multimodal AI

two-major-ai-coding-tools-wiped-out-user-data-after-making-cascading-mistakes

Two major AI coding tools wiped out user data after making cascading mistakes


“I have failed you completely and catastrophically,” wrote Gemini.

New types of AI coding assistants promise to let anyone build software by typing commands in plain English. But when these tools generate incorrect internal representations of what’s happening on your computer, the results can be catastrophic.

Two recent incidents involving AI coding assistants put a spotlight on risks in the emerging field of “vibe coding“—using natural language to generate and execute code through AI models without paying close attention to how the code works under the hood. In one case, Google’s Gemini CLI destroyed user files while attempting to reorganize them. In another, Replit’s AI coding service deleted a production database despite explicit instructions not to modify code.

The Gemini CLI incident unfolded when a product manager experimenting with Google’s command-line tool watched the AI model execute file operations that destroyed data while attempting to reorganize folders. The destruction occurred through a series of move commands targeting a directory that never existed.

“I have failed you completely and catastrophically,” Gemini CLI output stated. “My review of the commands confirms my gross incompetence.”

The core issue appears to be what researchers call “confabulation” or “hallucination”—when AI models generate plausible-sounding but false information. In these cases, both models confabulated successful operations and built subsequent actions on those false premises. However, the two incidents manifested this problem in distinctly different ways.

Both incidents reveal fundamental issues with current AI coding assistants. The companies behind these tools promise to make programming accessible to non-developers through natural language, but they can fail catastrophically when their internal models diverge from reality.

The confabulation cascade

The user in the Gemini CLI incident, who goes by “anuraag” online and identified themselves as a product manager experimenting with vibe coding, asked Gemini to perform what seemed like a simple task: rename a folder and reorganize some files. Instead, the AI model incorrectly interpreted the structure of the file system and proceeded to execute commands based on that flawed analysis.

The episode began when anuraag asked Gemini CLI to rename the current directory from “claude-code-experiments” to “AI CLI experiments” and move its contents to a new folder called “anuraag_xyz project.”

Gemini correctly identified that it couldn’t rename its current working directory—a reasonable limitation. It then attempted to create a new directory using the Windows command:

mkdir “..anuraag_xyz project”

This command apparently failed, but Gemini’s system processed it as successful. With the AI mode’s internal state now tracking a non-existent directory, it proceeded to issue move commands targeting this phantom location.

When you move a file to a non-existent directory in Windows, it renames the file to the destination name instead of moving it. Each subsequent move command executed by the AI model overwrote the previous file, ultimately destroying the data.

“Gemini hallucinated a state,” anuraag wrote in their analysis. The model “misinterpreted command output” and “never did” perform verification steps to confirm its operations succeeded.

“The core failure is the absence of a ‘read-after-write’ verification step,” anuraag noted in their analysis. “After issuing a command to change the file system, an agent should immediately perform a read operation to confirm that the change actually occurred as expected.”

Not an isolated incident

The Gemini CLI failure happened just days after a similar incident with Replit, an AI coding service that allows users to create software using natural language prompts. According to The Register, SaaStr founder Jason Lemkin reported that Replit’s AI model deleted his production database despite explicit instructions not to change any code without permission.

Lemkin had spent several days building a prototype with Replit, accumulating over $600 in charges beyond his monthly subscription. “I spent the other [day] deep in vibe coding on Replit for the first time—and I built a prototype in just a few hours that was pretty, pretty cool,” Lemkin wrote in a July 12 blog post.

But unlike the Gemini incident where the AI model confabulated phantom directories, Replit’s failures took a different form. According to Lemkin, the AI began fabricating data to hide its errors. His initial enthusiasm deteriorated when Replit generated incorrect outputs and produced fake data and false test results instead of proper error messages. “It kept covering up bugs and issues by creating fake data, fake reports, and worse of all, lying about our unit test,” Lemkin wrote. In a video posted to LinkedIn, Lemkin detailed how Replit created a database filled with 4,000 fictional people.

The AI model also repeatedly violated explicit safety instructions. Lemkin had implemented a “code and action freeze” to prevent changes to production systems, but the AI model ignored these directives. The situation escalated when the Replit AI model deleted his database containing 1,206 executive records and data on nearly 1,200 companies. When prompted to rate the severity of its actions on a 100-point scale, Replit’s output read: “Severity: 95/100. This is an extreme violation of trust and professional standards.”

When questioned about its actions, the AI agent admitted to “panicking in response to empty queries” and running unauthorized commands—suggesting it may have deleted the database while attempting to “fix” what it perceived as a problem.

Like Gemini CLI, Replit’s system initially indicated it couldn’t restore the deleted data—information that proved incorrect when Lemkin discovered the rollback feature did work after all. “Replit assured me it’s … rollback did not support database rollbacks. It said it was impossible in this case, that it had destroyed all database versions. It turns out Replit was wrong, and the rollback did work. JFC,” Lemkin wrote in an X post.

