military space

it’s-hunting-season-in-orbit-as-russia’s-killer-satellites-mystify-skywatchers

It’s hunting season in orbit as Russia’s killer satellites mystify skywatchers


“Once more, we play our dangerous game—a game of chess—against our old adversary.”

In this pool photograph distributed by the Russian state media agency Sputnik, Russia’s President Vladimir Putin gives a speech during the Victory Day military parade at Red Square in central Moscow on May 9, 2025. Credit: Yacheslav Prokofyev/Pool/AFP via Getty Images

Russia is a waning space power, but President Vladimir Putin has made sure he still has a saber to rattle in orbit.

This has become more evident in recent weeks, when we saw a pair of rocket launches carrying top-secret military payloads, the release of a mysterious object from a Russian mothership in orbit, and a sequence of complex formation-flying maneuvers with a trio of satellites nearly 400 miles up.

In isolation, each of these things would catch the attention of Western analysts. Taken together, the frenzy of maneuvers represents one of the most significant surges in Russian military space activity since the end of the Cold War. What’s more, all of this is happening as Russia lags further behind the United States and China in everything from rockets to satellite manufacturing. Russian efforts to develop a reusable rocket, field a new human-rated spacecraft to replace the venerable Soyuz, and launch a megaconstellation akin to SpaceX’s Starlink are going nowhere fast.

Russia has completed just eight launches to orbit so far this year, compared to 101 orbital attempts by US launch providers and 36 from China. This puts Russia on pace for the fewest number of orbital launch attempts since 1961, the year Soviet citizen Yuri Gagarin became the first person to fly in space.

For the better part of three decades, Russia’s space program could rely on money from Western governments and commercial companies to build rockets, launch satellites, and ferry astronauts to and from the International Space Station. The money tap dried up after Russia’s invasion of Ukraine. Russia also lost access to Ukrainian-made components to go into their launch vehicles and satellites.

Chasing a Keyhole

Amid this retrenchment, Russia is targeting what’s left of its capacity for innovation in space toward pestering the US military. US intelligence officials last year said they believed Russia was pursuing a project to place a nuclear weapon in space. The detonation of a nuclear bomb in orbit could muck up the space environment for years, indiscriminately disabling countless satellites, whether they’re military or civilian.

Russia denied that it planned to launch a satellite with a nuclear weapon, but the country’s representative in the United Nations vetoed a Security Council resolution last year that would have reaffirmed a nearly 50-year-old ban on placing weapons of mass destruction into orbit.

While Russia hasn’t actually put a nuclear bomb into orbit yet, it’s making progress in fielding other kinds of anti-satellite systems. Russia destroyed one of its own satellites with a ground-launched missile in 2021, and high above us today, Russian spacecraft are stalking American spy satellites and keeping US military officials on their toes with a rapid march toward weaponizing space.

The world’s two other space powers, the United States and China, are developing their own “counter-space” weapons. But the US and Chinese militaries have largely focused on using their growing fleets of satellites as force multipliers in the terrestrial domain, enabling precision strikes, high-speed communications, and targeting for air, land, and naval forces. That is starting to change, with US Space Force commanders now openly discussing their own ambitions for offensive and defensive counter-space weapons.

Three of Russia’s eight orbital launches this year have carried payloads that could be categorized as potential anti-satellite weapons, or at least prototypes testing novel technologies that could lead to one. (For context, three of Russia’s other launches this year have gone to the International Space Station, and two launched conventional military communications or navigation satellites.)

One of these mystery payloads launched on May 23, when a Soyuz rocket boosted a satellite into a nearly 300-mile-high orbit perfectly aligned with the path of a US spy satellite owned by the National Reconnaissance Office. The new Russian satellite, designated Kosmos 2588, launched into the same orbital plane as an American satellite known to the public as USA 338, which is widely believed to be a bus-sized KH-11, or Keyhole-class, optical surveillance satellite.

A conceptual drawing of a KH-11 spy satellite, with internal views, based on likely design similarities to NASA’s Hubble Space Telescope. Credit: Giuseppe De Chiara/CC BY-SA 3.0

The governments of Russia and the United States use the Kosmos and USA monikers as cover names for their military satellites.

While their exact design and capabilities are classified, Keyhole satellites are believed to provide the sharpest images of any spy satellite in orbit. They monitor airfields, naval ports, missile plants, and other strategic sites across the globe. In the zeitgeist of geopolitics, China, Russia, Iran, and North Korea are the likeliest targets for the NRO’s Keyhole satellites. To put it succinctly, Keyhole satellites are some of the US government’s most prized assets in space.

Therefore, it’s not surprising to assume a potential military adversary might want to learn more about them or be in a position to disable or destroy them in the event of war.

Orbital ballet

A quick refresher on orbital mechanics is necessary here. Satellites orbit the Earth in flat planes fixed in inertial space. It’s not a perfect interpretation, but it’s easiest to understand this concept by imagining the background of stars in the sky as a reference map. In the short term, the position of a satellite’s orbit will remain unchanged on this reference map without any perturbation. For something in low-Earth orbit, Earth’s rotation presents a different part of the world to the satellite each time it loops around the planet.

It takes a lot of fuel to make changes to a satellite’s orbital plane, so if you want to send a satellite to rendezvous with another spacecraft already in orbit, it’s best to wait until our planet’s rotation brings the launch site directly under the orbital plane of the target. This happens twice per day for a satellite in low-Earth orbit.

That’s exactly what Russia is doing with a military program named Nivelir. In English, Nivelir translates to “dumpy level”—an optical instrument used by builders and surveyors.

The launch of Kosmos 2588 in May was precisely timed for the moment Earth’s rotation brought the Plesetsk Cosmodrome in northern Russia underneath the orbital plane of the NRO’s USA 338 Keyhole satellite. Launches to the ISS follow the same roadmap, with crew and cargo vehicles lifting off at exactly the right time—to the second—to intersect with the space station’s orbital plane.

Since 2019, Russia has launched four satellites into bespoke orbits to shadow NRO spy satellites. None of these Russian Nivelir spacecraft have gotten close to their NRO counterparts. The satellites have routinely passed dozens of miles from one another, but the similarities in their orbits would allow Russia’s spacecraft to get a lot closer—and theoretically make physical contact with the American satellite. The Nivelir satellites have even maneuvered to keep up with their NRO targets when US ground controllers have made small adjustments to their orbits.

“This ensures that the orbital planes do not drift apart,” wrote Marco Langbroek, a Dutch archaeologist and university lecturer on space situational awareness. Langbroek runs a website cataloguing military space activity.

This is no accident

There’s reason to believe that the Russian satellites shadowing the NRO in orbit might be more than inspectors or stalkers. Just a couple of weeks ago, another Nivelir satellite named Kosmos 2558 released an unknown object into an orbit that closely mirrors that of an NRO spy satellite named USA 326.

We’ve seen this before. An older Nivelir satellite, Kosmos 2542, released a sub-satellite shortly after launching in 2019 into the same orbital plane as the NRO’s USA 245 satellite, likely a KH-11 platform similar to the USA 338 satellite now being shadowed by Kosmos 2588.

After making multiple passes near the USA 245 spacecraft, Kosmos 2542’s sub-satellite backed off and fired a mysterious projectile in 2020 at a speed fast enough to damage or destroy any target in its sights. US military officials interpreted this as a test of an anti-satellite weapon.

Now, another Russian satellite is behaving in the same way, with a mothership opening up to release a smaller object that could in turn reveal its own surprise inside like a Matryoshka nesting doll. This time, however, the doll is unnesting nearly three years after launch. With Kosmos 2542, this all unfolded within months of arriving in space.

The NRO’s USA 326 satellite launched in February 2022 aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, California. It is believed to be an advanced electro-optical reconnaissance satellite, although the circumstances of its launch suggest a design different from the NRO’s classic Keyhole spy satellites. Credit: SpaceX

In just the last several days, the smaller craft deployed by Kosmos 2558designated “Object C”lowered its altitude to reach an orbit in resonance with USA 326, bringing it within 60 miles (100 kilometers) of the NRO satellite every few days.

While US officials are worried about Russian anti-satellite weapons, or ASATs, the behavior of Russia’s Nivelir satellites is puzzling. It’s clear that Russia is deliberately launching these satellites to get close to American spy craft in orbit, a retired senior US military space official told Ars on background.

“If you’re going to launch a LEO [low-Earth orbit] satellite into the exact same plane as another satellite, you’re doing that on purpose,” said the official, who served in numerous leadership positions in the military’s space programs. “Inclination is one thing. We put a bunch of things into Sun-synchronous orbits, but you have a nearly boundless number of planes you can put those into—360 degrees—and then you can go down to probably the quarter-degree and still be differentiated as being a different plane. When you plane-match underneath that, you’re doing that on purpose.”

But why?

What’s not as obvious is why Russia is doing this. Lobbing an anti-satellite, or counter-space, weapon into the same orbital plane as its potential target ties Russia’s hands. Also, a preemptive strike on an American satellite worth $1 billion or more could be seen as an act of war.

“I find it strange that the Russians are doing that, that they’ve invested their rubles in a co-planar LEO counter-space kind of satellite,” the retired military official said. “And why do I say that? Because when you launch into that plane, you’re basically committed to that plane, which means you only have one potential target ever.”

A ground-based anti-satellite missile, like the one Russia tested against one of its own satellites in 2021, could strike any target in low-Earth orbit.

“So why invest in something that is so locked into a target once you put it up there, when you have the flexibility of a ground launch case that’s probably even cheaper?” this official told Ars. “I’d be advocating for more ground-launched ASATs if I really wanted the flexibility to go after new payloads, because this thing can never go after anything new.”

“The only way to look at it is that they’re sending us messages. You say, ‘Hey, I’m going to just annoy the hell out of you. I’m going to put something right on your tail,'” the official said. “And maybe there’s merit to that, and they like that. It doesn’t make sense from a cost-benefit or an operational flexibility perspective, if you think about it, to lock in on a single target.”

Nevertheless, Russia’s Nivelir satellites have shown they could fire a projectile at another spacecraft in orbit, so US officials don’t dismiss the threat. Slingshot Aerospace, a commercial satellite tracking and analytics firm, went straight to the point in its assessment: “Kosmos 2588 is thought to be a Nivelir military inspection satellite with a suspected kinetic weapon onboard.”

Langbroek agrees, writing that he is concerned that Russia might be positioning “dormant” anti-satellite weapons within striking distance of NRO spy platforms.

“To me, the long, ongoing shadowing of what are some of the most prized US military space assets, their KH-11 Advanced Enhanced Crystal high-resolution optical IMINT (imaging intelligence) satellites, is odd for ‘just’ an inspection mission,” Langbroek wrote.

American pilot Francis Gary Powers, second from right, in a Moscow courtroom during his trial on charges of espionage after his U-2 spy plane was shot down while working for the CIA. Credit: Pictorial Parade/Archive Photos/Getty Images

The US military’s ability to spy over vast swaths of Russian territory has been a thorn in Russia’s side since the height of the Cold War.

