launch

china’s-guowang-megaconstellation-is-more-than-another-version-of-starlink

China’s Guowang megaconstellation is more than another version of Starlink


“This is a strategy to keep the US from intervening… that’s what their space architecture is designed to do.”

Spectators take photos as a Long March 8A rocket carrying a group of Guowang satellites blasts off from the Hainan commercial launch site on July 30, 2025, in Wenchang, China. Credit: Liu Guoxing/VCG via Getty Images

Spectators take photos as a Long March 8A rocket carrying a group of Guowang satellites blasts off from the Hainan commercial launch site on July 30, 2025, in Wenchang, China. Credit: Liu Guoxing/VCG via Getty Images

US defense officials have long worried that China’s Guowang satellite network might give the Chinese military access to the kind of ubiquitous connectivity US forces now enjoy with SpaceX’s Starlink network.

It turns out the Guowang constellation could offer a lot more than a homemade Chinese alternative to Starlink’s high-speed consumer-grade broadband service. China has disclosed little information about the Guowang network, but there’s mounting evidence that the satellites may provide Chinese military forces a tactical edge in any future armed conflict in the Western Pacific.

The megaconstellation is managed by a secretive company called China SatNet, which was established by the Chinese government in 2021. SatNet has released little information since its formation, and the group doesn’t have a website. Chinese officials have not detailed any of the satellites’ capabilities or signaled any intention to market the services to consumers.

Another Chinese satellite megaconstellation in the works, called Qianfan, appears to be a closer analog to SpaceX’s commercial Starlink service. Qianfan satellites are flat in shape, making them easier to pack onto the tops of rockets before launch. This is a design approach pioneered by SpaceX with Starlink. The backers of the Qianfan network began launching the first of up to 1,300 broadband satellites last year.

Unlike Starlink, the Guowang network consists of satellites manufactured by multiple companies, and they launch on several types of rockets. On its face, the architecture taking shape in low-Earth orbit appears to be more akin to SpaceX’s military-grade Starshield satellites and the Space Development Agency’s future tranches of data relay and missile-tracking satellites.

Guowang, or “national network,” may also bear similarities to something the US military calls MILNET. Proposed in the Trump administration’s budget request for next year, MILNET will be a partnership between the Space Force and the National Reconnaissance Office (NRO). One of the design alternatives under review at the Pentagon is to use SpaceX’s Starshield satellites to create a “hybrid mesh network” that the military can rely on for a wide range of applications.

Picking up the pace

In recent weeks, China’s pace of launching Guowang satellites has approached that of Starlink. China has launched five groups of Guowang satellites since July 27, while SpaceX has launched six Starlink missions using its Falcon 9 rockets over the same period.

A single Falcon 9 launch can haul up to 28 Starlink satellites into low-Earth orbit, while China’s rockets have launched between five and 10 Guowang satellites per flight to altitudes three to four times higher. China has now placed 72 Guowang satellites into orbit since launches began last December, a small fraction of the 12,992-satellite fleet China has outlined in filings with the International Telecommunication Union.

The constellation described in China’s ITU filings will include one group of Guowang satellites between 500 and 600 kilometers (311 and 373 miles), around the same altitude of Starlink. Another shell of Guowang satellites will fly roughly 1,145 kilometers (711 miles) above the Earth. So far, all of the Guowang satellites China has launched since last year appear to be heading for the higher shell.

This higher altitude limits the number of Guowang satellites China’s stable of launch vehicles can carry. On the other hand, fewer satellites are required for global coverage from the higher orbit.

A prototype Guowang satellite is seen prepared for encapsulation inside the nose cone of a Long March 12 rocket last year. This is one of the only views of a Guowang spacecraft China has publicly released. Credit: Hainan International Commercial Aerospace Launch Company Ltd.

SpaceX has already launched nearly 200 of its own Starshield satellites for the NRO to use for intelligence, surveillance, and reconnaissance missions. The next step, whether it’s the SDA constellation, MILNET, or something else, will seek to incorporate hundreds or thousands of low-Earth orbit satellites into real-time combat operations—things like tracking moving targets on the ground and in the air, targeting enemy vehicles, and relaying commands between allied forces. The Trump administration’s Golden Dome missile defense shield aims to extend real-time targeting to objects in the space domain.

In military jargon, the interconnected links to detect, track, target, and strike a target is called a kill chain or kill web. This is what US Space Force officials are pushing to develop with the Space Development Agency, MILNET, and other future space-based networks.

So where is the US military in building out this kill chain? The military has long had the ability to detect and track an adversary’s activities from space. Spy satellites have orbited the Earth since the dawn of the Space Age.

Much of the rest of the kill chain—like targeting and striking—remains forward work for the Defense Department. Many of the Pentagon’s existing capabilities are classified, but simply put, the multibillion-dollar satellite constellations the Space Force is building just for these purposes still haven’t made it to the launch pad. In some cases, they haven’t made it out of the lab.

Is space really the place?

The Space Development Agency is supposed to begin launching its first generation of more than 150 satellites later this year. These will put the Pentagon in a position to detect smaller, fainter ballistic and hypersonic missiles and provide targeting data for allied interceptors on the ground or at sea.

Space Force officials envision a network of satellites that can essentially control a terrestrial battlefield from orbit. The way future-minded commanders tell it, a fleet of thousands of satellites fitted with exquisite sensors and machine learning will first detect a moving target, whether it’s a land vehicle, aircraft, naval ship, or missile. Then, that spacecraft will transmit targeting data via a laser link to another satellite that can relay the information to a shooter on Earth.

US officials believe Guowang is a step toward integrating satellites into China’s own kill web. It might be easier for them to dismiss Guowang if it were simply a Chinese version of Starlink, but open-source information suggests it’s something more. Perhaps Guowang is more akin to megaconstellations being developed and deployed for the US Space Force and the National Reconnaissance Office.

If this is the case, China could have a head start on completing all the links for a celestial kill chain. The NRO’s Starshield satellites in space today are presumably focused on collecting intelligence. The Space Force’s megaconstellation of missile tracking, data relay, and command and control satellites is not yet in orbit.

Chinese media reports suggest the Guowang satellites could accommodate a range of instrumentation, including broadband communications payloads, laser communications terminals, synthetic aperture radars, and optical remote sensing payloads. This sounds a lot like a mix of SpaceX and the NRO’s Starshield fleet, the Space Development Agency’s future constellation, and the proposed MILNET program.

A Long March 5B rocket lifts off from the Wenchang Space Launch Site in China’s Hainan Province on August 13, 2025, with a group of Guowang satellites. (Photo by Luo Yunfei/China News Service/VCG via Getty Images.) Credit: Luo Yunfei/China News Service/VCG via Getty Images

In testimony before a Senate committee in June, the top general in the US Space Force said it is “worrisome” that China is moving in this direction. Gen. Chance Saltzman, the Chief of Space Operations, used China’s emergence as an argument for developing space weapons, euphemistically called “counter-space capabilities.”

“The space-enabled targeting that they’ve been able to achieve from space has increased the range and accuracy of their weapon systems to the point where getting anywhere close enough [to China] in the Western Pacific to be able to achieve military objectives is in jeopardy if we can’t deny, disrupt, degrade that… capability,” Saltzman said. “That’s the most pressing challenge, and that means the Space Force needs the space control counter-space capabilities in order to deny that kill web.”

The US military’s push to migrate many wartime responsibilities to space is not without controversy. The Trump administration wants to cancel purchases of new E-7 jets designed to serve as nerve centers in the sky, where Air Force operators receive signals about what’s happening in the air, on the ground, and in the water for hundreds of miles around. Instead, much of this responsibility would be transferred to satellites.

Some retired military officials, along with some lawmakers, argue against canceling the E-7. They say there’s too little confidence in when satellites will be ready to take over. If the Air Force goes ahead with the plan to cancel the E-7, the service intends to bridge the gap by extending the life of a fleet of Cold War-era E-3 Sentry airplanes, commonly known as AWACS (Airborne Warning and Control System).

But the high ground of space offers notable benefits. First, a proliferated network of satellites has global reach, and airplanes don’t. Second, satellites could do the job on their own, with some help from artificial intelligence and edge computing. This would remove humans from the line of fire. And finally, using a large number of satellites is inherently beneficial because it means an attack on one or several satellites won’t degrade US military capabilities.

In China, it takes a village

Brig. Gen. Anthony Mastalir, commander of US Space Forces in the Indo-Pacific region, told Ars last year that US officials are watching to see how China integrates satellite networks like Guowang into military exercises.

“What I find interesting is China continues to copy the US playbook,” Mastalir said. “So as as you look at the success that the United States has had with proliferated architectures, immediately now we see China building their own proliferated architecture, not just the transport layer and the comm layer, but the sensor layer as well. You look at their their pursuit of reusability in terms of increasing their launch capacity, which is currently probably one of their shortfalls. They have plans for a quicker launch tempo.”

A Long March 6A carries a group of Guowang satellites into orbit on July 27, 2025, from the Taiyuan Satellite Launch Center in north China’s Shanxi Province. China has used four different rocket configurations to place five groups of Guowang satellites into orbit in the last month. Credit: Wang Yapeng/Xinhua via Getty Images

China hasn’t recovered or reused an orbital-class booster yet, but several Chinese companies are working on it. SpaceX, meanwhile, continues to recycle its fleet of Falcon 9 boosters while simultaneously developing a massive super-heavy-lift rocket and churning out dozens of Starlink and Starshield satellites every week.

China doesn’t have its own version of SpaceX. In China, it’s taken numerous commercial and government-backed enterprises to reach a launch cadence that, so far this year, is a little less than half that of SpaceX. But the flurry of Guowang launches in the last few weeks shows that China’s satellite and rocket factories are picking up the pace.

Mastalir said China’s actions in the South China Sea, where it has taken claim of disputed islands near Taiwan and the Philippines, could extend farther from Chinese shores with the help of space-based military capabilities.

“Their specific goals are to be able to track and target US high-value assets at the time and place of their choosing,” he said. “That has started with an A2AD, an Anti-Access Area Denial strategy, which is extended to the first island chain and now the second island chain, and eventually all the way to the west coast of California.”

“The sensor capabilities that they’ll need are multi-orbital and diverse in terms of having sensors at GEO (geosynchronous orbit) and now increasingly massive megaconstellations at LEO (low-Earth orbit),” Mastalir said. “So we’re seeing all signs point to being able to target US aircraft carriers… high-value assets in the air like tankers, AWACs. This is a strategy to keep the US from intervening, and that’s what their space architecture is designed to do.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

China’s Guowang megaconstellation is more than another version of Starlink Read More »

spacex-reveals-why-the-last-two-starships-failed-as-another-launch-draws-near

SpaceX reveals why the last two Starships failed as another launch draws near


“SpaceX can now proceed with Starship Flight 10 launch operations under its current license.”

SpaceX completed a six-engine static fire of the next Starship upper stage on August 1. Credit: SpaceX

SpaceX is continuing with final preparations for the 10th full-scale test flight of the company’s enormous Starship rocket after receiving launch approval Friday from the Federal Aviation Administration.

Engineers completed a final test of Starship’s propulsion system with a so-called “spin prime” test Wednesday at the launch site in South Texas. Ground crews then rolled the ship back to a nearby hangar for engine inspections, touchups to its heat shield, and a handful of other chores to ready it for liftoff.

SpaceX has announced the launch is scheduled for no earlier than next Sunday, August 24, at 6: 30 pm local time in Texas (23: 30 UTC).

Like all previous Starship launches, the huge 403-foot-tall (123-meter) rocket will take off from SpaceX’s test site in Starbase, Texas, just north of the US-Mexico border. The rocket consists of a powerful booster stage named Super Heavy, with 33 methane-fueled Raptor engines. Six Raptors power the upper stage, known simply as Starship.

With this flight, SpaceX officials hope to put several technical problems with the Starship program behind them. SpaceX is riding a streak of four disappointing Starship test flights from January through May, and and the explosion and destruction of another Starship vehicle during a ground test in June.

