intel

new-physical-attacks-are-quickly-diluting-secure-enclave-defenses-from-nvidia,-amd,-and-intel

New physical attacks are quickly diluting secure enclave defenses from Nvidia, AMD, and Intel


On-chip TEEs withstand rooted OSes but fall instantly to cheap physical attacks.

Trusted execution environments, or TEEs, are everywhere—in blockchain architectures, virtually every cloud service, and computing involving AI, finance, and defense contractors. It’s hard to overstate the reliance that entire industries have on three TEEs in particular: Confidential Compute from Nvidia, SEV-SNP from AMD, and SGX and TDX from Intel. All three come with assurances that confidential data and sensitive computing can’t be viewed or altered, even if a server has suffered a complete compromise of the operating kernel.

A trio of novel physical attacks raises new questions about the true security offered by these TEES and the exaggerated promises and misconceptions coming from the big and small players using them.

The most recent attack, released Tuesday, is known as TEE.fail. It defeats the latest TEE protections from all three chipmakers. The low-cost, low-complexity attack works by placing a small piece of hardware between a single physical memory chip and the motherboard slot it plugs into. It also requires the attacker to compromise the operating system kernel. Once this three-minute attack is completed, Confidential Compute, SEV-SNP, and TDX/SDX can no longer be trusted. Unlike the Battering RAM and Wiretap attacks from last month—which worked only against CPUs using DDR4 memory—TEE.fail works against DDR5, allowing them to work against the latest TEEs.

Some terms apply

All three chipmakers exclude physical attacks from threat models for their TEEs, also known as secure enclaves. Instead, assurances are limited to protecting data and execution from viewing or tampering, even when the kernel OS running the processor has been compromised. None of the chipmakers make these carveouts prominent, and they sometimes provide confusing statements about the TEE protections offered.

Many users of these TEEs make public assertions about the protections that are flat-out wrong, misleading, or unclear. All three chipmakers and many TEE users focus on the suitability of the enclaves for protecting servers on a network edge, which are often located in remote locations, where physical access is a top threat.

“These features keep getting broken, but that doesn’t stop vendors from selling them for these use cases—and people keep believing them and spending time using them,” said HD Moore, a security researcher and the founder and CEO of runZero.

He continued:

Overall, it’s hard for a customer to know what they are getting when they buy confidential computing in the cloud. For on-premise deployments, it may not be obvious that physical attacks (including side channels) are specifically out of scope. This research shows that server-side TEEs are not effective against physical attacks, and even more surprising, Intel and AMD consider these out of scope. If you were expecting TEEs to provide private computing in untrusted data centers, these attacks should change your mind.

Those making these statements run the gamut from cloud providers to AI engines, blockchain platforms, and even the chipmakers themselves. Here are some examples:

  • Cloudflare says it’s using Secure Memory Encryption—the encryption engine driving SEV—to safeguard confidential data from being extracted from a server if it’s stolen.
  • In a post outlining the possibility of using the TEEs to secure confidential information discussed in chat sessions, Anthropic says the enclave “includes protections against physical attacks.”
  • Microsoft marketing (here and here) devotes plenty of ink to discussing TEE protections without ever noting the exclusion.
  • Meta, paraphrasing the Confidential Computing Consortium, says TEE security provides protections against malicious “system administrators, the infrastructure owner, or anyone else with physical access to the hardware.” SEV-SNP is a key pillar supporting the security of Meta’s WhatsApp Messenger.
  • Even Nvidia claims that its TEE security protects against “infrastructure owners such as cloud providers, or anyone with physical access to the servers.”
  • The maker of the Signal private messenger assures users that its use of SGX means that “keys associated with this encryption never leave the underlying CPU, so they’re not accessible to the server owners or anyone else with access to server infrastructure.” Signal has long relied on SGX to protect contact-discovery data.

I counted more than a dozen other organizations providing assurances that were similarly confusing, misleading, or false. Even Moore—a security veteran with more than three decades of experience—told me: “The surprising part to me is that Intel/AMD would blanket-state that physical access is somehow out of scope when it’s the entire point.”

In fairness, some TEE users build additional protections on top of the TEEs provided out of the box. Meta, for example, said in an email that the WhatsApp implementation of SEV-SNP uses protections that would block TEE.fail attackers from impersonating its servers. The company didn’t dispute that TEE.fail could nonetheless pull secrets from the AMD TEE.

The Cloudflare theft protection, meanwhile, relies on SME—the engine driving SEV-SNP encryption. The researchers didn’t directly test SME against TEE.fail. They did note that SME uses deterministic encryption, the cryptographic property that causes all three TEEs to fail. (More about the role of deterministic encryption later.)

Others who misstate the TEEs’ protections provide more accurate descriptions elsewhere. Given all the conflicting information, it’s no wonder there’s confusion.

How do you know where the server is? You don’t.

Many TEE users run their infrastructure inside cloud providers such as AWS, Azure, or Google, where protections against supply-chain and physical attacks are extremely robust. That raises the bar for a TEE.fail-style attack significantly. (Whether the services could be compelled by governments with valid subpoenas to attack their own TEE is not clear.)

All these caveats notwithstanding, there’s often (1) little discussion of the growing viability of cheap, physical attacks, (2) no evidence (yet) that implementations not vulnerable to the three attacks won’t fall to follow-on research, or (3) no way for parties relying on TEEs to know where the servers are running and whether they’re free from physical compromise.

“We don’t know where the hardware is,” Daniel Genkin, one of the researchers behind both TEE.fail and Wiretap, said in an interview. “From a user perspective, I don’t even have a way to verify where the server is. Therefore, I have no way to verify if it’s in a reputable facility or an attacker’s basement.”

In other words, parties relying on attestations from servers in the cloud are once again reduced to simply trusting other people’s computers. As Moore observed, solving that problem is precisely the reason TEEs exist.

In at least two cases, involving the blockchain services Secret Network and Crust, the loss of TEE protections made it possible for any untrusted user to present cryptographic attestations. Both platforms used the attestations to verify that a blockchain node operated by one user couldn’t tamper with the execution or data passing to another user’s nodes. The Wiretap hack on SGX made it possible for users to run the sensitive data and executions outside of the TEE altogether while still providing attestations to the contrary. In the AMD attack, the attacker could decrypt the traffic passing through the TEE.

Both Secret Network and Crust added mitigations after learning of the possible physical attacks with Wiretap and Battering RAM. Given the lack of clear messaging, other TEE users are likely making similar mistakes.

A predetermined weakness

The root cause of all three physical attacks is the choice of deterministic encryption. This form of encryption produces the same ciphertext each time the same plaintext is encrypted with the same key. A TEE.fail attacker can copy ciphertext strings and use them in replay attacks. (Probabilistic encryption, by contrast, resists such attacks because the same plaintext can encrypt to a wide range of ciphertexts that are randomly chosen during the encryption process.)

TEE.fail works not only against SGX but also a more advanced Intel TEE known as TDX. The attack also defeats the protections provided by the latest Nvidia Confidential Compute and AMD SEV-SNP TEEs. Attacks against TDX and SGX can extract the Attestation Key, an ECDSA secret that certifies to a remote party that it’s running up-to-date software and can’t expose data or execution running inside the enclave. This Attestation Key is in turn signed by an Intel X.509 digital certificate providing cryptographic assurances that the ECDSA key can be trusted. TEE.fail works against all Intel CPUs currently supporting TDX and SDX.

With possession of the key, the attacker can use the compromised server to peer into data or tamper with the code flowing through the enclave and send the relying party an assurance that the device is secure. With this key, even CPUs built by other chipmakers can send an attestation that the hardware is protected by the Intel TEEs.