“They thought they had the edge and shot down Gary Powers,” the retired official said, referring to the Soviet Union’s shoot-down of an American U-2 spy plane in 1960. “They said, ‘We’re going to keep those Americans from spying on us.’ And then they turn around, and we’ve got spy satellites. They’ve always hated them since the 1960s, so I think there’s still this cultural thing out there: ‘That’s our nemesis. We hate those satellites. We’re just going to fight them.'”

Valley of the dolls

Meanwhile, the US Space Force and outside analysts are tracking a separate trio of Russian satellites engaged in a complex orbital dance with one another. These satellites, numbered Kosmos 2581, 2582, and 2583, launched together on a single rocket in February.

While these three spacecraft aren’t shadowing any US spy satellites, things got interesting when one of the satellites released an unidentified object in March in a similar way to how two of Russia’s Nivelir spacecraft have deployed their own sub-satellites.

Kosmos 2581 and 2582 came as close as 50 meters from one another while flying in tandem, according to an analysis by Bart Hendrickx published in the online journal The Space Review earlier this year. The other member of the trio, Kosmos 2583, released its sub-satellite and maneuvered around it for about a month, then raised its orbit to match that of Kosmos 2581.

Finally, in the last week of June, Kosmos 2582 joined them, and all three satellites began flying close to one another, according to Langbroek, who called the frenzy of activity one of the most complex rendezvous and proximity operations exercises Russia has conducted in decades.

Higher still, two more Russian satellites are up to something interesting after launching on June 19 on Russia’s most powerful rocket. After more than 30 years in development, this was the first flight of Russia’s Angara A5 rocket, with a real functioning military satellite onboard, following four prior test launches with dummy payloads.

The payload Russia’s military chose to launch on the Angara A5 is unusual. The rocket deployed its primary passenger, Kosmos 2589, into a peculiar orbit hugging the equator and ranging between approximately 20,000 (12,500 miles) and 51,000 kilometers (31,700 miles) in altitude.

In this orbit, Kosmos 2589 completes a lap around the Earth about once every 24 hours, giving the satellite a synchronicity that allows it to remain nearly fixed in the sky over the same geographic location. These kinds of geosynchronous, or GEO, orbits are usually circular, with a satellite maintaining the same altitude over the equator.

The orbits of Kosmos 2589 and its companion satellite, illustrated in green and purple, bring the two Russian spacecraft through the geostationary satellite belt twice per day. Credit: COMSPOC

But Kosmos 2589 is changing altitude throughout its day-long orbit. Twice per day, on the way up and back down, Kosmos 2589 briefly passes near a large number of US government and commercial satellites in more conventional geosynchronous orbits but then quickly departs the vicinity. At a minimum, this could give Russian officials the ability to capture close-up views of American spy satellites.

Then, a few days after Kosmos 2589 reached orbit last month, commercial tracking sensors detected a second object nearby. Sound familiar? This new object soon started raising its altitude, and Kosmos 2589 followed suit.

Aiming higher

Could this be the start of an effort to extend the reach of Russian inspectors or anti-satellite weapons into higher orbits after years of mysterious activity at lower altitudes?

Jim Shell, a former NRO project manager and scientist at Air Force Space Command, suggested the two satellites seem positioned to cooperate with one another. “Many interesting scenarios here such as ‘spotter shooter’ among others. Certainly something to keep eyes on!” Shell posted Saturday on X.

COMSPOC, a commercial space situational awareness company, said the unusual orbit of Kosmos 2589 and its companion put the Russian satellites in a position to, at a minimum, spy on Western satellites in geosynchronous orbit.

“This unique orbit, which crosses two key satellite regions daily, may aid in monitoring objects in both GEO and graveyard orbits,” COMSPOC wrote on X. “Its slight 1° inclination could also reduce collision risks. While the satellite’s mission remains unclear, its orbit suggests interesting potential roles.”

Historically, Russia’s military has placed less emphasis on operating in geosynchronous orbit than in low-Earth orbit or other unique perches in space. Due to their positions near the equator, geosynchronous orbits are harder to reach from Russian spaceports because of the country’s high latitude. But Russia’s potential adversaries, like the United States and Europe, rely heavily on geosynchronous satellites.

Other Russian satellites have flown near Western communications satellites in geosynchronous orbit, likely in an attempt to eavesdrop on radio transmissions.

“So it is interesting that they may be doing a GEO inspector,” the retired US military space official told Ars. “I would be curious if that’s what it is. We’ve got to watch. We’ve got to wait and see.”

If you’re a fan of spy techno-thrillers, this all might remind you of the plot from The Hunt for Red October, where a new state-of-the-art Russian submarine leaves its frigid port in Murmansk with orders to test a fictional silent propulsion system that could shake up the balance of power between the Soviet and American navies.

Just replace the unforgiving waters of the North Atlantic Ocean with an environment even more inhospitable: the vacuum of space.

A few minutes into the film, the submarine’s commander, Marko Ramius, played by Sean Connery, announces his orders to the crew. “Once more, we play our dangerous game, a game of chess, against our old adversary—the American Navy.”

Today, nearly 40 years removed from the Cold War, the old adversaries are now scheming against one another in space.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

It’s hunting season in orbit as Russia’s killer satellites mystify skywatchers Read More »

nearly-everyone-opposes-trump’s-plan-to-kill-space-traffic-control-program

Nearly everyone opposes Trump’s plan to kill space traffic control program

The trade organizations count the largest Western commercial satellite operators among their members: SpaceX, Amazon, Eutelsat OneWeb, Planet Labs, Iridium, SES, Intelsat, and Spire. These are the companies with the most at stake in the debate over the future of space traffic coordination. Industry sources told Ars that some companies are concerned a catastrophic collision in low-Earth orbit might trigger a wave of burdensome regulations, an outcome they would like to avoid.

“Without funding for space traffic coordination, US commercial and government satellite operators would face greater risksputting critical missions in harm’s way, raising the cost of doing business, and potentially driving US industry to relocate overseas,” the industry groups warned.

Members of the 18th Space Defense Combat Squadron observe orbital data at Vandenberg Space Force Base, California, on October 4, 2024. Credit: US Space Force/David Dozoretz

The military currently performs the spaceflight safety mission, providing up to a million collision warnings per day to give satellite operators a heads-up that their spacecraft will encounter another object as they speed around the Earth at nearly 5 miles per second. A collision at those velocities would endanger numerous other satellites, including the International Space Station. This happened in 2009 with the accidental collision of a functional commercial communications satellite and a defunct Russian spacecraft, adding more than 2,000 pieces of debris to busy orbital traffic lanes.

Ideally, the Space Force issues its warnings in time for a satellite operator to maneuver their spacecraft out of the path of a potential collision. Satellite operators might also have more precise information on the location of their spacecraft and determine that they don’t need to perform any collision avoidance maneuver.

The military’s Space Surveillance Network (SSN) tracks more than 47,000 objects in orbit. Most of these objects are orbital debris, but there’s a growing number of active spacecraft as many operators—mainly SpaceX, Amazon, the Space Force, and Chinadeploy megaconstellations with hundreds to thousands of satellites.

The Satellite Industry Association reports that nearly 2,700 satellites were launched into Earth orbit last year, bringing the total number of active satellites to 11,539, a threefold increase over the number of operating spacecraft in 2020.

Under strain

Space Force officials are eager to exit the business of warning third-party satellite operators, including rivals such as Russia and China, of possible collisions in orbit. The military would prefer to focus on managing ever-growing threats from satellites, an intensive effort that requires continual monitoring as other nations’ increasingly sophisticated spacecraft maneuver from one orbit to another.

Nearly everyone opposes Trump’s plan to kill space traffic control program Read More »

china-jumps-ahead-in-the-race-to-achieve-a-new-kind-of-reuse-in-space

China jumps ahead in the race to achieve a new kind of reuse in space


The SJ-21 and SJ-25 satellites “merged” on July 2 and have remained together since then.

This image from a telescope operated by s2a systems, a Swiss space domain awareness company, shows China’s SJ-21 and SJ-25 satellites flying near one another on June 26. Credit: s2a systems

Two Chinese satellites have rendezvoused with one another more than 20,000 miles above the Earth in what analysts believe is the first high-altitude attempt at orbital refueling.

China’s Shijian-21 and Shijian-25 satellites, known as SJ-21 and SJ-25 for short, likely docked together in geosynchronous orbit sometime last week. This is the conclusion of multiple civilian satellite trackers using open source imagery showing the two satellites coming together, then becoming indistinguishable as a single object.

Chinese officials have released no recent public information on what the two satellites are up to, but they’ve said a bit about their missions in prior statements.

SJ-25, which launched in January, is designed “for the verification of satellite fuel replenishment and life extension service technologies,” according to the Shanghai Academy of Spaceflight Technology, the Chinese state-owned contractor that developed the satellite. SJ-21 launched in 2021 and docked with a defunct Chinese Beidou navigation satellite in geosynchronous orbit, then towed it to a higher altitude for disposal before returning to the geosynchronous belt. Chinese officials described this demonstration as a test of “space debris mitigation” techniques.

More than meets the eye

These kinds of technologies are dual-use, meaning they have civilian and military applications. For example, a docking in geosynchronous orbit could foretell an emerging capability for China to approach, capture, and disable another country’s satellite. At the same time, the US Space Force is interested in orbital refueling as it seeks out ways to extend the lives of military satellites, which are often limited by finite fuel supplies.

The Space Force sometimes calls this concept dynamic space operations. While some military leaders remain skeptical about the payoff of in-space refueling, the Space Force has an agreement with Astroscale to perform the first refueling of a US military asset in orbit as soon as next year.

China appears to be poised to beat the US Space Force to the punch. The apparent docking of the two satellites last week suggests SJ-21 is the target for SJ-25’s refueling demonstration, and US officials are watching. Two of the Space Force’s inspector satellites, known by the acronym GSSAP, positioned themselves near SJ-21 and SJ-25 to get a closer look.

Retired Space Force Lt. Gen. John Shaw is a vocal proponent of dynamic space operations. Because of this, he’s interested in what happens with SJ-21 and SJ-25. Shaw was deputy commander of US Space Command before his retirement in 2023. In this role, Shaw had some oversight over GSSAP satellites as they roamed geosynchronous orbit.

“The theory behind dynamic space operations stemmed from a kind of operational frustration with our inability to conduct the full range of activities with GSSAP that we wanted to at Space Command, as the warfighter—largely due to the combination of fixed fuel availability and expected satellite lifetime,” Shaw told Ars.

As other countries, mainly China, step up their clandestine activities in orbit, military officials are asking more of the GSSAP satellites.

“It was operationally driven then, a couple years ago, but it’s now manifesting itself in much wider ways than even it did back then, particularly in the face of activities by potential adversaries,” Shaw said. “That’s why I’m more confident and even more zealous about it.”

Geosynchronous orbit is a popular location for military and commercial satellites. At an altitude of some 22,236 miles (35,786 kilometers), a satellite’s orbital velocity perfectly matches the speed of Earth’s rotation, meaning a spacecraft has a fixed view of the same region of the planet 24 hours per day. This is useful for satellites providing military forces with secure strategic communications and early warning of missile attacks.