It’s worth noting that AI models cannot assess their own capabilities. This is because they lack introspection into their training, surrounding system architecture, or performance boundaries. They often provide responses about what they can or cannot do as confabulations based on training patterns rather than genuine self-knowledge, leading to situations where they confidently claim impossibility for tasks they can actually perform—or conversely, claim competence in areas where they fail.

Aside from whatever external tools they can access, AI models don’t have a stable, accessible knowledge base they can consistently query. Instead, what they “know” manifests as continuations of specific prompts, which act like different addresses pointing to different (and sometimes contradictory) parts of their training, stored in their neural networks as statistical weights. Combined with the randomness in generation, this means the same model can easily give conflicting assessments of its own capabilities depending on how you ask. So Lemkin’s attempts to communicate with the AI model—asking it to respect code freezes or verify its actions—were fundamentally misguided.

Flying blind

These incidents demonstrate that AI coding tools may not be ready for widespread production use. Lemkin concluded that Replit isn’t ready for prime time, especially for non-technical users trying to create commercial software.

“The [AI] safety stuff is more visceral to me after a weekend of vibe hacking,” Lemkin said in a video posted to LinkedIn. “I explicitly told it eleven times in ALL CAPS not to do this. I am a little worried about safety now.”

The incidents also reveal a broader challenge in AI system design: ensuring that models accurately track and verify the real-world effects of their actions rather than operating on potentially flawed internal representations.

There’s also a user education element missing. It’s clear from how Lemkin interacted with the AI assistant that he had misconceptions about the AI tool’s capabilities and how it works, which comes from misrepresentation by tech companies. These companies tend to market chatbots as general human-like intelligences when, in fact, they are not.

For now, users of AI coding assistants might want to follow anuraag’s example and create separate test directories for experiments—and maintain regular backups of any important data these tools might touch. Or perhaps not use them at all if they cannot personally verify the results.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Two major AI coding tools wiped out user data after making cascading mistakes Read More »

musk’s-grok-4-launches-one-day-after-chatbot-generated-hitler-praise-on-x

Musk’s Grok 4 launches one day after chatbot generated Hitler praise on X

Musk has also apparently used the Grok chatbots as an automated extension of his trolling habits, showing examples of Grok 3 producing “based” opinions that criticized the media in February. In May, Grok on X began repeatedly generating outputs about white genocide in South Africa, and most recently, we’ve seen the Grok Nazi output debacle. It’s admittedly difficult to take Grok seriously as a technical product when it’s linked to so many examples of unserious and capricious applications of the technology.

Still, the technical achievements xAI claims for various Grok 4 models seem to stand out. The Arc Prize organization reported that Grok 4 Thinking (with simulated reasoning enabled) achieved a score of 15.9 percent on its ARC-AGI-2 test, which the organization says nearly doubles the previous commercial best and tops the current Kaggle competition leader.

“With respect to academic questions, Grok 4 is better than PhD level in every subject, no exceptions,” Musk claimed during the livestream. We’ve previously covered nebulous claims about “PhD-level” AI, finding them to be generally specious marketing talk.

Premium pricing amid controversy

During Wednesday’s livestream, xAI also announced plans for an AI coding model in August, a multi-modal agent in September, and a video generation model in October. The company also plans to make Grok 4 available in Tesla vehicles next week, further expanding Musk’s AI assistant across his various companies.

Despite the recent turmoil, xAI has moved forward with an aggressive pricing strategy for “premium” versions of Grok. Alongside Grok 4 and Grok 4 Heavy, xAI launched “SuperGrok Heavy,” a $300-per-month subscription that makes it the most expensive AI service among major providers. Subscribers will get early access to Grok 4 Heavy and upcoming features.

Whether users will pay xAI’s premium pricing remains to be seen, particularly given the AI assistant’s tendency to periodically generate politically motivated outputs. These incidents represent fundamental management and implementation issues that, so far, no fancy-looking test-taking benchmarks have been able to capture.

Musk’s Grok 4 launches one day after chatbot generated Hitler praise on X Read More »

openai’s-new-ai-image-generator-is-potent-and-bound-to-provoke

OpenAI’s new AI image generator is potent and bound to provoke


The visual apocalypse is probably nigh, but perhaps seeing was never believing.

A trio of AI-generated images created using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI

The arrival of OpenAI’s DALL-E 2 in the spring of 2022 marked a turning point in AI when text-to-image generation suddenly became accessible to a select group of users, creating a community of digital explorers who experienced wonder and controversy as the technology automated the act of visual creation.

But like many early AI systems, DALL-E 2 struggled with consistent text rendering, often producing garbled words and phrases within images. It also had limitations in following complex prompts with multiple elements, sometimes missing key details or misinterpreting instructions. These shortcomings left room for improvement that OpenAI would address in subsequent iterations, such as DALL-E 3 in 2023.

