human spaceflight

nasa-has-a-new-problem-to-fix-before-the-next-artemis-ii-countdown-test

NASA has a new problem to fix before the next Artemis II countdown test

John Honeycutt, chair of NASA’s Artemis II mission management team, said the decision to relax the safety limit between Artemis I and Artemis II was grounded in test data.

“The SLS program, they came up with a test campaign that actually looked at that cavity, the characteristics of the cavity, the purge in the cavity … and they introduced hydrogen to see when you could actually get it to ignite, and at 16 percent, you could not,” said Honeycutt, who served as NASA’s SLS program manager before moving to his new job.

Hydrogen is explosive in high concentrations when mixed with air. This is what makes hydrogen a formidable rocket fuel. But it is also notoriously difficult to contain. Molecular hydrogen is the smallest molecule, meaning it can readily escape through leak paths, and poses a materials challenge for seals because liquified hydrogen is chilled to minus 423 degrees Fahrenheit (minus 253 degrees Celsius).

So, it turns out NASA used the three-year interim between Artemis I and Artemis II to get comfortable with a more significant hydrogen leak, instead of fixing the leaks themselves. Isaacman said that will change before Artemis III, which likewise is probably at least three years away.

“I will say near-conclusively for Artemis III, we will cryoproof the vehicle before it gets to the pad, and the propellant loading interfaces we are troubleshooting will be redesigned,” Isaacman wrote.

Isaacman took over as NASA’s administrator in December, and has criticized the SLS program’s high costestimated by NASA’s inspector general at more than $2 billion per rocket—along with the launch vehicle’s torpid flight rate.

NASA’s expenditures for the rocket’s ground systems at Kennedy Space Center are similarly enormous. NASA spent nearly $900 million on Artemis ground support infrastructure in 2024 alone. Much of the money went toward constructing a new launch platform for an upgraded version of the Space Launch System that may never fly.

All of this makes each SLS rocket a golden egg, a bespoke specimen that must be treated with care because it is too expensive to replace. NASA and Boeing, the prime contractor for the SLS core stage, never built a full-size test model of the core stage. There’s currently no way to completely test the cryogenic interplay between the core stage and ground equipment until the fully assembled rocket is on the launch pad.

Existing law requires NASA continue flying the SLS rocket through the Artemis V mission. Isaacman wrote that the Artemis architecture “will continue to evolve as we learn more and as industry capabilities mature.” In other words, NASA will incorporate newer, cheaper, reusable rockets into the Artemis program.

The next series of launch opportunities for the Artemis II mission begin March 3. If the mission doesn’t lift off in March, NASA will need to roll the rocket back to the Vehicle Assembly Building to refresh its flight termination system. There are more launch dates available in April and May.

“There is still a great deal of work ahead to prepare for this historic mission,” Isaacman wrote. “We will not launch unless we are ready and the safety of our astronauts will remain the highest priority. We will keep everyone informed as NASA prepares to return to the Moon.”

NASA has a new problem to fix before the next Artemis II countdown test Read More »

china-showcases-new-moon-ship-and-reusable-rocket-in-one-extraordinary-test

China showcases new Moon ship and reusable rocket in one extraordinary test

A Chinese Long March 10 booster, powered by seven kerosene-fueled YF-100K engines, lifts off from the Wenchang Space Launch Site on Hainan Island on February 11, 2026 (local time).

Credit: Liu Yang/VCG via Getty Images

A Chinese Long March 10 booster, powered by seven kerosene-fueled YF-100K engines, lifts off from the Wenchang Space Launch Site on Hainan Island on February 11, 2026 (local time). Credit: Liu Yang/VCG via Getty Images

Mengzhou, which means “dream vessel” in Chinese, is scheduled for its first orbital test flight later this year. The spacecraft will launch on a Long March 10A rocket and dock with China’s Tiangong space station in low-Earth orbit. The Long March 10A, optimized for low-Earth orbit flights, will consist of a single reusable first-stage booster flying in combination with an upper stage. The full-size Long March 10, with 21 engines on three first-stage boosters connected together, will have the power to place payloads up to 70 metric tons into low-Earth orbit, and enough energy to propel the 26-metric-ton Mengzhou spacecraft to the Moon.

China’s leading state-owned space industry contractor, the China Aerospace and Science Technology Corporation (CASC), said the recovery of the Long March 10 booster after the in-flight abort test lays the foundation for “subsequent full-profile flight tests” and marks a “significant step” for China in “mastering reusable rocket technology.”

“The flight test further evaluated several key technologies, including the reliability of multiple engine restarts and high-altitude ignition during the rocket’s reentry phase, adaptability to complex force and thermal environments, and high-precision navigation control during the reentry phase.”

CASC oversees a sprawling industry of rocket and spacecraft manufacturers, including those responsible for designing and building the Mengzhou spacecraft and Long March 10 rocket.

The Mengzhou capsule splashes down in the South China Sea after the in-flight abort test.

Credit: China Manned Space Agency

The Mengzhou capsule splashes down in the South China Sea after the in-flight abort test. Credit: China Manned Space Agency

The successful splashdown and recovery of the Long March 10 booster continues a busy period for China’s reusable rocket initiatives. No fewer than 10 Chinese companies are working on reusable rockets at different levels of maturity, all seeking to match the success of SpaceX’s reusable rocket program in the United States.

In December, two Chinese launch providers debuted new rockets—the Zhuque-3 and Long March 12A—with recoverable and reusable boosters. The rockets reached orbit, but their boosters missed their landings downrange from their launch pads.

Several Chinese companies have also completed high-altitude “hop tests” to evaluate vertical takeoff and vertical landing technologies ahead of launching their first orbital flights.

These advancements in China’s reusable rocket and lunar exploration programs come as NASA prepares to launch a crew of four astronauts on a loop around the far side of the Moon as soon as next month. A US-made lunar lander is likely still a few years away from being ready to transport crews to and from the lunar surface.

China showcases new Moon ship and reusable rocket in one extraordinary test Read More »

lawmakers-ask-what-it-would-take-to-“store”-the-international-space-station

Lawmakers ask what it would take to “store” the International Space Station


NASA shall evaluate the “viability of transferring the ISS to a safe orbital harbor” after retirement.

The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Moon at roughly five miles per second on Saturday, December 2, 2017, in Manchester Township, York County, Pennsylvania. Credit: NASA/Joel Kowsky

Members of the House Science, Space, and Technology Committee voted to approve a NASA authorization bill this week, advancing legislation chock full of policy guidelines meant to give lawmakers a voice in the space agency’s strategic direction.

The committee met to “mark up” the NASA Reauthorization Act of 2026, adding more than 40 amendments to the bill before a unanimous vote to refer the legislation to the full House of Representatives. Wednesday’s committee vote was just one of several steps needed for the bill to become law. It must pass a vote on the House floor, win approval from the Senate, and then go to the White House for President Donald Trump’s signature.

Ars has reported on one of the amendments, which would authorize NASA to take steps toward a “commercial” deep space program using privately owned rockets and spacecraft rather than vehicles owned by the government.

Another add-on to the authorization bill would require NASA to reassess whether to guide the International Space Station (ISS) toward a destructive atmospheric reentry after it is decommissioned in 2030. The space agency’s current plan is to deorbit the space station in 2031 over the Pacific Ocean, where debris that survives the scorching reentry will fall into a remote, unpopulated part of the sea.

No policy change—yet

The most recent NASA authorization act, passed in 2022, extended the US government’s support for the ISS program until 2030. The amendment tacked onto this year’s bill would not change the timeline for ending operations on the ISS, but it asks NASA to reconsider its decision about what to do with the complex after retirement.

The amendment would direct NASA to “carry out an engineering analysis to evaluate the technical, operational, and logistical viability of transferring the ISS to a safe orbital harbor and storing the ISS in such harbor after the end of the operational low-Earth orbit lifetime of the ISS to preserve the ISS for potential reuse and satisfy the objectives of NASA.”

Rep. George Whitesides (D-Calif.) submitted the amendment with cosponsorship from Rep. Nick Begich (R-Alaska). The proposal passed the committee through a voice vote with bipartisan support. Whitesides was a NASA chief of staff and longtime executive in the space industry before his election to the House last year.