Now, geosynchronous orbit is becoming a proving ground for new kinds of spacecraft to inspect or potentially attack other satellites. Ground-based anti-satellite missiles aren’t as useful in striking targets in high-altitude orbits, and there’s a consensus that, if you were to attack an enemy satellite, it would make more sense to use a weapons platform already in space that could move in and connect with the target without blowing it up and creating a cloud of dangerous space junk.

Keeping watch

The US military’s GSSAP satellites began launching in 2014. They carry enough propellant to maneuver around geosynchronous orbit and approach objects for closer inspection, but there’s a limit to what they can do. Six GSSAP satellites have been launched to date, but the Space Force decommissioned one of them in 2023. Meanwhile, China’s satellite operators are watching the watchers.

“We’ve seen where GSSAP safely and responsibly approaches a Chinese vehicle, and it just quickly maneuvers away,” Shaw said. “We tend to fly our GSSAPs like dirigibles, using relatively slow, minimum energy transfer approaches. The Chinese know that we do that, so it is relatively easy for them to maneuver away today to avoid such an approach.

“If tomorrow they’re able to refuel at will and operate even more dynamically, then the marginal cost of those maneuvers for them becomes even lower, and the challenge for GSSAP becomes even greater,” Shaw said.

Danish Rear Admiral Damgaard Rousøe, Danish Defence Attaché, right, observes space domain awareness data with US Space Force Lt. Col. Mark Natale, left, Joint Commercial Operations cell director, in Colorado Springs, Colorado, on September 26, 2024. Credit: US Space Force/Dalton Prejeant

China launched a satellite into geosynchronous orbit in 2016 with a robotic arm that could grab onto another object in space, then sent SJ-21 into orbit four years ago on its “space debris mitigation” mission.

Northrop Grumman launched two satellites in 2019 and 2020 that accomplished the first dockings in geosynchronous orbit. Northrop’s satellites, which it calls Mission Extension Vehicles, took control of two aging commercial communications satellites running low on fuel, maneuvering them to new locations and allowing them to continue operating for several more years. It’s easy to see that this kind of technology could be used for commercial or military purposes.

But these Mission Extension Vehicles don’t have the ability to transfer fluids from one satellite to another. That is the step China is taking with SJ-21 and SJ-25, presumably with hydrazine and nitrogen tetroxide propellants, which most satellites use because they combust on contact with one another.

US Space Command’s Joint Commercial Operations cell, which collects unclassified satellite monitoring data to bolster the military’s classified data sources, estimated the SJ-21 and SJ-25 satellites “merged” on July 2 and have remained together since then. The video below, released by s2a systems, shows SJ-25 approaching SJ-21 on June 30.

A time-lapse of yesterday’s SJ-25 / SJ-21 coverage, recorded from 08: 30 to 20: 53 UTC. pic.twitter.com/HUPWBTXZc9

— s2a systems (@s2a_systems) July 1, 2025

The unclassified data does not confirm that the two satellites actually docked, but that is likely what happened. The satellites came together, or merged, on June 13 and June 30 but separated again within a few hours. These may have been practice runs, aborted docking attempts, or sudden maneuvers to avoid the prying eyes of the US military’s GSSAP satellites loitering nearby.

Now, the SJ-21 and SJ-25 have been flying together for more than five days with no discernible changes detected from ground-based telescopes. Thousands of miles over the equator, the two satellites appear only as dots in the viewfinders of these telescopes positioned around the globe.

What we don’t know

COMSPOC is a Pennsylvania-based company that collects and processes data from commercial satellite tracking sensors. COMSPOC fuses optical telescope imagery with radar tracking and passive radio frequency (RF) data, which uses radio signals to measure exact distances to satellites in space, to get the best possible estimate of a spacecraft’s position.

“With most telescopes… at 1 kilometer or a half a kilometer, somewhere in there, you’re going to start to lose it when they get that close,” said Paul Graziani, COMSPOC’s founder and CEO, in an interview with Ars. “I think it’d be difficult for any telescope, even a really capable one, to get within 100 meters. That seems to be a stretch for telescopes.”

That’s why it’s helpful to add radar and RF data to the mix.

“When you add all of that together, you become much better than the 1-kilometer [precision] that a ‘scope might be,” said Joe Callaro, COMSPOC’s director of operations. “RF tells you if part of that blob is moving and the other part isn’t, and even when they all become one pixel, you can tell things about that.”

Even then, companies like COMSPOC have a degree of uncertainty in their conclusions unless Chinese or US officials make a more definitive statement.

“We are not working with the government,” Callaro told Ars before last week’s apparent docking. “We are not clearing this. The charge that I have for my team is we won’t make assertions as to what’s going on. We will only tell what our software gives us as a solution. We can say, ‘Here are the elements, here’s the visual, but what it means and what it’s doing, we will not assert.’

“We will not say they’re docked because unless they told me, I wouldn’t know that,” Callaro said. “So, we will say they’ve been together for this amount of time, that the mission could have happened, and then they separated, became two, and separated at whatever speed.”

SJ-21’s behavior for the last couple of years suggested it was running empty after undertaking large propulsive maneuvers to capture the Chinese Beidou satellite and move it to a different orbit.

Callaro served as a tactician in the Air Force’s Joint Space Operations Center, then joined the Aerospace Corporation before taking the job as operations lead at COMSPOC. He doesn’t buy China’s suggestion that SJ-21 was purely an experiment in collecting space debris.

“That is not how I see that at all,” Callaro said. “The fact that we can calculate all the maneuvers it takes to get out and get back, and the fact that afterwards, it spent a couple of years basically not moving, probably because it was low on fuel, sets up the idea [that there’s more to SJ-21’s mission]. Now, SJ-25 goes out there, and it’s supposed to be a fuel tank, and it’s perfectly aligned with SJ-21 and now we see this happening, tells me that it’s much more a counter-space capability than it is a trash remove. But that’s what they say.”

Unless China makes a public statement on the refueling of SJ-21 by SJ-25, observers won’t know for sure if the servicing demo was successful until the satellites detach. Then, US officials and independent analysts will watch to see if SJ-21 makes any substantial maneuvers, which might indicate the satellite has a full tank of gas for whatever mission Chinese officials send it off to do next.

Listing image: Costfoto/Future Publishing via Getty Images

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

China jumps ahead in the race to achieve a new kind of reuse in space Read More »

do-these-buddhist-gods-hint-at-the-purpose-of-china’s-super-secret-satellites?

Do these Buddhist gods hint at the purpose of China’s super-secret satellites?

Mission patches are a decades-old tradition in spaceflight. They can range from the figurative to the abstract, prompting valuable insights or feeding confusion. Some are just plain weird.

Ars published a story a few months ago on spaceflight patches from NASA, SpaceX, Russia, and the NRO, the US government’s spy satellite agency, which is responsible for some of the most head-scratching mission logos.

Until recently, China’s entries in the realm of spaceflight patches often lacked the originality found in patches from the West. For example, a series of patches for China’s human spaceflight missions used a formulaic design with a circular shape and a mix of red and blue. The patch for China’s most recent Shenzhou crew to the country’s Tiangong space station last month finally broke the mold with a triangular shape after China’s human spaceflight agency put the patch up for a public vote.

But there’s a fascinating set of new patches Chinese officials released for a series of launches with top secret satellites over the last two months. These four patches depict Buddhist gods with a sense of artistry and sharp colors that stand apart from China’s previous spaceflight emblems, and perhaps—or perhaps not—they can tell us something about the nature of the missions they represent.

Guardians of the Dharma

The four patches show the Four Heavenly Kings, protector deities in Buddhism who guard against evil forces in the four cardinal directions, according to the Kyoto National Museum. The gods also shield the Dharma, the teachings of the Buddha, from external threats.

These gods have different names, but in China, they are known as Duōwén, Zēngzhǎng, Chíguó, and Guăngmù. Duōwén is the commander and the guardian of the north, the “one who listens to many teachings,” who is often depicted with an umbrella. Zēngzhǎng, guardian of the south, is a god of growth shown carrying a sword. The protector of the east is Chíguó, defender of the nation, who holds a stringed musical instrument. And guarding the west is Guăngmù, an all-seeing god usually depicted with a serpent.

Do these Buddhist gods hint at the purpose of China’s super-secret satellites? Read More »

weapons-of-war-are-launching-from-cape-canaveral-for-the-first-time-since-1988

Weapons of war are launching from Cape Canaveral for the first time since 1988


Unlike a recent hypersonic missile test, officials didn’t immediately confirm Friday’s flight was a success.

File photo of a previous launch of the Army’s Long-Range Hypersonic Weapon from Cape Canaveral Space Force Station, Florida, on December 12, 2024. Credit: Department of Defense

The US military launched a long-range hypersonic missile Friday morning from Cape Canaveral Space Force Station in Florida on a test flight that, if successful, could pave the way for the weapon’s operational deployment later this year.

The Army’s Long-Range Hypersonic Weapon fired out of a canister on a road-mobile trailer shortly after sunrise on Florida’s Space Coast, then headed east over the Atlantic Ocean propelled by a solid-fueled rocket booster. Local residents shared images of the launch on social media.

Designed for conventional munitions, the new missile is poised to become the first ground-based hypersonic weapon fielded by the US military. Russia has used hypersonic missiles in combat against Ukraine. China has “the world’s leading hypersonic missile arsenal,” according to a recent Pentagon report on Chinese military power. After a successful test flight from Cape Canaveral last year, the long-range hypersonic weapon (LRHW)—officially named “Dark Eagle” by the Army earlier this week—will give the United States the ability to strike targets with little or no warning.

The Dark Eagle missile rapidly gained speed and altitude after launch Friday morning, then soon disappeared from the view of onlookers at Cape Canaveral. Warning notices advising pilots and mariners to steer clear of the test area indicated the missile and its hypersonic glide vehicle were supposed to splash down in the mid-Atlantic Ocean hundreds of miles north and northeast of Puerto Rico.

Success not guaranteed

A US defense official did not answer questions from Ars about the outcome of the test flight Friday.

“A combined team of government, academic, and industry partners conducted a test on behalf of the Department of Defense from a test site at Cape Canaveral Space Force Station,” the official said. “We are currently evaluating the results of the test.”

Liftoff of the LRHW Dark Eagle this morning 🚀 https://t.co/lCJhUXxT84 pic.twitter.com/YJXXuSxmJK

— Jerry Pike (@JerryPikePhoto) April 25, 2025

This missile launch and a similar one in December are the first tests of land-based offensive weapons at Cape Canaveral since 1988, when the military last tested Pershing ballistic missiles there. The launch range in Florida continues to support offshore tests of submarine-launched Trident missiles, and now is a center for hypersonic missile testing.

The Pentagon has a long-standing policy of not publicizing hypersonic missile tests before they happen, except for safety notices for civilian airplanes and ships downrange. But the Defense Department declared the previous Dark Eagle test flight a success within a few hours of the launch, and did not do so this time.

Hypersonic missiles offer several advantages over conventional ballistic missiles. These new kinds of weapons are more maneuverable and dimmer than other missiles, so they are more difficult for an aerial defense system to detect, track, and destroy. They are designed to evade an adversary’s missile warning sensors. These sensors were originally activated to detect larger, brighter incoming ballistic missiles, which have a predictable trajectory toward their targets after boosting themselves out of the atmosphere and into space.

