launch

honda’s-hopper-suddenly-makes-the-japanese-carmaker-a-serious-player-in-rocketry

Honda’s hopper suddenly makes the Japanese carmaker a serious player in rocketry

The company has not disclosed its spending on rocket development. Honda’s hopper is smaller than similar prototype boosters SpaceX has used for vertical landing demos, so engineers will have to scale up the design to create a viable launch vehicle.

But Tuesday’s test catapulted Honda into an exclusive club of companies that have flown reusable rocket hoppers with an eye toward orbital flight, including SpaceX, Blue Origin, and a handful of Chinese startups. Meanwhile, European and Japanese space agencies have funded a pair of reusable rocket hoppers named Themis and Callisto. Neither rocket has ever flown, after delays of several years.

Honda’s experimental rocket lifts off from a test site in Taiki, a community in northern Japan.

Before Honda’s leadership green-lit the rocket project in 2019, a group of the company’s younger engineers proposed applying the company’s expertise in combustion and control technologies toward a launch vehicle. Honda officials believe the carmaker “has the potential to contribute more to people’s daily lives by launching satellites with its own rockets.”

The company suggested in its press release Tuesday that a Honda-built rocket might launch Earth observation satellites to monitor global warming and extreme weather, and satellite constellations for wide-area communications. Specifically, the company noted the importance of satellite communications to enabling connected features in cars, airplanes, and other Honda products.

“In this market environment, Honda has chosen to take on the technological challenge of developing reusable rockets by utilizing Honda technologies amassed in the development of various products and automated driving systems, based on a belief that reusable rockets will contribute to achieving sustainable transportation,” Honda said.

Toyota, Japan’s largest car company, also has a stake in the launch business. Interstellar Technologies, a Japanese space startup, announced a $44 million investment from Toyota in January. The two firms said they were establishing an alliance to draw on Toyota’s formula for automobile manufacturing to set up a factory for mass-producing orbital-class rockets. Interstellar has launched a handful of sounding rockets but hasn’t yet built an orbital launcher.

Japan’s primary rocket builder, Mitsubishi Heavy Industries, is another titan of Japanese industry, but it has never launched more than six space missions in a single year. MHI’s newest rocket, the H3, debuted in 2023 but is fully expendable.

The second-biggest Japanese automaker, Honda, is now making its own play. Car companies aren’t accustomed to making vehicles that can only be used once.

Honda’s hopper suddenly makes the Japanese carmaker a serious player in rocketry Read More »

rocket-report:-new-delay-for-europe’s-reusable-rocket;-spacex-moves-in-at-slc-37

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37


Canada is the only G7 nation without a launch program. Quebec wants to do something about that.

This graphic illustrates the elliptical shape of a geosynchronous transfer orbit in green, and the circular shape of a geosynchronous orbit in blue. In a first, SpaceX recently de-orbited a Falcon 9 upper stage from GTO after deploying a communications satellite. Credit: European Space Agency

Welcome to Edition 7.48 of the Rocket Report! The shock of last week’s public spat between President Donald Trump and SpaceX founder Elon Musk has worn off, and Musk expressed regret for some of his comments going after Trump on social media. Musk also backtracked from his threat to begin decommissioning the Dragon spacecraft, currently the only way for the US government to send people to the International Space Station. Nevertheless, there are many people who think Musk’s attachment to Trump could end up putting the US space program at risk, and I’m not convinced that danger has passed.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Quebec invests in small launch company. The government of Quebec will invest CA$10 million ($7.3 million) into a Montreal-area company that is developing a system to launch small satellites into space, The Canadian Press reports. Quebec Premier François Legault announced the investment into Reaction Dynamics at the company’s facility in Longueuil, a Montreal suburb. The province’s economy minister, Christine Fréchette, said the investment will allow the company to begin launching microsatellites into orbit from Canada as early as 2027.

Joining its peers … Canada is the only G7 nation without a domestic satellite launch capability, whether it’s through an independent national or commercial program or through membership in the European Space Agency, which funds its own rockets. The Canadian Space Agency has long eschewed any significant spending on developing a Canadian satellite launcher, and a handful of commercial launch startups in Canada haven’t gotten very far. Reaction Dynamics was founded in 2017 by Bachar Elzein, formerly a researcher in multiphase and reactive flows at École Polytechnique de Montréal, where he specialized in propulsion and combustion dynamics. Reaction Dynamic plans to launch its first suborbital rocket later this year, before attempting an orbital flight with its Aurora rocket as soon as 2027. (submitted by Joey S-IVB)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Another year, another delay for Themis. The European Space Agency’s Themis program has suffered another setback, with the inaugural flight of its reusable booster demonstrator now all but certain to slip to 2026, European Spaceflight reports. It has been nearly six years since the European Space Agency kicked off the Themis program to develop and mature key technologies for future reusable rocket stages. Themis is analogous to SpaceX’s Grasshopper reusable rocket prototype tested more than a decade ago, with progressively higher hop tests to demonstrate vertical takeoff and vertical landing techniques. When the program started, an initial hop test of the first Themis demonstrator was expected to take place in 2022.

Tethered to terra firma … ArianeGroup, which manufactures Europe’s Ariane rockets, is leading the Themis program under contract to ESA, which recently committed an additional 230 million euros ($266 million) to the effort. This money is slated to go toward the development of a single-engine variant of the Themis program, continued development of the rocket’s methane-fueled engine, and upgrades to a test stand at ArianeGroup’s propulsion facility in Vernon, France. Two months ago, an official update on the Themis program suggested the first Themis launch campaign would begin before the end of the year. Citing sources close to the program, European Spaceflight reports the first Themis integration tests at the Esrange Space Center in Sweden are now almost certain to slip from late 2025 to 2026.

French startup tests a novel rocket engine. While Europe’s large government-backed rocket initiatives face delays, the continent’s space industry startups are moving forward on their own. One of these companies, a French startup named Alpha Impulsion, recently completed a short test-firing of an autophage rocket engine, European Spaceflight reports. These aren’t your normal rocket engines that burn conventional kerosene, methane, or hydrogen fuel. An autophage engine literally consumes itself as it burns, using heat from the combustion process to melt its plastic fuselage and feed the molten plastic into the combustion chamber in a controlled manner. Alpha Impulsion called the May 27 ground firing a successful test of the “largest autophage rocket engine in the world.”

So, why hasn’t this been done before? … The concept of a self-consuming rocket engine sounds like an idea that’s so crazy it just might work. But the idea remained conceptual from when it was first patented in 1938 until an autophage engine was fired in a controlled manner for the first time in 2018. The autophage design offers several advantages, including its relative simplicity compared to the complex plumbing of liquid and hybrid rockets. But there are serious challenges associated with autophage engines, including how to feed molten fuel into the combustion chamber and how to scale it up to be large enough to fly on a viable rocket. (submitted by trimeta and EllPeaTea)

Rocket trouble delays launch of private crew mission. A propellant leak in a Falcon 9 booster delayed the launch of a fourth Axiom Space private astronaut mission to the International Space Station this week, Space News reports. SpaceX announced the delay Tuesday, saying it needed more time to fix a liquid oxygen leak found in the Falcon 9 booster during inspections following a static-fire test Sunday. “Once complete–and pending Range availability–we will share a new launch date,” the company stated. The Ax-4 mission will ferry four commercial astronauts, led by retired NASA commander Peggy Whitson, aboard a Dragon spacecraft to the ISS for an approximately 14-day stay. Whitson will be joined by crewmates from India, Poland, and Hungary.

Another problem, too … While SpaceX engineers worked on resolving the propellant leak on the ground, a leak of another kind in orbit forced officials to order a longer delay to the Ax-4 mission. In a statement Thursday, NASA said it is working with the Russian space agency to understand a “new pressure signature” in the space station’s Russian service module. For several years, ground teams have monitored a slow air leak in the aft part of the service module, and NASA officials have identified it as a safety risk. NASA’s statement on the matter was vague, only saying that cosmonauts on the station recently inspected the module’s interior surfaces and sealed additional “areas of interest.” The segment is now holding pressure, according to NASA. (submitted by EllPeaTea)

SpaceX tries something new with Falcon 9. With nearly 500 launches under its belt, SpaceX’s Falcon 9 rocket isn’t often up to new tricks. But the company tried something new following a launch on June 7 with a radio broadcasting satellite for SiriusXM. The Falcon 9’s upper stage placed the SXM-10 satellite into an elongated, high-altitude transfer orbit, as is typical for payloads destined to operate in geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. When a rocket releases a satellite in this type of high-energy orbit, the upper stage has usually burned almost all of its propellant, leaving little fuel to steer itself back into Earth’s atmosphere for a destructive reentry. This means these upper stages often remain in space for decades, becoming a piece of space junk that transits across the orbits of many other satellites.

Now, a solution … SpaceX usually deorbits rockets after they deploy payloads like Starlink satellites into low-Earth orbit, but deorbiting a rocket from a much higher geosynchronous transfer orbit is a different matter. “Last week, SpaceX successfully completed a controlled deorbit of the SiriusXM-10 upper stage after GTO payload deployment,” wrote Jon Edwards, SpaceX’s vice president of Falcon and Dragon programs. “While we routinely do controlled deorbits for LEO stages (e.g., Starlink), deorbiting from GTO is extremely difficult due to the high energy needed to alter the orbit, making this a rare and remarkable first for us. This was only made possible due to the hard work and brilliance of the Falcon GNC (guidance, navigation, and control) team and exemplifies SpaceX’s commitment to leading in both space exploration and public safety.”