“The International Space Station is one of the most complex engineering achievements in human history,” Whitesides said. “It represents more than three decades of international collaboration and investment by US taxpayers estimated at well over $100 billion. Current plans call for the station to be deorbited at the end of its service life in 2030. This amendment does not seek to change that policy. Instead, it asks a straightforward question: Before we permanently dispose of an asset of this magnitude, should we fully understand whether it’s viable to preserve it in orbit for potential use by future generations?”

In 2024, NASA awarded SpaceX a nearly $1 billion contract to develop a souped-up version of its Dragon spacecraft, which would be equipped with additional thrusters and propellant tanks to provide the impulse required to steer the space station toward a targeted reentry. The deorbit maneuvers will slow the station’s velocity enough for Earth’s gravity to pull it back into the atmosphere.

Artist’s illustration of SpaceX’s deorbit vehicle, based on the design of the company’s Dragon spacecraft. The modified spacecraft will have 46 Draco thrusters—30 for the deorbit maneuvers and 16 for attitude control.

Credit: SpaceX

Artist’s illustration of SpaceX’s deorbit vehicle, based on the design of the company’s Dragon spacecraft. The modified spacecraft will have 46 Draco thrusters—30 for the deorbit maneuvers and 16 for attitude control. Credit: SpaceX

The deorbit vehicle needs to slow the station’s speed by about 127 mph (57 meters per second), a tiny fraction of the spacecraft’s orbital velocity of more than 17,000 mph (7.7 kilometers per second). But the station mass is around 450 tons (400 metric tons), equivalent to two freight train locomotives, and measures about the length of a football field. Changing its speed by just 127 mph will consume about 10 tons (9 metric tons) of propellant, according to a NASA analysis released in 2024.

The analysis document shows that NASA considered alternatives to discarding the space station through reentry. One option NASA studied involved moving the station into a higher orbit. At its current altitude, roughly 260 miles (420 kilometers) above the Earth, the ISS would take one to two years to reenter the atmosphere due to aerodynamic drag if reboosts weren’t performed. NASA does not want the space station to make an uncontrolled reentry because of the risk of fatalities, injuries, and property damage from debris reaching the ground.

Boosting the space station’s orbit to somewhere between 400 and 420 miles (640 to 680 kilometers) would require a little more than twice the propellant (18.9 to 22.3 metric tons) needed for deorbit maneuvers, according to NASA’s analysis. At that altitude, without any additional boosts, NASA says the space station would likely remain in orbit for 100 years before succumbing to atmospheric drag and burning up. Going higher still, the space station could be placed in a 1,200-mile-high (2,000-kilometer) orbit, stable for more than 10,000 years, with about 146 tons (133 metric tons) of propellant.

There are two problems with sending the ISS to higher altitudes. One is that it would require the development of new propulsive and tanker vehicles that do not currently exist, according to NASA.

“While still currently in development, vehicles such as the SpaceX Starship are being designed to deliver significant amounts of cargo to these orbits,” NASA officials wrote in their analysis. “However, there are prohibitive engineering challenges with docking such a large vehicle to the space station and being able to use its thrusters while remaining within space station structural margins. Other vehicles would require both new certifications to fly at higher altitudes and multiple flights to deliver propellant.”

Going higher would also expose the space station to an increased risk of collision with space junk. The hazards from space debris are most severe at about 500 miles (800 kilometers), according to the engineers who conducted the analysis. “This means that the likelihood of an impact leaving station unable to maneuver or react to future threats, or even a significant impact resulting in complete fragmentation, is unacceptably high.”

This photo of the International Space Station was captured by a crew member on a Soyuz spacecraft.

Credit: NASA/Roscosmos

This photo of the International Space Station was captured by a crew member on a Soyuz spacecraft. Credit: NASA/Roscosmos

Whitesides’ office did not respond to Ars’ questions, but he said in Wednesday’s hearing that his amendment would direct NASA to further examine the costs and risks of putting the ISS in a higher orbit. The legislation “simply ensures that Congress receives a rigorous fact-based analysis so that future decisions involving the ISS are informed by scientific reality,” he said.

“At a time when we’re thinking seriously about sustainability in space, this amendment protects taxpayer investments and ensures that we fully understand our options before an irreplaceable asset is permanently retired.”

Rep. Brian Babin (R-Texas) said he “wholeheartedly” supports Whitesides’ amendment. Rep. Don Beyer (D-Va.) also endorsed it in brief remarks during Wednesday’s markup hearing.

“I just hate the thought that we would take something not just that we spent all the money on, but such an important part of human history, and dump it in the Pacific Ocean, never to be seen again, rather than preserving it,” Beyer said. “We don’t know whether we can do it in orbit, but if we can, we should really explore that hard.”

It’s not too late

Although NASA’s official policy is still to decommission the ISS in 2030, the door hasn’t closed on extending the lab’s operations into the next decade. There are some concerns about aging hardware, but NASA said in 2024 that engineers have “high confidence” that the primary structure of the station could support operations beyond 2030.

The oldest segments of the station have been in orbit since 1998, undergoing day-night thermal cycles every 45 minutes as they orbit the planet. The structural stability of the Russian section of the outpost is also in question. Russian engineers traced a small but persistent air leak to microscopic structural cracks in one Russian module, but cosmonauts were able to seal the cracks, and air pressure in the area is “holding steady,” a NASA spokesperson said last month.

One of the lab’s most critical elements, its power-generation system, is in good shape after NASA recently installed upgraded solar arrays outside the station. Another set of upgraded solar panels is scheduled to arrive at the station later this year, just a few years before the complex is to be retired.

NASA’s strategy is to decommission the ISS and turn to the commercial sector for new, cheaper, smaller space stations to continue conducting research in low-Earth orbit. This would allow NASA to buy time on a commercial space station for its astronauts and experiments, while the agency’s human spaceflight program focuses on missions to the Moon.

That’s a fine plan, but NASA’s program to support commercial space stations, known as Commercial LEO Destinations (CLDs), is going nowhere fast. Supporters of the CLD program say it has been underfunded from the start, and the strategy became more muddled last year when Sean Duffy, then NASA’s acting administrator, changed the agency’s rules for private space stations. NASA Administrator Jared Isaacman is reviewing the changes, and the requirements for stations may shift again.

NASA spends more than $3 billion per year for ISS operations, including crew and cargo transportation services to staff and support the outpost. NASA’s budget for deep space exploration in fiscal year 2026 is nearly $7.8 billion. NASA is receiving $273 million for the Commercial LEO Destinations program this year, with the money to be divided among multiple companies.

Any private space station will need to sustain itself, at least partially, on commercial business to be profitable. Developers have raised concerns that they will be unable to attract sufficient commercial business—in areas like pharmaceutical research, tech demos, or space tourism—as long as the government-funded ISS is still operating.

One of the companies vying for NASA funding is Vast, which plans to launch its first single-module private outpost to orbit in early 2027. This first station, named Haven-1, will accommodate crews for short-duration temporary stays. Vast plans to follow Haven-1 with a much larger multi-module station capable of supporting a permanent crew.

Max Haot, Vast’s CEO, does not seem bothered by lawmakers’ efforts to revisit the question of deorbiting the International Space Station.

“The amendment directs NASA to study the feasibility of something other than deorbit and disposal after ISS end of life, which is separate from the issue of retiring the space station and transitioning to commercial partners,” Haot said in a statement to Ars. “We support President Trump’s directive in national space policy to replace the ISS by 2030, with commercial partners who can ensure there is no gap in America’s continuous human presence in space.”

The other top contenders in the commercial space station arena are Starlab, a joint venture between Voyager Space and Airbus, the Blue Origin-led Orbital Reef project, and Axiom Space. Voyager and Blue Origin did not respond to requests for comment from Ars, and an Axiom spokesperson was unable to provide a statement by publication time.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Lawmakers ask what it would take to “store” the International Space Station Read More »

former-astronaut-on-lunar-spacesuits:-“i-don’t-think-they’re-great-right-now”

Former astronaut on lunar spacesuits: “I don’t think they’re great right now”


“These are just the difficulties of designing a spacesuit for the lunar environment.”

NASA astronaut Loral O’Hara kneels down to pick up a rock during testing of Axiom’s lunar spacesuit inside NASA’s Neutral Buoyancy Laboratory in Houston on September 24, 2025. Credit: NASA

NASA astronaut Loral O’Hara kneels down to pick up a rock during testing of Axiom’s lunar spacesuit inside NASA’s Neutral Buoyancy Laboratory in Houston on September 24, 2025. Credit: NASA

Crew members traveling to the lunar surface on NASA’s Artemis missions should be gearing up for a grind. They will wear heavier spacesuits than those worn by the Apollo astronauts, and NASA will ask them to do more than the first Moonwalkers did more than 50 years ago.