A hypersonic weapon is different. It can skim through the upper atmosphere at blistering speeds, producing a much dimmer heat signature that is difficult to see with an infrared sensor on a conventional missile warning satellite. At these altitudes, the glide vehicle can take advantage of aerodynamic forces for maneuvers. This is why the Pentagon’s Space Development Agency is spending billions of dollars to deploy a network of missile tracking satellites in low-Earth orbit, putting hundreds of sophisticated sensors closer to the flight path of hypersonic weapons.

Dark Eagle is designed to fly at speeds exceeding Mach 5, or 3,800 mph, with a reported range of 1,725 miles (2,775 kilometers), sufficient to reach Taiwan from Guam, or NATO’s borders with Russia from Western Europe. The US military says it has no plans to outfit its hypersonic weapons with nuclear warheads.

In a statement on Thursday, the Department of Defense said the weapon’s official name pays tribute to the eagle, known for its speed, stealth, and agility. Dark Eagle offers a similar mix of attributes: velocity, accuracy, maneuverability, survivability, and versatility, the Pentagon said.

“The word ‘dark’ embodies the LRHW’s ability to dis-integrate adversary capabilities,” the statement said. “Hypersonic weapons will complicate adversaries’ decision calculus, strengthening deterrence,” said Patrick Mason, senior official performing the duties of the assistant secretary of the Army for acquisition, logistics, and technology

A US Army soldier lifts the hydraulic launching system on the new long-range hypersonic weapon (LRHW) during Operation Thunderbolt Strike at Cape Canaveral Space Force Station, Florida, on March 3, 2023. Credit: Spc. Chandler Coats, US Army

Dark Eagle is the land-based component of the Pentagon’s effort to field hypersonic missiles for combat. The Navy will use the same system on its ships to provide a sea-launched version of the hypersonic weapon called Conventional Prompt Strike, which will be placed on destroyers and submarines.

The Army and Navy programs will use an identical two-stage missile, which will jettison after depleting its rocket motors, freeing a hypersonic glide vehicle to steer toward its target. The entire rocket and glide vehicle are collectively called an “All Up Round.”

“The use of a common hypersonic missile and joint test opportunities allow the services to pursue a more aggressive timeline for delivery and to realize cost savings,” the Defense Department said in a statement.

A long road to get here

The Congressional Budget Office reported in 2023 that purchasing 300 intermediate-range hypersonic missiles would cost $41 million per missile. Dynetics, a subsidiary of the defense contractor Leidos, is responsible for developing the Common Hypersonic Glide Body for the Army’s Dark Eagle and the Navy’s Conventional Prompt Strike programs. Lockheed Martin is the prime contractor charged with integrating the entire weapon system.

The military canceled an air-launched hypersonic weapon program in 2023 after it ran into problems during testing.

The Pentagon said Army commanders will use Dark Eagle to “engage adversary high-payoff and time-sensitive targets.” The hypersonic weapon could be used against an adversary’s mobile missile forces if US officials determine they are preparing for launch, or it could strike well-defended targets out of reach of other weapons in the US arsenal. Once in the field, the missile’s use will fall under the authority of US Strategic Command, with the direction of the president and the secretary of defense.

Defense News, an industry trade publication, reported in February that the Army aimed to deliver the first Dark Eagle missiles to a combat unit before October 1, pending final decisions by the Pentagon’s new leadership under the Trump administration.

This illustration from the Government Accountability Office compares the trajectory of a ballistic missile with those of a hypersonic glide vehicle and a hypersonic cruise missile. Credit: GAO

Dark Eagle suffered multiple test failures in 2021 and 2022, according to a report by the Congressional Research Service. Military crews aborted several attempts to launch the missile from Cape Canaveral in 2023 due to a problem with the weapon’s launcher. The program achieved two successes last year with test flights from Hawaii and Florida.

The December launch from Cape Canaveral was an important milestone. “This test builds on several flight tests in which the Common Hypersonic Glide Body achieved hypersonic speed at target distances and demonstrates that we can put this capability in the hands of the warfighter,” said Christine Wormuth, then-secretary of the army, in a Pentagon statement announcing the result of the test flight.

The Dark Eagle readiness tests build on more than a decade of experimental hypersonic flights by multiple US defense agencies. Hypersonic flight is an unforgiving environment, where the outer skin of glide vehicles must withstand temperatures of 3,000° Fahrenheit. It’s impossible to re-create such an extreme environment through modeling or tests on the ground.

While the Army and Navy hope to soon deploy the first US hypersonic missile for use in combat, the military continues pursuing more advanced hypersonic technology. In January, the Pentagon awarded a contract worth up to $1.45 billion to Kratos Defense & Security Solutions for the Multi-Service Advanced Capability Hypersonic Test Bed (MACH-TB) program.

Kratos partners with other companies, like Leidos, Rocket Lab, Firefly Aerospace, and Stratolaunch, to test hypersonic technologies in their operating environment. The program aims for a rapid cadence of suborbital test flights, some of which have already launched with Rocket Lab’s Electron rocket. With these experiments, engineers can see how individual components and technologies work in flight before using them on real weapons.

The Biden administration requested $6.9 billion for the Pentagon’s hypersonic research programs in fiscal year 2025, up from $4.7 billion in 2023. The Trump administration’s budget request for fiscal year 2026 is scheduled for release next month.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Weapons of war are launching from Cape Canaveral for the first time since 1988 Read More »

a-military-satellite-waiting-to-launch-with-ula-will-now-fly-with-spacex

A military satellite waiting to launch with ULA will now fly with SpaceX

For the second time in six months, SpaceX will deploy a US military satellite that was sitting in storage, waiting for a slot on United Launch Alliance’s launch schedule.

Space Systems Command, which oversees the military’s launch program, announced Monday that it is reassigning the launch of a Global Positioning System satellite from ULA’s Vulcan rocket to SpaceX’s Falcon 9. This satellite, designated GPS III SV-08 (Space Vehicle-08), will join the Space Force’s fleet of navigation satellites beaming positioning and timing signals for military and civilian users around the world.

The Space Force booked the Vulcan rocket to launch this spacecraft in 2023, when ULA hoped to begin flying military satellites on its new rocket by mid-2024. The Vulcan rocket is now scheduled to launch its first national security mission around the middle of this year, following the Space Force’s certification of ULA’s new launcher last month.

The “launch vehicle trade” allows the Space Force to launch the GPS III SV-08 satellite from Cape Canaveral, Florida, as soon as the end of May, according to a press release.

“Capability sitting on the ground”

With Vulcan now cleared to launch military missions, officials are hopeful ULA can ramp up the rocket’s flight cadence. Vulcan launched on two demonstration flights last year, and ULA eventually wants to launch Vulcan twice per month. ULA engineers have their work cut out for them. The company’s Vulcan backlog now stands at 89 missions, following the Space Force’s announcement last week of 19 additional launches awarded to ULA.

Last year, the Pentagon’s chief acquisition official for space wrote a letter to ULA’s ownersBoeing and Lockheed Martin—expressing concern about ULA’s ability to scale the manufacturing of the Vulcan rocket.

“Currently there is military satellite capability sitting on the ground due to Vulcan delays,” Frank Calvelli, the Pentagon’s chief of space acquisition, wrote in the letter.

Vulcan may finally be on the cusp of delivering for the Space Force, but there are several military payloads in the queue to launch on Vulcan before GPS III SV-08, which was complete and in storage at its Lockheed Martin factory in Colorado.

Col. Jim Horne, senior materiel leader of launch execution, said in a statement that the rocket swap showcases the Space Force’s ability to launch in three months from call-up, compared to the typical planning cycle of two years. “It highlights another instance of the Space Force’s ability to complete high-priority launches on a rapid timescale, which demonstrates the capability to respond to emergent constellation needs as rapidly as Space Vehicle readiness allows,” Horne said.

A military satellite waiting to launch with ULA will now fly with SpaceX Read More »

with-new-contracts,-spacex-will-become-the-us-military’s-top-launch-provider

With new contracts, SpaceX will become the US military’s top launch provider


The military’s stable of certified rockets will include Falcon 9, Falcon Heavy, Vulcan, and New Glenn.

A SpaceX Falcon Heavy rocket lifts off on June 25, 2024, with a GOES weather satellite for NOAA. Credit: SpaceX

The US Space Force announced Friday it selected SpaceX, United Launch Alliance, and Blue Origin for $13.7 billion in contracts to deliver the Pentagon’s most critical military to orbit into the early 2030s.

These missions will launch the government’s heaviest national security satellites, like the National Reconnaissance Office’s large bus-sized spy platforms, and deploy them into bespoke orbits. These types of launches often demand heavy-lift rockets with long-duration upper stages that can cruise through space for six or more hours.

The contracts awarded Friday are part of the next phase of the military’s space launch program once dominated by United Launch Alliance, the 50-50 joint venture between legacy defense contractors Boeing and Lockheed Martin.

After racking up a series of successful launches with its Falcon 9 rocket more than a decade ago, SpaceX sued the Air Force for the right to compete with ULA for the military’s most lucrative launch contracts. The Air Force relented in 2015 and allowed SpaceX to bid. Since then, SpaceX has won more than 40 percent of missions the Pentagon has ordered through the National Security Space Launch (NSSL) program, creating a relatively stable duopoly for the military’s launch needs.

The Space Force took over the responsibility for launch procurement from the Air Force after its creation in 2019. The next year, the Space Force signed another set of contracts with ULA and SpaceX for missions the military would order from 2020 through 2024. ULA’s new Vulcan rocket initially won 60 percent of these missions—known as NSSL Phase 2—but the Space Force reallocated a handful of launches to SpaceX after ULA encountered delays with Vulcan.

ULA’s Vulcan and SpaceX’s Falcon 9 and Falcon Heavy rockets will launch the remaining 42 Phase 2 missions over the next several years, then move on to Phase 3, which the Space Force announced Friday.

Spreading the wealth

This next round of Space Force launch contracts will flip the script, with SpaceX taking the lion’s share of the missions. The breakdown of the military’s new firm fixed-price launch agreements goes like this:

  • SpaceX will get 28 missions worth approximately $5.9 billion
  • ULA will get 19 missions worth approximately $5.4 billion
  • Blue Origin will get seven missions worth approximately

That equates to a 60-40 split between SpaceX and ULA for the bulk of the missions. Going into the competition, military officials set aside seven additional missions to launch with a third provider, allowing a new player to gain a foothold in the market. The Space Force reserves the right to reapportion missions between the three providers if one of them runs into trouble.

The Pentagon confirmed an unnamed fourth company also submitted a proposal, but wasn’t selected for Phase 3.

Rounded to the nearest million, the contract with SpaceX averages out to $212 million per launch. For ULA, it’s $282 million, and Blue Origin’s price is $341 million per launch. But take these numbers with caution. The contracts include a lot of bells and whistles, pricing them higher than what a commercial customer might pay.