These setbacks followed a highly successful year for the world’s largest rocket in 2024, when SpaceX flew Starship four times and achieved new objectives on each flight. These accomplishments included the first catch of a Super Heavy booster back at the launch pad, proving the company’s novel concept for recovering and reusing the rocket’s first stage.

Starship’s record so far in 2025 is another story. The rocket’s inability to make it through an entire suborbital test flight has pushed back future program milestones, such as the challenging tasks of recovering and reusing the rocket’s upper stage, and demonstrating the ability to refuel another rocket in orbit. Those would both be firsts in the history of spaceflight.

These future tests, and more, are now expected to occur no sooner than next year. This time last year, SpaceX officials hoped to achieve them in 2025. All of these demonstrations are vital for Elon Musk to meet his promise of sending numerous Starships to build a settlement on Mars. Meanwhile, NASA is eager for SpaceX to reel off these tests as quickly as possible because the agency has selected Starship as the human-rated lunar lander for the Artemis Moon program. Once operational, Starship will also be key to building out SpaceX’s next-generation Starlink broadband network.

A good outcome on the next Starship test flight would give SpaceX footing to finally take a step toward these future demos after months of dithering over design dilemmas.

Elon Musk, SpaceX’s founder and CEO, presented an update on Starship to company employees in May. This chart shows the planned evolution from Starship Version 2 (left) to Version 3 (middle), and an even larger rocket (right) in the more distant future.

The FAA said Friday it formally closed the investigation into Starship’s most recent in-flight failure in May, when the rocket started leaking propellant after reaching space, rendering it unable to complete the test flight.

“The FAA oversaw and accepted the findings of the SpaceX-led investigation,” the federal regulator said in a statement. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

Diagnosing failures

SpaceX identified the most probable cause for the May failure as a faulty main fuel tank pressurization system diffuser located on the forward dome of Starship’s primary methane tank. The diffuser failed a few minutes after launch, when sensors detected a pressure drop in the main methane tank and a pressure increase in the ship’s nose cone just above the tank.

The rocket compensated for the drop in main tank pressure and completed its engine burn, but venting from the nose cone and a worsening fuel leak overwhelmed Starship’s attitude control system. Finally, detecting a major problem, Starship triggered automatic onboard commands to vent all remaining propellant into space and “passivate” itself before an unguided reentry over the Indian Ocean, prematurely ending the test flight.

Engineers recreated the diffuser failure on the ground during the investigation, and then redesigned the part to better direct pressurized gas into the main fuel tank. This will also “substantially decrease” strain on the diffuser structure, SpaceX said.

The FAA, charged with ensuring commercial rocket launches don’t endanger public safety, signed off on the investigation and gave the green light for SpaceX to fly Starship again when it is ready.

“SpaceX can now proceed with Starship Flight 10 launch operations under its current license,” the FAA said.

“The upcoming flight will continue to expand the operating envelope on the Super Heavy booster, with multiple landing burn tests planned,” SpaceX said in an update posted to its website Friday. “It will also target similar objectives as previous missions, including Starship’s first payload deployment and multiple reentry experiments geared towards returning the upper stage to the launch site for catch.”

File photo of Starship’s six Raptor engines firing on a test stand in South Texas. Credit: SpaceX

In the aftermath of the test flight in May, SpaceX hoped to fly Starship again by late June or early July. But another accident June 18, this time on the ground, delayed the program another couple of months. The Starship vehicle SpaceX assigned to the next flight, designated Ship 36, exploded on a test stand in Texas as teams filled it with cryogenic propellants for an engine test-firing.

The accident destroyed the ship and damaged the test site, prompting SpaceX to retrofit the sole active Starship launch pad to support testing of the next ship in line—Ship 37. Those tests included a brief firing of all six of the ship’s Raptor engines August 1.

After Ship 37’s final spin prime test Wednesday, workers transported the rocket back to a hangar for evaluation, and crews immediately got to work transitioning the launch pad back to its normal configuration to host a full Super Heavy/Starship stack.

SpaceX said the explosion on the test stand in June was likely caused by damage to a high-pressure nitrogen storage tank inside Starship’s payload bay section. This tank, called a composite overwrapped pressure vessel, or COPV, violently ruptured and led to the ship’s fiery demise. SpaceX said COPVs on upcoming flights will operate at lower pressures, and managers ordered additional inspections on COPVs to look for damage, more proof testing, more stringent acceptance criteria, and a hardware change to address the problem.

Try, try, try, try again

This year began with the first launch of an upgraded version of Starship, known as Version 2 or Block 2, in January. But the vehicle suffered propulsion failures and lost control before the upper stage completed its engine burn to propel the rocket on a trajectory carrying it halfway around the world to splash down in the Indian Ocean. Instead, the rocket broke apart and rained debris over the Bahamas and the Turks and Caicos Islands more than 1,500 miles downrange from Starbase.

That was followed in March by another Starship launch that had a similar result, again scattering debris near the Bahamas. In May, the ninth Starship test flight made it farther downrange and completed its engine burn before spinning out of control in space, preventing it from making a guided reentry to gather data on its heat shield.

Mastering the design of Starship’s heat shield is critical the future of the program. As it has on all of this year’s test flights, SpaceX has installed on the next Starship several different ceramic and metallic tile designs to test alternative materials to protect the vehicle during its scorching plunge back into Earth’s atmosphere. Starship successfully made it through reentry for a controlled splashdown in the sea several times last year, but sensors detected hot spots on the rocket’s stainless steel skin after some of the tiles fell off during launch and descent.

Making the Starship upper stage reusable like the Super Heavy booster will require better performance from the heat shield. The demands of flying the ship home from orbit and attempting a catch at the launch pad far outweigh the challenge of recovering a booster. Coming back from space, the ship encounters much higher temperatures than the booster sees at lower velocities.

Therefore, SpaceX’s most important goal for the 10th Starship flight will be gathering information about how well the ship’s different heat shield materials hold up during reentry. Engineers want to have this data as soon as possible to inform design decisions about the next iteration of Starship—Version 3 or Block 3—that will actually fly into orbit. So far, all Starship launches have intentionally targeted a speed just shy of orbital velocity, bringing the vehicle back through the atmosphere halfway around the world.

Other objectives on the docket for Starship Flight 10 include the deployment of spacecraft simulators mimicking the size of SpaceX’s next-generation Starlink Internet satellites. Like the heat shield data, this has been part of the flight plan for the last three Starship launches, but the rocket never made it far enough to attempt any payload deployment tests.

Thirty-three Raptor engines power the Super Heavy booster downrange from SpaceX’s launch site near Brownsville, Texas, in January. Credit: SpaceX

Engineers also plan to put the Super Heavy booster through the wringer on the next launch. Instead of coming back to Starbase for a catch at the launch pad—something SpaceX has now done three times—the massive booster stage will target a controlled splashdown in the Gulf of Mexico east of the Texas coast. This will give SpaceX room to try new things with the booster, such as controlling the rocket’s final descent with a different mix of engines to see if it could overcome a problem with one of its three primary landing engines.

SpaceX tried to experiment with new ways of landing of the Super Heavy booster on the last test flight, too. The Super Heavy exploded before reaching the ocean, likely due to a structural failure of the rocket’s fuel transfer tube, an internal pipe where methane flows from the fuel tank at the top of the rocket to the engines at the bottom of the booster. SpaceX said the booster flew a higher angle of attack during its descent in May to test the limits of the rocket’s performance. It seems engineers found the limit, and the booster won’t fly at such a high angle of attack next time.

SpaceX has just two Starship Version 2 vehicles in its inventory before moving on to the taller Version 3 configuration, which will also debut improved Raptor engines.

“Every lesson learned, through both flight and ground testing, continues to feed directly into designs for the next generation of Starship and Super Heavy,” SpaceX said. “Two flights remain with the current generation, each with test objectives designed to expand the envelope on vehicle capabilities as we iterate towards fully and rapidly reusable, reliable rockets.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX reveals why the last two Starships failed as another launch draws near Read More »

trump-orders-cull-of-regulations-governing-commercial-rocket-launches

Trump orders cull of regulations governing commercial rocket launches


The head of the FAA’s commercial spaceflight division will become a political appointee.

Birds take flight at NASA’s Kennedy Space Center in Florida in this 2010 photo. Credit: NASA

President Donald Trump signed an executive order Wednesday directing government agencies to “eliminate or expedite” environmental reviews for commercial launch and reentry licenses.

The Federal Aviation Administration (FAA), part of the Department of Transportation (DOT), grants licenses for commercial launch and reentry operations. The FAA is charged with ensuring launch and reentries comply with environmental laws, comport with US national interests, and don’t endanger the public.

The drive toward deregulation will be welcome news for companies like SpaceX, led by onetime Trump ally Elon Musk; SpaceX conducts nearly all of the commercial launches and reentries licensed by the FAA.

Deregulation time

Trump ordered Transportation Secretary Sean Duffy, who also serves as the acting administrator of NASA, to “use all available authorities to eliminate or expedite… environmental reviews for… launch and reentry licenses and permits.” In the order signed by Trump, White House officials wrote that Duffy should consult with the chair of the Council on Environmental Quality and follow “applicable law” in the regulatory cull.

The executive order also includes a clause directing Duffy to reevaluate, amend, or rescind a slate of launch-safety regulations written during the first Trump administration. The FAA published the new regulations, known as Part 450, in 2020, and they went into effect in 2021, but space companies have complained they are too cumbersome and have slowed down the license approval process.

And there’s more. Trump ordered NASA, the military, and DOT to eliminate duplicative reviews for spaceport development. This is particularly pertinent at federally owned launch ranges like those at Cape Canaveral, Florida; Vandenberg Space Force Base, California; and Wallops Island, Virginia.

The Trump administration also plans to make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This office oversees commercial launch and reentry licensing and was previously led by a career civil servant. Duffy will also hire an advisor on deregulation in the commercial spaceflight industry to join DOT, and the Office of Space Commerce will be elevated to a more prominent position within the Commerce Department.

“It is the policy of the United States to enhance American greatness in space by enabling a competitive launch marketplace and substantially increasing commercial space launch cadence and novel space activities by 2030,” Trump’s executive order reads. “To accomplish this, the federal government will streamline commercial license and permit approvals for United States-based operators.”

News of the executive order was reported last month by ProPublica, which wrote that the Trump administration was circulating draft language among federal agencies to slash rules to protect the environment and the public from the dangers of rocket launches. The executive order signed by Trump and released by the White House on Wednesday confirms ProPublica’s reporting.

Jared Margolis, a senior attorney for the Center for Biological Diversity, criticized the Trump administration’s move.

“This reckless order puts people and wildlife at risk from private companies launching giant rockets that often explode and wreak devastation on surrounding areas,” Margolis said in a statement. “Bending the knee to powerful corporations by allowing federal agencies to ignore bedrock environmental laws is incredibly dangerous and puts all of us in harm’s way. This is clearly not in the public interest.”

Duffy, the first person to lead NASA and another federal department at the same time, argued the order is important to sustain economic growth in the space industry.

“By slashing red tape tying up spaceport construction, streamlining launch licenses so they can occur at scale, and creating high-level space positions in government, we can unleash the next wave of innovation,” Duffy said in a statement. “At NASA, this means continuing to work with commercial space companies and improving our spaceports’ ability to launch.”

Nipping NEPA

The executive order is emblematic of the Trump administration’s broader push to curtail environmental reviews for large infrastructure projects.

The White House has already directed federal agencies to repeal regulations enforcing the National Environmental Policy Act (NEPA), a 1969 law that requires the feds prepare environmental assessments and environmental impact statements to evaluate the effects of government actions—such as licensing approvals—on the environment.

Regarding commercial spaceflight, the White House ordered the Transportation Department to create a list of activities officials there believe are not subject to NEPA and establish exclusions under NEPA for launch and reentry licenses.

Onlookers watch from nearby sand dunes as SpaceX prepares a Starship rocket for launch from Starbase, Texas. Credit: Stephen Clark/Ars Technica

The changes to the environmental review process might be the most controversial part of Trump’s new executive order. Another section of the order—the attempt to reform or rescind the so-called Part 450 launch and reentry regulations—appears to have bipartisan support in Congress.