The Moonwalking experience will amount to an “extreme physical event” for crews selected for the Artemis program’s first lunar landings, a former NASA astronaut told a panel of researchers, physicians, and engineers convened by the National Academies.

Kate Rubins, who retired from the space agency last year, presented the committee with her views on the health risks for astronauts on lunar missions. She outlined the concerns NASA officials often talk about: radiation exposure, muscle and bone atrophy, reduced cardiovascular and immune function, and other adverse medical effects of spaceflight.

Scientists and astronauts have come to understand many of these effects after a quarter-century of continuous human presence on the International Space Station. But the Moon is different in a few important ways. The Moon is outside the protection of the Earth’s magnetosphere, lunar dust is pervasive, and the Moon has partial gravity, about one-sixth as strong as the pull we feel on Earth.

Each of these presents challenges for astronauts living and working on the lunar surface, and their effects are amplified for crew members who venture outside for spacewalks. NASA selected Axiom Space, a Houston-based company, for a $228 million fixed-price contract to develop commercial pressurized spacesuits for the Artemis III mission, slated to be the first human landing mission on the Moon since 1972.

NASA hopes to fly the Artemis III mission by the end of 2028, but the schedule is in question. The readiness of Axiom’s spacesuits and the availability of new human-rated landers from SpaceX and Blue Origin are driving the timeline for Artemis III.

Stressing about stress

Rubins is a veteran of two long-duration spaceflights on the International Space Station, logging 300 days in space and conducting four spacewalks totaling nearly 27 hours. She is also an accomplished microbiologist and became the first person to sequence DNA in space.

“What I think we have on the Moon that we don’t really have on the space station that I want people to recognize is an extreme physical stress,” Rubins said. “On the space station, most of the time you’re floating around. You’re pretty happy. It’s very relaxed. You can do exercise. Every now and then, you do an EVA (Extravehicular Activity, or spacewalk).”

“When we get to the lunar surface, people are going to be sleep shifting,” Rubins said. “They’re barely going to get any sleep. They’re going to be in these suits for eight or nine hours. They’re going to be doing EVAs every day. The EVAs that I did on my flights, it was like doing a marathon and then doing another marathon when you were done.”

NASA astronaut Kate Rubins inside the International Space Station in 2020.

Credit: NASA

NASA astronaut Kate Rubins inside the International Space Station in 2020. Credit: NASA

Rubins is now a professor of computational and systems biology at the University of Pittsburgh School of Medicine. She said treks on the Moon will be “even more challenging” than her spacewalks outside the ISS.

The Axiom spacesuit design builds on NASA’s own work developing a prototype suit to replace the agency’s decades-old Extravehicular Mobility Units (EMUs) used for spacewalks at the International Space Station (ISS). The new suits allow for greater mobility, with more flexible joints to help astronauts use their legs, crouch, and bend down—things they don’t have to do when floating outside the ISS.

Astronauts on the Moon also must contend with gravity. Including a life-support backpack, the commercial suit weighs more than 300 pounds in Earth’s gravity, but Axiom considers the exact number proprietary. The Axiom suit is considerably heavier than the 185-pound spacesuit the Apollo astronauts wore on the Moon. NASA’s earlier prototype exploration spacesuit was estimated to weigh more than 400 pounds, according to a 2021 report by NASA’s inspector general.

“We’ve definitely seen trauma from the suits, from the actual EVA suit accommodation,” said Mike Barratt, a NASA astronaut and medical doctor. “That’s everything from skin abrasions to joint pain to—no kidding—orthopedic trauma. You can potentially get a fracture of sorts. EVAs on the lunar surface with a heavily loaded suit and heavy loads that you’re either carrying or tools that you’re reacting against, that’s an issue.”

On paper, the Axiom suits for NASA’s Artemis missions are more capable than the Apollo suits. They can support longer spacewalks and provide greater redundancy, and they’re made of modern materials to enhance flexibility and crew comfort. But the new suits are heavier, and for astronauts used to spacewalks outside the ISS, walks on the Moon will be a slog, Rubins said.

“I think the suits are better than Apollo, but I don’t think they are great right now,” Rubins said. “They still have a lot of flexibility issues. Bending down to pick up rocks is hard. The center of gravity is an issue. People are going to be falling over. I think when we say these suits aren’t bad, it’s because the suits have been so horrible that when we get something slightly less than horrible, we get all excited and we celebrate.”

The heavier lunar suits developed for Artemis missions run counter to advice from former astronaut Harrison “Jack” Schmitt, who spent 22 hours walking on the Moon during NASA’s Apollo 17 mission in 1972.

“I’d have that go about four times the mobility, at least four times the mobility, and half the weight,” Schmitt said in a NASA oral history interview in 2000. “Now, one way you can… reduce the weight is carry less consumables and learn to use consumables that you have in some other vehicle, like a lunar rover. Any time you’re on the rover, you hook into those consumables and live off of those, and then when you get off, you live off of what’s in your backpack. We, of course, just had the consumables in our backpack.”

NASA won’t have a rover on the first Artemis landing mission. That will come on a later flight. A fully pressurized vehicle for astronauts to drive across the Moon may be ready sometime in the 2030s. Until then, Moonwalkers will have to tough it out.

“I do crossfit. I do triathlons. I do marathons. I get out of a session in the pool in the NBL (Neutral Buoyancy Laboratory) doing the lunar suit underwater, and I just want to go home and take a nap,” Rubins told the panel. “I am absolutely spent. You’re bruised. This is an extreme physical event in a way that the space station is not.”

NASA astronaut Mike Barratt inside the International Space Station in 2024.

Credit: NASA

NASA astronaut Mike Barratt inside the International Space Station in 2024. Credit: NASA

Barratt met with the same National Academies panel this week and presented a few hours before Rubins. The committee was chartered to examine how human explorers can enable scientific discovery at sites across the lunar surface. Barratt had a more favorable take on the spacesuit situation.

“This is not a commercial for Axiom. I don’t promote anyone, but their suit is getting there,” Barratt said. “We’ve got 700 hours of pressurized experience in it right now. We do a lot of tests in the NBL, and there are techniques and body conditioning that you do to help you get ready for doing things like this. Bending down in the suit is really not too bad at all.”

Rubins and Barratt did not discuss the schedule for when Axiom’s lunar spacesuit will be ready to fly to the Moon, but the conversation illuminated the innumerable struggles of spacewalking, Moonwalking, and the training astronauts undergo to prepare for extravehicular outings.

The one who should know

I spoke directly with Rubins after her discussion with the National Academies. Her last assignment at NASA was as chief of the EVA and robotics branch in the astronaut office, where she assisted in the development of the new lunar spacesuits. I asked about her experiences testing the lunar suit and her thoughts on how astronauts should prepare for Moonwalks.

“The suits that we have are definitely much better than Apollo,” Rubins said in the interview. “They were just big bags of air. The joints aren’t in there, so it was harder to move. What they did have going for them was that they were much, much lighter than our current spacesuits. We have added a lot of the joints back, and that does get some mobility for us. But at the end of the day, the suits are still quite heavy.”

You can divide the weight of the suit by six to get an idea of how it might feel to carry it around on the lunar surface. While it won’t feel like 300 pounds, astronauts will still have to account for their mass and momentum.

Rubins explained:

Instead of kind of floating in microgravity and moving your mass around with your hands and your arms, now we’re ambulating. We’re walking with our legs. You’re going to have more strain on your knees and your hips. Your hamstrings, your calves, and your glutes are going to come more into play.

I think, overall, it may be a better fit for humans physically because if you ask somebody to do a task, I’m going to be much better at a task if I can use my legs and I’m ambulating. Then I have to pull myself along with my arms… We’re not really built to do that, but we are built to run and to go long distances. Our legs are just such a powerful force.

So I think there are a lot of things lining up that are going to make the physiology easier. Then there are things that are going to be different because we’re now in a partial gravity environment. We’re going to be bending, we’re going to be twisting, we’re going to be doing different things.

It’s an incredibly hard engineering challenge. You have to keep a human alive in absolute vacuum, warm at temperatures that you know in the polar regions could go as far down as 40 Kelvin (minus 388° Fahrenheit). We haven’t sent humans anywhere that cold before. They are also going to be very hot. They’re going to be baking in the sunshine. You’ve got radiation. If you put all that together, that’s a huge amount of suit material just to keep the human physiology and the human body intact.