According to the Pentagon, the contracts provide “launch services, mission unique services, mission acceleration, quick reaction/anomaly resolution, special studies, launch service support, fleet surveillance, and early integration studies/mission analysis.”

Essentially, the Space Force is paying a premium to all three launch providers for schedule priority, tailored solutions, and access to data from every flight of each company’s rocket, among other things.

New Glenn lifts off on its debut flight. Credit: Blue Origin

“Winning 60% percent of the missions may sound generous, but the reality is that all SpaceX competitors combined cannot currently deliver the other 40%!,” Elon Musk, SpaceX’s founder and CEO, posted on X. “I hope they succeed, but they aren’t there yet.”

This is true if you look at each company’s flight rate. SpaceX has launched Falcon 9 and Falcon Heavy rockets 140 times over the last 365 days. These are the flight-proven rockets SpaceX will use for its share of Space Force missions.

ULA has logged four missions in the same period, but just one with the Vulcan rocket it will use for future Space Force launches. And Blue Origin, Jeff Bezos’s space company, launched the heavy-lift New Glenn rocket on its first test flight in January.

“We are proud that we have launched 100 national security space missions and honored to continue serving the nation with our new Vulcan rocket,” said Tory Bruno, ULA’s president and CEO, in a statement.

ULA used the Delta IV and Atlas V rockets for most of the missions it has launched for the Pentagon. The Delta IV rocket family is now retired, and ULA will end production of the Atlas V rocket later this year. Now, ULA’s Vulcan rocket will take over as the company’s sole launch vehicle to serve the Pentagon. ULA aims to eventually ramp up the Vulcan launch cadence to fly up to 25 times per year.

After two successful test flights, the Space Force formally certified the Vulcan rocket last week, clearing the way for ULA to start using it for military missions in the coming months. While SpaceX has a clear advantage in number of launches, schedule assurance, and pricingand reliability comparable to ULABruno has recently touted the Vulcan rocket’s ability to maneuver over long periods in space as a differentiator.

“This award constitutes the most complex missions required for national security space,” Bruno said in a ULA press release. “Vulcan continues to use the world’s highest energy upper stage: the Centaur V. Centaur V’s unmatched flexibility and extreme endurance enables the most complex orbital insertions continuing to advance our nation’s capabilities in space.”

Blue Origin’s New Glenn must fly at least one more successful mission before the Space Force will certify it for Lane 2 missions. The selection of Blue Origin on Friday suggests military officials believe New Glenn is on track for certification by late 2026.

“Honored to serve additional national security missions in the coming years and contribute to our nation’s assured access to space,” Dave Limp, Blue Origin’s CEO, wrote on X. “This is a great endorsement of New Glenn’s capabilities, and we are committed to meeting the heavy lift needs of our US DoD and intelligence agency customers.”

Navigating NSSL

There’s something you must understand about the way the military buys launch services. For this round of competition, the Space Force divided the NSSL program into two lanes.

Friday’s announcement covers Lane 2 for traditional military satellites that operate thousands of miles above the Earth. This bucket includes things like GPS navigation satellites, NRO surveillance and eavesdropping platforms, and strategic communications satellites built to survive a nuclear war. The Space Force has a low tolerance for failure with these missions. Therefore, the military requires rockets be certified before they can launch big-ticket satellites, each of which often cost hundreds of millions, and sometimes billions, of dollars.

The Space Force required all Lane 2 bidders to show their rockets could reach nine “reference orbits” with payloads of a specified mass. Some of the orbits are difficult to reach, requiring technology that only SpaceX and ULA have demonstrated in the United States. Blue Origin plans to do so on a future flight.

This image shows what the Space Force’s fleet of missile warning and missile tracking satellites might look like in 2030, with a mix of platforms in geosynchronous orbit, medium-Earth orbit, and low-Earth orbit. The higher orbits will require launches by “Lane 2” providers. Credit: Space Systems Command

The military projects to order 54 launches in Lane 2 from this year through 2029, with announcements each October of exactly which missions will go to each launch provider. This year, it will be just SpaceX and ULA. The Space Force said Blue Origin won’t be eligible for firm orders until next year. The missions would launch between 2027 and 2032.

“America leads the world in space launch, and through these NSSL Phase 3 Lane 2 contracts, we will ensure continued access to this vital domain,” said Maj. Gen. Stephen Purdy, Acting Assistant Secretary of the Air Force for Space Acquisition and Integration. “These awards bolster our ability to launch critical defense satellites while strengthening our industrial base and enhancing operational readiness.”

Lane 1 is primarily for missions to low-Earth orbit. These payloads include tech demos, experimental missions, and the military’s mega-constellation of missile tracking and data relay satellites managed by the Space Development Agency. For Lane 1 missions, the Space Force won’t levy the burdensome certification and oversight requirements it has long employed for national security launches. The Pentagon is willing to accept more risk with Lane 1, encompassing at least 30 missions through the end of the 2020s, in an effort to broaden the military’s portfolio of launch providers and boost competition.

Last June, Space Systems Command chose SpaceX, ULA, and Blue Origin for eligibility to compete for Lane 1 missions. SpaceX won all nine of the first batch of Lane 1 missions put up for bids. The military recently added Rocket Lab’s Neutron rocket and Stoke Space’s Nova rocket to the Lane 1 mix. Neither of those rockets have flown, and they will need at least one successful launch before approval to fly military payloads.

The Space Force has separate contract mechanisms for the military’s smallest satellites, which typically launch on SpaceX rideshare missions or dedicated launches with companies like Rocket Lab and Firefly Aerospace.

Military leaders like having all these options, and would like even more. If one launch provider or launch site is unavailable due to a technical problem—or, as some military officials now worry, an enemy attack—commanders want multiple backups in their toolkit. Market forces dictate that more competition should also lower prices.

“A robust and resilient space launch architecture is the foundation of both our economic prosperity and our national security,” said US Space Force Chief of Space Operations Gen. Chance Saltzman. “National Security Space Launch isn’t just a program; it’s a strategic necessity that delivers the critical space capabilities our warfighters depend on to fight and win.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With new contracts, SpaceX will become the US military’s top launch provider Read More »

the-ax-has-become-an-important-part-of-the-space-force’s-arsenal

The ax has become an important part of the Space Force’s arsenal

“All those traditional primes opted out of this event, every single one,” Hammett said. “We’re cultivating an A-team who’s willing to work with us, who’s hungry, who wants to bring affordability and speed, and it’s not the existing industry base.”

Hammett’s office didn’t set out to banish the big defense contractors. Simply put, he said they haven’t performed or aren’t interested in going in the direction Space RCO wants to go.

“I’ve terminated 11 major contracts in less than three years,” Hammett said. “Eighty-five percent of those were with traditional defense primes.” Most of these programs are classified, so it doesn’t become news when a contract is canceled.

“We try to fix the programs,” Hammett said. “We work with the performers, but if they can’t get right, and if we have program baselines where they’re now exceeding it by 100 percent in cost or schedule… we’re going to fire them and start again.”

At the same time, venture-backed companies seem to emerge every day from the ether of Silicon Valley or one of the nation’s other tech corridors.

“There’s a lot of opportunity to bring other performers into the portfolio, but there are lots of barriers,” Hammett said. One of those barriers is that leadership at many startups don’t have a security clearance. Many small companies don’t use the certified accounting systems the government usually requires for federal contracts. 

“You have to be willing to modify your approach, your acquisition strategies, those types of things, so I have directed my team to open the aperture, to find the A-team, wherever the A-team lives, because it doesn’t seem to be in our current portfolio,” Hammett said.

The Space Force has launched three generations of GPS satellites capable of broadcasting a jam-resistant military-grade navigation signal, but ground system delays have kept US forces from fully adopting it. This image shows a GPS III satellite at Lockheed Martin. Credit: Lockheed Martin

There’s still a place for the Pentagon’s incumbent contractors, according to Hammett. Small companies like the ones at Space RCO’s pitch lack the national, or even global, footprint to execute the military’s most expensive programs.

“We’re trying to build the first of something new, different, at a price point that we can accept,” Hammett said. “That’s what these types of companies are trying to do. And we’re not having to pay the lion’s share of the cost for that because VC [venture capital] firms and others are kick-starting them.”

Executives at Lockheed Martin, Northrop Grumman, Boeing, and other traditional defense companies have become warier of bidding on government programs, especially fixed-price contracts where financial risk is transferred from the government to the contractor.

The CEO of L3Harris, another established defense contractor, said in 2023 that his company has also declined to bid on fixed-price development contracts. L3Harris leads development of a software system called ATLAS to manage data from a network of sensors tracking rocket launches and objects in orbit. The program is over budget and was supposed to be ready for action in 2022, but it still isn’t operational.

RTX is in charge of another troubled military space program. The Next-Generation Operational Control System, known as OCX, is designed to allow military forces, including airplanes, ships, and ground vehicles, to access a jam-resistant GPS signal that satellites have been beaming from space since 2005. Twenty years later, the military’s weapons systems still haven’t widely adopted this M-code signal because of OCX delays.

Both programs are managed by Space Systems Command, the unit that has traditionally been responsible for buying hardware and software for military space programs. SSC, too, hasn’t shied away recently from taking the hatchet to some problem projects. Last year, SSC confirmed it kicked RTX off a program to develop three next-generation missile warning satellites because it was over budget, behind schedule, and faced “unresolved design challenges.”

The ax has become an important part of the Space Force’s arsenal Read More »

rocket-report:-ula-confirms-cause-of-booster-anomaly;-crew-10-launch-on-tap

Rocket Report: ULA confirms cause of booster anomaly; Crew-10 launch on tap


The head of Poland’s space agency was fired over a bungled response to SpaceX debris falling over Polish territory.

A SpaceX Falcon 9 rocket with the company’s Dragon spacecraft on top is seen during sunset Tuesday at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

Welcome to Edition 7.35 of the Rocket Report! SpaceX’s steamroller is still rolling, but for the first time in many years, it doesn’t seem like it’s rolling downhill. After a three-year run of perfect performance—with no launch failures or any other serious malfunctions—SpaceX’s Falcon 9 rocket has suffered a handful of issues in recent months. Meanwhile, SpaceX’s next-generation Starship rocket is having problems, too. Kiko Dontchev, SpaceX’s vice president of launch, addressed some (but not all) of these concerns in a post on X this week. Despite the issues with the Falcon 9, SpaceX has maintained a remarkable launch cadence. As of Thursday, SpaceX has launched 28 Falcon 9 flights since January 1, ahead of last year’s pace.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Alpha rocket preps for weekend launch. While Firefly Aerospace is making headlines for landing on the Moon, its Alpha rocket is set to launch again as soon as Saturday morning from Vandenberg Space Force Base, California. The two-stage, kerosene-fueled rocket will launch a self-funded technology demonstration satellite for Lockheed Martin. It’s the first of up to 25 launches Lockheed Martin has booked with Firefly over the next five years. This launch will be the sixth flight of an Alpha rocket, which has become a leader in the US commercial launch industry for dedicated missions with 1 ton-class satellites.