New Glenn gets a tentative launch date. Five months have passed since Blue Origin’s New Glenn rocket made its mostly successful debut in January. At one point, the company targeted “late spring” for the second launch of the rocket. However, on Monday, Blue Origin’s CEO, Dave Limp, acknowledged on social media that the rocket’s next flight will now no longer take place until at least August 15, Ars reports. Although he did not say so, this may well be the only other New Glenn launch this year. The mission, with an undesignated payload, will be named “Never Tell Me the Odds,” due to the attempt to land the booster. “One of our key mission objectives will be to land and recover the booster,” Limp wrote. “This will take a little bit of luck and a lot of excellent execution. We’re on track to produce eight GS2s [second stages] this year, and the one we’ll fly on this second mission was hot-fired in April.”

Falling shortBefore 2025 began, Limp set expectations alongside Blue Origin founder Jeff Bezos: New Glenn would launch eight times this year. That’s not going to happen. It’s common for launch companies to take a while ramping up the flight rate for a new rocket, but Bezos told Ars in January that his priority for Blue Origin this year was to hit a higher cadence with New Glenn. Elon Musk’s rift with President Donald Trump could open a pathway for Blue Origin to capture more government business if the New Glenn rocket is able to establish a reliable track record. Meanwhile, Limp told Blue Origin employees last month that Jarrett Jones, the manager running the New Glenn program, is taking a sabbatical. Although it appears Jones’ leave may have been planned, the timing is curious.

Making way for Starship at Cape Canaveral. The US Air Force is moving closer to authorizing SpaceX to move into one of the largest launch pads at Cape Canaveral Space Force Station in Florida, with plans to use the facility for up to 76 launches of the company’s Starship rocket each year, Ars reports. A draft Environmental Impact Statement (EIS) released by the Department of the Air Force, which includes the Space Force, found SpaceX’s planned use of Space Launch Complex 37 (SLC-37) at Cape Canaveral would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37 will have no significant impact on the company’s competitors in the launch industry.

Bringing the rumble … SLC-37 was the previous home to United Launch Alliance’s Delta IV rocket, which last flew from the site in April 2024, a couple of months after the military announced SpaceX was interested in using the launch pad. While it doesn’t have a lease for full use of the launch site, SpaceX has secured a “right of limited entry” from the Space Force to begin preparatory work. This included the explosive demolition of the launch pad’s Delta IV-era service towers and lightning masts Thursday, clearing the way for eventual construction of two Starship launch towers inside the perimeter of SLC-37. The new Starship launch towers at SLC-37 will join other properties in SpaceX’s Starship empire, including nearby Launch Complex 39A at NASA’s Kennedy Space Center, and SpaceX’s privately owned facility at Starbase, Texas.

Preps continue for Starship Flight 10. Meanwhile, at Starbase, SpaceX is moving forward with preparations for the next Starship test flight, which could happen as soon as next month following three consecutive flights that fell short of expectations. This next launch will be the 10th full-scale test flight of Starship. Last Friday, June 6, SpaceX test-fired the massive Super Heavy booster designated to launch on Flight 10. All 33 of its Raptor engines ignited on the launch pad in South Texas. This is a new Super Heavy booster. On Flight 9 last month, SpaceX flew a reused Super Heavy booster that launched and was recovered on a flight in January.

FAA signs off on SpaceX investigation … The Federal Aviation Administration said Thursday it has closed the investigation into Starship Flight 8 in March, which spun out of control minutes after liftoff, showering debris along a corridor of ocean near the Bahamas and the Turks and Caicos Islands. “The FAA oversaw and accepted the findings of the SpaceX-led investigation,” an agency spokesperson said. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a hardware failure in one of the Raptor engines that resulted in inadvertent propellant mixing and ignition. SpaceX identified eight corrective actions to prevent a reoccurrence of the event.” SpaceX implemented the corrective actions prior to Flight 9 last month, when Starship progressed further into its mission before starting to tumble in space. It eventually reentered the atmosphere over the Indian Ocean. The FAA has mandated a fresh investigation into Flight 9, and that inquiry remains open.

Next three launches

June 13: Falcon 9 | Starlink 12-26 | Cape Canaveral Space Force Station, Florida | 15: 21 UTC

June 14: Long March 2D | Unknown Payload | Jiuquan Satellite Launch Center, China | 07: 55 UTC

June 16: Atlas V | Project Kuiper KA-02| Cape Canaveral Space Force Station, Florida | 17: 25 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37 Read More »

blue-origin-boss:-government-should-forget-launch-and-focus-on-“exotic”-missions

Blue Origin boss: Government should forget launch and focus on “exotic” missions


“There’s not yet a commercial reason only to go to the Moon with humans.”

In this long exposure photograph, Blue Origin’s New Glenn rocket pierces a cloud deck over Florida’s Space Coast on its inaugural flight January 16. Credit: Blue Origin

Eighteen months after leaving his job as a vice president at Amazon to take over as Blue Origin’s chief executive, Dave Limp has some thoughts on how commercial companies and government agencies like NASA should explore the Solar System together.

Limp had no background in the space industry before taking the helm of Jeff Bezos’ space company in December 2023. He started his career as a computer scientist at Apple, took a stint at a venture capital firm, and joined Amazon in 2010, where he managed development of consumer devices like Alexa, Kindle, and the Fire TV.

“I had no thoughts of ever running a space company,” Limp said Thursday at a space conference in Washington, DC. “I’ve done consumer electronics my whole life. Started at Apple and did a bunch of other things, and so when I decided to retire from Amazon, I was looking for something that I could give back a little bit, be a little bit more philanthropic in the sort of second half of my career. I didn’t want to stop working, just wanted to do something different. And about that same time, Jeff was looking for a CEO.”

While he’s still a relative newcomer to the space business, Limp’s views align with those of many policy wonks and industry leaders who have the ears of senior officials in the Trump administration, including Jared Isaacman, President Trump’s nominee to become the next NASA administrator. Limp’s long tenure at Amazon and his selection as Blue Origin’s new CEO demonstrate that he also has the trust of Bezos, who was dissatisfied with his company’s slow progress in spaceflight.

“I think Jeff convinced me, and he’s very persuasive, that Blue didn’t need another rocket scientist,” Limp said. “We have thousands of the world’s best rocket scientists. What we needed was a little bit more decisiveness, a little bit more ability to think about: How do we manufacture at scale? And those are things I’ve done in the past, and so I’ve never looked back.”

David Limp, CEO of Blue Origin, speaks during the 2025 Humans to the Moon and Mars Summit at George Washington University in Washington, DC, on May 29, 2025. Credit: Alex Wroblewski / AFP via Getty Images

Leave it to us

In remarks Thursday at the Humans to the Moon & Mars Summit, Limp advocated for commercial companies, like his own, taking a larger role in developing the transportation and infrastructure to meet lofty national objectives established by government leaders.

In some ways, NASA has long been moving in this direction, beginning with initiatives ceding most launch services to private industry in the 1990s. More recently, NASA has turned to commercial companies for crew and cargo deliveries to the International Space Station and cargo and human-rated Moon landers.

However, NASA, with the backing of key congressional leaders, has held an iron grip on having its own heavy-lift launcher and crew capsule to ferry astronauts between Earth and destinations beyond low-Earth orbit. Now, these vehicles—the Space Launch System and Orion spacecraft—may be canceled if Congress agrees with Trump’s proposed NASA budget.

Commercial rockets close to matching or exceeding the Space Launch System’s lift capability are available for purchase or likely will be soon. These include SpaceX’s Starship mega-rocket and Blue Origin’s New Glenn launcher. Both are already key elements of NASA’s Artemis program, which aims to land US astronauts on the Moon as a stepping stone toward human expeditions to Mars.

But NASA still plans to use its government-owned Space Launch System rocket and Orion spacecraft to transport astronauts out to the Moon, where they will rendezvous with a Starship or Blue Origin’s Blue Moon lander to fly to and from the lunar surface.

SLS and Orion are expensive vehicles, costing more than $4 billion per launch for the initial set of four Artemis missions, according to a report by NASA’s inspector general. While commercial companies like Boeing, Lockheed Martin, and Northrop Grumman build elements of SLS and Orion, NASA acts as the prime integrator. The agency signed cost-plus contracts with the companies building SLS and Orion, meaning the government is on the hook for cost overruns. And there have been many.

Artist’s concept of Blue Ring, a propulsive spacecraft platform Blue Origin says it is developing to carry payloads to different orbits, and possibly all the way to Mars, at lower costs than feasible today. Credit: Blue Origin

NASA’s robotic science probes are also getting more expensive, even when accounting for inflation. Given the way NASA procures science probes, it would cost NASA more today to send an orbiter to Mars than it did for a similarly sized spacecraft a quarter-century ago.

This has to change in order for NASA and private companies like Blue Origin and SpaceX to make their ambitions a reality, Limp said Thursday.

“I think commercial folks can worry about the infrastructure,” he said. “We can do the launch. We can build the satellite buses that can get you to Mars much more frequently, that don’t cost billions of dollars. We can take a zero, and over time, maybe two zeros off of that. And if the governments around the world leave that to the commercial side, then there are a lot more resources that are freed up for the science side, for the national prestige side, and those types of things.”