Then our challenge is ‘how do you make that mobile?’ It’s very difficult to bend down and pick up a rock. You have to manage that center of gravity because you’re wearing that big life support system on your back, a big pack that has a lot of mass in it, so that brings your center of gravity higher than you’re used to on Earth and a little bit farther backward.

When you move around, it’s like wearing a really, really heavy backpack that has mass but no weight, so it’s going to kind of tip you back. You can do some things with putting weights on the front of the suit to try to move that center of gravity forward, but it’s still higher, and it’s not exactly at your center of mass that you’re used to on the Earth. On the Earth, we have a center of our mass related to gravity, and nobody ever thinks about it, and you don’t think about it until it moves somewhere else, and then it makes all of your natural motion seem very difficult.

Those are some of the challenges that we’re facing engineering-wise. I think the new suits, they’ve gone a long way toward addressing these, but it’s still a hard engineering challenge. And I’m not talking about any specific suit. I can’t talk about the details of the provider’s suits. This is the NASA xEMU and all the lunar suits I have tested over the years. That includes the Mark III suit, the Axiom suit. They have similar issues. So this isn’t really anything about a specific vendor. These are just the difficulties of designing a spacesuit for the lunar environment.

NASA trains astronauts for spacewalks in the Neutral Buoyancy Laboratory, an enormous pool in Houston used for simulating weightlessness. They also use a gravity-offloading device to rehearse the basics of spacewalking. The optimal test environment, short of the space environment itself, will be aboard parabolic flights, where suit developers and astronauts can get the best feel for the suit’s momentum, according to Rubins.

Axiom and NASA are well along assessing the new lunar spacesuit’s performance underwater, but they haven’t put it through reduced-gravity flight testing. “Until you get to the actual parabolic flight, that’s when you can really test the ability to manage this momentum,” Rubins said.

NASA astronauts Loral O’Hara and Stan Love test Axiom’s lunar spacesuit inside NASA’s Neutral Buoyancy Laboratory in Houston on September 24, 2025.

Credit: NASA

NASA astronauts Loral O’Hara and Stan Love test Axiom’s lunar spacesuit inside NASA’s Neutral Buoyancy Laboratory in Houston on September 24, 2025. Credit: NASA

Recovering from a fall on the lunar surface comes with its own perils.

“You’re face down on the lunar surface, and you have to do the most massive, powerful push up to launch you and the entire mass of the suit up off the surface, high enough so you can then flip your legs under you and catch the ground,” Rubins said. “You basically have to kind of do a jumping pushup… This is a risky maneuver we test a whole bunch in training. It’s really non-trivial.”

The lunar suits are sleeker than the suits NASA uses on the ISS, but they are still bulky. “If you’re trying to kneel, if you’re thinking about bending forward at your waist, all that material in your waist has nowhere to go, so it just compresses and compresses,” Rubins said. “That’s why I say it’s harder to kneel. It’s harder to bend forward because you’re having to compress the suit in those areas.

“We’ve done these amazing things with joint mobility,” Rubins said. “The mobility around the joints is amazing… but now we’re dealing with this compression issue. And there’s not an obvious engineering fix to that.”

The fix to this problem might come in the form of tools instead of changes to the spacesuit itself. Rubins said astronauts could use a staff, or something like a hiking pole, to brace themselves when they need to kneel or bend down. “That way I’m not trying to compress the suit and deal with my balance at the same time.”

A bruising exertion

The Moonwalker suit can comfortably accommodate a wider range of astronauts than NASA’s existing EMUs on the space station. The old EMUs can be resized to medium, large, and extra-large, but that leaves gaps and makes the experience uncomfortable for a smaller astronaut. This discomfort is especially noticeable while practicing for spacewalks underwater, where the tug of gravity is still present, Rubins said.

“As a female, I never really had an EMU that fit me,” Rubins said. “It was always giant. When I’m translating around or doing something, I’m physically falling and slamming myself, my chest or my back, into one side of the suit or the other underwater, whereas with the lunar suit, I’ve got a suit that fits me right. That’s going to lead to less bruising. Just having a suit that fits you is much better.”

Mission planners should also emphasize physical conditioning for astronauts assigned to lunar landing missions. That includes preflight weight and endurance training, plus guidance on what to eat in space to maximize energy levels before astronauts head outside for a stroll.

“That human has to go up really maximally conditioned,” Rubins said.

Rubins and Barratt agreed that NASA and its spacesuit provider should be ready to rapidly respond to feedback from future Moonwalkers. Engineers modified and upgraded the Apollo spacesuits in a matter of months, iterating the design between each mission.

“Our general design is on a good path,” Rubins said. “We need to make sure that we continue to push for increasing improvements in human performance, and some of that ties back to the budget. Our first suit design is not where we’re going to be done if we want to do a really sustained lunar program. We have to continue to improve, and I think it’s important to recognize that we’re going to learn so many lessons during Artemis III.”

Barratt has a unique perspective on spacesuit design. He has performed spacewalks at the ISS in NASA’s spacesuit and the Russian Orlan spacesuit. Barratt said the US suit is easier to work in than the Orlan, but the Russian suit is “incredibly reliable” and “incredibly serviceable.”

“It had a couple of glitches, and literally, you unzip a curtain and it’s like looking at my old Chevy Blazer,” Barratt said. “Everything is right there. It’s mechanical, it’s accessible with standard tools. We can fix it. We can do that really easily. We’ve tried to incorporate those lessons learned into our next-generation EVA systems.”

Contrast that with the NASA suits on the ISS, where one of Barratt’s spacewalks in 2024 was cut short by a spacesuit water leak. “We recently had to return a suit from the space station,” Barratt said. “We’ve got another one that’s sort of offline for a while; we’re troubleshooting it. It’s a really subtle problem that’s extremely difficult to work on in places that are hard to access.”

It’s happened before. Apollo 17 astronaut Harrison “Jack” Schmitt loses his balance on the Moon, then quickly recovers.

Credit: NASA

It’s happened before. Apollo 17 astronaut Harrison “Jack” Schmitt loses his balance on the Moon, then quickly recovers. Credit: NASA

Harrison Schmitt, speaking with a NASA interviewer in 2000, said his productivity in the Apollo suit “couldn’t have been much more than 10 percent of what you would do normally here on Earth.”

“You take the human brain, the human eyes, and the human hands into space. That’s the only justification you have for having human beings in space,” Schmitt said. “It’s a massive justification, but that’s what you want to use, and all three have distinct benefits in productivity and in gathering new information and infusing data over any automated system. Unfortunately, we have discarded one of those, and that is the hands.”

Schmitt singled out the gloves as the “biggest problem” with the Apollo suits. “The gloves are balloons, and they’re made to fit,” he said. Picking something up with a firm grip requires squeezing against the pressure inside the suit. The gloves can also damage astronauts’ fingernails.

“That squeezing against that pressure causes these forearm muscles to fatigue very rapidly,” Schmitt said. “Just imagine squeezing a tennis ball continuously for eight hours or 10 hours, and that’s what you’re talking about.”

Barratt recounted a conversation in which Schmitt, now 90, said he wouldn’t have wanted to do another spacewalk after his three excursions with commander Gene Cernan on Apollo 17.

“Physically, and from a suit-maintenance standpoint, he thought that that was probably the limit, what they did,” Barratt said. “They were embedded with dust. The visors were abraded. Every time they brushed the dust off the visors, they lost visibility.”

Getting the Artemis spacesuit right is vital to the program’s success. You don’t want to travel all the way to the Moon and stop exploring because of sore fingers or an injured knee.

“If you look at what we’re spending on suits versus what we’re spending on the rocket, this is a pretty small amount,” Rubins said. “Obviously, the rocket can kill you very quickly. That needs to be done right. But the continuous improvement in the suit will get us that much more efficiency. Saving 30 minutes or an hour on the Moon, that gives you that much more science.”

“Once you have safely landed on the lunar surface, this is where you’ve got to put your money,” Barratt said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Former astronaut on lunar spacesuits: “I don’t think they’re great right now” Read More »

the-fastest-human-spaceflight-mission-in-history-crawls-closer-to-liftoff

The fastest human spaceflight mission in history crawls closer to liftoff


After a remarkably smooth launch campaign, Artemis II reached its last stop before the Moon.