GPUs equipped with Nvidia Confidential Compute don’t bind attestation reports to the specific virtual machine protected by a specific GPU. TEE.fail exploits this weakness by “borrowing” a valid attestation report from a GPU run by the attacker and using it to impersonate the GPU running Confidential Compute. The protection is available on Nvidia’s H100/200 and B100/200 server GPUs.

“This means that we can convince users that their applications (think private chats with LLMs or Large Language Models) are being protected inside the GPU’s TEE while in fact it is running in the clear,” the researchers wrote on a website detailing the attack. “As the attestation report is ‘borrowed,’ we don’t even own a GPU to begin with.”

SEV-SNP (Secure Encrypted Virtualization-Secure Nested Paging) uses ciphertext hiding in AMD’s EPYC CPUs based on the Zen 5 architecture. AMD added it to prevent a previous attack known as Cipherleaks, which allowed malicious hypervisors to extract cryptographic keys stored in the enclaves of a virtual machine. Ciphertext, however, doesn’t stop physical attacks. With the ability to reopen the side channel that Cipherleaks relies on, TEE.fail can steal OpenSSL credentials and other key material based on constant-time encryption.

Cheap, quick, and the size of a briefcase

“Now that we have interpositioned DDR5 traffic, our work shows that even the most modern of TEEs across all vendors with available hardware is vulnerable to cheap physical attacks,” Genkin said.

The equipment required by TEE.fail runs off-the-shelf gear that costs less than $1,000. One of the devices the researchers built fits into a 17-inch briefcase, so it can be smuggled into a facility housing a TEE-protected server. Once the physical attack is performed, the device does not need to be connected again. Attackers breaking TEEs on servers they operate have no need for stealth, allowing them to use a larger device, which the researchers also built.

A logic analyzer attached to an interposer.

The researchers demonstrated attacks against an array of services that rely on the chipmakers’ TEE protections. (For ethical reasons, the attacks were carried out against infrastructure that was identical to but separate from the targets’ networks.) Some of the attacks included BuilderNet, dstack, and Secret Network.

BuilderNet is a network of Ethereum block builders that uses TDX to prevent parties from snooping on others’ data and to ensure fairness and that proof currency is redistributed honestly. The network builds blocks valued at millions of dollars each month.

“We demonstrated that a malicious operator with an attestation key could join BuilderNet and obtain configuration secrets, including the ability to decrypt confidential orderflow and access the Ethereum wallet for paying validators,” the TEE.fail website explained. “Additionally, a malicious operator could build arbitrary blocks or frontrun (i.e., construct a new transaction with higher fees to ensure theirs is executed first) the confidential transactions for profit while still providing deniability.”

To date, the researchers said, BuilderNet hasn’t provided mitigations. Attempts to reach BuilderNet officials were unsuccessful.

dstack is a tool for building confidential applications that run on top of virtual machines protected by Nvidia Confidential Compute. The researchers used TEE.fail to forge attestations certifying that a workload was performed by the TDX using the Nvidia protection. It also used the “borrowed” attestations to fake ownership of GPUs that a relying party trusts.

Secret Network is a platform billing itself as the “first mainnet blockchain with privacy-preserving smart contracts,” in part by encrypting on-chain data and execution with SGX. The researchers showed that TEE.fail could extract the “Concensus Seed,” the primary network-side private key encrypting confidential transactions on the Secret Network. As noted, after learning of Wiretap, the Secret Network eliminated this possibility by establishing a “curated” allowlist of known, trusted nodes allowed on the network and suspended the acceptance of new nodes. Academic or not, the ability to replicate the attack using TEE.fail shows that Wiretap wasn’t a one-off success.

A tough nut to crack

As explained earlier, the root cause of all the TEE.fail attacks is deterministic encryption, which forms the basis for protections in all three chipmakers’ TEEs. This weaker form of encryption wasn’t always used in TEEs. When Intel initially rolled out SGX, the feature was put in client CPUs, not server ones, to prevent users from building devices that could extract copyrighted content such as high-definition video.

Those early versions encrypted no more than 256MB of RAM, a small enough space to use the much stronger probabilistic form of encryption. The TEEs built into server chips, by contrast, must often encrypt terabytes of RAM. Probabilistic encryption doesn’t scale to that size without serious performance penalties. Finding a solution that accommodates this overhead won’t be easy.

One mitigation over the short term is to ensure that each 128-bit block of ciphertext has sufficient entropy. Adding random plaintext to the blocks prevents ciphertext repetition. The researchers say the entropy can be added by building a custom memory layout that inserts a 64-bit counter with a random initial value to each 64-bit block before encrypting it.

The last countermeasure the researchers proposed is adding location verification to the attestation mechanism. While insider and supply chain attacks remain a possibility inside even the most reputable cloud services, strict policies make them much less feasible. Even those mitigations, however, don’t foreclose the threat of a government agency with a valid subpoena ordering an organization to run such an attack inside their network.

In a statement, Nvidia said:

NVIDIA is aware of this research. Physical controls in addition to trust controls such as those provided by Intel TDX reduce the risk to GPUs for this style of attack, based on our discussions with the researchers. We will provide further details once the research is published.

Intel spokesman Jerry Bryant said:

Fully addressing physical attacks on memory by adding more comprehensive confidentiality, integrity and anti-replay protection results in significant trade-offs to Total Cost of Ownership. Intel continues to innovate in this area to find acceptable solutions that offer better balance between protections and TCO trade-offs.

The company has published responses here and here reiterating that physical attacks are out of scope for both TDX and SGX

AMD didn’t respond to a request for comment.

Stuck on Band-Aids

For now, TEE.fail, Wiretap, and Battering RAM remain a persistent threat that isn’t solved with the use of default implementations of the chipmakers’ secure enclaves. The most effective mitigation for the time being is for TEE users to understand the limitations and curb uses that the chipmakers say aren’t a part of the TEE threat model. Secret Network tightening requirements for operators joining the network is an example of such a mitigation.

Moore, the founder and CEO of RunZero, said that companies with big budgets can rely on custom solutions built by larger cloud services. AWS, for example, makes use of the Nitro Card, which is built using ASIC chips that accelerate processing using TEEs. Google’s proprietary answer is Titanium.

“It’s a really hard problem,” Moore said. “I’m not sure what the current state of the art is, but if you can’t afford custom hardware, the best you can do is rely on the CPU provider’s TEE, and this research shows how weak this is from the perspective of an attacker with physical access. The enclave is really a Band-Aid or hardening mechanism over a really difficult problem, and it’s both imperfect and dangerous if compromised, for all sorts of reasons.”

Photo of Dan Goodin

Dan Goodin is Senior Security Editor at Ars Technica, where he oversees coverage of malware, computer espionage, botnets, hardware hacking, encryption, and passwords. In his spare time, he enjoys gardening, cooking, and following the independent music scene. Dan is based in San Francisco. Follow him at here on Mastodon and here on Bluesky. Contact him on Signal at DanArs.82.

New physical attacks are quickly diluting secure enclave defenses from Nvidia, AMD, and Intel Read More »

intel’s-next-generation-panther-lake-laptop-chips-could-be-a-return-to-form

Intel’s next-generation Panther Lake laptop chips could be a return to form

Intel says that systems with these chips in them should be shipping by the end of the year. In recent years, the company has launched a small handful of ultraportable-focused CPUs at the end of the year, and then followed that up with a more fully fleshed-out midrange and high-end lineup at CES in January—we’d expect Intel to stick to that basic approach here.