The bottom line

Limp followed these comments with a dose of realism you don’t often hear from space industry executives. While there’s a growing list of commercially viable markets in space (things like Starlink and satellite servicing wouldn’t have been money-makers 20 years ago), the market for human spaceflight still requires some level of government commitment.

“I think the thing about bringing commercial aspects to exploration, to science, to the Moon, to Mars, is that we have to see a business prospect for it,” Limp said. “We have to turn it into a business, and that benefits American taxpayers because we will use that capital as efficiently as we can to get to the Moon, to get to Mars in a safe way, but in a way that’s the most efficient.

“We’re committed to that, no matter what the architecture looks like, but it does take the US government and international governments to have the motivation to do it,” he continued. “There’s not yet a commercial reason only to go to the Moon with humans. There are lots of commercial reasons to put robotics on the Moon and other types of things. So, we do need to have conviction that the Moon is important and Mars is important as well.”

Trump and Musk, an ally and advisor to the president, rekindled the question of Moon or Mars in a series of remarks during the early weeks of the new Trump administration. The Artemis Moon program began during the first Trump administration, with the goal of returning astronauts to the Moon for the first time since 1972. NASA would establish a sustained presence at the Moon, using our nearest planetary body as a proving ground for the next destination for humans in Solar System exploration: Mars.

Space industry rivals Jeff Bezos, second from left, and Elon Musk, second from right, inside the US Capitol for President Donald Trump’s inauguration on January 20, 2025. Credit: Chip Somodevilla/Getty Images

SpaceX’s Starship, while capable of one day landing on the Moon, was designed for long-duration cruises to Mars. Blue Origin’s Blue Moon is tailored for lunar landings.

“As an American, I don’t want another Sputnik moment,” Limp said. “From my standpoint, getting boots on the Moon and setting the groundwork for permanence on the Moon is of national importance and urgency. Rest assured, Blue will do everything in its power to try to make that happen, but in a cost-effective way.”

NASA, please don’t leave us

Since retaking office in January, Trump has mentioned human missions to Mars multiple times, but not the Moon. Isaacman, who may be confirmed as NASA administrator by the Senate as soon as next week, told lawmakers in April that the agency should pursue human missions to the Moon and Mars simultaneously. The details of how that might work haven’t been released but could come out in the White House’s detailed budget proposal for fiscal-year 2026.

A blueprint of Trump’s spending proposal released May 2 includes a 25 percent cut to NASA’s overall budget, but the plan would provide additional money for human space exploration at the Moon and Mars. “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the White House budget office wrote.

This part of the budget request is not controversial for industry leaders like Limp. On the other hand, the budget blueprint proposes slashing NASA’s space science budget by nearly $2.3 billion, Earth science by almost $1.2 billion, and space technology by $531 million.

While Limp didn’t directly address these budget proposals, these parts of NASA are largely focused on research projects that lack a commercial business case. Who else but a government space agency, or perhaps an especially generous type of philanthropic multi-billionaire, would pay to send a probe to study Jupiter’s icy moon Europa? Or a robot to zip by Pluto? Or how about a mission like Landsat, which documents everything from water resources to farms and urban sprawl and makes its data freely available to anyone with an Internet connection?

Most experts agree there are better ways to do these things. Reusable rockets, mass-produced satellite platforms, and improved contracting practices can bring down the costs of these missions. Bezos’ long-term goal for Blue Origin, which is to move all polluting factories off the Earth and into space, will be easier to achieve with government support, not just funding, Limp said.

“Getting up there, building factories on the Moon is a great step, and the government can really help with research dollars around that,” he said. “But it still does need the labs. The science missions need the JPLs [Jet Propulsion Laboratory] of the world. To make the human experience right, we need the Johnson Space Centers of the world to be able to kind of use that gold mine of institutional knowledge.

“I would say, and it might be a little provocative, let’s have those smart brains look on the forward-thinking types of things, the really edge of science, planning the really exotic missions, figuring out how to get to planetary bodies we haven’t gotten to before, and staying there,” Limp said.

Mark it down

For the first decade after Bezos founded Blue Origin in 2000, the company operated under the radar and seemed to move at a glacial pace. It launched its first small rocket in 2006 to an altitude of less than 300 feet and reached space with the suborbital New Shepard booster in 2015. Blue Origin finally reached orbit in January of this year on the debut test flight of its heavy-lift New Glenn rocket. Meanwhile, Blue Origin inked a deal with United Launch Alliance to supply a version of its New Glenn main engine to power that company’s Vulcan rocket.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship, NASA’s other Artemis lunar lander. Credit: Blue Origin

The next big mission for Blue Origin will be the first flight of its Blue Moon lander. The first version of Blue Moon, called MK1, will launch on a New Glenn rocket later this year and attempt to become the largest spacecraft to ever land on the Moon. This demonstration, without anyone onboard, is fully funded by Blue Origin, Limp said.

A future human-rated version, called MK2, is under development with the assistance of NASA. It will be larger and will require refueling to reach the lunar surface. Blue Moon MK1 can make a landing on one tank.

These are tangible achievements that would be the envy of any space industry startup not named SpaceX. But Musk’s rocket company left Blue Origin in the dust as it broke launch industry records repeatedly and began delivering NASA astronauts to the International Space Station in 2020. My colleague, Eric Berger, wrote a story in January describing Blue Origin’s culture. For much of its existence, one former employee said, Blue Origin had “zero incentive” to operate like SpaceX.

To ensure he would be in lock-step with his boss, Limp felt he had to ask a question that was on the minds of many industry insiders. He got the answer he wanted.

“The only question I really asked Jeff when I was talking about taking this job was, ‘What do you want Blue to be? Is it a hobby, or is it a business?'” Limp said. “And he had the right answer, which is, it’s a business, because I don’t know how to run a hobby, and I don’t think it’s sustainable.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin boss: Government should forget launch and focus on “exotic” missions Read More »

china-extends-its-reach-into-the-solar-system-with-launch-of-asteroid-mission

China extends its reach into the Solar System with launch of asteroid mission

Comet 311P/PanSTARRS was observed by the Hubble Space Telescope in 2013 with a set of six comet-like tails radiating from its main body. This object, also called P/2013 P5, is known as an active asteroid. Credit: NASA, ESA, and D. Jewitt (UCLA)

Tianwen-2’s mothership, with 11 scientific instruments, will commence the second phase of its mission after dropping off the asteroid specimens at Earth. The probe’s next journey will bring it near an enigma in the asteroid belt, named 311P/PanSTARRS, in the mid-2030s. This object is one in a rare class of objects known as active asteroids or main-belt comets, small worlds that have tails and comas like comets but loiter in orbits most commonly associated with asteroids. Tianwen-2 will be the first mission to see such an object up close.

Stepping into the Solar System

Until the last few years, China’s space program has primarily centered on the Moon as a destination for scientific exploration. The Moon remains the main target for China’s ambitions in space, with the goal of accomplishing a human lunar landing by 2030. But the country is looking farther afield, too.

With the Tianwen-1 mission in 2021, China became the second country to achieve a soft landing on Mars. After Tianwen-2, China will again go to Mars with the Tianwen-3 sample return mission, slated for launch in 2028.

Tianwen, which means “questions to heaven,” is the name given to China’s program of robotic Solar System exploration. Tianwen-3 has a chance to become the first mission to return pristine samples from Mars to Earth. At the same time, NASA’s plans for a Mars Sample Return mission are faltering.

China is looking at launching Tianwen-4 around 2029 to travel to Jupiter and enter orbit around Callisto, one of its four largest moons. In the 2030s, China’s roadmap includes a mission to return atmospheric samples from Venus to Earth, a Mars research station, and a probe to Neptune.

Meanwhile, NASA has sent spacecraft to study every planet in the Solar System and currently has spacecraft at or on the way to the Moon, Mars, Jupiter, a metal asteroid, and to interstellar space. Another US science mission, Dragonfly, is scheduled for launch in 2028 on a daring expedition to Saturn’s moon Titan.

But NASA’s science division is bracing for severe budget cuts proposed by President Donald Trump. In planetary science, the White House’s budget blueprint calls for canceling a joint US-European Mars Sample Return mission and several other projects, including the DAVINCI mission to Venus.

China extends its reach into the Solar System with launch of asteroid mission Read More »

spacex-may-have-solved-one-problem-only-to-find-more-on-latest-starship-flight

SpaceX may have solved one problem only to find more on latest Starship flight


SpaceX’s ninth Starship survived launch, but engineers now have more problems to overcome.

An onboard camera shows the six Raptor engines on SpaceX’s Starship upper stage, roughly three minutes after launching from South Texas on Tuesday. Credit: SpaceX

SpaceX made some progress on another test flight of the world’s most powerful rocket Tuesday, finally overcoming technical problems that plagued the program’s two previous launches.

But minutes into the mission, SpaceX’s Starship lost control as it cruised through space, then tumbled back into the atmosphere somewhere over the Indian Ocean nearly an hour after taking off from Starbase, Texas, the company’s privately owned spaceport near the US-Mexico border.