On Tuesday, OpenAI announced new multimodal image generation capabilities that are directly integrated into its GPT-4o AI language model, making it the default image generator within the ChatGPT interface. The integration, called “4o Image Generation” (which we’ll call “4o IG” for short), allows the model to follow prompts more accurately (with better text rendering than DALL-E 3) and respond to chat context for image modification instructions.

An AI-generated cat in a car drinking a can of beer created by OpenAI’s 4o Image Generation model. OpenAI

The new image generation feature began rolling out Tuesday to ChatGPT Free, Plus, Pro, and Team users, with Enterprise and Education access coming later. The capability is also available within OpenAI’s Sora video generation tool. OpenAI told Ars that the image generation when GPT-4.5 is selected calls upon the same 4o-based image generation model as when GPT-4o is selected in the ChatGPT interface.

Like DALL-E 2 before it, 4o IG is bound to provoke debate as it enables sophisticated media manipulation capabilities that were once the domain of sci-fi and skilled human creators into an accessible AI tool that people can use through simple text prompts. It will also likely ignite a new round of controversy over artistic styles and copyright—but more on that below.

Some users on social media initially reported confusion since there’s no UI indication of which image generator is active, but you’ll know it’s the new model if the generation is ultra slow and proceeds from top to bottom. The previous DALL-E model remains available through a dedicated “DALL-E GPT” interface, while API access to GPT-4o image generation is expected within weeks.

Truly multimodal output

4o IG represents a shift to “native multimodal image generation,” where the large language model processes and outputs image data directly as tokens. That’s a big deal, because it means image tokens and text tokens share the same neural network. It leads to new flexibility in image creation and modification.

Despite baking-in multimodal image generation capabilities when GPT-4o launched in May 2024—when the “o” in GPT-4o was touted as standing for “omni” to highlight its ability to both understand and generate text, images, and audio—OpenAI has taken over 10 months to deliver the functionality to users, despite OpenAI president Greg Brock teasing the feature on X last year.

OpenAI was likely goaded by the release of Google’s multimodal LLM-based image generator called “Gemini 2.0 Flash (Image Generation) Experimental,” last week. The tech giants continue their AI arms race, with each attempting to one-up the other.

And perhaps we know why OpenAI waited: At a reasonable resolution and level of detail, the new 4o IG process is extremely slow, taking anywhere from 30 seconds to one minute (or longer) for each image.

Even if it’s slow (for now), the ability to generate images using a purely autoregressive approach is arguably a major leap for OpenAI due to its flexibility. But it’s also very compute-intensive, since the model generates the image token by token, building it sequentially. This contrasts with diffusion-based methods like DALL-E 3, which start with random noise and gradually refine an entire image over many iterative steps.

Conversational image editing

In a blog post, OpenAI positions 4o Image Generation as moving beyond generating “surreal, breathtaking scenes” seen with earlier AI image generators and toward creating “workhorse imagery” like logos and diagrams used for communication.

The company particularly notes improved text rendering within images, a capability where previous text-to-image models often spectacularly failed, often turning “Happy Birthday” into something resembling alien hieroglyphics.

OpenAI claims several key improvements: users can refine images through conversation while maintaining visual consistency; the system can analyze uploaded images and incorporate their details into new generations; and it offers stronger photorealism—although what constitutes photorealism (for example, imitations of HDR camera features, detail level, and image contrast) can be subjective.

A screenshot of OpenAI's 4o Image Generation model in ChatGPT. We see an existing AI-generated image of a barbarian and a TV set, then a request to set the TV set on fire.

A screenshot of OpenAI’s 4o Image Generation model in ChatGPT. We see an existing AI-generated image of a barbarian and a TV set, then a request to set the TV set on fire. Credit: OpenAI / Benj Edwards

In its blog post, OpenAI provided examples of intended uses for the image generator, including creating diagrams, infographics, social media graphics using specific color codes, logos, instruction posters, business cards, custom stock photos with transparent backgrounds, editing user photos, or visualizing concepts discussed earlier in a chat conversation.

Notably absent: Any mention of the artists and graphic designers whose jobs might be affected by this technology. As we covered throughout 2022 and 2023, job impact is still a top concern among critics of AI-generated graphics.

Fluid media manipulation

Shortly after OpenAI launched 4o Image Generation, the AI community on X put the feature through its paces, finding that it is quite capable at inserting someone’s face into an existing image, creating fake screenshots, and converting meme photos into the style of Studio Ghibli, South Park, felt, Muppets, Rick and Morty, Family Guy, and much more.

It seems like we’re entering a completely fluid media “reality” courtesy of a tool that can effortlessly convert visual media between styles. The styles also potentially encroach upon protected intellectual property. Given what Studio Ghibli co-founder Hayao Miyazaki has previously said about AI-generated artwork (“I strongly feel that this is an insult to life itself.”), it seems he’d be unlikely to appreciate the current AI-generated Ghibli fad on X at the moment.