Panther Lake draws near

Panther Lake tries to combine different aspects of the last-generation Lunar Lake and Arrow Lake chips. Intel

Intel’s first Core Ultra chips, codenamed Meteor Lake, were introduced two years ago. There were three big changes that separated these from the 14th-generation Core CPUs and their predecessors: They were constructed of multiple silicon tiles, fused together into one with Intel’s Foveros packaging technologies; some of those tiles were manufactured by TSMC rather than Intel; and they added a neural processing unit (NPU) that could be used for on-device machine learning and generative AI applications.

The second-generation Core Ultra chips continued to do all three of those things, but Intel pursued an odd bifurcated strategy that gave different Core Ultra 200-series processors significantly different capabilities.

The most interesting models, codenamed Lunar Lake (aka Core Ultra 200V), integrated the system RAM on the CPU package, which improved performance and power consumption while making them more expensive to buy and complicated to manufacture. These chips included Intel’s most up-to-date Arc GPU architecture, codenamed Battlemage, plus an NPU that met the performance requirements for Microsoft’s Copilot+ PC initiative.

But Core Ultra 200V chips were mostly used in high-end thin-and-light laptops. Lower-cost and higher-performance laptops got the other kind of Core Ultra 200 chip, codenamed Arrow Lake, which was a mishmash of old and new. The CPU cores used the same architecture as Lunar Lake, and there were usually more of them. But the GPU architecture was older and slower, and the NPU didn’t meet the requirements for Copilot+. If Lunar Lake was all-new, Arrow Lake was mostly an updated CPU design fused to a tweaked version of the original Meteor Lake design (confused by all these lakes yet? Welcome to my world).

Intel’s next-generation Panther Lake laptop chips could be a return to form Read More »

nvidia-will-invest-$5-billion-in-intel,-co-develop-new-server-and-pc-chips

Nvidia will invest $5 billion in Intel, co-develop new server and PC chips


Intel once considered buying Nvidia outright, but its fortunes have shifted.

In a major collaboration that would have been hard to imagine just a few years ago, Nvidia announced today that it was buying a total of $5 billion in Intel stock, giving Intel’s competitor ownership of roughly 4 percent of the company. In addition to the investment, the two companies said that they would be co-developing “multiple generations of custom data center and PC products.”

“The companies will focus on seamlessly connecting NVIDIA and Intel architectures using NVIDIA NVLink,” reads Nvidia’s press release, “integrating the strengths of NVIDIA’s AI and accelerated computing with Intel’s leading CPU technologies and x86 ecosystem to deliver cutting-edge solutions for customers.”

Rather than combining the two companies’ technologies, the data center chips will apparently be custom x86 chips that Intel builds to Nvidia’s specifications. Nvidia will “integrate [the CPUs] into its AI infrastructure platforms and offer [them] to the market.”

On the consumer side, Intel plans to build x86 SoCs that integrate both Intel CPUs and Nvidia RTX GPU chiplets—Intel’s current products use graphics chiplets based on its own Arc products. More tightly integrated chips could make for smaller gaming laptops, and could give Nvidia a way to get into handheld gaming PCs like the Steam Deck or ROG Xbox Ally.

It takes a while to design, test, and mass-produce new processor designs, so it will likely be a couple of years before we see any of the fruits of this collaboration. But even the announcement highlights just how far the balance of power between the two companies has shifted in the last few years.

A dramatic reversal

Back in 2005, Intel considered buying Nvidia outright for “as much as $20 billion,” according to The New York Times. At the time, Nvidia was known almost exclusively for its GeForce consumer graphics chips, and Intel was nearing the launch of its Core and Core 2 chips, which would manage to win Apple’s business and set it up for a decade of near-total dominance in consumer PCs and servers.

But in recent years, Nvidia’s income and market capitalization have soared on the strength of its data center chips, which have powered most of the AI features that tech companies have been racing to build into their products for years now. And Intel’s recent struggles are well-documented—it has struggled for years now to improve its chip manufacturing capabilities at the same pace as competitors like TSMC, and a yearslong effort to convince other chip designers to use Intel’s factories to build their chips has yielded one ousted CEO and not much else.

The two companies’ announcement comes one day after China banned the sale of Nvidia’s AI chips, including products that Nvidia had designed specifically for China to get around US-imposed performance-based export controls. China is pushing domestic chipmakers like Huawei and Cambricon to put out their own AI accelerators to compete with Nvidia’s.

Correlation isn’t causation, and it’s unlikely that Intel and Nvidia could have thrown together a $5 billion deal and product collaboration in the space of less than 24 hours. But Nvidia could be looking to prop up US-based chip manufacturing as a counterweight to China’s actions.

There are domestic political considerations for Nvidia, too. The Trump administration announced plans to take a 10 percent stake in Intel last month, and Nvidia CEO Jensen Huang has worked to curry favor with the Trump administration by making appearances at $1 million-per-plate dinners at Trump’s Mar-a-Lago golf course and promising to invest billions in US-based data centers.

Although the US government’s investment in Intel hasn’t gotten it seats on the company’s board, the investment comes with possible significant downsides for Intel, including disruptions to the company’s business outside the US and limiting its eligibility for future government grants. Trump and his administration could also decide to alter the deal for any or no reason—Trump was calling for Tan’s resignation for alleged Chinese Communist Party ties just days before deciding to invest in the company instead. Investing in a sometime-competitor may be a small price for Nvidia and Huang to pay if it means avoiding the administration’s ire.

Outstanding questions abound

Combining Intel CPUs and Nvidia GPUs makes a lot of sense, for certain kinds of products—the two companies’ chips already coexist in millions of gaming desktops and laptops. Being able to make custom SoCs that combine Intel’s and Nvidia’s technology could make for smaller and more power-efficient gaming PCs. It could also provide a counterbalance to AMD, whose willingness to build semi-custom x86-based SoCs has earned the company most of the emerging market for Steam Deck-esque handheld gaming PCs, plus multiple generations of PlayStation and Xbox console hardware.

But there are more than a few places where Intel’s and Nvidia’s products compete, and at this early date, it’s unclear what will happen to the areas of overlap.

Future Intel CPUs could use an Nvidia-designed graphics chiplet instead of one of Intel’s GPUs. Credit: Intel

For example, Intel has been developing its own graphics products for decades—historically, these have mostly been lower-performance integrated GPUs whose only job is to connect to a couple of monitors and encode and decode video, but more recent Arc-branded dedicated graphics cards and integrated GPUs have been more of a direct challenge to some of Nvidia’s lower-end products.

Intel told Ars that the company “will continue to have GPU product offerings,” which means that it will likely continue developing Arc and its underlying Intel Xe GPU architecture. But that could mean that Intel will focus on low-end, low-power GPUs and leave higher-end products to Nvidia. Intel has been happy to discard money-losing side projects in recent years, and dedicated Arc GPUs have struggled to make much of a dent in the GPU market.

On the software side, Intel has been pushing its own oneAPI graphics compute stack as an alternative to Nvidia’s CUDA and AMD’s ROCm, and has provided code to help migrate CUDA projects to oneAPI. And there’s a whole range of plausible outcomes here: Nvidia allowing Intel GPUs to run CUDA code, either directly or through some kind of translation layer; Nvidia contributing to oneAPI, which is an open source platform; or oneAPI fading away entirely.

