apps enforce the contract terms in a way that, at least theoretically, is immutable and independent of any central authority.

“In essence, EtherHiding represents a shift toward next-generation bulletproof hosting, where the inherent features of blockchain technology are repurposed for malicious ends,” Google researchers Blas Kojusner, Robert Wallace, and Joseph Dobson wrote. “This technique underscores the continuous evolution of cyber threats as attackers adapt and leverage new technologies to their advantage.”

There’s a wide array of advantages to EtherHiding over more traditional means of delivering malware, which besides bulletproof hosting include leveraging compromised servers.

    • The decentralization prevents takedowns of the malicious smart contracts because the mechanisms in the blockchains bar the removal of all such contracts.
    • Similarly, the immutability of the contracts prevents the removal or tampering with the malware by anyone.
    • Transactions on Ethereum and several other blockchains are effectively anonymous, protecting the hackers’ identities.
    • Retrieval of malware from the contracts leaves no trace of the access in event logs, providing stealth
    • The attackers can update malicious payloads at anytime

Nation-state hackers deliver malware from “bulletproof” blockchains Read More »

ars-live-recap:-is-the-ai-bubble-about-to-pop?-ed-zitron-weighs-in.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in.


Despite connection hiccups, we covered OpenAI’s finances, nuclear power, and Sam Altman.

On Tuesday of last week, Ars Technica hosted a live conversation with Ed Zitron, host of the Better Offline podcast and one of tech’s most vocal AI critics, to discuss whether the generative AI industry is experiencing a bubble and when it might burst. My Internet connection had other plans, though, dropping out multiple times and forcing Ars Technica’s Lee Hutchinson to jump in as an excellent emergency backup host.

During the times my connection cooperated, Zitron and I covered OpenAI’s financial issues, lofty infrastructure promises, and why the AI hype machine keeps rolling despite some arguably shaky economics underneath. Lee’s probing questions about per-user costs revealed a potential flaw in AI subscription models: Companies can’t predict whether a user will cost them $2 or $10,000 per month.

You can watch a recording of the event on YouTube or in the window below.

Our discussion with Ed Zitron. Click here for transcript.

“A 50 billion-dollar industry pretending to be a trillion-dollar one”

I started by asking Zitron the most direct question I could: “Why are you so mad about AI?” His answer got right to the heart of his critique: the disconnect between AI’s actual capabilities and how it’s being sold. “Because everybody’s acting like it’s something it isn’t,” Zitron said. “They’re acting like it’s this panacea that will be the future of software growth, the future of hardware growth, the future of compute.”

In one of his newsletters, Zitron describes the generative AI market as “a 50 billion dollar revenue industry masquerading as a one trillion-dollar one.” He pointed to OpenAI’s financial burn rate (losing an estimated $9.7 billion in the first half of 2025 alone) as evidence that the economics don’t work, coupled with a heavy dose of pessimism about AI in general.

Donald Trump listens as Nvidia CEO Jensen Huang speaks at the White House during an event on “Investing in America” on April 30, 2025, in Washington, DC. Credit: Andrew Harnik / Staff | Getty Images News

“The models just do not have the efficacy,” Zitron said during our conversation. “AI agents is one of the most egregious lies the tech industry has ever told. Autonomous agents don’t exist.”

He contrasted the relatively small revenue generated by AI companies with the massive capital expenditures flowing into the sector. Even major cloud providers and chip makers are showing strain. Oracle reportedly lost $100 million in three months after installing Nvidia’s new Blackwell GPUs, which Zitron noted are “extremely power-hungry and expensive to run.”

Finding utility despite the hype

I pushed back against some of Zitron’s broader dismissals of AI by sharing my own experience. I use AI chatbots frequently for brainstorming useful ideas and helping me see them from different angles. “I find I use AI models as sort of knowledge translators and framework translators,” I explained.

After experiencing brain fog from repeated bouts of COVID over the years, I’ve also found tools like ChatGPT and Claude especially helpful for memory augmentation that pierces through brain fog: describing something in a roundabout, fuzzy way and quickly getting an answer I can then verify. Along these lines, I’ve previously written about how people in a UK study found AI assistants useful accessibility tools.

Zitron acknowledged this could be useful for me personally but declined to draw any larger conclusions from my one data point. “I understand how that might be helpful; that’s cool,” he said. “I’m glad that that helps you in that way; it’s not a trillion-dollar use case.”

He also shared his own attempts at using AI tools, including experimenting with Claude Code despite not being a coder himself.

“If I liked [AI] somehow, it would be actually a more interesting story because I’d be talking about something I liked that was also onerously expensive,” Zitron explained. “But it doesn’t even do that, and it’s actually one of my core frustrations, it’s like this massive over-promise thing. I’m an early adopter guy. I will buy early crap all the time. I bought an Apple Vision Pro, like, what more do you say there? I’m ready to accept issues, but AI is all issues, it’s all filler, no killer; it’s very strange.”

Zitron and I agree that current AI assistants are being marketed beyond their actual capabilities. As I often say, AI models are not people, and they are not good factual references. As such, they cannot replace human decision-making and cannot wholesale replace human intellectual labor (at the moment). Instead, I see AI models as augmentations of human capability: as tools rather than autonomous entities.