NASA’s Space Launch System rocket rolls to Launch Complex 39B on Saturday. Credit: Stephen Clark/Ars Technica

KENNEDY SPACE CENTER, Florida—Preparations for the first human spaceflight to the Moon in more than 50 years took a big step forward this weekend with the rollout of the Artemis II rocket to its launch pad.

The rocket reached a top speed of just 1 mph on the four-mile, 12-hour journey from the Vehicle Assembly Building to Launch Complex 39B at NASA’s Kennedy Space Center in Florida. At the end of its nearly 10-day tour through cislunar space, the Orion capsule on top of the rocket will exceed 25,000 mph as it plunges into the atmosphere to bring its four-person crew back to Earth.

“This is the start of a very long journey,” said NASA Administrator Jared Isaacman. “We ended our last human exploration of the moon on Apollo 17.”

The Artemis II mission will set several notable human spaceflight records. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will travel farther from Earth than any human in history. They won’t land. That distinction will fall to the next mission in line in NASA’s Artemis program.

But the Artemis II astronauts will travel more than 4,000 miles beyond the far side of the Moon (the exact distance depends on the launch date), setting up for a human spaceflight speed record during their blazing reentry over the Pacific Ocean a few days later. Koch will become the first woman to fly to the vicinity of the Moon, and Hansen will be the first non-US astronaut to do the same.

“We really are ready to go,” said Wiseman, the Artemis II commander, during Saturday’s rollout to the launch pad. “We were in a sim [in Houston] for about 10 hours yesterday doing our final capstone entry and landing sim. We got in T-38s last night and we flew to the Cape to be here for this momentous occasion.”

The rollout began around sunrise Saturday, with NASA’s Space Launch System rocket and Orion capsule riding a mobile launch platform and a diesel-powered crawler transporter along a throughway paved with crushed Alabama river rock. Employees, VIPs, and guests gathered along the crawlerway to watch the 11 million-pound stack inch toward the launch pad. The rollout concluded about an hour after sunset, when the crawler transporter’s jacking system lowered the mobile launch platform onto pedestals at Pad 39B.

Hitting the launch window

The rollout keeps the Artemis II mission on track for liftoff as soon as next month, when NASA has a handful of launch opportunities on February 6, 7, 8, 10, and 11.

The big milestone leading up to launch day will be a practice countdown or Wet Dress Rehearsal (WDR), currently slated for around February 2, when NASA’s launch team will pump more than 750,000 gallons of super-cold liquid hydrogen and liquid oxygen into the rocket. NASA had trouble keeping the cryogenic fluids at the proper temperature, then encountered hydrogen leaks when the launch team first tried to fill the rocket for the unpiloted Artemis I mission in 2022. Engineers implemented the same fixes on Artemis II that they used to finally get over the hump with propellant loading on Artemis I.

So, what are the odds NASA can actually get the Artemis II mission off the ground next month?

“We’ll have to have things go right,” said Matt Ramsey, NASA’s Artemis II mission manager, in an interview with Ars on Saturday. “There’s a day of margin there for weather. There’s some time after WDR that we’ve got for data reviews and that sort of thing. It’s not unreasonable, but I do think it’s a success-oriented schedule.”

The Moon has to be in the right position in its orbit for the Artemis II launch to proceed. There are also restrictions on launch dates to ensure the Orion capsule returns to Earth and reenters the atmosphere at an angle safe for the ship’s heat shield. If the launch does not happen in February, NASA has a slate of backup launch dates in early March.

Ars was at Kennedy Space Center for the rocket’s move to the launch pad Saturday. The photo gallery below shows the launcher emerging from the Vehicle Assembly Building, the same facility once used to stack Saturn V rockets during the Apollo Moon program. The Artemis II astronauts were also on hand for a question and answer session with reporters.

Around the clock

The first flight of astronauts on the SLS rocket and Orion spacecraft is running at least five years late. The flight’s architecture, trajectory, and goals have changed multiple times, and technical snags discovered during manufacturing and testing repeatedly shifted the schedule. The program’s engineering and budgetary problems are well documented.

But the team readying the rocket and spacecraft for launch has hit a stride in recent months. Technicians inside the Vehicle Assembly Building started stacking the SLS rocket in late 2024, beginning with the vehicle’s twin solid-fueled boosters. Then ground teams added the core stage, upper stage, and finally installed the Orion spacecraft on top of the rocket last October.

Working nearly around the clock in three shifts, it took about 12 months for crews at Kennedy to assemble the rocket and prepare it for rollout. But the launch campaign inside the VAB was remarkably smooth. Ground teams shaved about two months off the time it took to integrate the SLS rocket and Orion spacecraft for the Artemis I mission, which launched on the program’s first full-up unpiloted test flight in 2022.

“About a year ago, I was down here and we set the rollout date, and we hit it within a day or two,” said Matt Ramsey, NASA’s mission manager for Artemis II. “Being able to stay on schedule, it was a daily grind to be able to do that.”

Engineers worked through a handful of technical problems last year, including an issue with a pressure-assisted device used to assist the astronauts in opening the Orion hatch in the event of an emergency. More recently, NASA teams cleared a concern with caps installed on the rocket’s upper stage, according to Ramsey.

The most significant engineering review focused on proving the Orion heat shield is safe to fly. That assessment occurred in the background from the perspective of the technicians working on Artemis II at Kennedy.

The Artemis II team is now focused on activities at the launch pad. This week, NASA plans to perform a series of tests extending and retracting the crew access mark. Next, the Artemis II astronauts will rehearse an emergency evacuation from the launch pad. That will be followed by servicing of the rocket’s hydraulic steering system.

The big question mark

All of this leads up to the crucial practice countdown early next month. The astronauts won’t be aboard the rocket for the test, but almost everything else will look like launch day. The countdown will halt around 30 seconds prior to the simulated liftoff.

It took repeated tries to get through the Wet Dress Rehearsal for the Artemis I mission. There were four attempts at the countdown practice run before the first actual Artemis I launch countdown. After encountering hydrogen leaks on two scrubbed launch attempts, NASA performed another fueling test before finally successfully launching Artemis I in November 2022.

The launch team repaired a leaky hydrogen seal and introduced a gentler hydrogen loading procedure to overcome the problem. Hydrogen is an extremely efficient fuel for rockets, but its super-cold temperature and the tiny size of hydrogen molecules make it prone to leakage. The hydrogen feeds the SLS rocket’s four core stage engines and single upper stage engine.

“Artemis I was a test flight, and we learned a lot during that campaign getting to launch,” said Charlie Blackwell-Thompson, NASA’s Artemis II launch director. “The things that we’ve learned relative to how to go load this vehicle, how to load LOX (liquid oxygen), how to load hydrogen, have all been rolled in to the way in which we intend to load the Artemis II vehicle.”

NASA is hesitant to publicly set a target launch date until the agency gets through the dress rehearsal, but agency officials say a February launch remains feasible.

“We’ve held schedule pretty well getting to rollout today,” Isaacman said. “We have zero intention of communicating an actual launch date until we get through wet dress. But look, that’s our first window, and if everything is tracking accordingly, I know the teams are prepared, I know this crew is prepared, we’ll take it.”

“Wet dress is the driver to launch,” Blackwell-Thompson said. “With a wet dress that is without significant issues, if everything goes to plan, then certainly there are opportunities within February that could be achievable.”

One constraint that threw a wrench into NASA’s Artemis I launch campaign is no longer a significant factor for Artemis II. On Artemis I, NASA had to roll the rocket back to the Vehicle Assembly Building (VAB) after the wet dress rehearsal to complete final installation and testing on its flight termination system, which consists of a series of pyrotechnic charges designed to destroy the rocket if it flies off course and threatens populated areas after liftoff.

The US Space Force’s Eastern Range, responsible for public safety for all launches from Florida’s Space Coast, requires the flight termination system be retested after 28 to 35 days, a clock that started ticking last week before rollout. During Artemis I, technicians could not access the parts of the rocket they needed to in order to perform the retest at the launch pad. NASA now has structural arms to give ground teams the ability to reach parts higher up the rocket for the retest without returning to the hangar.