On Nvidia’s side, we’ve already mentioned that the company offers some Arm-based CPUs—these are available in the Project DIGITS AI computer, Nvidia’s automotive products, or the Nintendo Switch and Switch 2. But rumors have indicated for some time now that Nvidia is working with MediaTek to create Arm-based chips for Windows PCs, which would compete not just with Intel and AMD’s x86 chips but also Qualcomm’s Snapdragon X-series processors. Will Nvidia continue to push forward on this project, or will it leave this as-yet-unannounced chip unannounced, to shore up its new investment in the x86 instruction set?

Finally, there’s the question of where these chips will be built. Nvidia’s current chips are manufactured mostly at TSMC, though it has used Samsung’s factories as recently as the RTX 3000 series. Intel also uses TSMC to build some chips, including its current top-end laptop and desktop processors, but it uses its own factories to build its server chips, and plans to bring its next-generation consumer chips back in-house.

Will Nvidia start to manufacture some of its chips on Intel’s 18A manufacturing process, or another process on Intel’s roadmap? Will the combined Intel and Nvidia chips be manufactured by Intel, or will they be built externally at TSMC, or using some combination of the two? (Nvidia has already said that Intel’s SoCs will integrate Nvidia GPU chiplets, so it’s likely that Intel will continue using its Foveros packaging technology to combine multiple bits of silicon into a single chip.)

A vote of confidence from Nvidia would be a big shot in the arm for Intel’s foundry, which has reportedly struggled to find major customers—but it’s hard to see Nvidia doing it if Intel’s manufacturing processes can’t compete with TSMC’s on performance or power consumption, or if Intel can’t manufacture chips in the volumes that Nvidia would need.

We’ve posed all of these questions to both Intel and Nvidia. This early, it’s unlikely that either company wants to commit to any plans other than the broad, vague collaborations that were part of this morning’s announcement. But we’ll update this article if we can shake any other details loose. Both Nvidia and Intel CEOs Huang and Tan will also be giving a joint press conference at 1 pm ET today, where they may discuss the answers to these and other questions.

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

Nvidia will invest $5 billion in Intel, co-develop new server and PC chips Read More »

intel-details-everything-that-could-go-wrong-with-us-taking-a-10%-stake

Intel details everything that could go wrong with US taking a 10% stake


Intel warns investors to brace for losses and uncertainties.

Some investors are not happy that Intel agreed to sell the US a 10 percent stake in the company after Donald Trump attacked Intel CEO Lip-Bu Tan with a demand to resign.

After Intel accepted the deal at a meeting with the president, it alarmed some investors when Trump boasted that his pressure campaign worked, claiming Tan “walked in wanting to keep his job, and he ended up giving us $10 billion for the United States.”

“It sets a bad precedent if the president can just take 10 percent of a company by threatening the CEO,” James McRitchie, a private investor and shareholder activist in California who owns Intel shares, told Reuters. To McRitchie, Tan accepting the deal effectively sent the message that “we love Trump, we don’t want 10 percent of our company taken away.”

McRitchie wasn’t the only shareholder who raised an eyebrow. Kristin Hull, chief investment officer of a California-based activist firm called Nia Impact Capital—which manages shares in Intel for its clients—told Reuters she has “more questions than confidence” about how the deal will benefit investors. To her, the deal seems to blur some lines “between where is the government and where is the private sector.”

As Reuters explains, Intel agreed to convert $11.1 billion in CHIPS funding and other grants “into a 9.9 percent equity stake in Intel.”

Some early supporters of the agreement—including tech giants like Microsoft and Trump critics like Bernie Sanders (I-Vt.)—have praised the deal as allowing the US to profit off billions in CHIPS grants that Intel was awarded under the Biden administration. After pushing for the deal, Commerce Secretary Howard Lutnick criticized Joe Biden for giving away CHIPS funding “for free,” while praising Trump for turning the CHIPS Act grants into “equity for the Trump administration” and “for the American people.”

But to critics of the deal, it seems weird for the US to swoop in and take stake in a company that doesn’t need government assistance. The only recent precedent was the US temporarily taking stake in key companies considered vital to the economy that risked going under during the 2008 financial crisis.

Compare that to the Intel deal, where Tan has made it clear that Intel, while struggling to compete with rivals, “didn’t need the money,” Reuters noted—largely due to SoftBank purchasing $2 billion in Intel shares in the days prior to the US agreement being reached. Instead, the US is incentivized to take the stake to help further Trump’s mission to quickly build up a domestic chip manufacturing supply chain that can keep the US a global technology leader at the forefront of AI innovation.

Investors told Reuters that it’s unusual for the US to take this much control over a company that’s not in crisis, noting that “this level of tractability was not usually associated with relations between businesses and Washington.”

Intel did not immediately respond to Ars’ request to comment on investors’ concerns, but a spokesperson told Reuters that Intel’s board has already approved the deal. In a press release, the company emphasized that “the government’s investment in Intel will be a passive ownership, with no Board representation or other governance or information rights. The government also agrees to vote with the Company’s Board of Directors on matters requiring shareholder approval, with limited exceptions.”

Intel reveals why investors should be spooked

The Trump administration has also stressed that the US stake in Intel does not give the Commerce Department any board seats or any voting or governance rights in Intel. Instead, the terms stipulate that the Commerce Department must “support the board on director nominees and proposals,” an Intel securities filing said.

However, the US can vote “as it wishes,” Intel reported, and experts suggested to Reuters that regulations may be needed to “limit government opportunities for abuses such as insider trading.” That could reassure investors somewhat, Rich Weiss, a senior vice president and chief investment officer of multi-asset strategies for American Century Investments, told Reuters. Without such laws, Weiss noted that “in an unchecked scenario of government direct investing, trading in those companies could be much riskier for investors.”

It also seems possible that the US could influence Intel’s decisions without the government explicitly taking voting control, experts suggested. “Several investors and representatives” told Reuters that the US could impact major decisions regarding things like layoffs or business shifts into foreign markets. At a certain point, Intel may be stuck choosing between corporate and national interests, Robert McCormick, executive director of the Council of Institutional Investors, told Reuters.

“A government stake in an otherwise private entity potentially creates a conflict between what’s right for the company and what’s right for the country,” McCormick suggested.

Further, Intel becoming partly state-controlled risks disrupting Intel’s non-US business, subjecting the company to “additional regulations, obligations or restrictions, such as foreign subsidy laws or otherwise, in other countries,” Intel’s filing said.

In the filing, Intel confirmed directly to investors that they have good cause to be spooked by the US stake. Offering a bulleted list, the company outlined “a number of risks and uncertainties” that could “adversely impact” shareholders due to “the US Government’s ownership of significant equity interests in the company.”

Perhaps most alarming in the short term, Intel admitted that the deal will dilute investors’ stock due to the discounted shares issued to Trump. And their shares could suffer additional dilutions if certain terms of the deal are “triggered” or “exercised,” Intel noted.

In the long term, investors were told that the US stake may limit the company’s eligibility for future federal grants while leaving Intel shareholders dwelling in the uncertainty of knowing that terms of the deal could be voided or changed over time, as federal administration and congressional priorities shift.

Additionally, Intel forecasted potential legal challenges over the deal, which Intel anticipates could come from both third parties and the US government.

The final bullet point in Intel’s risk list could be the most ominous, though. Due to the unprecedented nature of the deal, Intel fears there’s no way to anticipate myriad other challenges the deal may trigger.

“It is difficult to foresee all the potential consequences,” Intel’s filing said. “Among other things, there could be adverse reactions, immediately or over time, from investors, employees, customers, suppliers, other business or commercial partners, foreign governments or competitors. There may also be litigation related to the transaction or otherwise and increased public or political scrutiny with respect to the Company.”