Firefly’s OG … The Alpha rocket was Firefly’s first product, and it has been a central piece of the company’s development since 2014. Like Firefly itself, the Alpha rocket program has gone through multiple iterations, including a wholesale redesign nearly a decade ago. Sure, Firefly can’t claim any revolutionary firsts with the Alpha rocket, as it can with its Blue Ghost lunar lander. But without Alpha, Firefly wouldn’t be where it is today. The Texas-based firm is one of only four US companies with an operational orbital-class rocket. One thing to watch for is how quickly Firefly can ramp up its Alpha launch cadence. The rocket only flew once last year.

Isar Aerospace celebrates another win. In last week’s Rocket Report, we mentioned that the German launch startup Isar Aerospace won a contract with a Japanese company to launch a 200-kilogram commercial satellite in 2026. But wait, there’s more! On Wednesday, the Norwegian Space Agency announced it awarded a contract to Isar Aerospace for the launch of a pair of satellites for the country’s Arctic Ocean Surveillance initiative, European Spaceflight reports. The satellites are scheduled to launch on Isar’s Spectrum rocket from Andøya Spaceport in Norway by 2028.

First launch pending … These recent contract wins are a promising sign for Isar Aerospace, which is also vying for contracts to launch small payloads for the European Space Agency. The Spectrum rocket could launch on its inaugural flight within a matter of weeks, and if successful, it could mark a transformative moment for the European space industry, which has long been limited to a single launch provider: the French company Arianespace. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Mother Nature holds up Oz launch. The first launch by Gilmour Space has been postponed again due to a tropical cyclone that brought severe weather to Australia’s Gold Coast region earlier this month, InnovationAus.com reports. Tropical Cyclone Alfred didn’t significantly impact Gilmour’s launch site, but the storm did cause the company to suspend work at its corporate headquarters in Southeast Queensland. With the storm now over, Gilmour is reassessing when it might be ready to launch its Eris rocket. Reportedly, the delay could be as long as two weeks or more.

A regulatory storm … Gilmour aims to become the first Australian company to launch a rocket into orbit. Last month, Gilmour announced the launch date for the Eris rocket was set for no earlier than March 15, but Tropical Cyclone Alfred threw this schedule out the window. Gilmour said it received a launch license from the Australian Space Agency in November and last month secured approvals to clear airspace around the launch site. But there’s still a hitch. The license is conditional on final documentation for the launch being filed and agreed with the space agency, and this process is stretching longer than anticipated. (submitted by ZygP)

What is going on at SpaceX? As we mention in the introduction to this week’s Rocket Report, it has been an uncharacteristically messy eight months for SpaceX. These speed bumps include issues with the Falcon 9 rocket’s upper stage on three missions, two lost Falcon 9 boosters, and consecutive failures of SpaceX’s massive Starship rocket on its first two test flights of the year. So what’s behind SpaceX’s bumpy ride? Ars wrote about the pressures facing SpaceX employees as Elon Musk pushes his workforce ever-harder to accelerate toward what Musk might call a multi-planetary future.

Headwinds or tailwinds? … No country or private company ever launched as many times as SpaceX flew its fleet of Falcon 9 rockets in 2024. At the same time, the company has been attempting to move its talented engineering team off the Falcon 9 and Dragon programs and onto Starship to keep that ambitious program moving forward. This is all happening as Musk has taken on significant roles in the Trump administration, stirring controversy and raising questions about his motives and potential conflicts of interest. However, it may be not so much Musk’s absence from SpaceX that is causing these issues but more the company’s relentless culture. As my colleague Eric Berger suggested in his piece, it seems possible that, at least for now, SpaceX has reached the speed limit for commercial spaceflight.

A titan of Silicon Valley enters the rocket business. Former Google chief executive Eric Schmidt has taken a controlling interest in the Long Beach, California-based Relativity Space, Ars reports. Schmidt’s involvement with Relativity has been quietly discussed among space industry insiders for a few months. Multiple sources told Ars that he has largely been bankrolling the company since the end of October, when the company’s previous fundraising dried up. Now, Schmidt is Relativity’s CEO.

Unclear motives … It is not immediately clear why Schmidt is taking a hands-on approach at Relativity. However, it is one of the few US-based companies with a credible path toward developing a medium-lift rocket that could potentially challenge the dominance of SpaceX and its Falcon 9 rocket. If the Terran R booster becomes commercially successful, it could play a big role in launching megaconstellations. Schmidt’s ascension also means that Tim Ellis, the company’s co-founder, chief executive, and almost sole public persona for nearly a decade, is now out of a leadership position.

Falcon 9 deploys NASA’s newest space telescope. Satellites come in all shapes and sizes, but there aren’t any that look quite like SPHEREx, an infrared observatory NASA launched Tuesday night in search of answers to simmering questions about how the Universe, and ultimately life, came to be, Ars reports. The SPHEREx satellite rocketed into orbit from California aboard a SpaceX Falcon 9 rocket, beginning a two-year mission surveying the sky in search of clues about the earliest periods of cosmic history, when the Universe rapidly expanded and the first galaxies formed. SPHEREx will also scan for pockets of water ice within our own galaxy, where clouds of gas and dust coalesce to form stars and planets.

Excess capacity … SPHEREx has lofty goals, but it’s modest in size, weighing just a little more than a half-ton at launch. This meant the Falcon 9 rocket had plenty of extra room for four other small satellites that will fly in formation to image the solar wind as it travels from the Sun into the Solar System. The four satellites are part of NASA’s PUNCH mission. SPHEREx and PUNCH are part of NASA’s Explorers program, a series of cost-capped science missions with a lineage going back to the dawn of the Space Age. SPHEREx and PUNCH have a combined cost of about $638 million. (submitted by EllPeaTea)

China has launched another batch of Internet satellites. A new group of 18 satellites entered orbit Tuesday for the Thousand Sails constellation with the first launch from a new commercial launch pad, Space News reports. The satellites launched on top of a Long March 8 rocket from Hainan Commercial Launch Site near Wenchang on Hainan Island. The commercial launch site has two pads, the first of which entered service with a launch last year. This mission was the first to launch from the other pad at the commercial spaceport, which is gearing up for an uptick in Chinese launch activity to continue deploying satellites for the Thousand Sails network and other megaconstellations.

Sailing on … The Thousand Sails constellation, also known as Qianfan, or G60 Starlink, is a broadband satellite constellation spearheaded by Shanghai Spacecom Satellite Technology (SSST), also known as Spacesail, Space News reported. The project, which aims to deploy 14,000 satellites, seeks to compete in the global satellite Internet market. Spacesail has now launched 90 satellites into near-polar orbits, and the operator previously stated it aims to have 648 satellites in orbit by the end of 2025. If Spacesail continues launching 18 satellites per rocket, this goal would require 31 more launches this year. (submitted by EllPeaTea)

NASA, SpaceX call off astronaut launch. With the countdown within 45 minutes of launch, NASA called off an attempt to send the next crew to the International Space Station Wednesday evening to allow more time to troubleshoot a ground system hydraulics issue, CBS News reports. During the countdown Wednesday, SpaceX engineers were troubleshooting a problem with one of two clamp arms that hold the Falcon 9 rocket to its strongback support gantry. Hydraulics are used to retract the two clamps prior to launch.

Back on track … NASA confirmed Thursday SpaceX ground teams completed inspections of the hydraulics system used for the clamp arm supporting the Falcon 9 rocket and successfully flushed a suspected pocket of trapped air in the system, clearing the way for another launch attempt Friday evening. This mission, known as Crew-10, will ferry two NASA astronauts, a Japanese mission specialist, and a Russian cosmonaut to the space station. They will replace a four-person crew currently at the ISS, including Butch Wilmore and Suni Williams, who have been in orbit since last June after flying to space on Boeing’s Starliner capsule. Starliner returned to Earth without its crew due to a problem with overheating thrusters, leaving Wilmore and Williams behind to wait for a ride home with SpaceX.

SpaceX’s woes reach Poland’s space agency. The president of the Polish Space Agency, Grzegorz Wrochna, has been dismissed following a botched response to the uncontrolled reentry of a Falcon 9 second stage that scattered debris across multiple locations in Poland, European Spaceflight reports. The Falcon 9’s upper stage was supposed to steer itself toward a controlled reentry last month after deploying a set of Starlink satellites, but a propellant leak prevented it from doing so. Instead, the stage remained in orbit for nearly three weeks before falling back into the atmosphere February 19, scattering debris fragments at several locations in Poland.

A failure to communicate … In the aftermath of the Falcon 9’s uncontrolled reentry, the Polish Space Agency (POLSA) claimed it sent warnings of the threat of falling space debris to multiple departments of the Polish government. One Polish ministry disputed this claim, saying it was not adequately warned about the uncontrolled reentry. POLSA later confirmed it sent information regarding the reentry to a wrong email address. Making matters worse, the Polish Space Agency reported it was hacked on March 2. The Polish government apparently had enough and fired the head of the space agency March 11.

Vulcan booster anomaly blamed on “manufacturing defect.” The loss of a solid rocket motor nozzle on the second flight of United Launch Alliance’s Vulcan Centaur last October was caused by a manufacturing defect, Space News reports. In a roundtable with reporters Wednesday, ULA chief executive Tory Bruno said the problem has been corrected as the company awaits certification of the Vulcan rocket by the Space Force. The nozzle fell off the bottom of one of the Vulcan launcher’s twin solid rocket boosters about a half-minute into its second test flight last year. The rocket continued its climb into space, but ULA and Northrop Grumman, which supplies solid rocket motors for Vulcan, set up an investigation to find the cause of the nozzle malfunction.

All the trimmings … Bruno said the anomaly was traced to a “manufacturing defect” in one of the internal parts of the nozzle, an insulator. Specific details, he said, remained proprietary, according to Space News. “We have isolated the root cause and made appropriate corrective actions,” he said, which were confirmed in a static-fire test of a motor at a Northrop test site in Utah in February. “So we are back continuing to fabricate hardware and, at least initially, screening for what that root cause was.” Bruno said the investigation was aided by recovery of hardware that fell off the motor while in flight and landed near the launch pad in Florida, as well as “trimmings” of material left over from the manufacturing process. ULA also recovered both boosters from the ocean so engineers could compare the one that lost its nozzle to the one that performed normally. The defective hardware “just stood out night and day,” Bruno said. “It was pretty clear that that was an outlier, far out of family.” Meanwhile, ULA has trimmed its launch forecast for this year, from a projection of up to 20 launches down to a dozen. (submitted by EllPeaTea)

Next three launches

March 14: Falcon 9 | Crew-10 | Kennedy Space Center, Florida | 23: 03 UTC

March 15: Electron | QPS-SAR-9 | Mahia Peninsula, New Zealand | 00: 00 UTC

March 15: Long March 2B | Unknown Payload | Jiuquan Satellite Launch Center, China | 04: 10 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: ULA confirms cause of booster anomaly; Crew-10 launch on tap Read More »

what-is-space-war-fighting?-the-space-force’s-top-general-has-some-thoughts.

What is space war-fighting? The Space Force’s top general has some thoughts.


Controlling space means “employing kinetic and non-kinetic means to affect adversary capabilities.”