With this new capability, Artemis II could remain at the pad for launch opportunities in February and March before officials need to bring it back to the VAB to replace the flight termination system’s batteries, which still can’t be accessed at the pad.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The fastest human spaceflight mission in history crawls closer to liftoff Read More »

managers-on-alert-for-“launch-fever”-as-pressure-builds-for-nasa’s-moon-mission

Managers on alert for “launch fever” as pressure builds for NASA’s Moon mission

“Putting crew on the rocket and taking the crew around the Moon, this is going be our first step toward a sustained lunar presence,” Honeycutt said. “It’s 10 days [and] four astronauts going farther from Earth than any other human has ever traveled. We’ll be validating the Orion spacecraft’s life support, navigation and crew systems in the really harsh environments of deep space, and that’s going to pave the way for future landings.”

NASA’s 322-foot-tall (98-meter) SLS rocket inside the Vehicle Assembly Building on the eve of rollout to Launch Complex 39B.

Credit: NASA/Joel Kowsky

NASA’s 322-foot-tall (98-meter) SLS rocket inside the Vehicle Assembly Building on the eve of rollout to Launch Complex 39B. Credit: NASA/Joel Kowsky

There is still much work ahead before NASA can clear Artemis II for launch. At the launch pad, technicians will complete final checkouts and closeouts before NASA’s launch team gathers in early February for a critical practice countdown. During this countdown, called a Wet Dress Rehearsal (WDR), Blackwell-Thompson and her team will oversee the loading of the SLS rocket’s core stage and upper stage with super-cold liquid hydrogen and liquid oxygen propellants.

The cryogenic fluids, particularly liquid hydrogen, gave fits to the Artemis launch team as NASA prepared to launch the Artemis I mission—without astronauts—on the SLS rocket’s first test flight in 2022. Engineers resolved the issues and successfully launched the Artemis I mission in November 2022, and officials will apply the lessons for the Artemis II countdown.

“Artemis I was a test flight, and we learned a lot during that campaign getting to launch,” Blackwell-Thompson said. “And the things that we’ve learned relative to how to go load this vehicle, how to load LOX (liquid oxygen), how to load hydrogen, have all been rolled in to the way in which we intend to do for the Artemis II vehicle.”

Finding the right time to fly

Assuming the countdown rehearsal goes according to plan, NASA could be in a position to launch the Artemis II mission as soon as February 6. But the schedule for February 6 is tight, with no margin for error. Officials typically have about five days per month when they can launch Artemis II, when the Moon is in the right position relative to Earth, and the Orion spacecraft can follow the proper trajectory toward reentry and splashdown to limit stress on the capsule’s heat shield.

In February, the available launch dates are February 6, 7, 8, 10, and 11, with launch windows in the overnight hours in Florida. If the mission isn’t off the ground by February 11, NASA will have to stand down until a new series of launch opportunities beginning March 6. The space agency has posted a document showing all available launch dates and times through the end of April.

John Honeycutt, chair NASA’s Mission Management Team for the Artemis II mission, speaks during a news conference at Kennedy Space Center in Florida on January 16, 2026.

Credit: Jim Watson/AFP via Getty Images

John Honeycutt, chair NASA’s Mission Management Team for the Artemis II mission, speaks during a news conference at Kennedy Space Center in Florida on January 16, 2026. Credit: Jim Watson/AFP via Getty Images

NASA’s leaders are eager for Artemis II to fly. NASA is not only racing China, a reality the agency’s former administrator acknowledged during the Biden administration. Now, the Trump administration is pushing NASA to accomplish a human landing on the Moon by the end of his presidential term on January 20, 2029.

One of Honeycutt’s jobs as chair of the Mission Management Team (MMT) is ensuring all the Is are dotted and Ts are crossed amid the frenzy of final launch preparations. While the hardware for Artemis II is on the move in Florida, the astronauts and flight controllers are wrapping up their final training and simulations at Johnson Space Center in Houston.

“I think I’ve got a good eye for launch fever,” he said Friday.

“As chair of the MMT, I’ve got one job, and it’s the safe return of Reid, Victor, Christina, and Jeremy. I consider that a duty and a trust, and it’s one I intend to see through.”

Managers on alert for “launch fever” as pressure builds for NASA’s Moon mission Read More »

nasa’s-first-medical-evacuation-from-space-ends-with-on-target-splashdown

NASA’s first medical evacuation from space ends with on-target splashdown

“Because the astronaut is absolutely stable, this is not an emergent evacuation,” said James “JD” Polk, NASA’s chief medical officer, in a press conference last week. “We’re not immediately disembarking and getting the astronaut down.”

Amit Kshatriya, the agency’s associate administrator, called the situation a “controlled medical evacuation” in a briefing with reporters.

But without a confirmed diagnosis of the astronaut’s medical issue, there was some “lingering risk” for the astronaut’s health if they remained in orbit, Polk said. That’s why NASA Administrator Jared Isaacman and his deputies agreed to call an early end to the Crew-11 mission.

A first for NASA

The Crew-11 mission launched on August 1 and was supposed to stay on the space station until around February 20, a few days after the scheduled arrival of SpaceX’s Crew-12 mission with a team of replacement astronauts. But the early departure means the space station will operate with a crew of three until the launch of Crew-12 next month.

NASA astronaut Chris Williams will be the sole astronaut responsible for maintaining the US segment of the station. Russian cosmonauts Sergey Kud-Sverchkov and Sergey Mikayev launched with Williams in November on a Russian Soyuz vehicle. The Crew Dragon was the lifeboat for all four Crew-11 astronauts, so standard procedure called for the entire crew to return with the astronaut suffering the undisclosed medical issue.

The space station regularly operated with just three crew members for the first decade of its existence. The complex has been permanently staffed since 2000, sometimes with as few as two astronauts or cosmonauts. The standard crew size was raised to six in 2009, then to seven in 2020.

SpaceX’s Crew Dragon Endeavour spacecraft descends toward the Pacific Ocean under four main parachutes.

Credit: NASA

SpaceX’s Crew Dragon Endeavour spacecraft descends toward the Pacific Ocean under four main parachutes. Credit: NASA

Williams will have his hands full until reinforcements arrive. The scaled-down crew will not be able to undertake any spacewalks, and some of the lab’s science programs may have to be deferred to ensure the crew can keep up with maintenance tasks.

This is the first time NASA has called an early end to a space mission for medical reasons, but the Soviet Union faced similar circumstances several times during the Cold War. Russian officials cut short an expedition to the Salyut 7 space station in 1985 after the mission’s commander fell ill in orbit. A similar situation occurred in 1976 with the Soyuz 21 mission to the Salyut 5 space station.

NASA’s first medical evacuation from space ends with on-target splashdown Read More »

nasa-orders-“controlled-medical-evacuation”-from-the-international-space-station

NASA orders “controlled medical evacuation” from the International Space Station


“The crew is highly trained, and they came to the aid of their colleague right away.”

The International Space Station orbits 260 miles (420 kilometers) above the Earth. Credit: NASA

NASA officials said Thursday they have decided to bring home four of the seven crew members on the International Space Station after one of them experienced a “medical situation” earlier this week.

The space agency has said little about the incident, and officials have not identified which crew member suffered the medical issue. James “JD” Polk, NASA’s chief health and medical officer, told reporters Thursday the crew member is “absolutely stable” but that the agency is “erring on the side of caution” with the decision to return the astronaut to Earth.

The ailing astronaut is part of the Crew-11 mission, which launched to the station August 1 and was slated to come back to Earth around February 20. Instead, the Crew-11 astronauts will depart the International Space Station (ISS) in the coming days and head for reentry and a parachute-assisted splashdown in the Pacific Ocean off the coast of California.

After discussions with our chief health and medical officer, Dr. JD Polk, and leadership across the agency, I’ve come to the decision that it’s in the best interests of our astronauts to return Crew-11 ahead of their planned departure,” NASA Administrator Jared Isaacman said Thursday.

The Crew-11 mission is led by commander Zena Cardman, 38, who is wrapping up her first mission to space. Second in command is pilot Mike Fincke, a 58-year-old astronaut on his fourth spaceflight. Japanese astronaut Kimiya Yui, 55, and Russian cosmonaut Oleg Platonov, 39, round out the crew.

Isaacman said NASA will release more information about the schedule for Crew-11’s undocking and reentry within the next 48 hours. The crew will come home aboard the same SpaceX Crew Dragon spacecraft they launched in more than five months ago. The entire crew must return to Earth together because they rely on the same Dragon spacecraft as a lifeboat.