Computing costs: History versus reality

Even though Zitron and I found some common ground about AI hype, I expressed a belief that criticism over the cost and power requirements of operating AI models will eventually not become an issue.

I attempted to make that case by noting that computing costs historically trend downward over time, referencing the Air Force’s SAGE computer system from the 1950s: a four-story building that performed 75,000 operations per second while consuming two megawatts of power. Today, pocket-sized phones deliver millions of times more computing power in a way that would be impossible, power consumption-wise, in the 1950s.

The blockhouse for the Semi-Automatic Ground Environment at Stewart Air Force Base, Newburgh, New York. Credit: Denver Post via Getty Images

“I think it will eventually work that way,” I said, suggesting that AI inference costs might follow similar patterns of improvement over years and that AI tools will eventually become commodity components of computer operating systems. Basically, even if AI models stay inefficient, AI models of a certain baseline usefulness and capability will still be cheaper to train and run in the future because the computing systems they run on will be faster, cheaper, and less power-hungry as well.

Zitron pushed back on this optimism, saying that AI costs are currently moving in the wrong direction. “The costs are going up, unilaterally across the board,” he said. Even newer systems like Cerebras and Grok can generate results faster but not cheaper. He also questioned whether integrating AI into operating systems would prove useful even if the technology became profitable, since AI models struggle with deterministic commands and consistent behavior.

The power problem and circular investments

One of Zitron’s most pointed criticisms during the discussion centered on OpenAI’s infrastructure promises. The company has pledged to build data centers requiring 10 gigawatts of power capacity (equivalent to 10 nuclear power plants, I once pointed out) for its Stargate project in Abilene, Texas. According to Zitron’s research, the town currently has only 350 megawatts of generating capacity and a 200-megawatt substation.

“A gigawatt of power is a lot, and it’s not like Red Alert 2,” Zitron said, referencing the real-time strategy game. “You don’t just build a power station and it happens. There are months of actual physics to make sure that it doesn’t kill everyone.”

He believes many announced data centers will never be completed, calling the infrastructure promises “castles on sand” that nobody in the financial press seems willing to question directly.

An orange, cloudy sky backlights a set of electrical wires on large pylons, leading away from the cooling towers of a nuclear power plant.

After another technical blackout on my end, I came back online and asked Zitron to define the scope of the AI bubble. He says it has evolved from one bubble (foundation models) into two or three, now including AI compute companies like CoreWeave and the market’s obsession with Nvidia.

Zitron highlighted what he sees as essentially circular investment schemes propping up the industry. He pointed to OpenAI’s $300 billion deal with Oracle and Nvidia’s relationship with CoreWeave as examples. “CoreWeave, they literally… They funded CoreWeave, became their biggest customer, then CoreWeave took that contract and those GPUs and used them as collateral to raise debt to buy more GPUs,” Zitron explained.

When will the bubble pop?

Zitron predicted the bubble would burst within the next year and a half, though he acknowledged it could happen sooner. He expects a cascade of events rather than a single dramatic collapse: An AI startup will run out of money, triggering panic among other startups and their venture capital backers, creating a fire-sale environment that makes future fundraising impossible.

“It’s not gonna be one Bear Stearns moment,” Zitron explained. “It’s gonna be a succession of events until the markets freak out.”

The crux of the problem, according to Zitron, is Nvidia. The chip maker’s stock represents 7 to 8 percent of the S&P 500’s value, and the broader market has become dependent on Nvidia’s continued hyper growth. When Nvidia posted “only” 55 percent year-over-year growth in January, the market wobbled.

“Nvidia’s growth is why the bubble is inflated,” Zitron said. “If their growth goes down, the bubble will burst.”

He also warned of broader consequences: “I think there’s a depression coming. I think once the markets work out that tech doesn’t grow forever, they’re gonna flush the toilet aggressively on Silicon Valley.” This connects to his larger thesis: that the tech industry has run out of genuine hyper-growth opportunities and is trying to manufacture one with AI.

“Is there anything that would falsify your premise of this bubble and crash happening?” I asked. “What if you’re wrong?”

“I’ve been answering ‘What if you’re wrong?’ for a year-and-a-half to two years, so I’m not bothered by that question, so the thing that would have to prove me right would’ve already needed to happen,” he said. Amid a longer exposition about Sam Altman, Zitron said, “The thing that would’ve had to happen with inference would’ve had to be… it would have to be hundredths of a cent per million tokens, they would have to be printing money, and then, it would have to be way more useful. It would have to have efficacy that it does not have, the hallucination problems… would have to be fixable, and on top of this, someone would have to fix agents.”

A positivity challenge

Near the end of our conversation, I wondered if I could flip the script, so to speak, and see if he could say something positive or optimistic, although I chose the most challenging subject possible for him. “What’s the best thing about Sam Altman,” I asked. “Can you say anything nice about him at all?”

“I understand why you’re asking this,” Zitron started, “but I wanna be clear: Sam Altman is going to be the reason the markets take a crap. Sam Altman has lied to everyone. Sam Altman has been lying forever.” He continued, “Like the Pied Piper, he’s led the markets into an abyss, and yes, people should have known better, but I hope at the end of this, Sam Altman is seen for what he is, which is a con artist and a very successful one.”

Then he added, “You know what? I’ll say something nice about him, he’s really good at making people say, ‘Yes.’”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in. Read More »