SpaceX’s next-generation rocket is designed to eventually ferry cargo and private and government crews between the Earth, the Moon, and Mars. The rocket is complex and gargantuan, wider and longer than a Boeing 747 jumbo jet, and after nearly two years of steady progress since its first test flight in 2023, this has been a year of setbacks for Starship.

During the rocket’s two previous test flights—each using an upgraded “Block 2” Starship design—problems in the ship’s propulsion system led to leaks during launch, eventually triggering an early shutdown of the rocket’s main engines. On both flights, the vehicle spun out of control and broke apart, spreading debris over an area near the Bahamas and the Turks and Caicos Islands.

The good news is that that didn’t happen Tuesday. The ship’s main engines fired for their full duration, putting the vehicle on its expected trajectory toward a splashdown in the Indian Ocean. For a short time, it appeared the ship was on track for a successful flight.

“Starship made it to the scheduled ship engine cutoff, so big improvement over last flight! Also, no significant loss of heat shield tiles during ascent,” wrote Elon Musk, SpaceX’s founder and CEO, on X.

The bad news is that Tuesday’s test flight revealed more problems, preventing SpaceX from achieving the most important goals Musk outlined going into the launch.

“Leaks caused loss of main tank pressure during the coast and reentry phase,” Musk posted on X. “Lot of good data to review.”

With the loss of tank pressure, the rocket started slowly spinning as it coasted through the blackness of space more than 100 miles above the Earth. This loss of control spelled another premature end to a Starship test flight. Most notable among the flight’s unmet objectives was SpaceX’s desire to study the performance of the ship’s heat shield, which includes improved heat-absorbing tiles to better withstand the scorching temperatures of reentry back into the atmosphere.

“The most important thing is data on how to improve the tile design, so it’s basically data during the high heating, reentry phase in order to improve the tiles for the next iteration,” Musk told Ars Technica before Tuesday’s flight. “So we’ve got like a dozen or more tile experiments. We’re trying different coatings on tiles. We’re trying different fabrication techniques, different attachment techniques. We’re varying the gap filler for the tiles.”

Engineers are hungry for data on the changes to the heat shield, which can’t be fully tested on the ground. SpaceX officials hope the new tiles will be more robust than the ones flown on the first-generation, or Block 1, version of Starship, allowing future ships to land and quickly launch again, without the need for time-consuming inspections, refurbishment, and in some cases, tile replacements. This is a core tenet of SpaceX’s plans for Starship, which include delivering astronauts to the surface of the Moon, proliferating low-Earth orbit with refueling tankers, and eventually helping establish a settlement on Mars, all of which are predicated on rapid reusability of Starship and its Super Heavy booster.

Last year, SpaceX successfully landed three Starships in the Indian Ocean after they survived hellish reentries, but they came down with damaged heat shields. After an early end to Tuesday’s test flight, SpaceX’s heat shield engineers will have to wait a while longer to satiate their appetites. And the longer they have to wait, the longer the wait for other important Starship developmental tests, such as a full orbital flight, in-space refueling, and recovery and reuse of the ship itself, replicating what SpaceX has now accomplished with the Super Heavy booster.

Failing forward or falling short?

The ninth flight of Starship began with a booming departure from SpaceX’s Starbase launch site at 6: 35 pm CDT (7: 35 pm EDT; 23: 35 UTC) Tuesday.

After a brief hold to resolve last-minute technical glitches, SpaceX resumed the countdown clock to tick away the final seconds before liftoff. A gush of water poured over the deck of the launch pad just before 33 methane-fueled Raptor engines ignited on the rocket’s massive Super Heavy first stage booster. Once all 33 engines lit, the enormous stainless steel rocket—towering more than 400 feet (123 meters)—began to climb away from Starbase.

SpaceX’s Starship rocket, flying with a reused first-stage booster for the first time, climbs away from Starbase, Texas. Credit: SpaceX

Heading east, the Super Heavy booster produced more than twice the power of NASA’s Saturn V rocket, an icon of the Apollo Moon program, as it soared over the Gulf of Mexico. After two-and-a-half minutes, the Raptor engines switched off and the Super Heavy booster separated from Starship’s upper stage.

Six Raptor engines fired on the ship to continue pushing it into space. As the booster started maneuvering for an attempt to target an intact splashdown in the sea, the ship burned its engines more than six minutes, reaching a top speed of 16,462 mph (26,493 kilometers per hour), right in line with preflight predictions.

A member of SpaceX’s launch team declared “nominal orbit insertion” a little more than nine minutes into the flight, indicating the rocket reached its planned trajectory, just shy of the velocity required to enter a stable orbit around the Earth.

The flight profile was supposed to take Starship halfway around the world, with the mission culminating in a controlled splashdown in the Indian Ocean northwest of Australia. But a few minutes after engine shutdown, the ship started to diverge from SpaceX’s flight plan.

First, SpaceX aborted an attempt to release eight simulated Starlink Internet satellites in the first test of the Starship’s payload deployer. The cargo bay door would not fully open, and engineers called off the demonstration, according to Dan Huot, a member of SpaceX’s communications team who hosted the company’s live launch broadcast Tuesday.

That, alone, would not have been a big deal. However, a few minutes later, Huot made a more troubling announcement.

“We are in a little bit of a spin,” he said. “We did spring a leak in some of the fuel tank systems inside of Starship, which a lot of those are used for attitude control. So, at this point, we’ve essentially lost our attitude control with Starship.”

This eliminated any chance for a controlled reentry and an opportunity to thoroughly scrutinize the performance of Starship’s heat shield. The spin also prevented a brief restart of one of the ship’s Raptor engines in space.

“Not looking great for a lot of our on-orbit objectives for today,” Huot said.

SpaceX continued streaming live video from Starship as it soared over the Atlantic Ocean and Africa. Then, a blanket of super-heated plasma enveloped the vehicle as it plunged into the atmosphere. Still in a slow tumble, the ship started shedding scorched chunks of its skin before the screen went black. SpaceX lost contact with the vehicle around 46 minutes into the flight. The ship likely broke apart over the Indian Ocean, dropping debris into a remote swath of sea within its expected flight corridor.

Victories where you find them

Although the flight did not end as well as SpaceX officials hoped, the company made some tangible progress Tuesday. Most importantly, it broke the streak of back-to-back launch failures on Starship’s two most recent test flights in January and March.

SpaceX’s investigation earlier this year into a January 16 launch failure concluded vibrations likely triggered fuel leaks and fires in the ship’s engine compartment, causing an early shutdown of the rocket’s engines. Engineers said the vibrations were likely in resonance with the vehicle’s natural frequency, intensifying the shaking beyond the levels SpaceX predicted.

Engineers made fixes and launched the next Starship test flight March 6, but it again encountered trouble midway through the ship’s main engine burn. SpaceX said earlier this month that the inquiry into the March 6 failure found its most probable root cause was a hardware failure in one of the upper stage’s center engines, resulting in “inadvertent propellant mixing and ignition.”

In its official statement, the company was silent on the nature of the hardware failure but said engines for future test flights will receive additional preload on key joints, a new nitrogen purge system, and improvements to the propellant drain system. A new generation of Raptor engines, known as Raptor 3, should begin flying around the end of this year with additional improvements to address the failure mechanism, SpaceX said.

Another bright spot in Tuesday’s test flight was that it marked the first time SpaceX reused a Super Heavy booster from a prior launch. The booster used Tuesday previously launched on Starship’s seventh test flight in January before it was caught back at the launch pad and refurbished for another space shot.

Booster 14 comes in for the catch after flying to the edge of space on January 16. SpaceX flew this booster again Tuesday but did not attempt a catch. Credit: SpaceX

After releasing the Starship upper stage to continue its journey into space, the Super Heavy booster flipped around to fly tail-first and reignited 13 of its engines to begin boosting itself back toward the South Texas coast. On this test flight, SpaceX aimed the booster for a hard splashdown in the ocean just offshore from Starbase, rather than a mid-air catch back at the launch pad, which SpaceX accomplished on three of its four most recent test flights.

SpaceX made the change for a few reasons. First, engineers programmed the booster to fly at a higher angle of attack during its descent, increasing the amount of atmospheric drag on the vehicle compared to past flights. This change should reduce propellant usage on the booster’s landing burn, which occurs just before the rocket is caught by the launch pad’s mechanical arms, or “chopsticks,” on a recovery flight.

During the landing burn itself, engineers wanted to demonstrate the booster’s ability to respond to an engine failure on descent by using just two of the rocket’s 33 engines for the end of the burn, rather than the usual three. Instead, the rocket appeared to explode around the beginning of the landing burn before it could complete the final landing maneuver.

Before the explosion at the end of its flight, the booster appeared to fly as designed. Data displayed on SpaceX’s live broadcast of the launch showed all 33 of the rocket’s engines fired normally during its initial ascent from Texas, a reassuring sign for the reliability of the Super Heavy booster.

SpaceX kicked off the year with the ambition to launch as many as 25 Starship test flights in 2025, a goal that now seems to be unattainable. However, an X post by Musk on Tuesday night suggested a faster cadence of launches in the coming months. He said the next three Starships could launch at intervals of about once every three to four weeks. After that, SpaceX is expected to transition to a third-generation, or Block 3, Starship design with more changes.