The FAA started implementing its new Part 450 commercial launch and reentry regulations less than five years ago after writing the rules in response to another Trump executive order signed in 2018. Part 450 was intended to streamline the launch approval process by allowing companies to submit applications for a series of launches or reentries, rather than requiring a new license for each mission.

But industry officials quickly criticized the new regulations, which they said didn’t account for rapid iteration of rockets and spacecraft like SpaceX’s enormous Starship/Super Heavy launch vehicle. The FAA approved a SpaceX request in May to increase the number of approved Starship launches from five to 25 per year from the company’s base in Starship, Texas, near the US-Mexico border.

Last year, the FAA’s leadership under the Biden administration established a committee to examine the shortcomings of Part 450. The Republican and Democratic leaders of the House Science, Space, and Technology Committee submitted a joint request in February for the Government Accountability Office to conduct an independent review of the FAA’s Part 450 regulations.

“Reforming and streamlining commercial launch regulations and licensing is an area the Biden administration knew needed reform,” wrote Laura Forczyk, founder and executive director of the space consulting firm Astralytical, in a post on X. “However, little was done. Will more be done with this executive order? I hope so. This was needed years ago.”

Dave Cavossa, president of the Commercial Spaceflight Federation, applauded the Trump administration’s regulatory policy.

“This executive order will strengthen and grow the US commercial space industry by cutting red tape while maintaining a commitment to public safety, benefitting the American people and the US government that are increasingly reliant on space for our national and economic security,” Cavossa said in a statement.

Specific language in the new Trump executive order calls for the FAA to evaluate which regulations should be waived for hybrid launch or reentry vehicles that hold FAA airworthiness certificates, and which requirements should be remitted for rockets with a flight termination system, an explosive charge designed to destroy a launch vehicle if it veers off its pre-approved course after liftoff. These are similar to the topics the Biden-era FAA was looking at last year.

The new Trump administration policy also seeks to limit the authority of state officials in enforcing their own environmental rules related to the construction or operation of spaceports.

This is especially relevant after the California Coastal Commission rejected a proposal by SpaceX to double its launch cadence at Vandenberg Space Force Base, a spaceport located roughly 140 miles (225 kilometers) northwest of Los Angeles. The Space Force, which owns Vandenberg and is one of SpaceX’s primary customers, backs SpaceX’s push for more launches.

Finally, the order gives the Department of Commerce responsibility for authorizing “novel space activities” such as in-space assembly and manufacturing, asteroid and planetary mining, and missions to remove space debris from orbit.

This story was updated at 12: 30 am EDT on August 14 with statements from the Center for Biological Diversity and the Commercial Spaceflight Federation.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Trump orders cull of regulations governing commercial rocket launches Read More »

space-force-officials-take-secrecy-to-new-heights-ahead-of-key-rocket-launch

Space Force officials take secrecy to new heights ahead of key rocket launch

The Vulcan rocket checks off several important boxes for the Space Force. First, it relies entirely on US-made rocket engines. The Atlas V rocket it is replacing uses Russian-built main engines, and given the chilled relations between the two powers, US officials have long desired to stop using Russian engines to power the Pentagon’s satellites into orbit. Second, ULA says the Vulcan rocket will eventually provide a heavy-lift launch capability at a lower cost than the company’s now-retired Delta IV Heavy rocket.

Third, Vulcan provides the Space Force with an alternative to SpaceX’s Falcon 9 and Falcon Heavy, which have been the only rockets in their class available to the military since the last national security mission was launched on an Atlas V rocket one year ago.

Col. Jim Horne, mission director for the USSF-106 launch, said this flight marks a “pretty historic point in our program’s history. We officially end our reliance on Russian-made main engines with this launch, and we continue to maintain our assured access to space with at least two independent rocket service companies that we can leverage to get our capabilities on orbit.”

What’s onboard?

The Space Force has only acknowledged one of the satellites aboard the USSF-106 mission, but there are more payloads cocooned inside the Vulcan rocket’s fairing.

The $250 million mission that officials are willing to talk about is named Navigation Technology Satellite-3, or NTS-3. This experimental spacecraft will test new satellite navigation technologies that may eventually find their way on next-generation GPS satellites. A key focus for engineers who designed and will operate the NTS-3 satellite is to look at ways of overcoming GPS jamming and spoofing, which can degrade satellite navigation signals used by military forces, commercial airliners, and civilian drivers.

“We’re going to be doing, we anticipate, over 100 different experiments,” said Joanna Hinks, senior research aerospace engineer at the Air Force Research Laboratory’s space vehicles directorate, which manages the NTS-3 mission. “Some of the major areas we’re looking at—we have an electronically steerable phased array antenna so that we can deliver higher power to get through interference to the location that it’s needed.”

Arlen Biersgreen, then-program manager for the NTS-3 satellite mission at the Air Force Research Laboratory, presents a one-third scale model of the NTS-3 spacecraft to an audience in 2022. Credit: US Air Force/Andrea Rael

GPS jamming is especially a problem in and near war zones. Investigators probing the crash of Azerbaijan Airlines Flight 8243 last December determined GPS jamming, likely by Russian military forces attempting to counter a Ukrainian drone strike, interfered with the aircraft’s navigation as it approached its destination in the Russian republic of Chechnya. Azerbaijani government officials blamed a Russian surface-to-air missile for damaging the aircraft, ultimately leading to a crash in nearby Kazakhstan that killed 38 people.

“We have a number of different advanced signals that we’ve designed,” Hinks said. “One of those is the Chimera anti-spoofing signal… to protect civil users from spoofing that’s affecting so many aircraft worldwide today, as well as ships.”

The NTS-3 spacecraft, developed by L3Harris and Northrop Grumman, only takes up a fraction of the Vulcan rocket’s capacity. The satellite weighs less than 3,000 pounds (about 1,250 kilograms), about a quarter of what this version of the Vulcan rocket can deliver to geosynchronous orbit.

Space Force officials take secrecy to new heights ahead of key rocket launch Read More »

spacex-launches-a-pair-of-nasa-satellites-to-probe-the-origins-of-space-weather

SpaceX launches a pair of NASA satellites to probe the origins of space weather


“This is going to really help us understand how to predict space weather in the magnetosphere.”

This artist’s illustration of the Earth’s magnetosphere shows the solar wind (left) streaming from the Sun, and then most of it being blocked by Earth’s magnetic field. The magnetic field lines seen here fold in toward Earth’s surface at the poles, creating polar cusps. Credit: NASA/Goddard Space Flight Center

Two NASA satellites rocketed into orbit from California aboard a SpaceX Falcon 9 rocket Wednesday, commencing a $170 million mission to study a phenomenon of space physics that has eluded researchers since the dawn of the Space Age.

The twin spacecraft are part of the NASA-funded TRACERS mission, which will spend at least a year measuring plasma conditions in narrow regions of Earth’s magnetic field known as polar cusps. As the name suggests, these regions are located over the poles. They play an important but poorly understood role in creating colorful auroras as plasma streaming out from the Sun interacts with the magnetic field surrounding Earth.

The same process drives geomagnetic storms capable of disrupting GPS navigation, radio communications, electrical grids, and satellite operations. These outbursts are usually triggered by solar flares or coronal mass ejections that send blobs of plasma out into the Solar System. If one of these flows happens to be aimed at Earth, we are treated with auroras but vulnerable to the storm’s harmful effects.

For example, an extreme geomagnetic storm last year degraded GPS navigation signals, resulting in more than $500 million in economic losses in the agriculture sector as farms temporarily suspended spring planting. In 2022, a period of elevated solar activity contributed to the loss of 40 SpaceX Starlink satellites.

“Understanding our Sun and the space weather it produces is more important to us here on Earth, I think, than most realize,” said Joe Westlake, director of NASA’s heliophysics division.

NASA’s two TRACERS satellites launched Wednesday aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, California. Credit: SpaceX

The launch of TRACERS was delayed 24 hours after a regional power outage disrupted air traffic control over the Pacific Ocean near the Falcon 9 launch site on California’s Central Coast, according to the Federal Aviation Administration. SpaceX called off the countdown Tuesday less than a minute before liftoff, then rescheduled the flight for Wednesday.

TRACERS, short for Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will study a process known as magnetic reconnection. As particles in the solar wind head out into the Solar System at up to 1 million mph, they bring along pieces of the Sun’s magnetic field. When the solar wind reaches our neighborhood, it begins interacting with Earth’s magnetic field.

The high-energy collision breaks and reconnects magnetic field lines, flinging solar wind particles across Earth’s magnetosphere at speeds that can approach the speed of light. Earth’s field draws some of these particles into the polar cusps, down toward the upper atmosphere. This is what creates dazzling auroral light shows and potentially damaging geomagnetic storms.

Over our heads

But scientists still aren’t sure how it all works, despite the fact that it’s happening right over our heads, within the reach of countless satellites in low-Earth orbit. But a single spacecraft won’t do the job. Scientists need at least two spacecraft, each positioned in bespoke polar orbits and specially instrumented to measure magnetic fields, electric fields, electrons, and ions.

That’s because magnetic reconnection is a dynamic process, and a single satellite would provide just a snapshot of conditions over the polar cusps every 90 minutes. By the time the satellite comes back around on another orbit, conditions will have changed, but scientists wouldn’t know how or why, according to David Miles, principal investigator for the TRACERS mission at the University of Iowa.

“You can’t tell, is that because the system itself is changing?” Miles said. “Is that because this magnetic reconnection, the coupling process, is moving around? Is it turning on and off, and if it’s turning on and off, how quickly can it do it? Those are fundamental things that we need to understand… how the solar wind arriving at the Earth does or doesn’t transfer energy to the Earth system, which has this downstream effect of space weather.”

This is why the tandem part of the TRACERS name is important. The novel part of this mission is it features two identical spacecraft, each about the size of a washing machine flying at an altitude of 367 miles (590 kilometers). Over the course of the next few weeks, the TRACERS satellites will drift into a formation with one trailing the other by about two minutes as they zip around the world at nearly five miles per second. This positioning will allow the satellites to sample the polar cusps one right after the other, instead of forcing scientists to wait another 90 minutes for a data refresh.

With TRACERS, scientists hope to pick apart smaller, fast-moving changes with each satellite pass. Within a year, TRACERS should collect 3,000 measurements of magnetic reconnections, a sample size large enough to start identifying why some space weather events evolve differently than others.

“Not only will it get a global picture of reconnection in the magnetosphere, but it’s also going to be able to statistically study how reconnection depends on the state of the solar wind,” said John Dorelli, TRACERS mission scientist at NASA’s Goddard Space Flight Center. “This is going to really help us understand how to predict space weather in the magnetosphere.”

One of the two TRACERS satellites undergoes launch preparations at Millennium Space Systems, the spacecraft’s manufacturer. Credit: Millennium Space Systems

“If we can understand these various different situations, whether it happens suddenly if you have one particular kind of event, or it happens in lots of different places, then we have a better way to model that and say, ‘Ah, here’s the likelihood of seeing a certain kind of effect that would affect humans,'” said Craig Kletzing, the principal investigator who led the TRACERS science team until his death in 2023.

There is broader knowledge to be gained with a mission like TRACERS. Magnetic reconnection is ubiquitous throughout the Universe, and the same physical processes produce solar flares and coronal mass ejections from the Sun.

Hitchhiking to orbit

Several other satellites shared the ride to space with TRACERS on Wednesday.

These secondary payloads included a NASA-sponsored mission named PExT, a small technology demonstration satellite carrying an experimental communications package capable of connecting with three different networks: NASA’s government-owned Tracking and Data Relay Satellites (TDRS) and commercial satellite networks owned by SES and Viasat.

What’s unique about the Polylingual Experimental Terminal, or PExT, is its ability to roam across multiple satellite relay networks. The International Space Station and other satellites in low-Earth orbit currently connect to controllers on the ground through NASA’s TDRS satellites. But NASA will retire its TDRS satellites in the 2030s and begin purchasing data relay services using commercial satellite networks.

