NASA

nasa’s-science-budget-won’t-be-a-train-wreck-after-all

NASA’s science budget won’t be a train wreck after all

“Those hours could have been spent running and analyzing data from these valuable missions,” Dreier said. “It created a lot of needless friction and churn at a time when NASA is being told it must remain competitive with China and other nations in space.”

Budget likely to be signed soon

The House of Representatives could vote on the budget bill for Commerce, Justice, Science, and Related Agencies as soon as this week, with the US Senate possibly following next week. It is expected that President Trump will sign the bill. It would then go into effect immediately for the current fiscal year, which began on October 1.

The biggest casualty in the NASA science budget is the Mars Sample Return mission, a NASA-led effort to return Martian rocks and soil for study in Earth-based laboratories.

“As proposed in the budget, the agreement does not support the existing Mars Sample Return (MSR) program,” the budget document states. “However, the technological capabilities being developed in the MSR program are not only critical to the success of future science missions but also to human exploration of the Moon and Mars.”

Although it offers no details, the budget provides $110 million for something called the “Mars Future Missions” program to support “radar, spectroscopy, entry, descent, and landing systems.”

Some hope for future missions, too

NASA previously said it was pausing the ambitious sample return mission because its projected cost was approximately $10 billion, with no certain return date for the samples.

Now it seems likely that the agency and its new administrator, Jared Isaacman, will have to develop a new strategy. This may include sending humans to Mars, rather than bringing Martian rocks back to Earth.

Unlike the Trump budget request, the science budget also keeps future missions, such as the DAVINCI probe for Venus, alive. It also provides $10 million to continue studying the development of a Uranus orbiter, as well as $150 million for a flagship telescope to search for signs of life on nearby, Earth-like planets called the Habitable Worlds Observatory.

NASA’s science budget won’t be a train wreck after all Read More »

after-half-a-decade,-the-russian-space-station-segment-stopped-leaking

After half a decade, the Russian space station segment stopped leaking

Their success with the long-running leak problem probably will not prevent new leaks from developing in the decades-old hardware. The Zvezda module was launched a quarter of a century ago, in July 2000, on a Russian Proton rocket. The cracking issue first appeared in 2019, and despite the long-running investigations, its precise cause remains unknown. But this is a nice win in space for both Russia and NASA.

NASA appears confident in pad repairs, too

There is other potential good news on the horizon regarding Russia’s civil space program. This involves the country’s primary launch pad for getting people and cargo to the International Space Station.

The problems there occurred when a Soyuz rocket launched Roscosmos cosmonauts Sergei Kud-Sverchkov and Sergei Mikayev, as well as NASA astronaut Christopher Williams, on an eight-month mission to the International Space Station in late November. The rocket had no difficulties, but a large mobile platform below the rocket was not properly secured prior to the launch and crashed into the flame trench below, taking the pad offline.

It is unclear when the pad, Site 31 at the Baikonur Cosmodrome in Kazakhstan, will come back online.

Russia had been targeting a return-to-flight mission in March 2026. NASA now appears to believe that. The US space agency’s internal schedule, which was recently updated, has the next Progress spacecraft launch set for March 22, followed by another Progress mission on April 26. The next Soyuz crewed mission, MS-29, remains scheduled for July 14th. This flight will carry NASA astronaut Anil Menon to the space station.

After half a decade, the Russian space station segment stopped leaking Read More »

safety-panel-says-nasa-should-have-taken-starliner-incident-more-seriously

Safety panel says NASA should have taken Starliner incident more seriously

Invoking the designation also ensures an independent investigation detached from the teams involved in the incident itself, according to retired Air Force Lt. Gen. Susan Helms, chair of the safety panel. “We just, I think, are advocates of safety investigation best practices, and that clearly is one of the top best practices,” Helms said.

Another member of the safety panel, Mark Sirangelo, said NASA should formally declare mishaps and close calls as soon as possible. “It allows for the investigative team to be starting to be formed a lot sooner, which makes them more effective and makes the results quicker for everyone,” Sirangelo said.

In the case of last year’s Starliner test flight, NASA’s decision not to declare a mishap or close call created confusion within the agency, safety officials said.

A few weeks into the Starliner test flight last year, the manager of NASA’s Commercial Crew Program, Steve Stich, told reporters the agency’s plan was “to continue to return [the astronauts] on Starliner and return them home at the right time.” Mark Nappi, then Boeing’s Starliner program manager, regularly appeared to downplay the seriousness of the thruster issues during press conferences throughout Starliner’s nearly three-month mission.

“Specifically, there’s a significant difference, philosophically, between we will work toward proving the Starliner is safe for crew return, versus a philosophy of Starliner is no-go for return, and the primary path is on an alternate vehicle, such as Dragon or Soyuz, unless and until we learn how to ensure the on-orbit failures won’t recur on entry with the Starliner,” Precourt said.

“The latter would have been the more appropriate direction,” he said. “However, there were many stakeholders that believed the direction was the former approach. This ambiguity continued throughout the summer months, while engineers and managers pursued multiple test protocols in the Starliner propulsion systems, undoubtedly affecting the workforce.”