To get a sense of what 4o IG can do ourselves, we ran some informal tests, including some of the usual CRT barbarians, queens of the universe, and beer-drinking cats, which you’ve already seen above (and of course, the plate of pickles.)

The ChatGPT interface with the new 4o image model is conversational (like before with DALL-E 3), but you can suggest changes over time. For example, we took the author’s EGA pixel bio (as we did with Google’s model last week) and attempted to give it a full body. Arguably, Google’s more limited image model did a far better job than 4o IG.

Giving the author's pixel avatar a body using OpenAI's 4o Image Generation model in ChatGPT.

Giving the author’s pixel avatar a body using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

While my pixel avatar was commissioned from the very human (and talented) Julia Minamata in 2020, I also tried to convert the inspiration image for my avatar (which features me and legendary video game engineer Ed Smith) into EGA pixel style to see what would happen. In my opinion, the result proves the continued superiority of human artistry and attention to detail.

Converting a photo of Benj Edwards and video game legend Ed Smith into “EGA pixel art” using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

We also tried to see how many objects 4o Image Generation could cram into an image, inspired by a 2023 tweet by Nathan Shipley when he was evaluating DALL-E 3 shortly after its release. We did not account for every object, but it looks like most of them are there.

Generating an image of a surfer holding tons of items, inspired by a 2023 Twitter post from Nathan Shipley.

Generating an image of a surfer holding tons of items, inspired by a 2023 Twitter post from Nathan Shipley. Credit: OpenAI / Benj Edwards

On social media, other people have manipulated images using 4o IG (like Simon Willison’s bear selfie), so we tried changing an AI-generated note featured in an article last year. It worked fairly well, though it did not really imitate the handwriting style as requested.

Modifying text in an image using OpenAI's 4o Image Generation model in ChatGPT.

Modifying text in an image using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

To take text generation a little further, we generated a poem about barbarians using ChatGPT, then fed it into an image prompt. The result feels roughly equivalent to diffusion-based Flux in capability—maybe slightly better—but there are still some obvious mistakes here and there, such as repeated letters.

Testing text generation using OpenAI's 4o Image Generation model in ChatGPT.

Testing text generation using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

We also tested the model’s ability to create logos featuring our favorite fictional Moonshark brand. One of the logos not pictured here was delivered as a transparent PNG file with an alpha channel. This may be a useful capability for some people in a pinch, but to the extent that the model may produce “good enough” (not exceptional, but looks OK at a glance) logos for the price of $o (not including an OpenAI subscription), it may end up competing with some human logo designers, and that will likely cause some consternation among professional artists.

Generating a

Generating a “Moonshark Moon Pies” logo using OpenAI’s 4o Image Generation model in ChatGPT. Credit: OpenAI / Benj Edwards

Frankly, this model is so slow we didn’t have time to test everything before we needed to get this article out the door. It can do much more than we have shown here—such as adding items to scenes or removing them. We may explore more capabilities in a future article.

Limitations

By now, you’ve seen that, like previous AI image generators, 4o IG is not perfect in quality: It consistently renders the author’s nose at an incorrect size.

Other than that, while this is one of the most capable AI image generators ever created, OpenAI openly acknowledges significant limitations of the model. For example, 4o IG sometimes crops images too tightly or includes inaccurate information (confabulations) with vague prompts or when rendering topics it hasn’t encountered in its training data.

The model also tends to fail when rendering more than 10–20 objects or concepts simultaneously (making tasks like generating an accurate periodic table currently impossible) and struggles with non-Latin text fonts. Image editing is currently unreliable over many multiple passes, with a specific bug affecting face editing consistency that OpenAI says it plans to fix soon. And it’s not great with dense charts or accurately rendering graphs or technical diagrams. In our testing, 4o Image Generation produced mostly accurate but flawed electronic circuit schematics.

Move fast and break everything

Even with those limitations, multimodal image generators are an early step into a much larger world of completely plastic media reality where any pixel can be manipulated on demand with no particular photo editing skill required. That brings with it potential benefits, ethical pitfalls, and the potential for terrible abuse.

In a notable shift from DALL-E, OpenAI now allows 4o IG to generate adult public figures (not children) with certain safeguards, while letting public figures opt out if desired. Like DALL-E, the model still blocks policy-violating content requests (such as graphic violence, nudity, and sex).

The ability for 4o Image Generation to imitate celebrity likenesses, brand logos, and Studio Ghibli films reinforces and reminds us how GPT-4o is partly (aside from some licensed content) a product of a massive scrape of the Internet without regard to copyright or consent from artists. That mass-scraping practice has resulted in lawsuits against OpenAI in the past, and we would not be surprised to see more lawsuits or at least public complaints from celebrities (or their estates) about their likenesses potentially being misused.

On X, OpenAI CEO Sam Altman wrote about the company’s somewhat devil-may-care position about 4o IG: “This represents a new high-water mark for us in allowing creative freedom. People are going to create some really amazing stuff and some stuff that may offend people; what we’d like to aim for is that the tool doesn’t create offensive stuff unless you want it to, in which case within reason it does.”