The space agency expects to have multiple data relay providers, so radios on future NASA satellites must be flexible enough to switch between networks mid-mission. PExT is a pathfinder for these future missions.

Another NASA-funded tech demo named Athena EPIC was also aboard the Falcon 9 rocket. Led by NASA’s Langley Research Center, this mission uses a scalable satellite platform developed by a company named NovaWurks, using building blocks to piece together everything a spacecraft needs to operate in space.

Athena EPIC hosts a single science instrument to measure how much energy Earth radiates into space, an important data point for climate research. But the mission’s real goal is to showcase how an adaptable satellite design, such as this one using NovaWurks’ building block approach, might be useful for future NASA missions.

A handful of other payloads rounded out the payload list for Wednesday’s launch. They included REAL, a NASA-funded CubeSat project to investigate the Van Allen radiation belts and space weather, and LIDE, an experimental 5G communications satellite backed by the European Space Agency. Five commercial spacecraft from the Australian company Skykraft also launched to join a constellation of small satellites to provide tracking and voice communications between air traffic controllers and aircraft over remote parts of the world.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX launches a pair of NASA satellites to probe the origins of space weather Read More »

rocket-report:-spacex-to-make-its-own-propellant;-china’s-largest-launch-pad

Rocket Report: SpaceX to make its own propellant; China’s largest launch pad


United Launch Alliance begins stacking its third Vulcan rocket for the second time.

Visitors walk by models of a Long March 10 rocket, lunar lander, and crew spacecraft during an exhibition on February 24, 2023 in Beijing, China. Credit: Hou Yu/China News Service/VCG via Getty Images

Welcome to Edition 8.02 of the Rocket Report! It’s worth taking a moment to recognize an important anniversary in the history of human spaceflight next week. Fifty years ago, on July 15, 1975, NASA launched a three-man crew on an Apollo spacecraft from Florida and two Russian cosmonauts took off from Kazakhstan, on course to link up in low-Earth orbit two days later. This was the first joint US-Russian human spaceflight mission, laying the foundation for a strained but enduring partnership on the International Space Station. Operations on the ISS are due to wind down in 2030, and the two nations have no serious prospects to continue any partnership in space after decommissioning the station.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sizing up Europe’s launch challengers. The European Space Agency has selected five launch startups to become eligible for up to 169 million euros ($198 million) in funding to develop alternatives to Arianespace, the continent’s incumbent launch service provider, Ars reports. The five small launch companies ESA selected are Isar Aerospace, MaiaSpace, Rocket Factory Augsburg, PLD Space, and Orbex. Only one of these companies, Isar Aerospace, has attempted to launch a rocket into orbit. Isar’s Spectrum rocket failed moments after liftoff from Norway on a test flight in March. None of these companies is guaranteed an ESA contract or funding. Over the next several months, ESA and the five launch companies will negotiate with European governments for funding leading up to ESA’s ministerial council meeting in November, when ESA member states will set the agency’s budget for at least the next two years. Only then will ESA be ready to sign binding agreements.

Let’s rank ’em … Ars Technica’s space reporters ranked the five selectees for the European Launcher Challenge in order from most likely to least likely to reach orbit. We put Munich-based Isar Aerospace, the most well-funded of the group, at the top of the list after attempting its first orbital launch earlier this year. Paris-based MaiaSpace, backed by ArianeGroup, comes in second, with plans for a partially reusable rocket. Rocket Factory Augsburg, another German company, is in third place after getting close to a launch attempt last year before its first rocket blew up on a test stand. Spanish startup PLD Space is fourth, and Britain’s Orbex rounds out the list. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Japan’s Interstellar Technologies rakes in more cash. Interstellar Technologies raised 8.9 billion yen ($61.8 million) to boost the development of its Zero rocket and research and development of satellite systems, Space News reports. The money comes from Japanese financial institutions, venture capital funds, and debt financing. Interstellar previously received funding through agreements with the Japanese government and Toyota, which Interstellar says will add expertise to scale manufacturing of the Zero rocket for “high-frequency, cost-effective launches.” The methane-fueled Zero rocket is designed to deploy a payload of up to 1 metric ton (2,200 pounds) into low-Earth orbit. The unfortunate news from Interstellar’s fundraising announcement is that the company has pushed back the debut flight of the Zero rocket until 2027.

Straight up … Interstellar has aspirations beyond launch vehicles. The company is also developing a satellite communications business, and some of the money raised in the latest investment round will go toward this segment of the company. Interstellar is open about comparing its ambition to that of SpaceX. “On the satellite side, Interstellar is developing communications satellites that benefit from the company’s own launch capabilities,” the company said in a statement. “Backed by Japan’s Ministry of Internal Affairs and Communications and JAXA’s Space Strategy Fund, the company is building a vertically integrated model, similar to SpaceX’s approach with Starlink.”

Korean startup completes second-stage qual testing. South Korean launch services company Innospace says it has taken another step toward the inaugural launch of its Hanbit-Nano rocket by the year’s end with the qualification of the second stage, Aviation Week & Space Technology reports. The second stage uses an in-house-developed 34-kilonewton (7,643-pound-thrust) liquid methane engine. Innospace says the engine achieved a combustion time of 300 seconds, maintaining stability of the fuel and oxidizer supply system, structural integrity, and the launch vehicle integrated control system.

A true micro-launcher … Innospace’s rocket is modest in size and capacity, even among its cohorts in the small launch market. The Hanbit-Nano rocket is designed to launch approximately 200 pounds (90 kilograms) of payload into Sun-synchronous orbit. “With the success of this second stage engine certification test, we have completed the development of the upper stage of the Hanbit-Nano launch vehicle,” said Kim Soo-jong, CEO of Innospace. “This is a very symbolic and meaningful technological achievement that demonstrates the technological prowess and test operation capabilities that Innospace has accumulated over a long period of time, while also showing that we have entered the final stage for commercial launch. Currently, all executives and staff are doing their best to successfully complete the first stage certification test, which is the final gateway for launch, and we will make every effort to prepare for a smooth commercial launch in the second half of the year.”

Two companies forge unlikely alliance in Dubai. Two German entrepreneurs have joined forces with a team of Russian expats steeped in space history to design a rocket using computational AI models, Payload reports. The “strategic partnership” is between LEAP 71, an AI-enabled design startup, and Aspire Space, a company founded by the son of a Soviet engineer who was in charge of launching Zenit rockets from the Baikonur Cosmodrome in Kazakhstan in the 1980s. The companies will base their operations in Dubai. The unlikely pairing aims to develop a new large reusable launch vehicle capable of delivering up to 15 metric tons to low-Earth orbit. Aspire Space is a particularly interesting company if you’re a space history enthusiast. Apart from the connections of Aspire’s founder to Soviet space history, Aspire’s chief technology officer, Sergey Sopov, started his career at Baikonur working on the Energia heavy-lift rocket and Buran space shuttle, before becoming an executive at Sea Launch later in his career.

Trust the computer … It’s easy to be skeptical about this project, but it has attracted an interesting group of people. LEAP 71 has just two employees—its two German co-founders—but boasts lofty ambitions and calls itself a “pioneer in AI-driven engineering.” As part of the agreement with Aspire Space, LEAP 71 will use a proprietary software program called Noyron to design the entire propulsion stack for Aspire’s rockets. The company says its AI-enabled design approach for Aspire’s 450,000-pound-thrust engine will cut in half the time it took other rocket companies to begin test-firing a new engine of similar size. Rudenko forecasts Aspire’s entire project, including a launcher, reusable spacecraft, and ground infrastructure to support it all, will cost more than $1 billion. So far, the project is self-funded, Rudenko told Payload. (submitted by Lin Kayser)

Russia launches ISS resupply freighter. A Russian Progress supply ship launched July 3 from the Baikonur Cosmodrome in Kazakhstan atop a Soyuz-2.1a rocket, NASASpaceflight reports. Packed with 5,787 pounds (2,625 kilograms) of cargo and fuel, the Progress MS-31 spacecraft glided to an automated docking at the International Space Station two days later. The Russian cosmonauts living aboard the ISS will unpack the supplies carried inside the Progress craft’s pressurized compartment. This was the eighth orbital launch of the year by a Russian rocket, continuing a downward trend in launch activity for the Russian space program in recent years.

Celebrating a golden anniversary … The Soyuz rocket that launched Progress MS-31 was painted an unusual blue and white scheme, as it was originally intended for a commercial launch that was likely canceled after Russia’s invasion of Ukraine. It also sported a logo commemorating the 50th anniversary of the Apollo-Soyuz mission in July 1975.

Chinese rocket moves closer to first launch. Chinese commercial launch firm Orienspace is aiming for a late 2025 debut of its Gravity-2 rocket following a recent first-stage engine hot fire test, Space News reports. The “three-in-one” hot fire test verified the performance of the Gravity-2 rocket’s first stage engine, servo mechanisms, and valves that regulate the flow of propellants into the engine, according to a press release from Orienspace. The Gravity-2 rocket’s recoverable and reusable first stage will be powered by nine of these kerosene-fueled engines. The recent hot fire test “lays a solid foundation” for future tests leading up to the Gravity-2’s inaugural flight.

Extra medium … Orienspace’s first rocket, the solid-fueled Gravity-1, completed its first successful flight last year to place multiple small satellites into orbit. Gravity-2 is a much larger vehicle, standing 230 feet (70 meters) tall, the same height as SpaceX’s Falcon 9 rocket. Orienspace’s new rocket will fly in a core-only configuration or with the assistance of two solid rocket boosters. An infographic released by Orienspace in conjunction with the recent engine hot fire test indicates the Gravity-2 rocket will be capable of hauling up to 21.5 metric tons (47,400 pounds) of cargo into low-Earth orbit, placing its performance near the upper limit of medium-lift launchers.

Senator calls out Texas for trying to steal space shuttle. A political effort to remove space shuttle Discovery from the Smithsonian and place it on display in Texas encountered some pushback on Thursday, as a US senator questioned the expense of carrying out what he described as a theft, Ars reports. “This is not a transfer. It’s a heist,” said Sen. Dick Durbin (D-Ill.) during a budget markup hearing before the Senate Appropriations Committee. “A heist by Texas because they lost a competition 12 years ago.” In April, Republican Sens. John Cornyn and Ted Cruz, both representing Texas, introduced the “Bring the Space Shuttle Home Act” that called for Discovery to be relocated from the National Air and Space Museum’s Steven F. Udvar-Hazy Center in northern Virginia and displayed at Space Center Houston. They then inserted an $85 million provision for the shuttle relocation into the Senate version of the “One Big Beautiful Bill,” which, to comply with Senate rules, was more vaguely worded but was meant to achieve the same goal. That bill was enacted on July 4, when President Donald Trump signed it into law.

Dollar signs As ridiculous as it is to imagine spending $85 million on moving a space shuttle from one museum to another, it’ll actually cost a lot more to do it safely. Citing research by NASA and the Smithsonian, Durbin said that the total was closer to $305 million, and that did not include the estimated $178 million needed to build a facility to house and display Discovery once it was in Houston. Furthermore, it was unclear if Congress even has the right to remove an artifact, let alone a space shuttle, from the Smithsonian’s collection. The Washington, DC, institution, which serves as a trust instrumentality of the US, maintains that it owns Discovery. The paperwork signed by NASA in 2012 transferred “all rights, interest, title, and ownership” for the spacecraft to the Smithsonian. “This will be the first time ever in the history of the Smithsonian someone has taken one of their displays and forcibly taken possession of it. What are we doing here? They don’t have the right in Texas to claim this,” said Durbin.

Starbase keeps getting bigger. Cameron County, Texas, has given SpaceX the green light to build an air separator facility, which will be located less than 300 feet from the region’s sand dunes, frustrating locals concerned about the impact on vegetation and wildlife, the Texas Tribune reports. The commissioners voted 3–1 to give Elon Musk’s rocket company a beachfront construction certificate and dune protection permit, allowing the company to build a facility to produce gases needed for Starship launches. The factory will separate air into nitrogen and oxygen. SpaceX uses liquid oxygen as a propellant and liquid nitrogen for testing and operations.