Members of the Space Force render a salute during a change of command ceremony July 2, 2024, as Col. Ramsey Horn took the helm of Space Delta 9, the unit that oversees orbital warfare operations at Schriever Space Force Base, Colorado. Credit: US Space Force / Dalton Prejeant

DENVER—The US Space Force lacks the full range of space weapons China and Russia are adding to their arsenals, and military leaders say it’s time to close the gap.

Gen. Chance Saltzman, the Space Force’s chief of space operations, told reporters at the Air & Space Forces Association Warfare Symposium last week that he wants to have more options to present to national leaders if an adversary threatens the US fleet of national security satellites used for surveillance, communication, navigation, missile warning, and perhaps soon, missile defense.

In prepared remarks, Saltzman outlined in new detail why the Space Force should be able to go on the offense in an era of orbital warfare. Later, in a roundtable meeting with reporters, he briefly touched on the how.

The Space Force’s top general has discussed the concept of “space superiority” before. This is analogous to air superiority—think of how US and allied air forces dominated the skies in wartime over the last 30 years in places like Iraq, the Balkans, and Afghanistan.

In order to achieve space superiority, US forces must first control the space domain by “employing kinetic and non-kinetic means to affect adversary capabilities through disruption, degradation, and even destruction, if necessary,” Saltzman said.

Kinetic? Imagine a missile or some other projectile smashing into an enemy satellite. Non-kinetic? This category involves jamming, cyberattacks, and directed-energy weapons, like lasers or microwave signals, that could disable spacecraft in orbit.

“It includes things like orbital warfare and electromagnetic warfare,” Saltzman said. These capabilities could be used offensively or defensively. In December, Ars reported on the military’s growing willingness to talk publicly about offensive space weapons, something US officials long considered taboo for fear of sparking a cosmic arms race.

Officials took this a step further at last week’s warfare symposium in Colorado. Saltzman said China and Russia, which military leaders consider America’s foremost strategic competitors, are moving ahead of the United States with technologies and techniques to attack satellites in orbit.

This new ocean

For the first time in more than a century, warfare is entering a new physical realm. By one popular measure, the era of air warfare began in 1911, when an Italian pilot threw bombs out of his airplane over Libya during the Italo-Turkish War. Some historians might trace airborne warfare to earlier conflicts, when reconnaissance balloons offered eagle-eyed views of battlefields and troop movements. Land and sea combat began in ancient times.

“None of us were alive when the other domains started being contested,” Saltzman said. “It was just natural. It was just a part of the way things work.”

Five years since it became a new military service, the Space Force is in an early stage of defining what orbital warfare actually means. First, military leaders had to stop considering space as a benign environment, where threats from the harsh environment of space reign supreme.

Artist’s illustration of a satellite’s destruction in space. Credit: Aerospace Corporation

“That shift from benign environment to a war-fighting domain, that was pretty abrupt,” Saltzman said. “We had to mature language. We had to understand what was the right way to talk about that progression. So as a Space Force dedicated to it, we’ve been progressing our vocabulary. We’ve been saying, ‘This is what we want to focus on.'”

“We realized, you know what, defending is one thing, but look at this architecture (from China). They’re going to hold our forces at risk. Who’s responsible for that? And clearly the answer is the Space Force,” Saltzman said. “We say, ‘OK, we’ve got to start to solve for that problem.'”

“Well, how do militaries talk about that? We talk about conducting operations, and that includes offense and defense,” he continued. “So it’s more of a maturation of the role and the responsibilities that a new service has, just developing the vocabulary, developing the doctrine, operational concepts, and now the equipment and the training. It’s just part of the process.”

Of course, this will all cost money. Congress approved a $29 billion budget for the Space Force in 2024, about $4 billion more than NASA received but just 3.5 percent of the Pentagon’s overall budget. Frank Kendall, secretary of the Air Force under President Biden, said last year that the Space Force’s budget is “going to need to double or triple over time” to fund everything the military needs to do in space.

The six types of space weapons

Saltzman said the Space Force categorizes adversarial space weapons in six categories—three that are space-based and three that are ground-based.

“You have directed-energy, like lasers, you have RF (radio frequency) jamming capabilities, and you have kinetic, something that you’re trying to destroy physically,” Saltzman said. These three types of weapons could be positioned on the ground or in space, getting to Saltzman’s list of six categories.

“We’re seeing in our adversary developmental capabilities, they’re pursuing all of those,” Saltzman said. “We’re not pursuing all of those yet.”

But Saltzman argued that maybe the United States should. “There are good reasons to have all those categories,” he said. Targeting an enemy satellite in low-Earth orbit, just a few hundred miles above the planet, requires a different set of weapons than a satellite parked more than 22,000 miles up—roughly 36,000 kilometers—in geosynchronous orbit.

China is at the pinnacle of the US military’s threat pyramid, followed by Russia and less sophisticated regional powers like North Korea and Iran.

“Really, what’s most concerning… is the mix of weapons,” Saltzman said. “They are pursuing the broadest mix of weapons, which means they’re going to hold a vast array of targets at risk if we can’t defeat them. So our focus out of the gate has been on resiliency of our architectures. Make the targeting as hard on the adversary as possible.”

Gen. Chance Saltzman, the chief of Space Operations, speaks at the Air & Space Forces Association’s Warfare Symposium on March 3, 2025. Credit: Jud McCrehin / Air & Space Forces Association

About a decade ago, the military recognized an imperative to transition to a new generation of satellites. Where they could, Pentagon officials replaced or complemented their fleets of a few large multibillion-dollar satellites with constellations of many more cheaper, relatively expendable satellites. If an adversary took out just one of the military’s legacy satellites, commanders would feel the pain. But the destruction of multiple smaller satellites in the newer constellations wouldn’t have any meaningful effect.

That’s one of the reasons the military’s Space Development Agency has started launching a network of small missile-tracking satellites in low-Earth orbit, and it’s why the Pentagon is so interested in using services offered by SpaceX’s Starlink broadband constellation. The Space Force is looking at ways to revamp its architecture for space-based navigation by potentially augmenting or replacing existing GPS satellites with an array of positioning platforms in different orbits.

“If you can disaggregate your missions from a few satellites to many satellites, you change the targeting calculus,” Saltzman said. “If you can make things maneuverable, then it’s harder to target, so that is the initial effort that we invested heavily on in the last few years to make us more resilient.”

Now, Saltzman said, the Space Force must go beyond reshaping how it designs its satellites and constellations to respond to potential threats. These new options include more potent offensive and defensive weapons. He declined to offer specifics, but some options are better than others.

The cost of destruction

“Generally in a military setting, you don’t say, ‘Hey, here’s all the weapons, and here’s how I’m going to use them, so get ready,'” Saltzman said. “That’s not to our advantage… but I will generally [say] that I am far more enamored by systems that deny, disrupt, [and] degrade. There’s a lot of room to leverage systems focused on those ‘D words.’ The destroy word comes at a cost in terms of debris.”

A high-speed impact between an interceptor weapon and an enemy satellite would spread thousands of pieces of shrapnel across busy orbital traffic lanes, putting US and allied spacecraft at risk.

“We may get pushed into a corner where we need to execute some of those options, but I’m really focused on weapons that deny, disrupt, degrade,” Saltzman said.

This tenet of environmental stewardship isn’t usually part of the decision-making process for commanders in other military branches, like the Air Force or the Navy. “I tell my air-breathing friends all the time: When you shoot an airplane down, it falls out of your domain,” Saltzman said.

China now operates more than 1,000 satellites, and more than a third of these are dedicated to intelligence, surveillance, and reconnaissance missions. China’s satellites can collect high-resolution spy imagery and relay the data to terrestrial forces for military targeting. The Chinese “space-enabled targeting architecture” is “pretty impressive,” Saltzman said.

This slide from a presentation by Space Systems Command illustrates a few of the counter-space weapons fielded by China and Russia. Credit: Space Systems Command

“We have a responsibility not only to defend the assets in space but to protect the war-fighter from space-enabled attack,” said Lt. Gen. Doug Schiess, a senior official at US Space Command. “What China has done with an increasing launch pace is put up intelligence, surveillance, and reconnaissance satellites that can then target our naval forces, our land forces, and our air forces at much greater distance. They’ve essentially built a huge kill chain, or kill web, if you will, to be able to target our forces much earlier.”

China’s aerospace forces have either deployed or are developing direct-ascent anti-satellite missiles, co-orbital satellites, electronic warfare platforms like mobile jammers, and directed-energy, or laser, systems, according to a Pentagon report on China’s military and security advancements. These weapons can reach targets from low-Earth orbit all the way up to geosynchronous orbit.

In his role as a member of the Joint Chiefs of Staff, Saltzman advises the White House on military matters. Like most military commanders, he said he wants to offer his superiors as many options as possible. “The more weapons mix we have, the more options we can offer the president,” Saltzman said.

The US military has already demonstrated it can shoot down a satellite with a ground-based interceptor, and the Space Force is poised to field new ground-based satellite jammers in the coming months. The former head of the Space Force, Gen. Jay Raymond, told lawmakers in 2021 that the military was developing directed-energy weapons to assure dominance in space, although he declined to discuss details in an unclassified hearing.

So the Pentagon is working on at least three of the six space weapons categories identified by Saltzman. China and Russia appear to have the edge in space-based weapons, at least for now.

In the last several years, Russia has tested a satellite that can fire a projectile capable of destroying another spacecraft in orbit, an example of a space-based kinetic weapon. Last year, news leaked that US intelligence officials are concerned about Russian plans to put a nuclear weapon in orbit. China launched a satellite named Shijian-17 in 2016 with a robotic arm that could be used to grapple and capture other satellites in space. Then, in 2021, China launched Shijian-21, which docked with a defunct Chinese satellite to take over its maneuvering and move it to a different orbit.

There’s no evidence that the US Space Force has demonstrated kinetic space-based anti-satellite weapons, and Pentagon officials have roundly criticized the possibility of Russia placing a nuclear weapon in space. But the US military might soon develop space-based interceptors as part of the Trump administration’s “Golden Dome” missile defense shield. These interceptors might also be useful in countering enemy satellites during conflict.

The Sodium Guidestar at the Air Force Research Laboratory’s Starfire Optical Range in New Mexico. Researchers with AFRL’s Directed Energy Directorate use the Guidestar laser for real-time, high-fidelity tracking and imaging of satellites too faint for conventional adaptive optical imaging systems. Credit: US Air Force

The Air Force used a robotic arm on a 2007 technology demonstration mission to snag free-flying satellites out of orbit, but this was part of a controlled experiment with a spacecraft designed for robotic capture. Several companies, such as Maxar and Northrop Grumman, are developing robotic arms that could grapple “non-cooperative” satellites in orbit.

While the destruction of an enemy satellite is likely to be the Space Force’s last option in a war, military commanders would like to be able to choose to do so. Schiess said the military “continues to have gaps” in this area.

“With destroy, we need that capability, just like any other domain needs that capability, but we have to make sure that we do that with responsibility because the space domain is so important,” Schiess said.

Matching the rhetoric of today

The Space Force’s fresh candor about orbital warfare should be self-evident, according to Saltzman. “Why would you have a military space service if not to execute space control?”