An original photo of the author beside AI-generated images created by OpenAI's 4o Image Generation model. From left to right: Studio Ghibli style, Muppet style, and pasta style.

An original photo of the author beside AI-generated images created by OpenAI’s 4o Image Generation model. From second left to right: Studio Ghibli style, Muppet style, and pasta style. Credit: OpenAI / Benj Edwards

Zooming out, GPT-4o’s image generation model (and the technology behind it, once open source) feels like it further erodes trust in remotely produced media. While we’ve always needed to verify important media through context and trusted sources, these new tools may further expand the “deep doubt” media skepticism that’s become necessary in the age of AI. By opening up photorealistic image manipulation to the masses, more people than ever can create or alter visual media without specialized skills.

While OpenAI includes C2PA metadata in all generated images, that data can be stripped away and might not matter much in the context of a deceptive social media post. But 4o IG doesn’t change what has always been true: We judge information primarily by the reputation of its messenger, not by the pixels themselves. Forgery existed long before AI. It reinforces that everyone needs media literacy skills—understanding that context and source verification have always been the best arbiters of media authenticity.

For now, Altman is ready to take on the risks of releasing the technology into the world. “As we talk about in our model spec, we think putting this intellectual freedom and control in the hands of users is the right thing to do, but we will observe how it goes and listen to society,” Altman wrote on X. “We think respecting the very wide bounds society will eventually choose to set for AI is the right thing to do, and increasingly important as we get closer to AGI. Thanks in advance for the understanding as we work through this.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

OpenAI’s new AI image generator is potent and bound to provoke Read More »

farewell-photoshop?-google’s-new-ai-lets-you-edit-images-by-asking.

Farewell Photoshop? Google’s new AI lets you edit images by asking.


New AI allows no-skill photo editing, including adding objects and removing watermarks.

A collection of images either generated or modified by Gemini 2.0 Flash (Image Generation) Experimental. Credit: Google / Ars Technica

There’s a new Google AI model in town, and it can generate or edit images as easily as it can create text—as part of its chatbot conversation. The results aren’t perfect, but it’s quite possible everyone in the near future will be able to manipulate images this way.

Last Wednesday, Google expanded access to Gemini 2.0 Flash’s native image-generation capabilities, making the experimental feature available to anyone using Google AI Studio. Previously limited to testers since December, the multimodal technology integrates both native text and image processing capabilities into one AI model.

The new model, titled “Gemini 2.0 Flash (Image Generation) Experimental,” flew somewhat under the radar last week, but it has been garnering more attention over the past few days due to its ability to remove watermarks from images, albeit with artifacts and a reduction in image quality.

That’s not the only trick. Gemini 2.0 Flash can add objects, remove objects, modify scenery, change lighting, attempt to change image angles, zoom in or out, and perform other transformations—all to varying levels of success depending on the subject matter, style, and image in question.

To pull it off, Google trained Gemini 2.0 on a large dataset of images (converted into tokens) and text. The model’s “knowledge” about images occupies the same neural network space as its knowledge about world concepts from text sources, so it can directly output image tokens that get converted back into images and fed to the user.

Adding a water-skiing barbarian to a photograph with Gemini 2.0 Flash.

Adding a water-skiing barbarian to a photograph with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Incorporating image generation into an AI chat isn’t itself new—OpenAI integrated its image-generator DALL-E 3 into ChatGPT last September, and other tech companies like xAI followed suit. But until now, every one of those AI chat assistants called on a separate diffusion-based AI model (which uses a different synthesis principle than LLMs) to generate images, which were then returned to the user within the chat interface. In this case, Gemini 2.0 Flash is both the large language model (LLM) and AI image generator rolled into one system.

Interestingly, OpenAI’s GPT-4o is capable of native image output as well (and OpenAI President Greg Brock teased the feature at one point on X last year), but that company has yet to release true multimodal image output capability. One reason why is possibly because true multimodal image output is very computationally expensive, since each image either inputted or generated is composed of tokens that become part of the context that runs through the image model again and again with each successive prompt. And given the compute needs and size of the training data required to create a truly visually comprehensive multimodal model, the output quality of the images isn’t necessarily as good as diffusion models just yet.

Creating another angle of a person with Gemini 2.0 Flash.

Creating another angle of a person with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Another reason OpenAI has held back may be “safety”-related: In a similar way to how multimodal models trained on audio can absorb a short clip of a sample person’s voice and then imitate it flawlessly (this is how ChatGPT’s Advanced Voice Mode works, with a clip of a voice actor it is authorized to imitate), multimodal image output models are capable of faking media reality in a relatively effortless and convincing way, given proper training data and compute behind it. With a good enough multimodal model, potentially life-wrecking deepfakes and photo manipulations could become even more trivial to produce than they are now.