Saving the roads … By having the facility on site, SpaceX hopes to make the delivery of those gases more efficient by eliminating the need to have dozens of trucks deliver them from Brownsville. The company says they need more than 200 trucks of liquid nitrogen and oxygen delivered for each launch, a SpaceX engineer told the county during a meeting last week. With their application, SpaceX submitted a plan to mitigate expected negative effects on 865 square feet of dune vegetation and 20 cubic yards of dunes, as well as compensate for expected permanent impacts to 7,735 square feet of dune vegetation and 465 cubic yards of dunes. While the project will be built on property owned by SpaceX, the county holds the authority to manage the construction that affects Boca Chica’s dunes.

ULA is stacking its third Vulcan rocket. A little more than a week after its most recent Atlas V rocket launch, United Launch Alliance rolled a Vulcan booster to the Vertical Integration Facility at Cape Canaveral Space Force Station in Florida on July 2 to begin stacking its first post-certification Vulcan rocket, Spaceflight Now reports. The operation, referred to by ULA as Launch Vehicle on Stand (LVOS), is the first major milestone toward the launch of the third Vulcan rocket. The upcoming launch will be the first operational flight of ULA’s new rocket with a pair of US military payloads, following two certification flights in 2024.

For the second time … This is the second time that this particular Vulcan booster was brought to Space Launch Complex 41 in anticipation of a launch campaign. It was previously readied in late October of last year in support of the USSF-106 mission, the Space Force’s designation for the first national security launch to use the Vulcan rocket. However, plans changed as the process of certifying Vulcan to fly government payloads took longer than expected, and ULA pivoted to launch two Atlas V rockets on commercial missions from the same pad before switching back to Vulcan launch preps.

Progress report on China’s Moon rocket. China’s self-imposed deadline of landing astronauts on the Moon by 2030 is now just five years away, and we’re starting to see some tangible progress. Construction of the launch pad for the Long March 10 rocket, the massive vehicle China will use to launch its first crews toward the Moon, is well along at the Wenchang Space Launch Site on Hainan Island. An image shared on the Chinese social media platform Weibo, and then reposted on X, shows the Long March 10’s launch tower near its final height. A mobile launch platform presumably for the Long March 10 is under construction nearby.

Super heavy … The Long March 10 will be China’s most powerful rocket to date, with the ability to dispatch 27 metric tons of payload toward the Moon, a number comparable to NASA’s Space Launch System. Designed for partial reusability, the Long March 10 will use an all-liquid propulsion system and stand more than 92 meters (300 feet) tall. The rocket will launch Chinese astronauts inside the nation’s next-generation Mengzhou crew capsule, along with a lunar lander to transport crew members from lunar orbit to the surface of the Moon using an architecture similar to NASA’s Apollo program.

Next three launches

July 11: Electron | JAKE 4 | Wallops Flight Facility, Virginia | 23: 45 UTC

July 13: Falcon 9 | Dror 1 | Cape Canaveral Space Force Station, Florida | 04: 31 UTC

July 14: Falcon 9 | Starlink 15-2 | Vandenberg Space Force Base, California | 02: 27 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX to make its own propellant; China’s largest launch pad Read More »

sizing-up-the-5-companies-selected-for-europe’s-launcher-challenge

Sizing up the 5 companies selected for Europe’s launcher challenge

The European Space Agency has selected five launch startups to become eligible for up to 169 million euros ($198 million) in funding to develop alternatives to Arianespace, the continent’s incumbent launch service provider.

The five companies ESA selected are Isar Aerospace, MaiaSpace, Rocket Factory Augsburg, PLD Space, and Orbex. Only one of these companies, Isar Aerospace, has attempted to launch a rocket into orbit. Isar’s Spectrum rocket failed moments after liftoff from Norway on a test flight in March.

None of these companies is guaranteed an ESA contract or funding. Over the next several months, the European Space Agency and the five launch companies will negotiate with European governments for funding leading up to ESA’s ministerial council meeting in November, when ESA member states will set the agency’s budget for at least the next two years. Only then will ESA be ready to sign binding agreements.

In a press release, ESA referred to the five companies as “preselected challengers” in a competition for ESA support in the form of launch contracts and an ESA-sponsored demonstration to showcase upgraded launch vehicles to heave heavier payloads into orbit. So far, all five of the challengers are focusing on small rockets.

Earlier this year, ESA released a request for proposals to European industry for bids to compete in the European Launch Challenge. ESA received 12 proposals from European companies and selected five to move on to the next phase of the challenge.

A new way of doing business

In this competition, ESA is eschewing a rule that governs nearly all of the space agency’s other programs. This policy, known as geographic return, guarantees industrial contracts to ESA member states commensurate with the level of money they put into each project. The most obvious example of this is Europe’s Ariane rocket family, whose development was primarily funded by France, followed by Germany in second position. Therefore, the Ariane 6 rocket’s core stage and engines are built in France, and its upper stage is manufactured in Germany.

Sizing up the 5 companies selected for Europe’s launcher challenge Read More »

rocket-report:-spacex’s-dustup-on-the-border;-northrop-has-a-nozzle-problem

Rocket Report: SpaceX’s dustup on the border; Northrop has a nozzle problem


NASA has finally test-fired the first of its new $100 million SLS rocket engines.

Backdropped by an offshore thunderstorm, a SpaceX Falcon 9 booster stands on its landing pad at Cape Canaveral after returning to Earth from a mission launching four astronauts to the International Space Station early Wednesday. Credit: SpaceX

Welcome to Edition 7.50 of the Rocket Report! We’re nearly halfway through the year, and it seems like a good time to look back on the past six months. What has been most surprising to me in the world of rockets? First, I didn’t expect SpaceX to have this much trouble with Starship Version 2. Growing pains are normal for new rockets, but I expected the next big hurdles for SpaceX to clear with Starship to be catching the ship from orbit and orbital refueling, not completing a successful launch. The state of Blue Origin’s New Glenn program is a little surprising to me. New Glenn’s first launch in January went remarkably well, beating the odds for a new rocket. Now, production delays are pushing back the next New Glenn flights. The flight of Honda’s reusable rocket hopper also came out of nowhere a few weeks ago.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Isar raises 150 million euros. German space startup Isar Aerospace has obtained 150 million euros ($175 million) in funding from an American investment company, Reuters reports. The company, which specializes in satellite launch services, signed an agreement for a convertible bond with Eldridge Industries, it said. Isar says it will use the funding to expand its launch service offerings. Isar’s main product is the Spectrum rocket, a two-stage vehicle designed to loft up to a metric ton (2,200 pounds) of payload mass to low-Earth orbit. Spectrum flew for the first time in March, but it failed moments after liftoff and fell back to the ground near its launch pad. Still, Isar became the first in a new crop of European launch startups to launch a rocket theoretically capable of reaching orbit.

Flush with cash … Isar is leading in another metric, too. The Munich-based company has now raised more than 550 million euros ($642 million) from venture capital investors and government-backed funds. This far exceeds the fundraising achievements of any other European launch startup. But the money will only go so far before Isar must prove it can successfully launch a rocket into orbit. Company officials have said they aim to launch the second Spectrum rocket before the end of this year. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab aiming for record turnaround. Rocket Lab demonstrated a notable degree of flexibility this week. Two light-class Electron rockets were nearing launch readiness at the company’s privately owned spaceport in New Zealand, but one of the missions encountered a technical problem, and Rocket Lab scrubbed a launch attempt Tuesday. The spaceport has two launch pads next to one another, so while technicians worked to fix that problem, Rocket Lab slotted in another Electron rocket to lift off from the pad next door. That mission, carrying a quartet of small commercial signals intelligence satellites for HawkEye 360, successfully launched Thursday.

Giving it another go … A couple of hours after that launch, Rocket Lab announced it was ready to try again with the mission it had grounded earlier in the week. “Can’t get enough of Electron missions? How about another one tomorrow? With our 67th mission complete, we’ve scheduled our next launch from LC-1 in less than 48 hours—Electron’s fastest turnaround from the same launch site yet!” Rocket Lab hasn’t disclosed what satellite is flying on this mission, citing the customer’s preference to remain anonymous for now.

You guessed it! Baguette One will launch from France. French rocket builder HyPrSpace will launch its Baguette One demonstrator from a missile testing site in mainland France, after signing an agreement with the country’s defense procurement agency, European Spaceflight reports. HyPrSpace was founded in 2019 to begin designing an orbital-class rocket named Orbital Baguette 1 (OB-1). The Baguette One vehicle is a subscale, single-stage suborbital demonstrator to prove out technologies for the larger satellite launcher, mainly its hybrid propulsion system.

Sovereign launch … HyPrSpace’s Baguette One will stand roughly 10 meters (30 feet) tall and will be capable of carrying payloads of up to 300 kilograms (660 pounds) to suborbital space. It is scheduled to launch next year from a French missile testing site in the south of France. “Gaining access to this dual-use launch pad in mainland France is a major achievement after many years of work on our hybrid propulsion technology,” said Sylvain Bataillard, director general of HyPrSpace. “It’s a unique opportunity for HyPrSpace and marks a decisive turning point. We’re eager to launch Baguette One and to play a key role in building a more sovereign, more sustainable, and boldly innovative European dual-use space industry.” (submitted by EllPeaTea)

Firefly moves closer to launching from Sweden. An agreement between the United States and Sweden brings Firefly Aerospace one step closer to launching its Alpha rocket from a Swedish spaceport, Space News reports. The two countries signed a technology safeguards agreement (TSA) at a June 20 ceremony at the Swedish embassy in Washington, DC. The TSA allows the export of American rockets to Sweden for launches there, putting in place measures to protect launch vehicle technology.

A special relationship … The US government has signed launch-related safeguard agreements with only a handful of countries, such as Australia, the United Kingdom, and now Sweden. Rocket exports are subject to strict controls because of the potential military applications of that technology. Firefly currently launches its Alpha rocket from Vandenberg Space Force Base, California, and is building a launch site at Wallops Island, Virginia. Firefly also has a lease for a launch pad at Cape Canaveral, Florida, although the company is prioritizing other sites. Then, last year, Firefly announced an agreement with the Swedish Space Corporation to launch Alpha from Esrange Space Center as soon as 2026. (submitted by EllPeaTea)

Amazon is running strong out of the gate. For the second time in two months, United Launch Alliance sent a batch of 27 broadband Internet satellites into orbit for Amazon on Monday morning, Ars reports. This was the second launch of a full load of operational satellites for Amazon’s Project Kuiper, a network envisioned to become a competitor to SpaceX’s Starlink. Just like the last flight on April 28, an Atlas V rocket lifted off from Cape Canaveral, Florida, and delivered Amazon’s satellites into an on-target orbit roughly 280 miles (450 kilometers) above Earth.

Time to put up or shut up … After lengthy production delays at Amazon’s satellite factory, the retail giant is finally churning out Kuiper satellites at scale. Amazon has already shipped the third batch of Kuiper satellites to Florida to prepare for launch on a SpaceX Falcon 9 rocket next month. ULA won the lion’s share of Amazon’s multibillion-dollar launch contract in 2022, committing to up to 38 Vulcan launches for Kuiper and nine Atlas V flights. Three of those Atlas Vs have now launched. Amazon also reserved 18 launches on Europe’s Ariane 6 rocket, and at least 12 on Blue Origin’s New Glenn. Vulcan, Ariane 6, and New Glenn have only flown one or two times, and Amazon is asking them to quickly ramp up their cadence to deliver 3,232 Kuiper satellites to orbit in the next few years. The handful of Falcon 9s and Atlas Vs that Amazon has on contract are the only rockets in the bunch with a proven track record. With Kuiper satellites now regularly shipping out of the factory, any blame for future delays may shift from Amazon to the relatively unproven rockets it has chosen to launch them.

Falcon 9 launches with four commercial astronauts. Retired astronaut Peggy Whitson, America’s most experienced space flier, and three rookie crewmates from India, Poland, and Hungary blasted off on a privately financed flight to the International Space Station early Wednesday, CBS News reports. This is the fourth non-government mission mounted by Houston-based Axiom Space. The four commercial astronauts rocketed into orbit on a SpaceX Falcon 9 launcher from NASA’s Kennedy Space Center in Florida, and their Dragon capsule docked at the space station Thursday to kick off a two-week stay.