“For over 60 years, NASA has set the standard for safety and security in crewed spaceflight,” Isaacman said. “In these endeavors, including the 25 years of continuous human presence onboard the International Space Station, the health and well-being of our astronauts is always and will be our highest priority.”

From left to right: Crew-11 mission specialist Oleg Platonov, pilot Mike Fincke, commander Zena Cardman, and mission specialist Kimiya Yui. This photo was taken during training at SpaceX’s facility in Hawthorne, California.

Credit: SpaceX

From left to right: Crew-11 mission specialist Oleg Platonov, pilot Mike Fincke, commander Zena Cardman, and mission specialist Kimiya Yui. This photo was taken during training at SpaceX’s facility in Hawthorne, California. Credit: SpaceX

Lingering risk

Polk, a physician who has served as NASA’s chief medical officer since 2016, said the agency is not ready to release details about the medical issue, citing privacy concerns. “I’m not going to speak about any particular astronaut or any particular specific diagnosis,” Polk said. “I’d ask that we still respect the privacy of the astronaut.”

Two of the Crew-11 astronauts, Cardman and Fincke, were preparing to head outside the space station on a spacewalk early Thursday. Spacewalk preps at the space station include a period of time breathing high concentrations of oxygen to purge nitrogen from the astronauts’ bloodstreams, a mitigation to avoid decompression sickness when crew members are sealed inside their spacesuits’ pure oxygen atmosphere.

Polk said whatever happened Wednesday “had nothing to do” with preparing for the spacewalk. “This was totally unrelated to any operations onboard,” he said. “It’s mostly having a medical issue in the difficult areas of microgravity with the suite of hardware that we have at our avail to complete a diagnosis.”

Yui radioed mission controllers in Houston on Wednesday afternoon requesting a private medical conference with a flight surgeon, then asked ground teams to turn on camera views inside the station ahead of the session. Medical sessions are carried out on private radio channels and are not heard on the regular communication loops between the space station and mission control. Those open loops are streamed around the clock online, but NASA removed the audio feed from YouTube soon after the crew asked for the medical conference.

NASA publicly revealed a medical concern with one of the astronauts later Wednesday afternoon, then announced late Wednesday night that officials were considering bringing the crew home early.

“I won’t go into specific details about the medical incident itself,” Polk said. “But the crew is highly trained, and they came to the aid of their colleague right away, and that’s part of why we do that training.”

The space station is stocked with medical gear and medications to help astronauts respond to emergencies. Crew members are trained to perform ultrasounds, defibrillate patients, and start IVs, among other things. The medical treatment available on the ISS is akin to what an EMT might provide in transit to a hospital, former astronaut Tom Marshburn, himself a medical doctor, said in 2021.

“We have a very robust suite of medical hardware onboard the International Space Station, but we don’t have the complete amount of hardware that I would have in the emergency department, for example, to complete the workup of a patient,” Polk said.

NASA Administrator Jared Isaacman, associate administrator Amit Kshatriya, and chief medical officer James “JD” Polk brief reporters on the status of the Crew-11 mission Thursday.

Credit: NASA/Joel Kowsky

NASA Administrator Jared Isaacman, associate administrator Amit Kshatriya, and chief medical officer James “JD” Polk brief reporters on the status of the Crew-11 mission Thursday. Credit: NASA/Joel Kowsky

Space station managers will take a few days to determine when the Dragon spacecraft will leave the station. SpaceX will dispatch a recovery ship from Southern California to sail for the splashdown zone in the Pacific, and officials will assess weather and sea conditions before selecting the best opportunity to depart the station. Like every crew return, the vessel will be staffed with medical personnel to examine the astronauts after exiting from the Dragon capsule.

“Because the astronaut is absolutely stable, this is not an emergent evacuation,” Polk said. “We’re not immediately disembarking and getting the astronaut down.”

But without a confirmed diagnosis of the astronaut’s medical issue, there’s some “lingering risk” for the astronaut’s health if they remained in orbit, Polk said. That’s why Isaacman and his deputies agreed to call an early end to the Crew-11 mission.

This was the most significant decision of Isaacman’s young tenure as NASA administrator. He was sworn in as NASA chief last month after clearing a confirmation vote in the Senate. Before taking the helm at NASA, Isaacman charted a career as an entrepreneur and private astronaut, flying to space twice on commercial missions with SpaceX.

An inevitability

After Crew-11’s departure, the space station will operate with a smaller crew of three until the arrival of SpaceX’s Crew-12 mission with a fresh team of astronauts next month. Isaacman said NASA and SpaceX are looking at options to move up the launch of Crew-12 from its current target date of February 15.

Until then, the station’s crew will consist of NASA astronaut Chris Williams and two Russian cosmonauts, who launched to the space station in November on a Russian Soyuz vehicle. Williams and his crewmates—Sergey Kud-Sverchkov and Sergey Mikayev—have their own lifeboat in the Soyuz spacecraft, so they will still have a ride home in the event of a future emergency.

The space station regularly operated with just three crew members for the first decade of its existence. The complex has been permanently staffed since 2000, sometimes with as few as two astronauts or cosmonauts. The standard crew size was raised to six in 2009, then to seven in 2020.

NASA astronaut Zena Cardman works with a spacesuit helmet inside the International Space Station’s airlock.

Credit: NASA

NASA astronaut Zena Cardman works with a spacesuit helmet inside the International Space Station’s airlock. Credit: NASA

Williams will be solely responsible for overseeing the lab’s US segment until Crew-12 arrives. He will be busy keeping up with maintenance tasks, so managers will likely defer some of the station’s scientific investigations until the complex is back to a full crew.

The early departure of Crew-11, leaving Williams as the only US astronaut aboard, also means NASA will be unable to perform spacewalks. This will mean a “slightly elevated risk” in NASA’s ability to respond to a major hardware failure that might require a spacewalk to fix, said Amit Kshatriya, the agency’s associate administrator.

NASA and the Russian space agency, Roscosmos, inked an agreement in 2022 to fly multinational crews on Dragon and Soyuz missions to ensure an American and a Russian are always at the space station. The so-called “seat swap” deal is proving worthwhile with this week’s events.

NASA has never before cut short a human spaceflight mission for medical reasons. “It’s the first time we’ve done a controlled medical evacuation from the vehicle, so that is unusual,” Kshatriya said.

The Soviet Union called an early end for an expedition to the Salyut 7 space station in 1985 after the mission’s commander fell ill in orbit.

In a sense, it is surprising that it took this long. Polk said predictive models suggested the ISS would have a medical evacuation about once every three years. It ended up taking 25 years. In that time, NASA has improved astronauts’ abilities to treat aches and pains, minor injuries, and routine illnesses.

Crews in orbit can now self-treat ailments that might have prompted a crew to return to Earth in the past. One astronaut was diagnosed with deep vein thrombosis, or a blood clot, in 2018 without requiring an early departure from the space station. Another astronaut suffered a pinched nerve in 2021 and remained in orbit for another seven months.

One of the more compelling reasons for the space station’s existence is its ability to act as a testbed for learning how to live and work off the planet. The station has served as a laboratory for studying how spaceflight affects the human body, and as a platform to test life support systems necessary for long-duration voyages to deep space.

“We are doing all this to continue to learn,” Isaacman said. “We will absolutely learn from this situation as well, to see if that informs our future on-orbit operations, whether that be on the space station or our future lunar base that we’re pursuing right now, and eventually for deep space missions to Mars.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NASA orders “controlled medical evacuation” from the International Space Station Read More »

safety-panel-says-nasa-should-have-taken-starliner-incident-more-seriously

Safety panel says NASA should have taken Starliner incident more seriously

Invoking the designation also ensures an independent investigation detached from the teams involved in the incident itself, according to retired Air Force Lt. Gen. Susan Helms, chair of the safety panel. “We just, I think, are advocates of safety investigation best practices, and that clearly is one of the top best practices,” Helms said.

Another member of the safety panel, Mark Sirangelo, said NASA should formally declare mishaps and close calls as soon as possible. “It allows for the investigative team to be starting to be formed a lot sooner, which makes them more effective and makes the results quicker for everyone,” Sirangelo said.

In the case of last year’s Starliner test flight, NASA’s decision not to declare a mishap or close call created confusion within the agency, safety officials said.

A few weeks into the Starliner test flight last year, the manager of NASA’s Commercial Crew Program, Steve Stich, told reporters the agency’s plan was “to continue to return [the astronauts] on Starliner and return them home at the right time.” Mark Nappi, then Boeing’s Starliner program manager, regularly appeared to downplay the seriousness of the thruster issues during press conferences throughout Starliner’s nearly three-month mission.