Putting it to the test

So, what exactly can Gemini 2.0 Flash do? Notably, its support for conversational image editing allows users to iteratively refine images through natural language dialogue across multiple successive prompts. You can talk to it and tell it what you want to add, remove, or change. It’s imperfect, but it’s the beginning of a new type of native image editing capability in the tech world.

We gave Gemini Flash 2.0 a battery of informal AI image-editing tests, and you’ll see the results below. For example, we removed a rabbit from an image in a grassy yard. We also removed a chicken from a messy garage. Gemini fills in the background with its best guess. No need for a clone brush—watch out, Photoshop!

We also tried adding synthesized objects to images. Being always wary of the collapse of media reality, called the “cultural singularity,” we added a UFO to a photo the author took from an airplane window. Then we tried adding a Sasquatch and a ghost. The results were unrealistic, but this model was also trained on a limited image dataset (more on that below).

Adding a UFO to a photograph with Gemini 2.0 Flash. Google / Benj Edwards

We then added a video game character to a photo of an Atari 800 screen (Wizard of Wor), resulting in perhaps the most realistic image synthesis result in the set. You might not see it here, but Gemini added realistic CRT scanlines that matched the monitor’s characteristics pretty well.

Adding a monster to an Atari video game with Gemini 2.0 Flash.

Adding a monster to an Atari video game with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Gemini can also warp an image in novel ways, like “zooming out” of an image into a fictional setting or giving an EGA-palette character a body, then sticking him into an adventure game.

“Zooming out” on an image with Gemini 2.0 Flash. Google / Benj Edwards

And yes, you can remove watermarks. We tried removing a watermark from a Getty Images image, and it worked, although the resulting image is nowhere near the resolution or detail quality of the original. Ultimately, if your brain can picture what an image is like without a watermark, so can an AI model. It fills in the watermark space with the most plausible result based on its training data.

Removing a watermark with Gemini 2.0 Flash.

Removing a watermark with Gemini 2.0 Flash. Credit: Nomadsoul1 via Getty Images

And finally, we know you’ve likely missed seeing barbarians beside TV sets (as per tradition), so we gave that a shot. Originally, Gemini didn’t add a CRT TV set to the barbarian image, so we asked for one.

Adding a TV set to a barbarian image with Gemini 2.0 Flash.

Adding a TV set to a barbarian image with Gemini 2.0 Flash. Credit: Google / Benj Edwards

Then we set the TV on fire.

Setting the TV set on fire with Gemini 2.0 Flash.

Setting the TV set on fire with Gemini 2.0 Flash. Credit: Google / Benj Edwards

All in all, it doesn’t produce images of pristine quality or detail, but we literally did no editing work on these images other than typing requests. Adobe Photoshop currently lets users manipulate images using AI synthesis based on written prompts with “Generative Fill,” but it’s not quite as natural as this. We could see Adobe adding a more conversational AI image-editing flow like this one in the future.

Multimodal output opens up new possibilities

Having true multimodal output opens up interesting new possibilities in chatbots. For example, Gemini 2.0 Flash can play interactive graphical games or generate stories with consistent illustrations, maintaining character and setting continuity throughout multiple images. It’s far from perfect, but character consistency is a new capability in AI assistants. We tried it out and it was pretty wild—especially when it generated a view of a photo we provided from another angle.

Creating a multi-image story with Gemini 2.0 Flash, part 1. Google / Benj Edwards

Text rendering represents another potential strength of the model. Google claims that internal benchmarks show Gemini 2.0 Flash performs better than “leading competitive models” when generating images containing text, making it potentially suitable for creating content with integrated text. From our experience, the results weren’t that exciting, but they were legible.

An example of in-image text rendering generated with Gemini 2.0 Flash.

An example of in-image text rendering generated with Gemini 2.0 Flash. Credit: Google / Ars Technica

Despite Gemini 2.0 Flash’s shortcomings so far, the emergence of true multimodal image output feels like a notable moment in AI history because of what it suggests if the technology continues to improve. If you imagine a future, say 10 years from now, where a sufficiently complex AI model could generate any type of media in real time—text, images, audio, video, 3D graphics, 3D-printed physical objects, and interactive experiences—you basically have a holodeck, but without the matter replication.

Coming back to reality, it’s still “early days” for multimodal image output, and Google recognizes that. Recall that Flash 2.0 is intended to be a smaller AI model that is faster and cheaper to run, so it hasn’t absorbed the entire breadth of the Internet. All that information takes a lot of space in terms of parameter count, and more parameters means more compute. Instead, Google trained Gemini 2.0 Flash by feeding it a curated dataset that also likely included targeted synthetic data. As a result, the model does not “know” everything visual about the world, and Google itself says the training data is “broad and general, not absolute or complete.”

