computer vision

can-ai-detect-hedgehogs-from-space?-maybe-if-you-find-brambles-first.

Can AI detect hedgehogs from space? Maybe if you find brambles first.

“It took us about 20 seconds to find the first one in an area indicated by the model,” wrote Jaffer in a blog post documenting the field test. Starting at Milton Community Centre, where the model showed high confidence of brambles near the car park, the team systematically visited locations with varying prediction levels.

The research team locating their first bramble.

The research team locating their first bramble. Credit: Sadiq Jaffer

At Milton Country Park, every high-confidence area they checked contained substantial bramble growth. When they investigated a residential hotspot, they found an empty plot overrun with brambles. Most amusingly, a major prediction in North Cambridge led them to Bramblefields Local Nature Reserve. True to its name, the area contained extensive bramble coverage.

The model reportedly performed best when detecting large, uncovered bramble patches visible from above. Smaller brambles under tree cover showed lower confidence scores—a logical limitation given the satellite’s overhead perspective. “Since TESSERA is learned representation from remote sensing data, it would make sense that bramble partially obscured from above might be harder to spot,” Jaffer explained.

An early experiment

While the researchers expressed enthusiasm over the early results, the bramble detection work represents a proof-of-concept that is still under active research. The model has not yet been published in a peer-reviewed journal, and the field validation described here was an informal test rather than a scientific study. The Cambridge team acknowledges these limitations and plans more systematic validation.

However, it’s still a relatively positive research application of neural network techniques that reminds us that the field of artificial intelligence is much larger than just generative AI models, such as ChatGPT, or video synthesis models.

Should the team’s research pan out, the simplicity of the bramble detector offers some practical advantages. Unlike more resource-intensive deep learning models, the system could potentially run on mobile devices, enabling real-time field validation. The team considered developing a phone-based active learning system that would enable field researchers to improve the model while verifying its predictions.

In the future, similar AI-based approaches combining satellite remote sensing with citizen science data could potentially map invasive species, track agricultural pests, or monitor changes in various ecosystems. For threatened species like hedgehogs, rapidly mapping critical habitat features becomes increasingly valuable during a time when climate change and urbanization are actively reshaping the places that hedgehogs like to call home.

Can AI detect hedgehogs from space? Maybe if you find brambles first. Read More »

new-ai-model-turns-photos-into-explorable-3d-worlds,-with-caveats

New AI model turns photos into explorable 3D worlds, with caveats

Training with automated data pipeline

Voyager builds on Tencent’s earlier HunyuanWorld 1.0, released in July. Voyager is also part of Tencent’s broader “Hunyuan” ecosystem, which includes the Hunyuan3D-2 model for text-to-3D generation and the previously covered HunyuanVideo for video synthesis.

To train Voyager, researchers developed software that automatically analyzes existing videos to process camera movements and calculate depth for every frame—eliminating the need for humans to manually label thousands of hours of footage. The system processed over 100,000 video clips from both real-world recordings and the aforementioned Unreal Engine renders.

A diagram of the Voyager world creation pipeline.

A diagram of the Voyager world creation pipeline. Credit: Tencent

The model demands serious computing power to run, requiring at least 60GB of GPU memory for 540p resolution, though Tencent recommends 80GB for better results. Tencent published the model weights on Hugging Face and included code that works with both single and multi-GPU setups.

The model comes with notable licensing restrictions. Like other Hunyuan models from Tencent, the license prohibits usage in the European Union, the United Kingdom, and South Korea. Additionally, commercial deployments serving over 100 million monthly active users require separate licensing from Tencent.

On the WorldScore benchmark developed by Stanford University researchers, Voyager reportedly achieved the highest overall score of 77.62, compared to 72.69 for WonderWorld and 62.15 for CogVideoX-I2V. The model reportedly excelled in object control (66.92), style consistency (84.89), and subjective quality (71.09), though it placed second in camera control (85.95) behind WonderWorld’s 92.98. WorldScore evaluates world generation approaches across multiple criteria, including 3D consistency and content alignment.

While these self-reported benchmark results seem promising, wider deployment still faces challenges due to the computational muscle involved. For developers needing faster processing, the system supports parallel inference across multiple GPUs using the xDiT framework. Running on eight GPUs delivers processing speeds 6.69 times faster than single-GPU setups.

Given the processing power required and the limitations in generating long, coherent “worlds,” it may be a while before we see real-time interactive experiences using a similar technique. But as we’ve seen so far with experiments like Google’s Genie, we’re potentially witnessing very early steps into a new interactive, generative art form.