It wasn’t immediately clear how long it might take SpaceX to correct whatever problems caused Tuesday’s test flight woes. The Starship vehicle for the next flight is already built and completed cryogenic prooftesting April 27. For the last few ships, SpaceX has completed this cryogenic testing milestone around one-and-a-half to three months prior to launch.

A spokesperson for the Federal Aviation Administration said the agency is “actively working” with SpaceX in the aftermath of Tuesday’s test flight but did not say if the FAA will require SpaceX to conduct a formal mishap investigation.

Shana Diez, director of Starship engineering at SpaceX, chimed in with her own post on X. Based on preliminary data from Tuesday’s flight, she is optimistic the next test flight will fly soon. She said engineers still need to examine data to confirm none of the problems from Starship’s previous flight recurred on this launch but added that “all evidence points to a new failure mode” on Tuesday’s test flight.

SpaceX will also study what caused the Super Heavy booster to explode on descent before moving forward with another booster catch attempt at Starbase, she said.

“Feeling both relieved and a bit disappointed,” Diez wrote. “Could have gone better today but also could have gone much worse.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX may have solved one problem only to find more on latest Starship flight Read More »

do-these-buddhist-gods-hint-at-the-purpose-of-china’s-super-secret-satellites?

Do these Buddhist gods hint at the purpose of China’s super-secret satellites?

Mission patches are a decades-old tradition in spaceflight. They can range from the figurative to the abstract, prompting valuable insights or feeding confusion. Some are just plain weird.

Ars published a story a few months ago on spaceflight patches from NASA, SpaceX, Russia, and the NRO, the US government’s spy satellite agency, which is responsible for some of the most head-scratching mission logos.

Until recently, China’s entries in the realm of spaceflight patches often lacked the originality found in patches from the West. For example, a series of patches for China’s human spaceflight missions used a formulaic design with a circular shape and a mix of red and blue. The patch for China’s most recent Shenzhou crew to the country’s Tiangong space station last month finally broke the mold with a triangular shape after China’s human spaceflight agency put the patch up for a public vote.

But there’s a fascinating set of new patches Chinese officials released for a series of launches with top secret satellites over the last two months. These four patches depict Buddhist gods with a sense of artistry and sharp colors that stand apart from China’s previous spaceflight emblems, and perhaps—or perhaps not—they can tell us something about the nature of the missions they represent.

Guardians of the Dharma

The four patches show the Four Heavenly Kings, protector deities in Buddhism who guard against evil forces in the four cardinal directions, according to the Kyoto National Museum. The gods also shield the Dharma, the teachings of the Buddha, from external threats.

These gods have different names, but in China, they are known as Duōwén, Zēngzhǎng, Chíguó, and Guăngmù. Duōwén is the commander and the guardian of the north, the “one who listens to many teachings,” who is often depicted with an umbrella. Zēngzhǎng, guardian of the south, is a god of growth shown carrying a sword. The protector of the east is Chíguó, defender of the nation, who holds a stringed musical instrument. And guarding the west is Guăngmù, an all-seeing god usually depicted with a serpent.

Do these Buddhist gods hint at the purpose of China’s super-secret satellites? Read More »

the-top-fell-off-australia’s-first-orbital-class-rocket,-delaying-its-launch

The top fell off Australia’s first orbital-class rocket, delaying its launch

This was unusual

Payload fairing problems have caused a number of rocket failures, usually because they don’t jettison during launch, or only partially deploy, leaving too much extra weight on the launch vehicle for it to reach orbit.

Gilmour said it is postponing the Eris launch campaign “to fully understand what happened and make any necessary updates.” The company was founded by two brothers—Adam and James Gilmourin 2012, and has raised approximately $90 million from venture capital firms and government funds to get the first Eris rocket to the launch pad.

The astronauts on NASA’s Gemini 9A mission snapped this photo of a target vehicle they were supposed to dock with in orbit. But the rocket’s nose shroud only partially opened, inadvertently illustrating the method in which payload fairings are designed to jettison from their rockets in flight. Credit: NASA

The Eris rocket was aiming to become the first all-Australian launcher to reach orbit. Australia hosted a handful of satellite launches by US and British rockets more than 50 years ago.

Gilmour is headquartered in Gold Coast, Australia, about 600 miles south of the Eris launch pad near the coastal town of Bowen. In a statement, Gilmour said it has a replacement payload fairing in its factory in Gold Coast. The company will send it to the launch site and install it on the Eris rocket after a “full investigation” into the cause of the premature fairing deployment.

“While we’re disappointed by the delay, our team is already working on a solution and we expect to be back at the pad soon,” Gilmour said.

Officials did not say how long it might take to investigate the problem, correct it, and fit a new nose cone on the Eris rocket.

This setback follows more than a year of delays Gilmour blamed primarily on holdups in receiving regulatory approval for the launch from the Australian government.

Like many rocket companies have done before, Gilmour set modest expectations for the first test flight of Eris. While the rocket has everything needed to fly to low-Earth orbit, officials said they were looking for just 10 to 20 seconds of stable flight on the first launch, enough to gather data about the performance of the rocket and its unconventional hybrid propulsion system.

The top fell off Australia’s first orbital-class rocket, delaying its launch Read More »

after-back-to-back-failures,-spacex-tests-its-fixes-on-the-next-starship

After back-to-back failures, SpaceX tests its fixes on the next Starship

But that didn’t solve the problem. Once again, Starship’s engines cut off too early, and the rocket broke apart before falling to Earth. SpaceX said “an energetic event” in the aft portion of Starship resulted in the loss of several Raptor engines, followed by a loss of attitude control and a loss of communications with the ship.

The similarities between the two failures suggest a likely design issue with the upgraded “Block 2” version of Starship, which debuted in January and flew again in March. Starship Block 2 is slightly taller than the ship SpaceX used on the rocket’s first six flights, with redesigned flaps, improved batteries and avionics, and notably, a new fuel feed line system for the ship’s Raptor vacuum engines.

SpaceX has not released the results of the investigation into the Flight 8 failure, and the FAA hasn’t yet issued a launch license for Flight 9. Likewise, SpaceX hasn’t released any information on the changes it made to Starship for next week’s flight.

What we do know about the Starship vehicle for Flight 9—designated Ship 35—is that it took a few tries to complete a full-duration test-firing. SpaceX completed a single-engine static fire on April 30, simulating the restart of a Raptor engine in space. Then, on May 1, SpaceX aborted a six-engine test-firing before reaching its planned 60-second duration. Videos captured by media observing the test showed a flash in the engine plume, and at least one piece of debris was seen careening out of the flame trench below the ship.

SpaceX ground crews returned Ship 35 to the production site a couple of miles away, perhaps to replace a damaged engine, before rolling Starship back to the test stand over the weekend for Monday’s successful engine firing.

Now, the ship will head back to the Starbase build site, where technicians will make final preparations for Flight 9. These final tasks may include loading mock-up Starlink broadband satellites into the ship’s payload bay and touchups to the rocket’s heat shield.

These are two elements of Starship that SpaceX engineers are eager to demonstrate on Flight 9, beyond just fixing the problems from the last two missions. Those failures prevented Starship from testing its satellite deployer and an upgraded heat shield designed to better withstand scorching temperatures up to 2,600° Fahrenheit (1,430° Celsius) during reentry.

After back-to-back failures, SpaceX tests its fixes on the next Starship Read More »

we-finally-know-a-little-more-about-amazon’s-super-secret-satellites

We finally know a little more about Amazon’s super-secret satellites

“Elon thinks we can do the job with cheaper and simpler satellites, sooner,” a source told Reuters at the time of Badyal’s dismissal. Earlier in 2018, SpaceX launched a pair of prototype cube-shaped Internet satellites for demonstrations in orbit. Then, less than a year after firing Badyal, Musk’s company launched the first full stack of Starlink satellites, debuting the now-standard flat-panel design.

In a post Friday on LinkedIn, Badyal wrote the Kuiper satellites have had “an entirely nominal start” to their mission. “We’re just over 72 hours into our first full-scale Kuiper mission, and the adrenaline is still high.”

The Starlink and Kuiper constellations use laser inter-satellite links to relay Internet signals from node-to-node across their networks. Starlink broadcasts consumer broadband in Ku-band frequencies, while Kuiper will use Ka-band.

Ultimately, SpaceX’s simplified Starlink deployment architecture has fewer parts and eliminates the need for a carrier structure. This allows SpaceX to devote a higher share of the rocket’s mass and volume capacity to the Starlink satellites themselves, replacing dead weight with revenue-earning capability. The dispenser architecture used by Amazon is a more conventional design, and gives satellite engineers more flexibility in designing their spacecraft. It also allows satellites to spread out faster in orbit.

Others involved in the broadband megaconstellation rush have copied SpaceX’s architecture.

China’s Qianfan, or Thousand Sails, satellites have a “standardized and modular” flat-panel design that “meets the needs of stacking multiple satellites with one rocket,” according to the company managing the constellation. While Chinese officials haven’t released any photos of the satellites, which could eventually number more than 14,000, this sounds a lot like the design of SpaceX’s Starlink satellites.

Another piece of information released by United Launch Alliance helps us arrive at an estimate of the mass of each Kuiper satellite. The collection of 27 satellites that launched earlier this week added up to be the heaviest payload ever flown on ULA’s Atlas V rocket. ULA said the total payload the Atlas V delivered to orbit was about 34,000 pounds, equivalent to roughly 15.4 metric tons.