Meanwhile, it’s hard to see what Intel truly gains from the deal other than maybe getting Trump off its back for a bit. A Fitch Ratings research note reported that “the deal does not improve Intel’s BBB credit rating, which sits just above junk status” and “does not fundamentally improve customer demand for Intel chips” despite providing “more liquidity,” Reuters reported.

Intel’s filing, in addition to rattling investors, likely also serves as a warning sign to other companies who may be approached by the Trump administration to strike similar deals. So far, the administration has confirmed that the US is not eyeing a stake in Nvidia and seems unlikely to seek a stake in the Taiwan Semiconductor Manufacturing Company. While Lutnick has said he plans to push to make more deals, any chipmakers committing to increasing investments in the US, sources told the Wall Street Journal, will supposedly be spared from pressure to make a similar deal.

Photo of Ashley Belanger

Ashley is a senior policy reporter for Ars Technica, dedicated to tracking social impacts of emerging policies and new technologies. She is a Chicago-based journalist with 20 years of experience.

Intel details everything that could go wrong with US taking a 10% stake Read More »

trump-says-us-will-take-10%-stake-in-intel-because-ceo-wants-to-“keep-his-job”

Trump says US will take 10% stake in Intel because CEO wants to “keep his job”

Intel has agreed to sell the US a 10 percent stake in the company, Donald Trump announced at a news conference Friday.

The US stake is worth $10 billion, Trump said, confirming that the deal was inked following his talks with Intel CEO Lip-Bu Tan.

Trump had previously called for Tan to resign, accusing the CEO of having “concerning” ties to the Chinese Communist Party. During their meeting, the president claimed that Tan “walked in wanting to keep his job and he ended up giving us $10 billion for the United States.”

“I said, ‘I think it would be good having the United States as your partner.’ He agreed, and they’ve agreed to do it,” Trump said. “And I think it’s a great deal for them.”

Sources have suggested that Commerce Secretary Howard Lutnick pushed the idea of the US buying large stakes in various chipmakers like Intel in exchange for access to CHIPS Act funding that had already been approved. Earlier this week, Senator Bernie Sanders (I-Vt.) got behind the plan, noting that “if microchip companies make a profit from the generous grants they receive from the federal government, the taxpayers of America have a right to a reasonable return on that investment.”

However, Trump apparently doesn’t plan to seek a stake in every company that the US has awarded CHIPS funding to. Instead, he likely plans to only approach chipmakers that won’t commit to increasing their investments in the US. For example, a government official, speaking anonymously, told The Wall Street Journal Friday that “the administration isn’t looking to own equity in companies like TSMC that are increasing their investments” in the US.

Trump says US will take 10% stake in Intel because CEO wants to “keep his job” Read More »

trump-confirms-us-is-seeking-10%-stake-in-intel-bernie-sanders-approves.

Trump confirms US is seeking 10% stake in Intel. Bernie Sanders approves.

Trump plan salvages CHIPS Act he vowed to kill

While chipmakers wait for more clarity, Lutnick has suggested that Trump—who campaigned on killing the CHIPS Act—has found a way to salvage the legislation that Joe Biden viewed as his lasting legacy. It seems possible that the plan arose after Trump realized how hard it would be to ax the legislation completely, with grants already finalized (but most not disbursed).

“The Biden administration literally was giving Intel money for free and giving TSMC money for free, and all these companies just giving the money for free, and Donald Trump turned it into saying, ‘Hey, we want equity for the money. If we’re going to give you the money, we want a piece of the action for the American taxpayer,'” Lutnick said.

“It’s not governance, we’re just converting what was a grant under Biden into equity for the Trump administration, for the American people,” Lutnick told CNBC.

Further, US firms could potentially benefit from any potential arrangements. For Intel, the “highly unusual” deal that Trump is mulling now could help the struggling chipmaker compete with its biggest rivals, including Nvidia, Samsung, and TSMC, BBC noted.

Vincent Fernando, founder of the investment consultancy Zero One, told the BBC that taking a stake in Intel “makes sense, given the company’s key role in producing semiconductors in the US,” which is a major Trump priority.

But as Intel likely explores the potential downsides of accepting such a deal, other companies applying for federal grants may already be alarmed by Trump’s move. Fernando suggested that Trump’s deals to take ownership stake in US firms—which economics professor Kevin J. Fox said only previously occurred during the global financial crisis—could add “uncertainty for any company who is already part of a federal grant program or considering one.”

Fox also agreed that the Intel deal could deter other companies from accepting federal grants, while possibly making it harder for Intel to run its business “effectively.”

Trump confirms US is seeking 10% stake in Intel. Bernie Sanders approves. Read More »

ars-technica-system-guide:-five-sample-pc-builds,-from-$500-to-$5,000

Ars Technica System Guide: Five sample PC builds, from $500 to $5,000


Despite everything, it’s still possible to build decent PCs for decent prices.

You can buy a great 4K gaming PC for less than it costs to buy a GeForce RTX 5090. Let us show you some examples. Credit: Andrew Cunningham

You can buy a great 4K gaming PC for less than it costs to buy a GeForce RTX 5090. Let us show you some examples. Credit: Andrew Cunningham

Sometimes I go longer than I intend without writing an updated version of our PC building guide. And while I could just claim to be too busy to spend hours on Newegg or Amazon or other sites digging through dozens of near-identical parts, the lack of updates usually correlates with “times when building a desktop PC is actually a pain in the ass.”

Through most of 2025, fluctuating and inflated graphics card pricing and limited availability have once again conspired to make a normally fun hobby an annoying slog—and honestly kind of a bad way to spend your money, relative to just buying a Steam Deck or something and ignoring your desktop for a while.

But three things have brought me back for another round. First, GPU pricing and availability have improved a little since early 2025. Second, as unreasonable as pricing is for PC parts, pre-built PCs with worse specs and other design compromises are unreasonably priced, too, and people should have some sense of what their options are. And third, I just have the itch—it’s been a while since I built (or helped someone else build) a PC, and I need to get it out of my system.

So here we are! Five different suggestions for builds for a few different budgets and needs, from basic browsing to 4K gaming. And yes, there is a ridiculous “God Box,” despite the fact that the baseline ridiculousness of PC building is higher than it was a few years ago.

Notes on component selection

Part of the fun of building a PC is making it look the way you want. We’ve selected cases that will physically fit the motherboards and other parts we’re recommending and which we think will be good stylistic fits for each system. But there are many cases out there, and our picks aren’t the only options available.

It’s also worth trying to build something that’s a little future-proof—one of the advantages of the PC as a platform is the ability to swap out individual components without needing to throw out the entire system. It’s worth spending a little extra money on something you know will be supported for a while. Right this minute, that gives an advantage to AMD’s socket AM5 ecosystem over slightly cheaper but fading or dead-end platforms like AMD’s socket AM4 and Intel’s LGA 1700 or (according to rumors) LGA 1851.

As for power supplies, we’re looking for 80 Plus certified power supplies from established brands with positive user reviews on retail sites (or positive professional reviews, though these can be somewhat hard to come by for any given PSU these days). If you have a preferred brand, by all means, go with what works for you. The same goes for RAM—we’ll recommend capacities and speeds, and we’ll link to kits from brands that have worked well for us in the past, but that doesn’t mean they’re better than the many other RAM kits with equivalent specs.

For SSDs, we mostly stick to drives from known brands like Samsung, Crucial, Western Digital, and SK hynix. Our builds also include built-in Bluetooth and Wi-Fi, so you don’t need to worry about running Ethernet wires and can easily connect to Bluetooth gamepads, keyboards, mice, headsets, and other accessories.