A brand-new Dragon … The Crew Dragon spacecraft flown on this mission, serial number C213, is the fifth and final addition to SpaceX’s fleet of astronaut ferry ships built for NASA trips to the space station and for privately funded commercial missions to low-Earth orbit. Moments after reaching orbit Wednesday, Whitson revealed the name of the new spacecraft: Crew Dragon Grace. “We had an incredible ride uphill, and now we’d like to set our course for the International Space Station aboard the newest member of the Dragon fleet, our spacecraft named Grace. … Grace reminds us that spaceflight is not just a feat of engineering, but an act of goodwill to the benefit of every human everywhere.”

How soon until Ariane 6 is flying regularly? It’ll take several years for Arianespace to ramp up the launch cadence of Europe’s new Ariane 6 rocket, Space News reports. David Cavaillolès, chief executive of Arianespace, addressed questions at the Paris Air Show about how quickly Arianespace can reach its target of launching 10 Ariane 6 rockets per year. “We need to go to 10 launches per year for Ariane 6 as soon as possible,” he said. “It’s twice as more as for Ariane 5, so it’s a big industrial change.” Two Ariane 6 rockets have launched so far, and a third mission is on track to lift off in August. Arianespace’s CEO reiterated earlier plans to conduct four more Ariane 6 launches through the end of this year, including the first flight of the more powerful Ariane 64 variant with four solid rocket boosters.

Not a heavy lift … Arianespace’s target flight rate of 10 Ariane 6 rockets per year is modest compared to other established companies with similarly sized launch vehicles. United Launch Alliance is seeking to launch as many as 25 Vulcan rockets per year. Blue Origin’s New Glenn is designed to eventually fly often, although the company hasn’t released a target launch cadence. SpaceX, meanwhile, aims to launch up to 170 Falcon 9 rockets this year. But European governments are perhaps more committed than ever to maintaining a sovereign launch capability for the continent, so Ariane 6 isn’t going away. Arianespace has sold more than 30 Ariane 6 launches, primarily to European institutional customers and Amazon.

SLS booster blows its nozzle. NASA and Northrop Grumman test-fired a new solid rocket booster in Utah on Thursday, and it didn’t go exactly according to plan, Ars reports. This booster features a new design that NASA would use to power Space Launch System rockets, beginning with the ninth mission, or Artemis IX. The motor tested on Thursday isn’t flight-worthy. It’s a test unit that engineers will use to learn about the rocket’s performance. It turns out they did learn something, but perhaps not what they wanted. About 1 minute and 40 seconds into the booster’s burn, a fiery plume emerged from the motor’s structure just above its nozzle. Moments later, the nozzle violently disintegrated. The booster kept firing until it ran out of pre-packed solid propellant.

A questionable futureNASA’s Space Launch System appears to have a finite shelf life. The Trump administration wants to cancel it after just three launches, while the preliminary text of a bill making its way through Congress would extend it to five flights. But chances are low the Space Launch System will make it to nine flights, and if it does, it’s questionable if it would reach that point before 2040. The SLS rocket is a core piece of NASA’s plan to return US astronauts to the Moon under the Artemis program, but the White House seeks to cancel the program in favor of cheaper commercial alternatives.

NASA conducts a low-key RS-25 engine test. The booster ground test on Thursday was the second time in less than a week that NASA test-fired new propulsion hardware for the Space Launch System. Last Friday, June 20, NASA ignited a new RS-25 engine on a test stand at Stennis Space Center in Mississippi. The hydrogen-fueled engine is the first of its kind to be manufactured since the end of the space shuttle program. This particular RS-25 engine is assigned to power the fifth launch of the SLS rocket, a mission known as Artemis V, that may end up never flying. While NASA typically livestreams engine tests at Stennis, the agency didn’t publicize this event ahead of time.

It has been 10 years … The SLS rocket was designed to recycle leftover parts from the space shuttle program, but NASA will run out of RS-25 engines after the rocket’s fourth flight and will exhaust its inventory of solid rocket booster casings after the eighth flight. Recognizing that shuttle-era parts will eventually run out, NASA signed a contract with Aerojet Rocketdyne (now L3Harris) to set the stage for the production of new RS-25 engines in 2015. NASA later ordered an initial batch of six RS-25 engines from Aerojet, then added 18 more to the order in 2020, at a price of about $100 million per engine. Finally, a brand-new flight-worthy RS-25 engine has fired up on a test stand. If the Trump administration gets its way, these engines will never fly. Maybe that’s fine, but after so long with so much taxpayer investment, last week’s test milestone is worth publicizing, if not celebrating.

SpaceX finds itself in a dustup on the border. President Claudia Sheinbaum of Mexico is considering taking legal action after one of SpaceX’s giant Starship rockets disintegrated in a giant fireball earlier this month as it was being fueled for a test-firing of its engines, The New York Times reports. No one was injured in the explosion, which rained debris on the beaches of the northern Mexican state of Tamaulipas. The conflagration occurred at a test site SpaceX operates a few miles away from the Starship launch pad. This test facility is located next to the Rio Grande River, just a few hundred feet from Mexico. The power of the blast sent wreckage flying across the river into Mexican territory.

Collision course …“We are reviewing everything related to the launching of rockets that are very close to our border,” Sheinbaum said at a news conference Wednesday. If SpaceX violated any international laws, she added, “we will file any necessary claims.” Sheinbaum’s leftist party holds enormous sway around Mexico, and the Times reports she was responding to calls to take action against SpaceX amid a growing outcry among scientists, regional officials, and environmental activists over the impact that the company’s operations are having on Mexican ecosystems. SpaceX, on the other hand, said its efforts to recover debris from the Starship explosion have been “hindered by unauthorized parties trespassing on private property.” SpaceX said it requested assistance from the government of Mexico in the recovery and added that it offered its own resources to help with the cleanup.

Next three launches

June 28: Falcon 9 | Starlink 10-34 | Cape Canaveral Space Force Station, Florida | 04: 26 UTC

June 28: Electron | “Symphony in the Stars” | Māhia Peninsula, New Zealand | 06: 45 UTC

June 28: H-IIA | GOSAT-GW | Tanegashima Space Center, Japan | 16: 33 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX’s dustup on the border; Northrop has a nozzle problem Read More »

nasa-tested-a-new-sls-booster-that-may-never-fly,-and-the-end-of-it-blew-off

NASA tested a new SLS booster that may never fly, and the end of it blew off


NASA didn’t want to say much about one of the tests, and the other one lost its nozzle.

An uncontained plume of exhaust appeared near the nozzle of an SLS solid rocket booster moments before its nozzle was destroyed during a test-firing Thursday. Credit: NASA

NASA’s Space Launch System appears to have a finite shelf life. The Trump administration wants to cancel it after just three launches, while the preliminary text of a bill making its way through Congress would extend it to five flights.

But chances are low the Space Launch System will make it to nine flights, and if it does, it’s questionable that it would reach that point before 2040. The SLS rocket is a core piece of NASA’s plan to return US astronauts to the Moon under the Artemis program, but the White House seeks to cancel the program in favor of cheaper commercial alternatives.

For the second time in less than a week, NASA test-fired new propulsion hardware Thursday that the agency would need to keep SLS alive. Last Friday, a new liquid-fueled RS-25 engine ignited on a test stand at NASA’s Stennis Space Center in Mississippi. The hydrogen-fueled engine is the first of its kind to be manufactured since the end of the Space Shuttle program. This particular RS-25 engine is assigned to power the fifth flight of the SLS rocket, a mission known as Artemis V.

Then, on Thursday of this week, NASA and Northrop Grumman test-fired a new solid rocket booster in Utah. This booster features a new design that NASA would use to power SLS rockets beginning with the ninth mission, or Artemis IX. The motor tested on Thursday isn’t flight-worthy. It’s a test unit that engineers will use to gather data on the rocket’s performance.

While the engine test in Mississippi apparently went according to plan, the ground firing of the new solid rocket booster didn’t go quite as smoothly. Less than two minutes into the burn, the motor’s exhaust nozzle violently shattered into countless shards of debris. You can watch the moment in the YouTube video below.

At the start of the program nearly 15 years ago, NASA and its backers in Congress pitched the SLS rocket as the powerhouse behind a new era of deep space exploration. The Space Launch System, they said, would have the advantage of recycling old space shuttle engines and boosters, fast-tracking the new rocket’s path to the launch pad for less money than the cost of an all-new vehicle.

That didn’t pan out. Each Artemis mission costs $4.2 billion per flight, and that’s with shuttle-era engines and boosters that NASA and its contractors already have in their inventories. NASA’s 16 leftover shuttle main engines are enough for the first four SLS flights. NASA has leftover parts for eight pairs of solid rocket boosters.

It has been 10 years

Recognizing that shuttle-era parts will eventually run out, NASA signed a contract with Aerojet Rocketdyne to set the stage for the production of new RS-25 engines in 2015. NASA later ordered an initial batch of six RS-25 engines from Aerojet, then added 18 more to the order in 2020, at a price of about $100 million per engine. NASA and its contractor aim to reduce the cost to $70 million per engine, but even that figure is many times the cost of engines of comparable size and power: Blue Origin’s BE-4 and SpaceX’s Raptor.

Finally, NASA test-fired a new flight-rated RS-25 engine for the first time last week at Stennis Space Center. The agency has often provided a livestream of its engine tests at Stennis, but it didn’t offer the public any live video. And this particular test was a pretty big deal. L3Harris, which acquired Aerojet Rocketdyne in 2023, has finally reactivated the RS-25 production line after a decade and billions of dollars of funding.

In fact, NASA made no public statement about the RS-25 test until Monday, and the agency didn’t mention its assignment to fly on the Artemis V mission. If the Trump administration gets its way, the engine will never fly. Maybe that’s fine, but after so long with so much taxpayer investment, this is a milestone worth publicizing, if not celebrating.

L3Harris issued a press release Tuesday confirming the engine’s planned use on the fifth SLS mission. The engine completed a 500-second acceptance test, throttling up to 111 percent of rated thrust, demonstrating more power than engines that flew on the space shuttle or on the first SLS launch in 2022.

A new RS-25 engine, No. 20001, was installed on its test stand in Mississippi earlier this year. Credit: NASA

“This successful acceptance test shows that we’ve been able to replicate the RS-25’s performance and reliability, while incorporating modern manufacturing techniques and upgraded components such as the main combustion chamber, nozzle, and pogo accumulator assembly,” said Kristin Houston, president of space propulsion and power systems at Aerojet Rocketdyne, L3Harris. “Our propulsion technology is key to ensuring the United States leads in lunar exploration, creates a sustained presence on the Moon and does not cede this strategic frontier to other nations.”

The test-firing last Friday came a few days before the 50th anniversary of the first space shuttle main engine test at Stennis on June 24, 1975. That engine carried the serial number 0001. The new RS-25 engine is designated No. 20001.

Watch out

NASA followed last week’s low-key engine test with the test-firing of a solid-fueled booster at Northrop Grumman’s rocket test site in Promontory, Utah, on Thursday. Held in place on its side, the booster produced 3.9 million pounds of thrust, outclassing the power output of the existing boosters assigned to the first eight SLS missions.

Unlike the RS-25 firing at Stennis, NASA chose to broadcast the booster test. Everything appeared to go well until 1 minute and 40 seconds into the burn, when a fiery plume of super-hot exhaust appeared to burn through part of the booster’s structure just above the nozzle. Moments later, the nozzle disintegrated.

Solid rocket boosters can’t be turned off after ignition, and for better or worse, the motor continued firing until it ran out of propellant about 30 seconds later. The rocket sparked a fire in the hills overlooking the test stand.

This was the first test-firing of the Booster Obsolescence and Life Extension (BOLE) program, which aims to develop a higher-performance solid rocket booster for SLS missions. NASA awarded Northrop Grumman a $3.2 billion contract in 2021 to produce boosters with existing shuttle parts for five SLS missions (Artemis IV-VIII), and design, develop, and test a new booster design for Artemis IX.