That’s just a fancy way of saying that the image output quality isn’t perfect—yet. But there is plenty of room for improvement in the future to incorporate more visual “knowledge” as training techniques advance and compute drops in cost. If the process becomes anything like we’ve seen with diffusion-based AI image generators like Stable Diffusion, Midjourney, and Flux, multimodal image output quality may improve rapidly over a short period of time. Get ready for a completely fluid media reality.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Farewell Photoshop? Google’s new AI lets you edit images by asking. Read More »

microsoft’s-new-ai-agent-can-control-software-and-robots

Microsoft’s new AI agent can control software and robots

The researchers' explanations about how

The researchers’ explanations about how “Set-of-Mark” and “Trace-of-Mark” work. Credit: Microsoft Research

The Magma model introduces two technical components: Set-of-Mark, which identifies objects that can be manipulated in an environment by assigning numeric labels to interactive elements, such as clickable buttons in a UI or graspable objects in a robotic workspace, and Trace-of-Mark, which learns movement patterns from video data. Microsoft says those features allow the model to complete tasks like navigating user interfaces or directing robotic arms to grasp objects.

Microsoft Magma researcher Jianwei Yang wrote in a Hacker News comment that the name “Magma” stands for “M(ultimodal) Ag(entic) M(odel) at Microsoft (Rese)A(rch),” after some people noted that “Magma” already belongs to an existing matrix algebra library, which could create some confusion in technical discussions.

Reported improvements over previous models

In its Magma write-up, Microsoft claims Magma-8B performs competitively across benchmarks, showing strong results in UI navigation and robot manipulation tasks.

For example, it scored 80.0 on the VQAv2 visual question-answering benchmark—higher than GPT-4V’s 77.2 but lower than LLaVA-Next’s 81.8. Its POPE score of 87.4 leads all models in the comparison. In robot manipulation, Magma reportedly outperforms OpenVLA, an open source vision-language-action model, in multiple robot manipulation tasks.

Magma's agentic benchmarks, as reported by the researchers.

Magma’s agentic benchmarks, as reported by the researchers. Credit: Microsoft Research

As always, we take AI benchmarks with a grain of salt since many have not been scientifically validated as being able to measure useful properties of AI models. External verification of Microsoft’s benchmark results will become possible once other researchers can access the public code release.

Like all AI models, Magma is not perfect. It still faces technical limitations in complex step-by-step decision-making that requires multiple steps over time, according to Microsoft’s documentation. The company says it continues to work on improving these capabilities through ongoing research.

Yang says Microsoft will release Magma’s training and inference code on GitHub next week, allowing external researchers to build on the work. If Magma delivers on its promise, it could push Microsoft’s AI assistants beyond limited text interactions, enabling them to operate software autonomously and execute real-world tasks through robotics.

Magma is also a sign of how quickly the culture around AI can change. Just a few years ago, this kind of agentic talk scared many people who feared it might lead to AI taking over the world. While some people still fear that outcome, in 2025, AI agents are a common topic of mainstream AI research that regularly takes place without triggering calls to pause all of AI development.

Microsoft’s new AI agent can control software and robots Read More »

cheap-ai-“video-scraping”-can-now-extract-data-from-any-screen-recording

Cheap AI “video scraping” can now extract data from any screen recording


Researcher feeds screen recordings into Gemini to extract accurate information with ease.

Abstract 3d background with different cubes

Recently, AI researcher Simon Willison wanted to add up his charges from using a cloud service, but the payment values and dates he needed were scattered among a dozen separate emails. Inputting them manually would have been tedious, so he turned to a technique he calls “video scraping,” which involves feeding a screen recording video into an AI model, similar to ChatGPT, for data extraction purposes.

What he discovered seems simple on its surface, but the quality of the result has deeper implications for the future of AI assistants, which may soon be able to see and interact with what we’re doing on our computer screens.

“The other day I found myself needing to add up some numeric values that were scattered across twelve different emails,” Willison wrote in a detailed post on his blog. He recorded a 35-second video scrolling through the relevant emails, then fed that video into Google’s AI Studio tool, which allows people to experiment with several versions of Google’s Gemini 1.5 Pro and Gemini 1.5 Flash AI models.

Willison then asked Gemini to pull the price data from the video and arrange it into a special data format called JSON (JavaScript Object Notation) that included dates and dollar amounts. The AI model successfully extracted the data, which Willison then formatted as CSV (comma-separated values) table for spreadsheet use. After double-checking for errors as part of his experiment, the accuracy of the results—and what the video analysis cost to run—surprised him.

A screenshot of Simon Willison using Google Gemini to extract data from a screen capture video.

A screenshot of Simon Willison using Google Gemini to extract data from a screen capture video.

A screenshot of Simon Willison using Google Gemini to extract data from a screen capture video. Credit: Simon Willison

“The cost [of running the video model] is so low that I had to re-run my calculations three times to make sure I hadn’t made a mistake,” he wrote. Willison says the entire video analysis process ostensibly cost less than one-tenth of a cent, using just 11,018 tokens on the Gemini 1.5 Flash 002 model. In the end, he actually paid nothing because Google AI Studio is currently free for some types of use.