New AI model turns photos into explorable 3D worlds, with caveats Read More »

mit-student-prints-ai-polymer-masks-to-restore-paintings-in-hours

MIT student prints AI polymer masks to restore paintings in hours

MIT graduate student Alex Kachkine once spent nine months meticulously restoring a damaged baroque Italian painting, which left him plenty of time to wonder if technology could speed things up. Last week, MIT News announced his solution: a technique that uses AI-generated polymer films to physically restore damaged paintings in hours rather than months. The research appears in Nature.

Kachkine’s method works by printing a transparent “mask” containing thousands of precisely color-matched regions that conservators can apply directly to an original artwork. Unlike traditional restoration, which permanently alters the painting, these masks can reportedly be removed whenever needed. So it’s a reversible process that does not permanently change a painting.

“Because there’s a digital record of what mask was used, in 100 years, the next time someone is working with this, they’ll have an extremely clear understanding of what was done to the painting,” Kachkine told MIT News. “And that’s never really been possible in conservation before.”

Figure 1 from the paper.

Figure 1 from the paper. Credit: MIT

Nature reports that up to 70 percent of institutional art collections remain hidden from public view due to damage—a large amount of cultural heritage sitting unseen in storage. Traditional restoration methods, where conservators painstakingly fill damaged areas one at a time while mixing exact color matches for each region, can take weeks to decades for a single painting. It’s skilled work that requires both artistic talent and deep technical knowledge, but there simply aren’t enough conservators to tackle the backlog.

The mechanical engineering student conceived the idea during a 2021 cross-country drive to MIT, when gallery visits revealed how much art remains hidden due to damage and restoration backlogs. As someone who restores paintings as a hobby, he understood both the problem and the potential for a technological solution.

To demonstrate his method, Kachkine chose a challenging test case: a 15th-century oil painting requiring repairs in 5,612 separate regions. An AI model identified damage patterns and generated 57,314 different colors to match the original work. The entire restoration process reportedly took 3.5 hours—about 66 times faster than traditional hand-painting methods.

A handout photo of Alex Kachkine, who developed the AI printed film technique.

Alex Kachkine, who developed the AI-printed film technique. Credit: MIT

Notably, Kachkine avoided using generative AI models like Stable Diffusion or the “full-area application” of generative adversarial networks (GANs) for the digital restoration step. According to the Nature paper, these models cause “spatial distortion” that would prevent proper alignment between the restored image and the damaged original.

MIT student prints AI polymer masks to restore paintings in hours Read More »

new-camera-design-can-id-threats-faster,-using-less-memory

New camera design can ID threats faster, using less memory

Image out the windshield of a car, with other vehicles highlighted by computer-generated brackets.

Elon Musk, back in October 2021, tweeted that “humans drive with eyes and biological neural nets, so cameras and silicon neural nets are only way to achieve generalized solution to self-driving.” The problem with his logic has been that human eyes are way better than RGB cameras at detecting fast-moving objects and estimating distances. Our brains have also surpassed all artificial neural nets by a wide margin at general processing of visual inputs.

To bridge this gap, a team of scientists at the University of Zurich developed a new automotive object-detection system that brings digital camera performance that’s much closer to human eyes. “Unofficial sources say Tesla uses multiple Sony IMX490 cameras with 5.4-megapixel resolution that [capture] up to 45 frames per second, which translates to perceptual latency of 22 milliseconds. Comparing [these] cameras alone to our solution, we already see a 100-fold reduction in perceptual latency,” says Daniel Gehrig, a researcher at the University of Zurich and lead author of the study.

Replicating human vision

When a pedestrian suddenly jumps in front of your car, multiple things have to happen before a driver-assistance system initiates emergency braking. First, the pedestrian must be captured in images taken by a camera. The time this takes is called perceptual latency—it’s a delay between the existence of a visual stimuli and its appearance in the readout from a sensor. Then, the readout needs to get to a processing unit, which adds a network latency of around 4 milliseconds.

The processing to classify the image of a pedestrian takes further precious milliseconds. Once that is done, the detection goes to a decision-making algorithm, which takes some time to decide to hit the brakes—all this processing is known as computational latency. Overall, the reaction time is anywhere between 0.1 to half a second. If the pedestrian runs at 12 km/h they would travel between 0.3 and 1.7 meters in this time. Your car, if you’re driving 50 km/h, would cover 1.4 to 6.9 meters. In a close-range encounter, this means you’d most likely hit them.

Gehrig and Davide Scaramuzza, a professor at the University of Zurich and a co-author on the study, aimed to shorten those reaction times by bringing the perceptual and computational latencies down.

The most straightforward way to lower the former was using standard high-speed cameras that simply register more frames per second. But even with a 30-45 fps camera, a self-driving car would generate nearly 40 terabytes of data per hour. Fitting something that would significantly cut the perceptual latency, like a 5,000 fps camera, would overwhelm a car’s onboard computer in an instant—the computational latency would go through the roof.