We also haven’t priced in peripherals like webcams, monitors, keyboards, or mice, as we’re assuming most people will reuse what they already have or buy those components separately. If you’re feeling adventurous, you could even make your own DIY keyboard! If you need more guidance, Kimber Streams’ Wirecutter keyboard guides are exhaustive and educational, and Wirecutter has some monitor-buying advice, too.

Finally, we won’t be including the cost of a Windows license in our cost estimates. You can pay many different prices for Windows—$139 for an official retail license from Microsoft, $120 for an “OEM” license for system builders, or anywhere between $15 and $40 for a product key from shady gray market product key resale sites. Windows 10 keys will also work to activate Windows 11, though Microsoft stopped letting old Windows 7 and Windows 8 keys activate new Windows 10 and 11 installs a couple of years ago. You could even install Linux, given recent advancements in game compatibility layers! But if you plan to go that route, know that AMD’s graphics cards tend to be better-supported than Nvidia’s.

The budget all-rounder

What it’s good for: Browsing, schoolwork or regular work, amateur photo or video editing, and very light casual gaming. A low-cost, low-complexity introduction to PC building.

What it sucks at: You’ll need to use low settings at best for modern games, and it’s hard to keep costs down without making big sacrifices.

Cost as of this writing: $479 to $504, depending on your case

The entry point for a basic desktop PC from Dell, HP, and Lenovo is somewhere between $400 and $500 as of this writing. You can beat that pricing with a self-built one if you cut your build to the bone, and you can find tons of cheap used and refurbished stuff and serviceable mini PCs for well under that price, too. But if you’re chasing the thrill of the build, we can definitely match the big OEMs’ pricing while doing better on specs and future-proofing.

The AMD Ryzen 5 8500G should give you all the processing power you need for everyday computing and less-demanding games, despite most of its CPU cores using the lower-performing Zen 4c variant of AMD’s last-gen CPU architecture. The Radeon 740M GPU should do a decent job with many games at lower settings; it’s not a gaming GPU, but it will handle kid-friendly games like Roblox or Minecraft or undemanding battle royale or MOBA games like Fortnite and DOTA 2.

The Gigabyte B650M Gaming Plus WiFi board includes Wi-Fi, Bluetooth, and extra RAM and storage slots for future expandability. Most companies that make AM5 motherboards are pretty good about releasing new BIOS updates that patch vulnerabilities and add support for new CPUs, so you shouldn’t have a problem popping in a new processor a few years down the road if this one is no longer meeting your needs.

An AMD Ryzen 7 8700G. The 8500G is a lower-end relative of this chip, with good-enough CPU and GPU performance for light work. Credit: Andrew Cunningham

This system is spec’d for general usage and exceptionally light gaming, and 16GB of RAM and a 500 GB SSD should be plenty for that kind of thing. You can get the 1TB version of the same SSD for just $20 more, though—not a bad deal if you think light gaming is in the cards. The 600 W power supply is overkill, but it’s just $5 more than the 500 W version of the same PSU, and 600 W is enough headroom to add a GeForce RTX 4060 or 5060-series card or a Radeon RX 9600 XT to the build later on without having to worry.

The biggest challenge when looking for a decent, cheap PC case is finding one without a big, tacky acrylic window. Our standby choice for the last couple of years has been the Thermaltake Versa H17, an understated and reasonably well-reviewed option that doesn’t waste internal space on legacy features like external 3.5 and 5.25-inch drive bays or internal cages for spinning hard drives. But stock seems to be low as of this writing, suggesting it could be unavailable soon.

We looked for some alternatives that wouldn’t be a step down in quality or utility and which wouldn’t drive the system’s total price above $500. YouTubers and users generally seem to like the $70 Phanteks XT Pro, which is a lot bigger than this motherboard needs but is praised for its airflow and flexibility (it has a tempered glass side window in its cheapest configuration, and a solid “silent” variant will run you $88). The Fractal Design Focus 2 is available with both glass and solid side panels for $75.

The budget gaming PC

What it’s good for: Solid all-round performance, plus good 1080p (and sometimes 1440p) gaming performance.

What it sucks at: Future proofing, top-tier CPU performance.

Cost as of this writing: $793 to $828, depending on components

Budget gaming PCs are tough right now, but my broad advice would be the same as it’s always been: Go with the bare minimum everywhere you can so you have more money to spend on the GPU. I went into this totally unsure if I could recommend a PC I’d be happy with for the $700 to $800 we normally hit, and getting close to that number meant making some hard decisions.

I talked myself into a socket AM5 build for our non-gaming budget PC because of its future proof-ness and its decent integrated GPU, but I went with an Intel-based build for this one because we didn’t need the integrated GPU for it and because AMD still mostly uses old socket AM4 chips to cover the $150-and-below part of the market.

Given the choice between aging AMD CPUs and aging Intel CPUs, I have to give Intel the edge, thanks to the Core i5-13400F’s four E-cores. And if a 13th-gen Core chip lacks cutting-edge performance, it’s plenty fast for a midrange GPU. The $109 Core i5-12400F would also be OK and save a little more money, but we think the extra cores and small clock speed boost are worth the $20-ish premium.

For a budget build, we think your best strategy is to save money everywhere you can so you can squeeze a 16GB AMD Radeon RX 9060 XT into the budget. Credit: Andrew Cunningham

Going with a DDR4 motherboard and RAM saves us a tiny bit, and we’ve also stayed at 16GB of RAM instead of stepping up (some games, sometimes can benefit from 32GB, especially if you want to keep a bunch of other stuff running in the background, but it still usually won’t be a huge bottleneck). We upgraded to a 1TB SSD; huge AAA games will eat that up relatively quickly, but there is another M.2 slot you can use to put in another drive later. The power supply and case selections are the same as in our budget pick.

All of that cost-cutting was done in service of stretching the budget to include the 16GB version of AMD’s Radeon RX 9060 XT graphics card.

You could go with the 8GB version of the 9060 XT or Nvidia’s GeForce RTX 5060 and get solid 1080p gaming performance for almost $100 less. But we’re at a point where having 8GB of RAM in your graphics card can be a bottleneck, and that’s a problem that will only get worse over time. The 9060 XT has a consistent edge over the RTX 5060 in our testing, even in games with ray-tracing effects enabled, and at 1440p, the extra memory can easily be the difference between a game that runs and a game that doesn’t.

A more future-proofed budget gaming PC

What it’s good for: Good all-round performance with plenty of memory and storage, plus room for future upgrades.

What it sucks at: Getting you higher frame rates than our budget-budget build.

Cost as of this writing: $1,070 to $1,110, depending on components

As I found myself making cut after cut to maximize the fps-per-dollar we could get from our budget gaming PC, I decided I wanted to spec out a system with the same GPU but with other components that would make it better for non-gaming use and easier to upgrade in the future, with more generous allotments of memory and storage.

This build shifts back to many of the AMD AM5 components we used in our basic budget build, but with an 8-core Ryzen 7 7700X CPU at its heart. Its Zen 4 architecture isn’t the latest and greatest, but Zen 5 is a modest upgrade, and you’ll still get better single- and multi-core processor performance than you do with the Core i5 in our other build. It’s not worth spending more than $50 to step up to a Ryzen 7 9700X, and it’s overkill to spend $330 on a 12-core Ryzen 9 7900X or $380 on a Ryzen 7 7800X3D.

This chip doesn’t come with its own fan, so we’ve included an inexpensive air cooler we like that will give you plenty of thermal headroom.