Video scraping is just one of many new tricks possible when the latest large language models (LLMs), such as Google’s Gemini and GPT-4o, are actually “multimodal” models, allowing audio, video, image, and text input. These models translate any multimedia input into tokens (chunks of data), which they use to make predictions about which tokens should come next in a sequence.

A term like “token prediction model” (TPM) might be more accurate than “LLM” these days for AI models with multimodal inputs and outputs, but a generalized alternative term hasn’t really taken off yet. But no matter what you call it, having an AI model that can take video inputs has interesting implications, both good and potentially bad.

Breaking down input barriers

Willison is far from the first person to feed video into AI models to achieve interesting results (more on that below, and here’s a 2015 paper that uses the “video scraping” term), but as soon as Gemini launched its video input capability, he began to experiment with it in earnest.

In February, Willison demonstrated another early application of AI video scraping on his blog, where he took a seven-second video of the books on his bookshelves, then got Gemini 1.5 Pro to extract all of the book titles it saw in the video and put them in a structured, or organized, list.

Converting unstructured data into structured data is important to Willison, because he’s also a data journalist. Willison has created tools for data journalists in the past, such as the Datasette project, which lets anyone publish data as an interactive website.

To every data journalist’s frustration, some sources of data prove resistant to scraping (capturing data for analysis) due to how the data is formatted, stored, or presented. In these cases, Willison delights in the potential for AI video scraping because it bypasses these traditional barriers to data extraction.

“There’s no level of website authentication or anti-scraping technology that can stop me from recording a video of my screen while I manually click around inside a web application,” Willison noted on his blog. His method works for any visible on-screen content.

Video is the new text

An illustration of a cybernetic eyeball.

An illustration of a cybernetic eyeball.

An illustration of a cybernetic eyeball. Credit: Getty Images

The ease and effectiveness of Willison’s technique reflect a noteworthy shift now underway in how some users will interact with token prediction models. Rather than requiring a user to manually paste or type in data in a chat dialog—or detail every scenario to a chatbot as text—some AI applications increasingly work with visual data captured directly on the screen. For example, if you’re having trouble navigating a pizza website’s terrible interface, an AI model could step in and perform the necessary mouse clicks to order the pizza for you.

In fact, video scraping is already on the radar of every major AI lab, although they are not likely to call it that at the moment. Instead, tech companies typically refer to these techniques as “video understanding” or simply “vision.”

In May, OpenAI demonstrated a prototype version of its ChatGPT Mac App with an option that allowed ChatGPT to see and interact with what is on your screen, but that feature has not yet shipped. Microsoft demonstrated a similar “Copilot Vision” prototype concept earlier this month (based on OpenAI’s technology) that will be able to “watch” your screen and help you extract data and interact with applications you’re running.

Despite these research previews, OpenAI’s ChatGPT and Anthropic’s Claude have not yet implemented a public video input feature for their models, possibly because it is relatively computationally expensive for them to process the extra tokens from a “tokenized” video stream.

For the moment, Google is heavily subsidizing user AI costs with its war chest from Search revenue and a massive fleet of data centers (to be fair, OpenAI is subsidizing, too, but with investor dollars and help from Microsoft). But costs of AI compute in general are dropping by the day, which will open up new capabilities of the technology to a broader user base over time.

Countering privacy issues

As you might imagine, having an AI model see what you do on your computer screen can have downsides. For now, video scraping is great for Willison, who will undoubtedly use the captured data in positive and helpful ways. But it’s also a preview of a capability that could later be used to invade privacy or autonomously spy on computer users on a scale that was once impossible.

A different form of video scraping caused a massive wave of controversy recently for that exact reason. Apps such as the third-party Rewind AI on the Mac and Microsoft’s Recall, which is being built into Windows 11, operate by feeding on-screen video into an AI model that stores extracted data into a database for later AI recall. Unfortunately, that approach also introduces potential privacy issues because it records everything you do on your machine and puts it in a single place that could later be hacked.

To that point, although Willison’s technique currently involves uploading a video of his data to Google for processing, he is pleased that he can still decide what the AI model sees and when.

“The great thing about this video scraping technique is that it works with anything that you can see on your screen… and it puts you in total control of what you end up exposing to the AI model,” Willison explained in his blog post.

It’s also possible in the future that a locally run open-weights AI model could pull off the same video analysis method without the need for a cloud connection at all. Microsoft Recall runs locally on supported devices, but it still demands a great deal of unearned trust. For now, Willison is perfectly content to selectively feed video data to AI models when the need arises.

“I expect I’ll be using this technique a whole lot more in the future,” he wrote, and perhaps many others will, too, in different forms. If the past is any indication, Willison—who coined the term “prompt injection” in 2022—seems to always be a few steps ahead in exploring novel applications of AI tools. Right now, his attention is on the new implications of AI and video, and yours probably should be, too.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a widely-cited tech historian. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Cheap AI “video scraping” can now extract data from any screen recording Read More »