So, the Swiss team used something called an “event camera,” which mimics the way biological eyes work. “Compared to a frame-based video camera, which records dense images at a fixed frequency—frames per second—event cameras contain independent smart pixels that only measure brightness changes,” explains Gehrig. Each of these pixels starts with a set brightness level. When the change in brightness exceeds a certain threshold, the pixel registers an event and sets a new baseline brightness level. All the pixels in the event camera are doing that continuously, with each registered event manifesting as a point in an image.

This makes event cameras particularly good at detecting high-speed movement and allows them to do so using far less data. The problem with putting them in cars has been that they had trouble detecting things that moved slowly or didn’t move at all relative to the camera. To solve that, Gehrig and Scaramuzza went for a hybrid system, where an event camera was combined with a traditional one.

New camera design can ID threats faster, using less memory Read More »

playboy-image-from-1972-gets-ban-from-ieee-computer-journals

Playboy image from 1972 gets ban from IEEE computer journals

image processing —

Use of “Lenna” image in computer image processing research stretches back to the 1970s.

Playboy image from 1972 gets ban from IEEE computer journals

Aurich Lawson | Getty Image

On Wednesday, the IEEE Computer Society announced to members that, after April 1, it would no longer accept papers that include a frequently used image of a 1972 Playboy model named Lena Forsén. The so-called “Lenna image,” (Forsén added an extra “n” to her name in her Playboy appearance to aid pronunciation) has been used in image processing research since 1973 and has attracted criticism for making some women feel unwelcome in the field.

In an email from the IEEE Computer Society sent to members on Wednesday, Technical & Conference Activities Vice President Terry Benzel wrote, “IEEE’s diversity statement and supporting policies such as the IEEE Code of Ethics speak to IEEE’s commitment to promoting an including and equitable culture that welcomes all. In alignment with this culture and with respect to the wishes of the subject of the image, Lena Forsén, IEEE will no longer accept submitted papers which include the ‘Lena image.'”

An uncropped version of the 512×512-pixel test image originally appeared as the centerfold picture for the December 1972 issue of Playboy Magazine. Usage of the Lenna image in image processing began in June or July 1973 when an assistant professor named Alexander Sawchuck and a graduate student at the University of Southern California Signal and Image Processing Institute scanned a square portion of the centerfold image with a primitive drum scanner, omitting nudity present in the original image. They scanned it for a colleague’s conference paper, and after that, others began to use the image as well.

The original 512×512

The original 512×512 “Lenna” test image, which is a cropped portion of a 1972 Playboy centerfold.

The image’s use spread in other papers throughout the 1970s, 80s, and 90s, and it caught Playboy’s attention, but the company decided to overlook the copyright violations. In 1997, Playboy helped track down Forsén, who appeared at the 50th Annual Conference of the Society for Imaging Science in Technology, signing autographs for fans. “They must be so tired of me … looking at the same picture for all these years!” she said at the time. VP of new media at Playboy Eileen Kent told Wired, “We decided we should exploit this, because it is a phenomenon.”

The image, which features Forsén’s face and bare shoulder as she wears a hat with a purple feather, was reportedly ideal for testing image processing systems in the early years of digital image technology due to its high contrast and varied detail. It is also a sexually suggestive photo of an attractive woman, and its use by men in the computer field has garnered criticism over the decades, especially from female scientists and engineers who felt that the image (especially related to its association with the Playboy brand) objectified women and created an academic climate where they did not feel entirely welcome.

Due to some of this criticism, which dates back to at least 1996, the journal Nature banned the use of the Lena image in paper submissions in 2018.

The comp.compression Usenet newsgroup FAQ document claims that in 1988, a Swedish publication asked Forsén if she minded her image being used in computer science, and she was reportedly pleasantly amused. In a 2019 Wired article, Linda Kinstler wrote that Forsén did not harbor resentment about the image, but she regretted that she wasn’t paid better for it originally. “I’m really proud of that picture,” she told Kinstler at the time.

Since then, Forsén has apparently changed her mind. In 2019, Creatable and Code Like a Girl created an advertising documentary titled Losing Lena, which was part of a promotional campaign aimed at removing the Lena image from use in tech and the image processing field. In a press release for the campaign and film, Forsén is quoted as saying, “I retired from modelling a long time ago. It’s time I retired from tech, too. We can make a simple change today that creates a lasting change for tomorrow. Let’s commit to losing me.”

It seems like that commitment is now being granted. The ban in IEEE publications, which have been historically important journals for computer imaging development, will likely further set a precedent toward removing the Lenna image from common use. In his email, the IEEE’s Benzel recommended wider sensitivity about the issue, writing, “In order to raise awareness of and increase author compliance with this new policy, program committee members and reviewers should look for inclusion of this image, and if present, should ask authors to replace the Lena image with an alternative.”

Playboy image from 1972 gets ban from IEEE computer journals Read More »