It wasn’t clear whether this number accounted for the satellite dispenser, which likely weighed somewhere in the range of 1,000 to 2,000 pounds at launch. This would put the mass of each Kuiper satellite somewhere between 1,185 and 1,259 pounds (537 and 571 kilograms).

This is not far off the estimated mass of SpaceX’s most recent iteration of Starlink satellites, a version known as V2 Mini Optimized. SpaceX’s Falcon 9 rocket has launched up to 28 of these flat-packed satellites on a single launch.

We finally know a little more about Amazon’s super-secret satellites Read More »

rocket-report:-the-pitfalls-of-rideshare;-china-launches-next-tiangong-crew

Rocket Report: The pitfalls of rideshare; China launches next Tiangong crew


This week, engineers ground-tested upgrades for Blue Origin’s New Glenn and Europe’s Ariane 6.

A Long March 2F carrier rocket, carrying the Shenzhou 20 spacecraft and a crew of three astronauts, lifts off from the Jiuquan Satellite Launch Center in northwest China on April 24, 2025. Credit: Photo by Pedro Pardo/AFP via Getty Images

Welcome to Edition 7.41 of the Rocket Report! NASA and its contractors at Kennedy Space Center in Florida continue building a new mobile launch tower for the Space Launch System Block 1B rocket, a taller, upgraded version of the SLS rocket being used for the agency’s initial Artemis lunar missions. Workers stacked another segment of the tower a couple of weeks ago, and the structure is inching closer to its full height of 355 feet (108 meters). But this is just the start. Once the tower is fully assembled, it must be outfitted with miles of cabling, tubing, and piping and then be tested before it can support an SLS launch campaign. Last year, NASA’s inspector general projected the tower won’t be ready for a launch until the spring of 2029, and its costs could reach $2.7 billion. The good news, if you can call it that, is that there probably won’t be an SLS Block 1B rocket that needs to use it in 2029, whether it’s due to delays or cancellation.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Fresh details on Astra’s strategic pivot. Astra, the once high-flying rocket startup that crashed back to Earth with investors before going private last year, has unveiled new details about its $44 million contract with the Department of Defense, Space News reports. The DOD contract announced last year supports the development of Rocket 4, a two-stage, mobile launch vehicle with ambitions to deliver cargo across the globe in under an hour. While Astra’s ill-fated Rocket 3 focused on launching small satellites into low-Earth orbit, Astra wants to make Rocket 4 a military utility vehicle. Rocket 4 will still be able to loft conventional satellites, but Astra’s most lucrative contract for the new launch vehicle involves using the rocket for precise point-to-point delivery of up to 1,300 pounds (590 kilograms) of supplies from orbit via specialized reentry vehicles. The military has shown interest in developing a rocket-based rapid global cargo delivery system for several years, and it has a contract with SpaceX to study how the much larger Starship rocket could do a similar job.

Back from the brink… The Alameda, California-based company, which was delisted from Nasdaq in June 2024 after its shares collapsed, is now targeting the first test flight of Rocket 4 in 2026. Astra’s arrangement with the Defense Innovation Unit includes two milestones: one suborbital (point-to-point) and the other orbital, with the option to launch from a location outside the United States, as Astra is developing a mobile launcher. Chris Kemp, Astra’s co-founder and CEO, told Space News the orbital launch will likely originate from Australia. Astra’s first launches with the new-retired Rocket 3 vehicle were based in Alaska and Florida.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

The Army has a catchy name for its newest weapon. The Long Range Hypersonic Weapon has a new name: Dark Eagle. The US Army announced the popular name for the service’s quick strike missile this week. “Part of the name pays tribute to the eagle—a master hunter known for its speed, stealth and agility—due to the LRHW’s combination of velocity, accuracy, maneuverability, survivability and versatility,” the Army said in a press release. “In addition, the bald eagle—our national bird—represents independence, strength, and freedom.” The Dark Eagle is designed to strike targets with little or no warning via a hypersonic glide vehicle capable of maneuvering in the upper atmosphere after an initial launch with a conventional missile. The hypersonic weapon’s ability to overcome an adversary’s air and missile defenses is embodied in the word “dark” in Dark Eagle, the Army said.

Flying again soon… The Army tested the hypersonic weapon’s “all-up round” during a missile launch from Cape Canaveral, Florida, in December. The test was delayed more than a year due to unspecified issues. The Army appears to be preparing for another Dark Eagle test from Florida’s Space Coast as soon as Friday, according to airspace and maritime warning notices in the Atlantic Ocean. (submitted by EllPeaTea)

Northrop’s niche with Minotaur. Ars mentioned in last week’s Rocket Report that Northrop Grumman’s Minotaur IV rocket launched April 16 with a classified payload for the National Reconnaissance Office. This was the first Minotaur IV launch in nearly five years and the first orbital Minotaur launch from Vandenberg Space Force Base, California, in 14 years. The low-volume Minotaur IV uses solid rocket motors from the Air Force’s stockpile of retired Peacekeeper ballistic missiles, turning part of a weapon of mass destruction into, in this case, a tool to support the US government’s spy satellite agency. The Minotaur IV’s lift capability fits neatly between the capacity of smaller commercial rockets, like Firefly’s Alpha or Rocket Lab’s Electron, and larger rockets like SpaceX’s Falcon 9. The most recent Minotaur IV launch contract cost the Space Force roughly $30 million, more than a mission with Firefly but less than a dedicated ride on a Falcon 9.

Minotaur IV will keep flying… The Space Force has at least two more missions reserved to launch on the expendable Minotaur IV rocket. One of the missions will launch multiple small satellites for the US military’s Space Test Program, and the other will place a military weather satellite into orbit. Both missions will launch from California, with planning launch dates in 2026, a Space Systems Command spokesperson told Ars. “We do have multiple launches planned using Minotaur family launch vehicles between our OSP-4 (Orbital/Suborbital Program) and SRP-4 (Sounding Rocket Program) contracts,” the spokesperson said. “We will release more information on those missions as we get closer to launch.” The Commercial Space Act of 1998 prohibits the use of surplus ICBM motors for commercial launches and limits their use to only specific kinds of military launches. The restrictions were intended to encourage NASA and commercial satellite operators to use privately developed launch vehicles.

NASA’s launch prices have somehow gone up. In an era of reusable rockets and near-daily access to space, NASA is still paying more than it did 30 years ago to launch missions into orbit, according to a study soon to be published in the scientific journal Acta Astronautica. Adjusted for inflation, the prices NASA pays for launch services rose at an annual average rate of 2.82 percent from 1996 to 2024, the report says. “Furthermore, there is no evidence of shift in the launch service costs trend after the introduction of a new launch service provider [SpaceX] in 2016.” Ars analyzed NASA’s launch prices in a story published Thursday.

Why is this? … One might think SpaceX’s reuse of Falcon 9 rocket components would drive down launch prices, but no. Rocket reuse and economies of scale have significantly reduced SpaceX’s launch costs, but the company is charging NASA roughly the same as it did before booster reuse became commonplace. There are a few reasons this is happening. One is that SpaceX hasn’t faced any meaningful competition for NASA launch contracts in the last six years. That should change soon with the recent debuts of United Launch Alliance’s Vulcan rocket and Blue Origin’s New Glenn launcher. NASA levies additional requirements on its commercial launch providers, and the agency must pay for them. These include schedule priority, engineering oversight, and sometimes special payload cleanliness requirements and the choice of a particular Falcon 9 booster from SpaceX’s inventory.

What’s holding up ULA’s next launch? After poor weather forced ULA to scrub a launch attempt on April 9, the company will have to wait nearly three weeks for another try to launch an Atlas V rocket with Amazon’s first full-up load of 27 Kuiper broadband satellites, Ars reports. The rocket and satellites are healthy, according to ULA. But the military-run Eastern Range at Cape Canaveral Space Force Station, Florida, is unable to accommodate ULA until Monday, April 28. The Space Force is being unusually cagey about the reasons for the lengthy delay, which isn’t affecting SpaceX launches to the same degree.

Finally, a theory… The publishing of airspace and maritime warning notices for an apparent test launch of the Army’s Long Range Hypersonic Weapon, or Dark Eagle, might explain the range’s unavailability. The test launch could happen as soon as Friday, and offshore keep-out zones cover wide swaths of the Atlantic Ocean. If this is the reason for the long Atlas V launch delay, we still have questions. If this launch is scheduled for Friday, why has it kept ULA from launching the last few weeks? Why was SpaceX permitted to launch multiple times in the same time period? And why didn’t the first test flight of the Dark Eagle missile in December result in similar lengthy launch delays on the Eastern Range?

Shenzhou 20 bound for Tiangong. A spaceship carrying three astronauts docked Thursday with China’s space station in the latest crew rotation, approximately six hours after their launch on a Long March 2F rocket from the Gobi Desert, the Associated Press reports. The Shenzhou 20 mission is commanded by Chen Dong, who is making his third flight. He is accompanied by fighter pilot Chen Zhongrui and engineer Wang Jie, both making their maiden voyages. They will replace three astronauts currently on the Chinese Tiangong space station. Like those before them, they will stay on board for roughly six months.