“Specifically, there’s a significant difference, philosophically, between we will work toward proving the Starliner is safe for crew return, versus a philosophy of Starliner is no-go for return, and the primary path is on an alternate vehicle, such as Dragon or Soyuz, unless and until we learn how to ensure the on-orbit failures won’t recur on entry with the Starliner,” Precourt said.

“The latter would have been the more appropriate direction,” he said. “However, there were many stakeholders that believed the direction was the former approach. This ambiguity continued throughout the summer months, while engineers and managers pursued multiple test protocols in the Starliner propulsion systems, undoubtedly affecting the workforce.”

After months of testing and analysis, NASA officials were unsure if the thruster problems would recur on Starliner’s flight home. They decided in August 2024 to return the spacecraft to the ground without the astronauts, and the capsule safely landed in New Mexico the following month. The next Starliner flight will carry only cargo to the ISS.

The safety panel recommended that NASA review its criteria and processes to ensure the language is “unambiguous” in requiring the agency to declare an in-flight mishap or a high-visibility close call for any event involving NASA personnel “that leads to an impact on crew or spacecraft safety.”

Safety panel says NASA should have taken Starliner incident more seriously Read More »

china-launches-an-emergency-lifeboat-to-bring-three-astronauts-back-to-earth

China launches an emergency lifeboat to bring three astronauts back to Earth

The rapid turnaround offers a “successful example for efficient emergency response in the international space industry,” the space agency said. “It vividly embodies the spirit of manned spaceflight: exceptionally hardworking, exceptionally capable, exceptionally resilient, and exceptionally dedicated.”

The Shenzhou 22 spacecraft glides to an automated docking with the Tiangong space station early Tuesday. Credit: China Manned Space Agency

Now, 20 days after the saga began, the Tiangong outpost again has a lifeboat for its long-term residents. Astronauts Zhang Lu, Fu Wei, and Zhang Hongzhang will return to Earth on the Shenzhou 22 spacecraft next year, soon after the arrival of their three replacements.

While this crew is just one month into their planned six-month expedition, an emergency could force them to leave the station and return home at any time. Although remote, another collision with space junk, a major systems failure, or a medical emergency involving one of the astronauts could trigger an evacuation. That’s why Chinese officials wanted to quickly launch Shenzhou 22 to give the crew a ticket home.

The International Space Station follows the same policy, with SpaceX’s Dragon spacecraft and Russian Soyuz ships serving as lifeboats until their crews’ scheduled return to Earth.

The situation with the damaged Shenzhou 20 spacecraft is a reminder of two recent incidents on the ISS. First, in 2022, a Soyuz crew ship that was docked at the ISS sprang a coolant leak—also due to a suspected space debris strike—spraying a shower of frozen ammonia crystals into space and rendering it unsafe to bring its crew home. Russia launched an empty replacement Soyuz two months later, and the damaged Soyuz MS-22 craft ultimately made a successful landing without a crew.

And then, last year, Boeing’s Starliner crew capsule suffered a series of helium leaks and propulsion problems that made NASA managers uncomfortable with its ability to safely return to Earth with astronauts Butch Wilmore and Suni Williams. The two astronauts remained on the ISS as Starliner made a successful uncrewed landing in September 2024, while SpaceX launched an already-scheduled Crew Dragon mission to the station with two of its four seats unoccupied. The Dragon spacecraft brought Wilmore and Williams home in March.

China launches an emergency lifeboat to bring three astronauts back to Earth Read More »

three-astronauts-are-stuck-on-china’s-space-station-without-a-safe-ride-home

Three astronauts are stuck on China’s space station without a safe ride home

This view shows a Shenzhou spacecraft departing the Tiangong space station in 2023. Credit: China Manned Space Agency

Swapping spacecraft in low-Earth orbit

With their original spacecraft deemed unsafe, Chen and his crewmates instead rode back to Earth on the newer Shenzhou 21 craft that launched and arrived at the Tiangong station October 31. The three astronauts who launched on Shenzhou 21—Zhang Lu, Wu Fei, and Zhang Hongzhang—remain aboard the nearly 100-metric ton space station with only the damaged Shenzhou 20 craft available to bring them home.

China’s line of Shenzhou spaceships not only provide transportation to and from low-Earth orbit, they also serve as lifeboats to evacuate astronauts from the Chinese space station in the event of an in-flight emergency, such as major failures or a medical crisis. They serve the same role as Russian Soyuz and SpaceX Crew Dragon vehicles flying to and from the International Space Station.

Another Shenzhou spacecraft, Shenzhou 22, “will be launched at a later date,” the China Manned Space Agency said in a statement. Shenzhou 20 will remain in orbit to “continue relevant experiments.” The Tiangong lab is designed to support crews of six for only short periods of time, with longer stays of three astronauts.

Officials have not disclosed when Shenzhou 22 might launch, but Chinese officials typically have a Long March rocket and Shenzhou spacecraft on standby for rapid launch if required. Instead of astronauts, Shenzhou 22 will ferry fresh food and equipment to sustain the three-man crew on the Tiangong station.

China’s state-run Xinhua news agency called Friday’s homecoming “the first successful implementation of an alternative return procedure in the country’s space station program history.”

The shuffling return schedules and damaged spacecraft at the Tiangong station offer a reminder of the risks of space junk, especially tiny debris fragments that elude detection from tracking telescopes and radars. A minuscule piece of space debris traveling at several miles per second can pack a punch. Crews at the Tiangong outpost ventured outside the station multiple times in the last few years to install space debris shielding to protect the outpost.

Astronaut Tim Peake took this photo of a cracked window on the International Space Station in 2016. The 7-millimeter (quarter-inch) divot on the quadruple-pane window was gouged out by an impact of space debris no larger than a few thousandths of a millimeter across. The damage did not pose a risk to the station. Credit: ESA/NASA

Shortly after landing Friday, ground teams assisted the Shenzhou astronauts out of their landing module. All three appeared to be in good health and buoyant spirits after completing the longest-duration crew mission in the history of China’s space program.

“Space exploration has never been easy for humankind,” said Chen Dong, the mission commander, according to Chinese state media.

“This mission was a true test, and we are proud to have completed it successfully,” Chen said shortly after landing. “China’s space program has withstood the test, with all teams delivering outstanding performances … This experience has left us a profound impression that astronauts’ safety is really prioritized.”

Three astronauts are stuck on China’s space station without a safe ride home Read More »

space-junk-may-have-struck-a-chinese-crew-ship-in-low-earth-orbit

Space junk may have struck a Chinese crew ship in low-Earth orbit

Three Chinese astronauts were due to depart the Tiangong space station, reenter the atmosphere, and land in the remote desert of Inner Mongolia on Wednesday. Instead, officials ordered the crew to remain at the station while engineers investigate a potential problem with their landing craft.

The China Manned Space Agency, run by the country’s military, announced the change late Tuesday in a brief statement posted to Weibo, the Chinese social media platform.

“The Shenzhou 20 manned spacecraft is suspected of being impacted by small space debris,” the statement said. “Impact analysis and risk assessment are underway. To ensure the safety and health of the astronauts and the complete success of the mission, it has been decided that the Shenzhou 20 return mission, originally scheduled for November 5, will be postponed.”

What we know

The Shenzhou 20 astronauts arrived at the Tiangong station in April. Their replacements on the Shenzhou 21 mission docked with Tiangong on Friday, temporarily raising the station’s crew size to six people. After several days of joint operations, the six astronauts held a handover ceremony early Tuesday to formally transfer command of the outpost to the new crew.

Less than 24 hours later, Chinese officials decided to call off Shenzhou 20’s departure from Tiangong. The statement from the China Manned Space Agency did not say what part of the Shenzhou 20 spacecraft may have been damaged, what evidence led engineers to suspect space debris was the culprit, or how long Shenzhou 20’s departure might be postponed.

This view shows a Shenzhou spacecraft departing the Tiangong space station in 2023. Credit: China Manned Space Agency

The ship has three sections, with a landing capsule positioned between the crew living quarters and a power and propulsion module. The modules separate from one another before reentry, and the return craft heads for a parachute-assisted landing while the other elements burn up during atmospheric reentry.

Space junk may have struck a Chinese crew ship in low-Earth orbit Read More »