A 32GB kit of RAM and 2TB of storage will give you ample room for games and enough RAM that you won’t have to worry about the small handful of outliers that benefit from more than 16GB of system RAM, while a marginally beefier power supply gives you a bit more headroom for future upgrades while still keeping costs relatively low.

This build won’t benefit your frame rates much since we’re sticking with the same 16GB RX 9060 XT. But the rest of it is specced generously enough that you could add a GeForce RTX 5070 (currently around $550) or a non-XT Radeon RX 9070 card (around $600) without needing to change any of the other components.

A comfortable 4K gaming rig

What it’s good for: Just about anything! But it’s built to play games at higher resolutions than our budget builds.

What it sucks at: Getting you top-of-the-line bragging rights.

Cost as of this writing: $1,829 to $1,934, depending on components.

Our budget builds cover 1080p-to-1440p gaming, and with an RTX 5070 or an RX 9070, they could realistically stretch to 4K in some games. But for more comfortable 4K gaming or super-high-frame-rate 1440p performance, you’ll thank yourself for spending a bit more.

You’ll note that the quality of the component selections here has been bumped up a bit all around. X670 or X870-series boards don’t just get you better I/O; they’ll also get you full PCI Express 5.0 support in the GPU slot and components better-suited to handling faster and more power-hungry components. We’ve swapped to a modular ATX 3.x-compliant power supply to simplify cable management and get a 12V-2×6 power connector. And we picked out a slightly higher-end SSD, too. But we’ve tried not to spend unnecessary money on things that won’t meaningfully improve performance—no 1,000+ watt power supplies, PCIe 5.0 SSDs, or 64GB RAM kits here.

A Ryzen 7 7800X3D might arguably be overkill for this build—especially at 4K, where the GPU will still be the main bottleneck—but it will be useful for getting higher frame rates at lower resolutions and just generally making sure performance stays consistent and smooth. Ryzen 7900X, 7950X, or 9900X chips are all good alternatives if you want more multi-core CPU performance—if you plan to stream as you play, for instance. A 9700X or even a 7700X would probably hold up fine if you won’t be doing that kind of thing and want to save a little.

You could cool any of these with a closed-loop AIO cooler, but a solid air cooler like the Thermalright model will keep it running cool for less money, and with a less-complicated install process.

A GeForce RTX 5070 Ti is the best 4K performance you can get for less than $1,000, but that doesn’t make it cheap. Credit: Andrew Cunningham

Based on current pricing and availability, I think the RTX 5070 Ti makes the most sense for a non-absurd 4K-capable build. Its prices are still elevated slightly above its advertised $749 MSRP, but it’s giving you RTX 4080/4080 Super-level performance for between $200 and $400 less than those cards launched for. Nvidia’s next step up, the RTX 5080, will run you at least $1,200 or $1,300—and usually more. AMD’s best option, the RX 9070 XT, is a respectable contender, and it’s probably the better choice if you plan on using Linux instead of Windows. But for a Windows-based gaming box, Nvidia still has an edge in games with ray-tracing effects enabled, plus DLSS upscaling and frame generation.

Is it silly that the GPU costs as much as our entire budget gaming PC? Of course! But it is what it is.

Even more than the budget-focused builds, the case here is a matter of personal preference, and $100 or $150 is enough to buy you any one of several dozen competent cases that will fit our chosen components. We’ve highlighted a few from case makers with good reputations to give you a place to start. Some of these also come in multiple colors, with different side panel options and both RGB and non-RGB options to suit your tastes.

If you like something a little more statement-y, the Fractal Design North ($155) and Lian Li Lancool 217 ($120) both include the wood accents that some case makers have been pushing lately. The Fractal Design case comes with both mesh and tempered glass side panel options, depending on how into RGB you are, while the Lancool case includes a whopping five case fans for keeping your system cool.

The “God Box”

What it’s good for: Anything and everything.

What it sucks at: Being affordable.

Cost as of this writing: $4,891 to $5,146

We’re avoiding Xeon and Threadripper territory here—frankly, I’ve never even tried to do a build centered on those chips and wouldn’t trust myself to make recommendations—but this system is as fast as consumer-grade hardware gets.

An Nvidia GeForce RTX 5090 guarantees the fastest GPU performance you can buy and continues the trend of “paying as much for a GPU as you could for an entire fully functional PC.” And while we have specced this build with a single GPU, the motherboard we’ve chosen has a second full-speed PCIe 5.0 x16 slot that you could use for a dual-GPU build.

A Ryzen 9950X3D chip gets you top-tier gaming performance and tons of CPU cores. We’re cooling this powerful chip with a 360 mm Arctic Liquid Freezer III Pro cooler, which has generally earned good reviews from Gamers Nexus and other outlets for its value, cooling performance, and quiet performance. A white option is also available if you’re going for a light-mode color scheme instead of our predominantly dark-mode build.

Other components have been pumped up similarly gratuitously. A 1,000 W power supply is the minimum for an RTX 5090, but to give us some headroom, why not use a 1,200 W model with lights on it? Is PCIe 5.0 storage strictly necessary for anything? No! But let’s grab a 4 TB PCIe 5.0 SSD anyway. And populating all four of our RAM slots with a 32GB stick of DDR5 avoids any unsightly blank spots inside our case.

We’ve selected a couple of largish case options to house our big builds, though as usual, there are tons of other options to fit all design sensibilities and tastes. Just make sure, if you’re selecting a big Extended ATX motherboard like the X870E Taichi, that your case will fit a board that’s slightly wider than a regular ATX or micro ATX board (the Taichi is 267 mm wide, which should be fine in either of our case selections).

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

Ars Technica System Guide: Five sample PC builds, from $500 to $5,000 Read More »

president-trump-says-intel’s-new-ceo-“must-resign-immediately”

President Trump says Intel’s new CEO “must resign immediately”

Intel and the White House did not immediately respond to a request for comment on Trump’s post. Intel shares dropped 3 percent in pre-market trading in New York.

Tan was appointed as Intel CEO in March after the Silicon Valley company’s board ousted his predecessor, Pat Gelsinger, in December.

Intel is the only US-headquartered company capable of producing advanced semiconductors, though it has so far largely missed out on the current boom for artificial intelligence chips. It has been awarded billions of dollars in US government subsidies and loans to support its chip manufacturing business, which has fallen far behind its rival Taiwan Semiconductor Manufacturing Company.

However, amid a radical cost-cutting program, Tan warned last month that Intel might be forced to abandon development of its next-generation manufacturing technology if it were unable to secure a “significant external customer.” Such a move would hand a virtual monopoly of leading-edge chipmaking to TSMC.

“Intel is required to be a responsible steward of American taxpayer dollars and to comply with applicable security regulations,” Cotton wrote in Tuesday’s letter to Intel’s board chair, Frank Yeary. “Mr Tan’s associations raise questions about Intel’s ability to fulfill these obligations.”

Additional reporting by Demetri Sevastopulo.

© 2025 The Financial Times Ltd. All rights reserved. Not to be redistributed, copied, or modified in any way.

President Trump says Intel’s new CEO “must resign immediately” Read More »

report:-intel-struggles-with-new-18a-process-as-it-cuts-workers-and-cancels-projects

Report: Intel struggles with new 18A process as it cuts workers and cancels projects

Intel has a lot riding on “18A,” its next-generation manufacturing process for silicon chips that the company claims will help it catch up to the lead that competitors like TSMC have built up over the last few years. With 18A, Intel would return to manufacturing its own processor designs in its own factories, including the upcoming Series 3 Core Ultra chips for laptops (codenamed Panther Lake), after manufacturing parts of all other Core Ultra chips with TSMC. Intel is also offering 18A manufacturing capacity to external chipmakers, a major milestone in former CEO Pat Gelsinger’s plan to make Intel a competitive cutting-edge (and primarily US-based) chip manufacturer for the rest of the industry.