Finding a rhythm… China’s human spaceflight missions have launched like clockwork since the country’s first domestic astronaut launch in 2003. Now, with the Tiangong space station fully operational, China is launching fresh crews at six-month intervals. While in space, the astronauts will conduct experiments in medical science and new technologies and perform spacewalks to carry out maintenance and install new equipment. Their tasks will include adding space debris shielding to the exterior of the Tiangong station. (submitted by EllPeaTea)

SpaceX resupplies the ISS. SpaceX launched an uncrewed Cargo Dragon spacecraft to the International Space Station early Monday on a resupply mission with increased importance after a transportation mishap derailed a flight by another US cargo ship, Spaceflight Now reports. The Dragon cargo vessel docked at the space station early Tuesday with 4,780 pounds (2,168 kilograms) of pressurized cargo and 1,653 pounds (750 kilograms) of unpressurized payloads in the vehicle’s trunk. NASA adjusted the Dragon spacecraft’s payload because an upcoming flight by Northrop Grumman’s Cygnus supply freighter was canceled after the Cygnus cargo module was damaged during transport to the launch site.

Something strange… The payloads aboard this Dragon cargo mission—the 32nd by SpaceX—include normal things like fresh food (exactly 1,262 tortillas), biomedical and pharmaceutical experiments, and the technical demonstration of a new atomic clock. However, there’s something onboard nobody at NASA or SpaceX wants to talk about. A payload package named STP-H10 inside Dragon’s trunk section will be installed on a mounting post outside of the space station to perform a mission for the US military’s Space Test Program. STP-H10 wasn’t mentioned in NASA’s press kit for this mission, and SpaceX didn’t show the usual views of Dragon’s trunk when the spacecraft deployed from its Falcon 9 rocket shortly after launch. These kinds of Space Test Program experiment platforms have launched to the ISS before without any secrecy. Stranger still is the fact that the STP-H10 experiments are unclassified. You can see the list here. (submitted by EllPeaTea)

There are some drawbacks to rideshare. SpaceX launched its third “Bandwagon” rideshare mission into a mid-inclination orbit Monday evening from Cape Canaveral Space Force Station, Space News reports. The payloads included a South Korean military radar spy satellite, a small commercial weather satellite, and the most interesting payload: an experimental reentry vehicle from a German startup named Atmos Space Cargo. The startup’s Phoenix vehicle, fitted with an inflatable heat shield, separated from the Falcon 9’s upper stage about 90 minutes after liftoff. Roughly a half-hour later, it began reentry for a splashdown in the South Atlantic Ocean, about 1,200 miles (2,000 kilometers) off the coast of Brazil. Until last month, the Phoenix vehicle was supposed to reenter over the Indian Ocean east of Madagascar, near the island of Réunion. The late change to the mission’s trajectory meant Atmos could not recover the spacecraft after splashdown.

Changes in longitude… Five weeks before the launch, SpaceX informed Atmos of a change in trajectory because of “operational constraints” of the primary payload, a South Korean reconnaissance satellite. Smaller payloads on rideshare launches benefit from lower launch prices, but their owners have no control over the schedule or trajectory of the launch. The change for this mission resulted in a splashdown well off the coast of Brazil, ruling out any attempt to recover Phoenix after splashdown. It also meant a steeper reentry than previously planned, creating higher loads on the spacecraft. The company lined up new ground stations in South America to communicate with the spacecraft during key phases of flight leading up to reentry. In addition, it chartered a plane to attempt to collect data during reentry, but the splashdown location was beyond the range of the aircraft. Some data suggests that the heat shield inflated as planned, but Atmos’s CEO said the company needed more time to analyze the data it had, adding that it was “very difficult” to get data from Phoenix in the final phases of its flight, given its distance from ground stations.

Ariane 6 is gonna need a bigger booster. A qualification motor for an upgraded solid rocket booster for Europe’s Ariane 6 rocket successfully fired up for the first time on a test stand Thursday in Kourou, French Guiana, according to the European Space Agency. The new P160C solid rocket motor burned for more than two minutes, and ESA declared the test-firing a success. ESA’s member states approved the development of the P160C motor in 2022. The upgraded motor is about 3 feet (1 meter) longer than the P120C motor currently flying on the Ariane 6 rocket and carries about 31,000 pounds (14 metric tons) more solid propellant. The Ariane 6 rocket can fly with two or four of these strap-on boosters. Officials plan to introduce the P160C on Ariane 6 flights next year, giving the rocket’s heaviest version the ability to haul up to 4,400 pounds (2 metric tons) of additional cargo mass to orbit.

A necessary change… The heavier P160C solid rocket motor is required for Arianespace to fulfill its multi-mission launch contract with Amazon’s Project Kuiper satellite broadband network. Alongside similar contracts with ULA and Blue Origin, Amazon reserved 18 Kuiper launches on Ariane 6 rockets, and 16 of them must use the upgraded P160C booster to deliver additional Kuiper satellites to orbit. The P160C is a joint project between ArianeGroup and Avio, which will use the same motor design on Europe’s smaller Vega C rocket to improve its performance. (submitted by EllPeaTea)

Progress toward the second flight of New Glenn. Blue Origin CEO Dave Limp said his team completed a full-duration 15-second hot-fire test Thursday of the upper stage for the company’s second New Glenn rocket. In a post on X, Limp wrote that the upper stage for the next New Glenn flight will have “enhanced performance.” The maximum power of its hydrogen-fueled BE-3U engine will increase from 173,000 pounds to 175,000 pounds of thrust. Two BE-3U engines fly on New Glenn’s second stage.

A good engine… The BE-3U engine is a derivative of the BE-3 engine flying on Blue Origin’s suborbital New Shepard rocket. Limp wrote that the upper stage on the first New Glenn launch in January “performed remarkably” and achieved an orbital injection with less than 1 percent deviation from its target. So when will New Glenn launch again? We’ve heard late spring, June, or October, depending on the source. I’ll note that Blue Origin test-fired the New Glenn upper stage for the rocket’s first flight about four months before it launched.

Next three launches

April 27: Alpha | “Message in a Booster” | Vandenberg Space Force Base, California | 13: 37 UTC

April 27: Long March 3B/E | Unknown Payload | Xichang Satellite Launch Center, China | 15: 55 UTC

April 27: Falcon 9 | Starlink 11-9 | Vandenberg Space Force Base, California | 20: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: The pitfalls of rideshare; China launches next Tiangong crew Read More »

reusable-rockets-are-here,-so-why-is-nasa-paying-more-to-launch-stuff-to-space?

Reusable rockets are here, so why is NASA paying more to launch stuff to space?

• 1998: Deep Space 1 Delta II rocket — $86 million

• 1999: Mars Polar Lander Delta II rocket — $88 million

• 2001: Mars Odyssey Delta II rocket — $96 million

• 2003: Spirit and Opportunity Mars rovers — two Delta II rockets — $87 million per launch

• 2004: Swift Delta II rocket — $90 million

• 2005: Mars Reconnaissance Orbiter Atlas V rocket — $147 million

• 2007: Phoenix Mars lander — Delta II rocket — $132 million

Launch prices for NASA missions soared after the late 2000s, following the creation of United Launch Alliance through a merger of the Atlas and Delta rocket programs developed by Lockheed Martin and Boeing. The merger eliminated competition for most of NASA’s launch contracts until SpaceX’s Falcon 9 became available for NASA science missions in the mid-2010s. Here’s a sample of missions as examples of the rising costs, with contract values adjusted for inflation from the time of their award to reflect 2025 dollars:

• 2009: Lunar Reconnaissance Orbiter — Atlas V rocket — $220 million

• 2012: Radiation Belt Storm Probes — Atlas V rocket — $226 million (averaged from a bulk buy)

• 2014: Orbiting Carbon Observatory-2 — Delta II rocket — $191 million (averaged from a bulk buy)

• 2016: OSIRIS-REx asteroid mission — Atlas V rocket — $252 million

• 2017: TDRS-M data relay satellite — Atlas V rocket — $179 million

• 2017: JPSS-2 weather satellite — Atlas V rocket — $224 million

• 2018: InSight Mars lander — Atlas V rocket — $220 million

• 2018: ICESAT-2 — Delta II rocket — $134 million

Again, the missions listed above would likely launch on SpaceX’s Falcon 9 rockets if NASA awarded these contracts today. So, how do SpaceX’s more recent Falcon 9 prices compare? Let’s take a look. These contract values are adjusted for inflation from the time of their award to reflect 2025 dollars:

• 2016: Jason 3 oceanography satellite — Falcon 9 rocket — $114 million

• 2018: Transiting Exoplanets Survey Satellite — Falcon 9 rocket — $118 million

• 2020: Sentinel-6A — Falcon 9 rocket — $126 million

• 2021: Double Asteroid Redirection Test — Falcon 9 rocket — $86 million

• 2021: Imaging X-ray Polarimetry Explorer — Falcon 9 rocket — $62 million

• 2022: Surface Water and Ocean Topography — Falcon 9 rocket — $148 million

• 2024: PACE Earth sciences mission — Falcon 9 rocket — $99 million

• 2025: SPHEREx astronomy mission — Falcon 9 rocket — $99 million

And here are a few future launches NASA has booked to fly on SpaceX’s Falcon 9 rocket. Some of these contracts were awarded in the last 12 months, and those have not been adjusted for inflation. The others reflect 2025 dollars:

• 2025: Interstellar Mapping and Acceleration Probe — Falcon 9 rocket — $134 million

• 2025: Sentinel-6B — Falcon 9 rocket — $101 million

• 2027: NEO Surveyor — Falcon 9 rocket — $100 million

• 2027: JPSS-4 weather satellite — Falcon 9 rocket — $113 million

• 2027: Compton Spectrometer and Imager — Falcon 9 rocket — $69 million

There are a few other things worth noting when we chart NASA’s launch prices. One is that SpaceX’s Falcon Heavy, used for NASA’s heaviest missions, costs more than a Falcon 9 rocket. For example, two identical weather satellites launched in 2022 and 2024 on ULA’s Atlas V and SpaceX’s Falcon Heavy rocket for $207 million and $178 million, respectively, again adjusted for inflation.