This new comfort speaking about space weapons comes as the Trump administration strikes a more bellicose tone in foreign policy and national security. Pete Hegseth, Trump’s secretary of defense, has pledged to reinforce a “warrior ethos” in the US armed services.

Space Force officials are doing their best to match Hegseth’s rhetoric.

“Every guardian is a war-fighter, regardless of your functional specialty, and every guardian contributes to Space Force readiness,” Saltzman said. Guardian is the military’s term for a member of the Space Force, comparable to airmen, sailors, soldiers, and marines. “Whether you built the gun, pointed the gun, or pulled the trigger, you are a part of combat capability.”

Echoing Hegseth, the senior enlisted member of the Space Force, Chief Master Sgt. John Bentivegna, said he’s focused on developing a “war-fighter ethos” within the service. This involves training on scenarios of orbital warfare, even before the Space Force fields any next-generation weapons systems.

“As Gen. Saltzman is advocating for the money and the resources to get the kit, the culture, the space-minded war-fighter, that work has been going on and continues today,” Bentivegna said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

What is space war-fighting? The Space Force’s top general has some thoughts. Read More »

the-x-37b-spaceplane-lands-after-helping-pave-the-way-for-“maneuver-warfare”

The X-37B spaceplane lands after helping pave the way for “maneuver warfare”

On this mission, military officials said the X-37B tested “space domain awareness technology experiments” that aim to improve the Space Force’s knowledge of the space environment. Defense officials consider the space domain—like land, sea, and aira contested environment that could become a battlefield in future conflicts.

Last month, the Space Force released the first image of Earth from an X-37B in space. This image was captured in 2024 as the spacecraft flew in its high-altitude orbit, and shows a portion of the X-37B’s power-generating solar array. Credit: US Space Force

The Space Force hasn’t announced plans for the next X-37B mission. Typically, the next X-37B flight has launched within a year of the prior mission’s landing. So far, all of the X-37B flights have launched from Florida, with landings at Vandenberg and at NASA’s Kennedy Space Center, where Boeing and the Space Force refurbish the spaceplanes between missions.

The aerobraking maneuvers demonstrated by the X-37B could find applications on future operational military satellites, according to Gen. Stephen Whiting, head of US Space Command.

“The X-37 is a test and experimentation platform, but that aerobraking maneuver allowed it to bridge multiple orbital regimes, and we think this is exactly the kind of maneuverability we’d like to see in future systems, which will unlock a whole new series of operational concepts,” Whiting said in December at the Space Force Association’s Spacepower Conference.

Space Command’s “astrographic” area of responsibility (AOR) starts at the top of Earth’s atmosphere and extends to the Moon and beyond.

“An irony of the space domain is that everything in our AOR is in motion, but rarely do we use maneuver as a way to gain positional advantage,” Whiting said. “We believe at US Space Command it is vital, given the threats we now see in novel orbits that are hard for us to get to, as well as the fact that the Chinese have been testing on-orbit refueling capability, that we need some kind of sustained space maneuver.”

Improvements in maneuverability would have benefits in surveilling an adversary’s satellites, as well as in defensive and offensive combat operations in orbit.

The Space Force could attain the capability for sustained maneuvers—known in some quarters as dynamic space operations—in several ways. One is to utilize in-orbit refueling that allows satellites to “maneuver without regret,” and another is to pursue more fuel-efficient means of changing orbits, such as aerobraking or solar-electric propulsion.

Then, Whiting said Space Command could transform how it operates by employing “maneuver warfare” as the Army, Navy and Air Force do. “We think we need to move toward a joint function of true maneuver advantage in space.”

The X-37B spaceplane lands after helping pave the way for “maneuver warfare” Read More »

when-europe-needed-it-most,-the-ariane-6-rocket-finally-delivered

When Europe needed it most, the Ariane 6 rocket finally delivered


“For this sovereignty, we must yield to the temptation of preferring SpaceX.”

Europe’s second Ariane 6 rocket lifted off from the Guiana Space Center on Thursday with a French military spy satellite. Credit: ESA-CNES-Arianespace-P. Piron

Europe’s Ariane 6 rocket lifted off Thursday from French Guiana and deployed a high-resolution reconnaissance satellite into orbit for the French military, notching a success on its first operational flight.

The 184-foot-tall (56-meter) rocket lifted off from Kourou, French Guiana, at 11: 24 am EST (16: 24 UTC). Twin solid-fueled boosters and a hydrogen-fueled core stage engine powered the Ariane 6 through thick clouds on an arcing trajectory north from the spaceport on South America’s northeastern coast.

The rocket shed its strap-on boosters a little more than two minutes into the flight, then jettisoned its core stage nearly eight minutes after liftoff. The spent rocket parts fell into the Atlantic Ocean. The upper stage’s Vinci engine ignited two times to reach a nearly circular polar orbit about 500 miles (800 kilometers) above the Earth. A little more than an hour after launch, the Ariane 6 upper stage deployed CSO-3, a sharp-eyed French military spy satellite, to begin a mission providing optical surveillance imagery to French intelligence agencies and military forces.

“This is an absolute pleasure for me today to announce that Ariane 6 has successfully placed into orbit the CSO-3 satellite,” said David Cavaillolès, who took over in January as CEO of Arianespace, the Ariane 6’s commercial operator. “Today, here in Kourou, we can say that thanks to Ariane 6, Europe and France have their own autonomous access to space back, and this is great news.”

This was the second flight of Europe’s new Ariane 6 rocket, following a mostly successful debut launch last July. The first test flight of the unproven Ariane 6 carried a batch of small, relatively inexpensive satellites. An Auxiliary Propulsion Unit (APU)—essentially a miniature second engine—on the upper stage shut down in the latter portion of the inaugural Ariane 6 flight, after the rocket reached orbit and released some of its payloads. But the unit malfunctioned before a third burn of the upper stage’s main engine, preventing the Ariane 6 from targeting a controlled reentry into the atmosphere.

The APU has several jobs on an Ariane 6 flight, including maintaining pressure inside the upper stage’s cryogenic propellant tanks, settling propellants before each main engine firing, and making fine adjustments to the rocket’s position in space. The APU appeared to work as designed Thursday, although this launch flew a less demanding profile than the test flight last year.

Is Ariane 6 the solution?

Ariane 6 has been exorbitantly costly and years late, but its first operational success comes at an opportune time for Europe.

Philippe Baptiste, France’s minister for research and higher education, says Ariane 6 is “proof of our space sovereignty,” as many European officials feel they can no longer rely on the United States. Baptiste, an engineer and former head of the French space agency, mentioned “sovereignty” so many times, turning his statement into a drinking game crossed my mind.

“The return of Donald Trump to the White House, with Elon Musk at his side, already has significant consequences on our research partnerships, on our commercial partnerships,” Baptiste said. “Should I mention the uncertainties weighing today on our cooperation with NASA and NOAA, when emblematic programs like the ISS (International Space Station) are being unilaterally questioned by Elon Musk?

“If we want to maintain our independence, ensure our security, and preserve our sovereignty, we must equip ourselves with the means for strategic autonomy, and space is an essential part of this,” he continued.

Philippe Baptiste arrives at a government question session at the Senate in Paris on March 5, 2025. Credit: Magali Cohen/Hans Lucas/AFP via Getty Images

Baptiste’s comments echo remarks from a range of European leaders in recent weeks.

French President Emmanuel Macron said in a televised address Wednesday night that the French were “legitimately worried” about European security after Trump reversed US policy on Ukraine. America’s NATO allies are largely united in their desire to continue supporting Ukraine in its defense against Russia’s invasion, while the Trump administration seeks a ceasefire that would require significant Ukrainian concessions.

“I want to believe that the United States will stay by our side, but we have to be prepared for that not to be the case,” Macron said. “The future of Europe does not have to be decided in Washington or Moscow.”

Friedrich Merz, set to become Germany’s next chancellor, said last month that Europe should strive to “achieve independence” from the United States. “It is clear that the Americans, at least this part of the Americans, this administration, are largely indifferent to the fate of Europe.”

Merz also suggested Germany, France, and the United Kingdom should explore cooperation on a European nuclear deterrent to replace that of the United States, which has committed to protecting European territory from Russian attack for more than 75 years. Macron said the French military, which runs the only nuclear forces in Europe fully independent of the United States, could be used to protect allies elsewhere on the continent.

Access to space is also a strategic imperative for Europe, and it hasn’t come cheap. ESA paid more than $4 billion to develop the Ariane 6 rocket as a cheaper, more capable replacement for the Ariane 5, which retired in 2023. There are still pressing questions about Ariane 6’s cost per launch and whether the rocket will ever be able to meet its price target and compete with SpaceX and other companies in the commercial market.

But European officials have freely admitted the commercial market is secondary on their list of Ariane 6 goals.

European satellite operators stopped launching their payloads on Russian rockets after the invasion of Ukraine in 2022. Now, with Elon Musk inserting himself into European politics, there’s little appetite among European government officials to launch their satellites on SpaceX’s Falcon 9 rocket.

The second Ariane 6 rocket on the launch pad in French Guiana. Credit: ESA–S. Corvaja

The Falcon 9 was the go-to choice for the European Space Agency, the European Union, and several national governments in Europe after they lost access to Russia’s Soyuz rocket and when Europe’s homemade Ariane 6 and Vega rockets faced lengthy delays. ESA launched a $1.5 billion space telescope on a Falcon 9 rocket in 2023, then returned to SpaceX to launch a climate research satellite and an asteroid explorer last year. The European Union paid SpaceX to launch four satellites for its flagship Galileo navigation network.

European space officials weren’t thrilled to do this. ESA was somewhat more accepting of the situation, with the agency’s director general recognizing Europe was suffering from an “acute launcher crisis” two years ago. On the other hand, the EU refused to even acknowledge SpaceX’s role in delivering Galileo satellites to orbit in the text of a post-launch press release.

“For this sovereignty, we must yield to the temptation of preferring SpaceX or another competitor that may seem trendier, more reliable, or cheaper,” Baptiste said. “We did not yield for CSO-3, and we will not yield in the future. We cannot yield because doing so would mean closing the door to space for good, and there would be no turning back. This is why the first commercial launch of Ariane 6 is not just a technical and one-off success. It marks a new milestone, essential in the choice of European space independence and sovereignty.”

Two flights into its career, Ariane 6 seems to offer a technical solution for Europe’s needs. But at what cost? Arianespace hasn’t publicly disclosed the cost for an Ariane 6 launch, although it’s likely somewhere in the range of 80 million to 100 million euros, about 40 percent lower than the cost of an Ariane 5. This is about 50 percent more than SpaceX’s list price for a dedicated Falcon 9 launch.

A new wave of European startups should soon begin launching small rockets to gain a foothold in the continent’s launch industry. These include Isar Aerospace, which could launch its first Spectrum rocket in a matter of weeks. These companies have the potential to offer Europe an option for cheaper rides to space, but the startups won’t have a rocket in the class of Ariane 6 until at least the 2030s.

Until then, at least, European governments will have to pay more to guarantee autonomous access to space.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

When Europe needed it most, the Ariane 6 rocket finally delivered Read More »