The boosters produce more than 75 percent of the thrust required to propel the SLS rocket off the launch pad with NASA’s crewed Orion spacecraft on top. Four RS-25 engines power the core stage, collectively generating more than 2 million pounds of thrust.

Northrop Grumman calls the new booster “the largest and most powerful segmented solid rocket motor ever built for human spaceflight.”

One of the most significant changes with the BOLE booster design is that it replaces shuttle-era steel cases with carbon-fiber composite cases. Northrop says the new cases are lighter and stronger. It also replaces the booster’s hydraulic thrust vector control steering system with an electronic system. The propellant packed inside the booster is also different, using a mix that Northrop packs inside its commercial rocket motors instead of the recipe used for the space shuttle.

Northrop Grumman has had a tough time with rocket nozzles in recent years. In 2019, a test motor for the company’s now-canceled Omega rocket lost its nozzle during a test-firing in Utah. Then, last year, a smaller Northrop-made booster flying on United Launch Alliance’s Vulcan rocket lost its nozzle in flight. Vulcan’s guidance system and main engines corrected for the problem, and the rocket still achieved its planned orbit.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NASA tested a new SLS booster that may never fly, and the end of it blew off Read More »

spacex’s-next-starship-just-blew-up-on-its-test-stand-in-south-texas

SpaceX’s next Starship just blew up on its test stand in South Texas


SpaceX had high hopes for Starship in 2025, but it’s been one setback after another.

A fireball erupts around SpaceX’s Starship rocket in South Texas late Wednesday night. Credit: LabPadre

SpaceX’s next Starship rocket exploded during a ground test in South Texas late Wednesday, dealing another blow to a program already struggling to overcome three consecutive failures in recent months.

The late-night explosion at SpaceX’s rocket development complex in Starbase, Texas, destroyed the bullet-shaped upper stage that was slated to launch on the next Starship test flight. The powerful blast set off fires around SpaceX’s Massey’s Test Site, located a few miles from the company’s Starship factory and launch pads.

Live streaming video from NASASpaceflight.com and LabPadremedia organizations with cameras positioned around Starbase—showed the 15-story-tall rocket burst into flames shortly after 11: 00 pm local time (12: 00 am EDT; 04: 00 UTC). Local residents as far as 30 miles away reported seeing and feeling the blast.

SpaceX confirmed the Starship, numbered Ship 36 in the company’s inventory, “experienced a major anomaly” on a test stand as the vehicle prepared to ignite its six Raptor engines for a static fire test. These hold-down test-firings are typically one of the final milestones in a Starship launch campaign before SpaceX moves the rocket to the launch pad.

The explosion occurred as SpaceX finished up loading super-cold methane and liquid oxygen propellants into Starship in preparation for the static fire test. The company said the area around the test site was evacuated of all personnel, and everyone was safe and accounted for after the incident. Firefighters from the Brownsville Fire Department were dispatched to the scene.

“Our Starbase team is actively working to safe the test site and the immediate surrounding area in conjunction with local officials,” SpaceX posted on X. “There are no hazards to residents in surrounding communities, and we ask that individuals do not attempt to approach the area while safing operations continue.”

Picking up the pieces

Earlier Wednesday, just hours before the late-night explosion at Starbase, an advisory released by the Federal Aviation Administration showed SpaceX had set June 29 as a tentative launch date for the next Starship test flight. That won’t happen now, and it’s anyone’s guess when SpaceX will have another Starship ready to fly.

Massey’s Test Site, named for a gun range that once occupied the property, is situated on a bend in the Rio Grande River, just a few hundred feet from the Mexican border. The test site is currently the only place where SpaceX can put Starships through proof testing and static fire tests before declaring the rockets are ready to fly.

The extent of the damage to ground equipment at Massey’s was not immediately clear, so it’s too soon to say how long the test site will be out of commission. For now, though, the explosion leaves SpaceX without a facility to support preflight testing on Starships.

The videos embedded below come from NASASpaceflight.com and LabPadre, showing multiple angles of the Starship blast.

The explosion at Massey’s is a reminder of SpaceX’s rocky path to get Starship to this point in its development. In 2020 and 2021, SpaceX lost several Starship prototypes to problems during ground and flight testing. The visual of Ship 36 going up in flames harkens back to those previous explosions, along with the fiery demise of a Falcon 9 rocket on its launch pad in 2016 under circumstances similar to Wednesday night’s incident.

SpaceX has now launched nine full-scale Starship rockets since April 2023, and before the explosion, the company hoped to launch the 10th test flight later this month. Starship’s track record has been dreadful so far this year, with the rocket’s three most recent test flights ending prematurely. These setbacks followed a triumphant 2024, when SpaceX made clear progress on each successive Starship suborbital test flight, culminating in the first catch of the rocket’s massive Super Heavy booster with giant robotic arms on the launch pad tower.

Stacked together, the Super Heavy booster stage and Starship upper stage stand more than 400 feet tall, creating the largest rocket ever built. SpaceX has already flown a reused Super Heavy booster, and the company has designed Starship itself to be recoverable and reusable, too.

After last year’s accomplishments, SpaceX appeared to be on track for a full orbital flight, an attempt to catch and recover Starship itself, and an important in-space refueling demonstration in 2025. The refueling demo has officially slipped into 2026, and it’s questionable whether SpaceX will make enough progress in the coming months to attempt recovery of a ship before the end of this year.

A Super Heavy booster and Starship upper stage are seen in March at SpaceX’s launch pad in South Texas, before the ship was stacked atop the booster for flight. The Super Heavy booster for the next Starship flight completed its static fire test earlier this month. Credit: Brandon Bell/Getty Images

Ambition meets reality

SpaceX debuted an upgraded Starship design, called Version 2 or Block 2, on a test flight in January. It’s been one setback after another since then.

The new Starship design is slightly taller than the version of Starship that SpaceX flew in 2023 and 2024. It has an improved heat shield to better withstand the extreme heat of atmospheric reentry. SpaceX also installed a new fuel feed line system to route methane fuel to the ship’s Raptor engines, and an improved propulsion avionics module controlling the vehicle’s valves and reading sensors.

Despite—or perhaps because ofall of these changes for Starship Version 2, SpaceX has been unable to replicate the successes it achieved with Starship in the last two years. Ships launched on test flights in January and March spun out of control minutes after liftoff, scattering debris over the sea, and in at least one case, onto a car in the Turks and Caicos Islands.

SpaceX engineers concluded the January failure was likely caused by intense vibrations that triggered fuel leaks and fires in the ship’s engine compartment, causing an early shutdown of the rocket’s engines. Engineers said the vibrations were likely in resonance with the vehicle’s natural frequency, intensifying the shaking beyond the levels SpaceX predicted.

The March flight failed in similar fashion, but SpaceX’s investigators determined the most probable root cause was a hardware failure in one of the ship’s engines, a different failure mode than two months before.

During SpaceX’s most recent Starship test flight last month, the rocket completed the ascent phase of the mission as planned, seemingly overcoming the problems that plagued the prior two launches. But soon after the Raptor engines shut down, a fuel leak caused the ship to begin tumbling in space, preventing the vehicle from completing a guided reentry to test the performance of new heat shield materials.

File photo of a Starship static fire in May at Massey’s Test Site.

SpaceX is working on a third-generation Starship design, called Version 3, that the company says could be ready to fly by the end of this year. The upgraded Starship Version 3 design will be able to lift heavier cargo—up to 200 metric tonsinto orbit thanks to larger propellant tanks and more powerful Raptor engines. Version 3 will also have the ability to refuel in low-Earth orbit.

Version 3 will presumably have permanent fixes to the problems currently slowing SpaceX’s pace of Starship development. And there are myriad issues for SpaceX’s engineers to solve, from engine reliability and the ship’s resonant frequency, to beefing up the ship’s heat shield and fixing its balky payload bay door.

Once officials solve these problems, it will be time for SpaceX to bring a Starship from low-Earth orbit back to the ground. Then, there’s more cool stuff on the books, like orbital refueling and missions to the Moon in partnership with NASA’s Artemis program. NASA has contracts worth more than $4 billion with SpaceX to develop a human-rated Starship that can land astronauts on the Moon and launch them safely back into space.

The Trump administration’s proposed budget for NASA would cancel the Artemis program’s ultra-expensive Space Launch System rocket and Orion crew capsule after two more flights, leaving commercial heavy-lifters to take over launching astronauts from the Earth to the Moon. SpaceX’s Starship, already on contract with NASA as a human-rated lander, may eventually win more government contracts to fill the role of SLS and Orion under Trump’s proposed budget. Other rockets, such as Blue Origin’s New Glenn, are also well-positioned to play a larger role in human space exploration.

NASA’s official schedule for the first Artemis crew landing on the Moon puts the mission some time in 2027, using SLS and Orion to transport astronauts out to the vicinity of the Moon to meet up with SpaceX’s Starship lunar lander. After that mission, known as Artemis III, NASA would pivot to using commercial rockets from Elon Musk’s SpaceX and Jeff Bezos’ Blue Origin to replace the Space Launch System.

Meanwhile, SpaceX’s founder and CEO has his sights set on Mars. Last month, Musk told his employees he wants to launch the first Starships toward the Red Planet in late 2026, when the positions of Earth and Mars in the Solar System make a direct journey possible. Optimistically, he would like to send people to Mars on Starships beginning in 2028.

All of these missions are predicated on SpaceX mastering routine Starship launch operations, rapid reuse of the ship and booster, and cryogenic refueling in orbit, along with adapting systems such as life support, communications, and deep space navigation for an interplanetary journey.

The to-do list is long for SpaceX’s Starship program—too long for Mars landings to seem realistic any time in the next few years. NASA’s schedule for the Artemis III lunar landing mission in 2027 is also tight, and not only because of Starship’s delays. The development of new spacesuits for astronauts to wear on the Moon may also put the Artemis III schedule at risk. NASA’s SLS rocket and Orion spacecraft have had significant delays throughout their history, so it’s not a sure thing they will be ready in 2027.

While it’s too soon to know the precise impact of Wednesday night’s explosion, we can say with some confidence that the chances of Starship meeting these audacious schedules are lower today than they were yesterday.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX’s next Starship just blew up on its test stand in South Texas Read More »

honda’s-hopper-suddenly-makes-the-japanese-carmaker-a-serious-player-in-rocketry

Honda’s hopper suddenly makes the Japanese carmaker a serious player in rocketry

The company has not disclosed its spending on rocket development. Honda’s hopper is smaller than similar prototype boosters SpaceX has used for vertical landing demos, so engineers will have to scale up the design to create a viable launch vehicle.

But Tuesday’s test catapulted Honda into an exclusive club of companies that have flown reusable rocket hoppers with an eye toward orbital flight, including SpaceX, Blue Origin, and a handful of Chinese startups. Meanwhile, European and Japanese space agencies have funded a pair of reusable rocket hoppers named Themis and Callisto. Neither rocket has ever flown, after delays of several years.

Honda’s experimental rocket lifts off from a test site in Taiki, a community in northern Japan.

Before Honda’s leadership green-lit the rocket project in 2019, a group of the company’s younger engineers proposed applying the company’s expertise in combustion and control technologies toward a launch vehicle. Honda officials believe the carmaker “has the potential to contribute more to people’s daily lives by launching satellites with its own rockets.”

The company suggested in its press release Tuesday that a Honda-built rocket might launch Earth observation satellites to monitor global warming and extreme weather, and satellite constellations for wide-area communications. Specifically, the company noted the importance of satellite communications to enabling connected features in cars, airplanes, and other Honda products.

“In this market environment, Honda has chosen to take on the technological challenge of developing reusable rockets by utilizing Honda technologies amassed in the development of various products and automated driving systems, based on a belief that reusable rockets will contribute to achieving sustainable transportation,” Honda said.

Toyota, Japan’s largest car company, also has a stake in the launch business. Interstellar Technologies, a Japanese space startup, announced a $44 million investment from Toyota in January. The two firms said they were establishing an alliance to draw on Toyota’s formula for automobile manufacturing to set up a factory for mass-producing orbital-class rockets. Interstellar has launched a handful of sounding rockets but hasn’t yet built an orbital launcher.