Reusable rockets are here, so why is NASA paying more to launch stuff to space? Read More »

there’s-a-secret-reason-the-space-force-is-delaying-the-next-atlas-v-launch

There’s a secret reason the Space Force is delaying the next Atlas V launch


The Space Force is looking for responsive launch. This week, they’re the unresponsive ones.

File photo of a SpaceX Falcon 9 launch in 2022. Credit: SpaceX

Pushed by trackmobile railcar movers, the Atlas V rocket rolled to the launch pad last week with a full load of 27 satellites for Amazon’s Kuiper Internet megaconstellation. Credit: United Launch Alliance

Last week, the first operational satellites for Amazon’s Project Kuiper broadband network were minutes from launch at Cape Canaveral Space Force Station, Florida.

These spacecraft, buttoned up on top of a United Launch Alliance Atlas V rocket, are the first of more than 3,200 mass-produced satellites Amazon plans to launch over the rest of the decade to deploy the first direct US competitor to SpaceX’s Starlink Internet network.

However, as is often the case on Florida’s Space Coast, bad weather prevented the satellites from launching April 9. No big deal, right? Anyone who pays close attention to the launch industry knows delays are part of the business. A broken component on the rocket, a summertime thunderstorm, or high winds can thwart a launch attempt. Launch companies know this, and the answer is usually to try again the next day.

But something unusual happened when ULA scrubbed the countdown last Wednesday. ULA’s launch director, Eric Richards, instructed his team to “proceed with preparations for an extended turnaround.” This meant ULA would have to wait more than 24 hours for the next Atlas V launch attempt.

But why?

At first, there seemed to be a good explanation for the extended turnaround. SpaceX was preparing to launch a set of Starlink satellites on a Falcon 9 rocket around the same time as Atlas V’s launch window the next day. The Space Force’s Eastern Range manages scheduling for all launches at Cape Canaveral and typically operates on a first-come, first-served basis.

The Space Force accommodated 93 launches on the Eastern Range last year—sometimes on the same day—an annual record that military officials are quite proud of achieving. This is nearly six times the number of launches from Cape Canaveral in 2014, a growth rate primarily driven by SpaceX. In previous interviews, Space Force officials have emphasized their eagerness to support more commercial launches. “How do we get to yes?” is often what range officials ask themselves when a launch provider submits a scheduling request.

It wouldn’t have been surprising for SpaceX to get priority on the range schedule since it had already reserved the launch window with the Space Force for April 10. SpaceX subsequently delayed this particular Starlink launch for two days until it finally launched on Saturday evening, April 12. Another SpaceX Starlink mission launched Monday morning.

There are several puzzling things about what happened last week. When SpaceX missed its reservation on the range twice in two days, April 10 and 11, why didn’t ULA move back to the front of the line?

ULA, which is usually fairly transparent about its reasons for launch scrubs, didn’t disclose any technical problems with the rocket that would have prevented another launch attempt. ULA offers access to listen to the launch team’s audio channel during the countdown, and engineers were not discussing any significant technical issues.

The company’s official statement after the scrub said: “A new launch date will be announced when approved on the range.”

Also, why can’t ULA make another run at launching the Kuiper mission this week? The answer to that question is also a mystery, but we have some educated speculation.

Changes in attitudes

A few days ago, SpaceX postponed one of its own Starlink missions from Cape Canaveral without explanation, leaving the Florida spaceport with a rare week without any launches. SpaceX plans to resume launches from Florida early next week with the liftoff of a resupply mission to the International Space Station. The delayed Starlink mission will fly a few days later.

Meanwhile, the next launch attempt for ULA is unknown.

Tory Bruno, ULA’s president and CEO, wrote on X that questions about what is holding up the next Atlas V launch are best directed toward the Space Force. A spokesperson for ULA told Ars the company is still working with the range to determine the next launch date. “The rocket and payload are healthy,” she said. “We will announce the new launch date once confirmed.”

While the SpaceX launch delay this week might suggest a link to the same range kerfuffle facing United Launch Alliance, it’s important to point out a key difference between the companies’ rockets. SpaceX’s Falcon 9 uses an automated flight termination system to self-destruct the rocket if it flies off course, while ULA’s Atlas V uses an older human-in-the-loop range safety system, which requires additional staff and equipment. Therefore, the Space Force is more likely to be able to accommodate a SpaceX mission near another activity on the range.

One more twist in this story is that a few days before the launch attempt, ULA changed its launch window for the Kuiper mission on April 9 from midday to the evening hours due to a request from the Eastern Range. Brig. Gen. Kristin Panzenhagen, the range commander, spoke with reporters in a roundtable meeting last week. After nearly 20 years of covering launches from Cape Canaveral, I found a seven-hour time change so close to launch to be unusual, so I asked Panzenhagen about the reason for it, mostly out of curiosity. She declined to offer any details.

File photo of a SpaceX Falcon 9 launch in 2022. Credit: SpaceX

“The Eastern Range is huge,” she said. “It’s 15 million square miles. So, as you can imagine, there are a lot of players that are using that range space, so there’s a lot of de-confliction … Public safety is our top priority, and we take that very seriously on both ranges. So, we are constantly de-conflicting, but I’m not going to get into details of what the actual conflict was.”

It turns out the range conflict now impacting the Eastern Range is having some longer-lasting impacts. While a one- or two-week launch delay doesn’t seem serious, it adds up to deferred or denied revenue for a commercial satellite operator. National security missions get priority on range schedules at Cape Canaveral and at Vandenberg Space Force Base in California, but there are significantly more commercial missions than military launches from both spaceports.

Clearly, there’s something out of the ordinary going on in the Eastern Range, which extends over much of the Atlantic Ocean to the southeast, east, and northeast of Cape Canaveral. The range includes tracking equipment, security forces, and ground stations in Florida and downrange sites in Bermuda and Ascension Island.

One possibility is a test of one or more submarine-launched Trident ballistic missiles, which commonly occur in the waters off the east coast of Florida. But those launches are usually accompanied by airspace and maritime warning notices to ensure pilots and sailors steer clear of the test. Nothing of the sort has been publicly released in the last couple of weeks.

Maybe something is broken at the Florida launch base. When launches were less routine than today, the range at Cape Canaveral would close for a couple of weeks per year for upgrades and refurbishment of critical infrastructure. This is no longer the case. In 2023, Panzenhagen told Ars that the Space Force changed the policy.

“When the Eastern Range was supporting 15 to 20 launches a year, we had room to schedule dedicated periods for maintenance of critical infrastructure,” she said at the time. “During these periods, launches were paused while teams worked the upgrades. Now that the launch cadence has grown to nearly twice per week, we’ve adapted to the new way of business to best support our mission partners.”

Perhaps, then, it’s something more secret, like a larger-scale, multi-element military exercise or war game that either requires Eastern Range participation or is taking place in areas the Space Force needs to clear for safety reasons for a rocket launch to go forward. The military sometimes doesn’t publicize these activities until they’re over.

A Space Force spokesperson did not respond to Ars Technica’s questions on the matter.

While we’re still a ways off from rocket launches becoming as routine as an airplane flight, the military is shifting in the way it thinks about spaceports. Instead of offering one-off bespoke services tailored to the circumstances of each launch, the Space Force wants to operate the ranges more like an airport.

“We’ve changed the nomenclature from calling ourselves a range to calling ourselves a spaceport because we see ourselves more like an airport in the future,” one Space Force official told Ars for a previous story.

In the National Defense Authorization Act for fiscal-year 2024, Congress gave the Space Force the authority to charge commercial launch providers indirect fees to help pay for common infrastructure at Cape Canaveral and Vandenberg—things like roads, electrical and water utilities, and base security used by all rocket operators at each spaceport. The military previously could only charge rocket companies direct fees for the specific services it offered in support of a particular launch, while the government was on the hook for overhead costs.

Military officials characterize the change in law as a win-win for the government and commercial launch providers. Ideally, it will grow the pool of money available to modernize the military’s spaceports, making them more responsive to all users, whether it’s the Space Force, SpaceX, ULA, or a startup new to the launch industry.

Whatever is going on in Florida or the Atlantic Ocean this week, it’s something the Space Force doesn’t want to talk about in detail. Maybe there are good reasons for that.

Cape Canaveral is America’s busiest launch base. Extending the spaceport-airport analogy a little further, the closure of America’s busiest airport for a week or more would be a big deal. One of the holy grails the Space Force is pursuing is the capability to launch on demand.

This week, there’s demand for launch slots at Cape Canaveral, but the answer is no.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

There’s a secret reason the Space Force is delaying the next Atlas V launch Read More »