But a Reuters report claims that Intel is struggling to make usable chips on 18A, according to “people who were briefed on the company’s test data since late last year.” As of this summer, these sources say that just 10 percent of the chips being manufactured on 18A are “up to [Intel’s] specifications.”

Intel disputed the numbers cited in the report. “Yields are better than that,” Intel CFO David Zinsner told Reuters, though neither Zinsner nor Intel provided an alternate figure.

Whether Intel is struggling with 18A or not, the story is easy to believe because it fits a decade-long pattern going back to early delays for Intel’s 14 nm process in 2013 and 2014. Intel had finally switched its lineup to the 14 nm process by late 2015, but it was then stuck on that manufacturing process for years (2019–2020 for laptop chips, 2021–2022 for desktop chips).

Through that span, Intel’s PR strategy was familiar: insist that things were ramping up well internally and that bugs were being ironed out, express confidence in the roadmap, give itself a little wiggle room on launch dates of actual products, and continue onward.

In this case, Intel told Reuters that its Panther Lake chips are “fully on track” as of July 30. Intel reaffirmed that it would launch Panther Lake using the 18A manufacturing process in the second half of 2025, with more models coming in 2026. These will be the milestones to watch for—Intel could very well be struggling to ramp up yields on 18A chips, but the struggles could be normal-ish and planned-for ones that don’t delay the company’s plans any more than they already have.

Report: Intel struggles with new 18A process as it cuts workers and cancels projects Read More »

silverstone-is-back-with-a-beige-pc-case-that-looks-just-like-your-crappy-old-486

SilverStone is back with a beige PC case that looks just like your crappy old 486

SilverStone’s first ’80s throwback PC case started life as an April Fools’ joke, but the success of the FLP01 was apparently serious enough to merit a follow-up. The company brought another beige case to the Computex trade show this week, the vertically oriented FLP02 (via Tom’s Hardware).

If the original horizontally oriented FLP01 case called to mind a 386-era Compaq Deskpro, the FLP02 is a dead ringer for the kind of case you might have gotten for a generic 486 or early Pentium-era PC. That extends to having a Turbo button built into the front—on vintage PCs, this button could actually determine how fast the processor was allowed to run, though here, it’s actually a fan speed control instead. A lock on the front also locks the power switch in place to keep it from being flipped off accidentally, something else real vintage PCs actually did.

Despite its retro facade, the FLP02 is capable of fitting in even higher-end modern PC parts than the original FLP01. Front USB-A and USB-C ports are hidden behind a magnetic door on the front of the case, and its faux-5.25-inch floppy drives are just covers for drive bays that you could use for an optical drive or extra front I/O.

Despite its retro looks, the FLP02 still tucks away support for modern amenities like front-facing USB-A and USB-C ports. Credit: Future

On the inside, the case can fit full-size ATX motherboards and up to a 360 mm radiator for CPU cooling, and modern high-end GPUs like the GeForce RTX 5090 or 5080 should be able to fit inside.

SilverStone says the FLP02 will ship in Q3 or Q4 of this year and that US buyers should be able to get it for $220. You can, of course, buy a modern high-end PC case for much less money. But if this kind of nostalgia-bait didn’t move merchandise, companies wouldn’t keep indulging in it.

SilverStone is back with a beige PC case that looks just like your crappy old 486 Read More »

linux-kernel-is-leaving-486-cpus-behind,-only-18-years-after-the-last-one-made

Linux kernel is leaving 486 CPUs behind, only 18 years after the last one made

It’s not the first time Torvalds has suggested dropping support for 32-bit processors and relieving kernel developers from implementing archaic emulation and work-around solutions. “We got rid of i386 support back in 2012. Maybe it’s time to get rid of i486 support in 2022,” Torvalds wrote in October 2022. Failing major changes to the 6.15 kernel, which will likely arrive late this month, i486 support will be dropped.

Where does that leave people running a 486 system for whatever reason? They can run older versions of the Linux kernel and Linux distributions. They might find recommendations for teensy distros like MenuetOS, KolibriOS, and Visopsys, but all three of those require at least a Pentium. They can run FreeDOS. They might get away with the OS/2 descendant ArcaOS. There are some who have modified Windows XP to run on 486 processors, and hopefully, they will not connect those devices to the Internet.

Really, though, if you’re dedicated enough to running a 486 system in 2025, you’re probably resourceful enough to find copies of the software meant for that system. One thing about computers—you never stop learning.

This post was updated at 3: 30 p.m. to fix a date error.

Linux kernel is leaving 486 CPUs behind, only 18 years after the last one made Read More »

nvidia-geforce-xx60-series-is-pc-gaming’s-default-gpu,-and-a-new-one-is-out-may-19

Nvidia GeForce xx60 series is PC gaming’s default GPU, and a new one is out May 19

Nvidia will release the GeForce RTX 5060 on May 19 starting at $299, the company announced via press release today. The new card, a successor to popular past GPUs like the GTX 1060 and RTX 3060, will bring Nvidia’s DLSS 4 and Multi Frame-Generation technology to budget-to-mainstream gaming builds—at least, it would if every single GPU launched by any company at any price wasn’t instantly selling out these days.

Nvidia announced a May release for the 5060 last month when it released the RTX 5060 Ti for $379 (8GB) and $429 (16GB). Prices for that card so far haven’t been as inflated as they have been for the RTX 5070 on up, but the cheapest ones you can currently get are still between $50 and $100 over that MSRP. Unless Nvidia and its partners have made dramatically more RTX 5060 cards than they’ve made of any other model so far, expect this card to carry a similar pricing premium for a while.

RTX 5060 Ti RTX 4060 Ti RTX 5060 RTX 4060 RTX 5050 (leaked) RTX 3050
CUDA Cores 4,608 4,352 3,840 3,072 2,560 2,560
Boost Clock 2,572 MHz 2,535 MHz 2,497 MHz 2,460 MHz Unknown 1,777 MHz
Memory Bus Width 128-bit 128-bit 128-bit 128-bit 128-bit 128-bit
Memory bandwidth 448GB/s 288GB/s 448GB/s 272GB/s Unknown 224GB/s
Memory size 8GB or 16GB GDDR7 8GB or 16GB GDDR6 8GB GDDR7 8GB GDDR6 8GB GDDR6 8GB GDDR6
TGP 180 W 160 W 145 W 115 W 130 W 130 W

Compared to the RTX 4060, the RTX 5060 adds a few hundred extra CUDA cores and gets a big memory bandwidth increase thanks to the move from GDDR6 to GDDR7. But its utility at higher resolutions will continue to be limited by its 8GB of RAM, which is already becoming a problem for a handful of high-end games at 1440p and 4K.

Regardless of its performance, the RTX 5060 will likely become a popular mainstream graphics card, just like its predecessors. Of the Steam Hardware Survey’s top 10 GPUs, three are RTX xx60-series desktop GPUs (the 3060, 4060, and 2060); the laptop versions of the 4060 and 3060 are two of the others. If supply of the RTX 5060 is adequate and pricing isn’t out of control, we’d expect it to shoot up these charts pretty quickly over the next few months.

Nvidia GeForce xx60 series is PC gaming’s default GPU, and a new one is out May 19 Read More »