Japan’s primary rocket builder, Mitsubishi Heavy Industries, is another titan of Japanese industry, but it has never launched more than six space missions in a single year. MHI’s newest rocket, the H3, debuted in 2023 but is fully expendable.

The second-biggest Japanese automaker, Honda, is now making its own play. Car companies aren’t accustomed to making vehicles that can only be used once.

Honda’s hopper suddenly makes the Japanese carmaker a serious player in rocketry Read More »

rocket-report:-new-delay-for-europe’s-reusable-rocket;-spacex-moves-in-at-slc-37

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37


Canada is the only G7 nation without a launch program. Quebec wants to do something about that.

This graphic illustrates the elliptical shape of a geosynchronous transfer orbit in green, and the circular shape of a geosynchronous orbit in blue. In a first, SpaceX recently de-orbited a Falcon 9 upper stage from GTO after deploying a communications satellite. Credit: European Space Agency

Welcome to Edition 7.48 of the Rocket Report! The shock of last week’s public spat between President Donald Trump and SpaceX founder Elon Musk has worn off, and Musk expressed regret for some of his comments going after Trump on social media. Musk also backtracked from his threat to begin decommissioning the Dragon spacecraft, currently the only way for the US government to send people to the International Space Station. Nevertheless, there are many people who think Musk’s attachment to Trump could end up putting the US space program at risk, and I’m not convinced that danger has passed.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Quebec invests in small launch company. The government of Quebec will invest CA$10 million ($7.3 million) into a Montreal-area company that is developing a system to launch small satellites into space, The Canadian Press reports. Quebec Premier François Legault announced the investment into Reaction Dynamics at the company’s facility in Longueuil, a Montreal suburb. The province’s economy minister, Christine Fréchette, said the investment will allow the company to begin launching microsatellites into orbit from Canada as early as 2027.

Joining its peers … Canada is the only G7 nation without a domestic satellite launch capability, whether it’s through an independent national or commercial program or through membership in the European Space Agency, which funds its own rockets. The Canadian Space Agency has long eschewed any significant spending on developing a Canadian satellite launcher, and a handful of commercial launch startups in Canada haven’t gotten very far. Reaction Dynamics was founded in 2017 by Bachar Elzein, formerly a researcher in multiphase and reactive flows at École Polytechnique de Montréal, where he specialized in propulsion and combustion dynamics. Reaction Dynamic plans to launch its first suborbital rocket later this year, before attempting an orbital flight with its Aurora rocket as soon as 2027. (submitted by Joey S-IVB)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Another year, another delay for Themis. The European Space Agency’s Themis program has suffered another setback, with the inaugural flight of its reusable booster demonstrator now all but certain to slip to 2026, European Spaceflight reports. It has been nearly six years since the European Space Agency kicked off the Themis program to develop and mature key technologies for future reusable rocket stages. Themis is analogous to SpaceX’s Grasshopper reusable rocket prototype tested more than a decade ago, with progressively higher hop tests to demonstrate vertical takeoff and vertical landing techniques. When the program started, an initial hop test of the first Themis demonstrator was expected to take place in 2022.

Tethered to terra firma … ArianeGroup, which manufactures Europe’s Ariane rockets, is leading the Themis program under contract to ESA, which recently committed an additional 230 million euros ($266 million) to the effort. This money is slated to go toward the development of a single-engine variant of the Themis program, continued development of the rocket’s methane-fueled engine, and upgrades to a test stand at ArianeGroup’s propulsion facility in Vernon, France. Two months ago, an official update on the Themis program suggested the first Themis launch campaign would begin before the end of the year. Citing sources close to the program, European Spaceflight reports the first Themis integration tests at the Esrange Space Center in Sweden are now almost certain to slip from late 2025 to 2026.

French startup tests a novel rocket engine. While Europe’s large government-backed rocket initiatives face delays, the continent’s space industry startups are moving forward on their own. One of these companies, a French startup named Alpha Impulsion, recently completed a short test-firing of an autophage rocket engine, European Spaceflight reports. These aren’t your normal rocket engines that burn conventional kerosene, methane, or hydrogen fuel. An autophage engine literally consumes itself as it burns, using heat from the combustion process to melt its plastic fuselage and feed the molten plastic into the combustion chamber in a controlled manner. Alpha Impulsion called the May 27 ground firing a successful test of the “largest autophage rocket engine in the world.”

So, why hasn’t this been done before? … The concept of a self-consuming rocket engine sounds like an idea that’s so crazy it just might work. But the idea remained conceptual from when it was first patented in 1938 until an autophage engine was fired in a controlled manner for the first time in 2018. The autophage design offers several advantages, including its relative simplicity compared to the complex plumbing of liquid and hybrid rockets. But there are serious challenges associated with autophage engines, including how to feed molten fuel into the combustion chamber and how to scale it up to be large enough to fly on a viable rocket. (submitted by trimeta and EllPeaTea)

Rocket trouble delays launch of private crew mission. A propellant leak in a Falcon 9 booster delayed the launch of a fourth Axiom Space private astronaut mission to the International Space Station this week, Space News reports. SpaceX announced the delay Tuesday, saying it needed more time to fix a liquid oxygen leak found in the Falcon 9 booster during inspections following a static-fire test Sunday. “Once complete–and pending Range availability–we will share a new launch date,” the company stated. The Ax-4 mission will ferry four commercial astronauts, led by retired NASA commander Peggy Whitson, aboard a Dragon spacecraft to the ISS for an approximately 14-day stay. Whitson will be joined by crewmates from India, Poland, and Hungary.

Another problem, too … While SpaceX engineers worked on resolving the propellant leak on the ground, a leak of another kind in orbit forced officials to order a longer delay to the Ax-4 mission. In a statement Thursday, NASA said it is working with the Russian space agency to understand a “new pressure signature” in the space station’s Russian service module. For several years, ground teams have monitored a slow air leak in the aft part of the service module, and NASA officials have identified it as a safety risk. NASA’s statement on the matter was vague, only saying that cosmonauts on the station recently inspected the module’s interior surfaces and sealed additional “areas of interest.” The segment is now holding pressure, according to NASA. (submitted by EllPeaTea)

SpaceX tries something new with Falcon 9. With nearly 500 launches under its belt, SpaceX’s Falcon 9 rocket isn’t often up to new tricks. But the company tried something new following a launch on June 7 with a radio broadcasting satellite for SiriusXM. The Falcon 9’s upper stage placed the SXM-10 satellite into an elongated, high-altitude transfer orbit, as is typical for payloads destined to operate in geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. When a rocket releases a satellite in this type of high-energy orbit, the upper stage has usually burned almost all of its propellant, leaving little fuel to steer itself back into Earth’s atmosphere for a destructive reentry. This means these upper stages often remain in space for decades, becoming a piece of space junk that transits across the orbits of many other satellites.

Now, a solution … SpaceX usually deorbits rockets after they deploy payloads like Starlink satellites into low-Earth orbit, but deorbiting a rocket from a much higher geosynchronous transfer orbit is a different matter. “Last week, SpaceX successfully completed a controlled deorbit of the SiriusXM-10 upper stage after GTO payload deployment,” wrote Jon Edwards, SpaceX’s vice president of Falcon and Dragon programs. “While we routinely do controlled deorbits for LEO stages (e.g., Starlink), deorbiting from GTO is extremely difficult due to the high energy needed to alter the orbit, making this a rare and remarkable first for us. This was only made possible due to the hard work and brilliance of the Falcon GNC (guidance, navigation, and control) team and exemplifies SpaceX’s commitment to leading in both space exploration and public safety.”

New Glenn gets a tentative launch date. Five months have passed since Blue Origin’s New Glenn rocket made its mostly successful debut in January. At one point, the company targeted “late spring” for the second launch of the rocket. However, on Monday, Blue Origin’s CEO, Dave Limp, acknowledged on social media that the rocket’s next flight will now no longer take place until at least August 15, Ars reports. Although he did not say so, this may well be the only other New Glenn launch this year. The mission, with an undesignated payload, will be named “Never Tell Me the Odds,” due to the attempt to land the booster. “One of our key mission objectives will be to land and recover the booster,” Limp wrote. “This will take a little bit of luck and a lot of excellent execution. We’re on track to produce eight GS2s [second stages] this year, and the one we’ll fly on this second mission was hot-fired in April.”

Falling shortBefore 2025 began, Limp set expectations alongside Blue Origin founder Jeff Bezos: New Glenn would launch eight times this year. That’s not going to happen. It’s common for launch companies to take a while ramping up the flight rate for a new rocket, but Bezos told Ars in January that his priority for Blue Origin this year was to hit a higher cadence with New Glenn. Elon Musk’s rift with President Donald Trump could open a pathway for Blue Origin to capture more government business if the New Glenn rocket is able to establish a reliable track record. Meanwhile, Limp told Blue Origin employees last month that Jarrett Jones, the manager running the New Glenn program, is taking a sabbatical. Although it appears Jones’ leave may have been planned, the timing is curious.

Making way for Starship at Cape Canaveral. The US Air Force is moving closer to authorizing SpaceX to move into one of the largest launch pads at Cape Canaveral Space Force Station in Florida, with plans to use the facility for up to 76 launches of the company’s Starship rocket each year, Ars reports. A draft Environmental Impact Statement (EIS) released by the Department of the Air Force, which includes the Space Force, found SpaceX’s planned use of Space Launch Complex 37 (SLC-37) at Cape Canaveral would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37 will have no significant impact on the company’s competitors in the launch industry.

Bringing the rumble … SLC-37 was the previous home to United Launch Alliance’s Delta IV rocket, which last flew from the site in April 2024, a couple of months after the military announced SpaceX was interested in using the launch pad. While it doesn’t have a lease for full use of the launch site, SpaceX has secured a “right of limited entry” from the Space Force to begin preparatory work. This included the explosive demolition of the launch pad’s Delta IV-era service towers and lightning masts Thursday, clearing the way for eventual construction of two Starship launch towers inside the perimeter of SLC-37. The new Starship launch towers at SLC-37 will join other properties in SpaceX’s Starship empire, including nearby Launch Complex 39A at NASA’s Kennedy Space Center, and SpaceX’s privately owned facility at Starbase, Texas.

Preps continue for Starship Flight 10. Meanwhile, at Starbase, SpaceX is moving forward with preparations for the next Starship test flight, which could happen as soon as next month following three consecutive flights that fell short of expectations. This next launch will be the 10th full-scale test flight of Starship. Last Friday, June 6, SpaceX test-fired the massive Super Heavy booster designated to launch on Flight 10. All 33 of its Raptor engines ignited on the launch pad in South Texas. This is a new Super Heavy booster. On Flight 9 last month, SpaceX flew a reused Super Heavy booster that launched and was recovered on a flight in January.

FAA signs off on SpaceX investigation … The Federal Aviation Administration said Thursday it has closed the investigation into Starship Flight 8 in March, which spun out of control minutes after liftoff, showering debris along a corridor of ocean near the Bahamas and the Turks and Caicos Islands. “The FAA oversaw and accepted the findings of the SpaceX-led investigation,” an agency spokesperson said. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a hardware failure in one of the Raptor engines that resulted in inadvertent propellant mixing and ignition. SpaceX identified eight corrective actions to prevent a reoccurrence of the event.” SpaceX implemented the corrective actions prior to Flight 9 last month, when Starship progressed further into its mission before starting to tumble in space. It eventually reentered the atmosphere over the Indian Ocean. The FAA has mandated a fresh investigation into Flight 9, and that inquiry remains open.

Next three launches

June 13: Falcon 9 | Starlink 12-26 | Cape Canaveral Space Force Station, Florida | 15: 21 UTC

June 14: Long March 2D | Unknown Payload | Jiuquan Satellite Launch Center, China | 07: 55 UTC

June 16: Atlas V | Project Kuiper KA-02| Cape Canaveral Space Force Station, Florida | 17: 25 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37 Read More »