After months of testing and analysis, NASA officials were unsure if the thruster problems would recur on Starliner’s flight home. They decided in August 2024 to return the spacecraft to the ground without the astronauts, and the capsule safely landed in New Mexico the following month. The next Starliner flight will carry only cargo to the ISS.

The safety panel recommended that NASA review its criteria and processes to ensure the language is “unambiguous” in requiring the agency to declare an in-flight mishap or a high-visibility close call for any event involving NASA personnel “that leads to an impact on crew or spacecraft safety.”

Safety panel says NASA should have taken Starliner incident more seriously Read More »

nasa-rewraps-boeing-starliner-astrovan-ii-for-artemis-ii-ride-to-launch-pad

NASA rewraps Boeing Starliner Astrovan II for Artemis II ride to launch pad

Artemis II, meet Astrovan II.

NASA’s first astronauts who will fly by the moon in more than 50 years participated in a practice launch countdown on Saturday, December 20, including taking their first trip on a transport vehicle steeped in almost the entire span of US space history—from Apollo through to the ongoing commercial crew program.

Three men and a woman wearing bright orange pressure suits pose for a photo next to a motor coach.

Artemis II astronauts (from right to left) Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen pose for photographs before boarding the Astrovan II crew transport vehicle for a ride to their rocket during a rehearsal of their launch-day activities at NASA’s Kennedy Space Center in Florida on Saturday, Dec. 20, 2025. Credit: NASA/Aubrey Gemignani

Artemis II commander Reid Wiseman, pilot Victor Glover, and mission specialist Christina Koch (all with NASA) and mission specialist Jeremy Hansen, an astronaut with the Canadian Space Agency, began the rehearsal at the Kennedy Space Center in Florida, proceeding as they will when they are ready to fly next year (the Artemis II launch is slated for no earlier than the first week of February and no later than April 2026).

Parked outside of their crew quarters and suit-up room was their ride to their rocket, “Astrovan II,” a modified Airstream motorhome. The almost 25-foot-long (8-meter) crew transport vehicle (CTV) was custom-wrapped with graphics depicting the moon, the Artemis II mission patch, and program insignia.

From Canoo to coach

Airstream’s Atlas Touring Coach, though, was not originally planned as NASA’s Artemis CTV. In July 2023, NASA took delivery of three fully electric vans from Canoo Technologies after the company, a startup based in Torrance, California, was awarded the contract the year before. At the time, NASA touted its selection as focusing on the “crews’ safety and comfort on the way to the [launch] pad.”

Three vans with rounded corners are parked side by side in front of a large building and an overcast sky.

The three Canoo Technologies’ specially designed, fully-electric, environmentally friendly crew transportation vehicles for Artemis missions arrived at Kennedy Space Center on July 11, 2023. The company now bankrupt, the CTVs will serve as a backup to the Astrovan II. Credit: NASA/Isaac Watson

Six months later, Canoo filed for bankruptcy, and NASA ceased active use of the electric vans, citing a lack of support for its mission requirements. Instead, the agency turned to another of its commercial partners, Boeing, which had its own CTV but no astronauts at present to use it.

NASA rewraps Boeing Starliner Astrovan II for Artemis II ride to launch pad Read More »

nasa-will-soon-find-out-if-the-perseverance-rover-can-really-persevere-on-mars

NASA will soon find out if the Perseverance rover can really persevere on Mars


Engineers at JPL are certifying the Perseverance rover to drive up to 100 kilometers.

The Perseverance rover looks back on its tracks on the floor of Jezero Crater in 2022. Credit: NASA/JPL

When the Perseverance rover arrived on Mars nearly five years ago, NASA officials thought the next American lander to take aim on the red planet would be taking shape by now.

At the time, the leaders of the space agency expected this next lander could be ready for launch as soon as 2026—or more likely in 2028. Its mission would have been to retrieve Martian rock specimens collected by the Perseverance rover, then billed as the first leg of a multilaunch, multibillion-dollar Mars Sample Return campaign.

Here we are on the verge of 2026, and there’s no sample retrieval mission nearing the launch pad. In fact, no one is building such a lander at all. NASA’s strategy for a Mars Sample Return, or MSR, mission remains undecided after the projected cost of the original plan ballooned to $11 billion. If MSR happens at all, it’s now unlikely to launch until the 2030s.

That means the Perseverance rover, which might have to hand off the samples to a future retrieval lander in some circumstances, must continue weathering the harsh, cold, dusty environment of Mars. The good news is that the robot, about the size of a small SUV, is in excellent health, according to Steve Lee, Perseverance’s deputy project manager at NASA’s Jet Propulsion Laboratory (JPL).

“Perseverance is approaching five years of exploration on Mars,” Lee said in a press briefing Wednesday at the American Geophysical Union’s annual fall meeting. “Perseverance is really in excellent shape. All the systems onboard are operational and performing very, very well. All the redundant systems onboard are available still, and the rover is capable of supporting this mission for many, many years to come.”

The rover’s operators at JPL are counting on sustaining Perseverance’s good health. The rover’s six wheels have carried it a distance of about 25 miles, or 40 kilometers, since landing inside the 28-mile-wide (45-kilometer) Jezero Crater in February 2021. That is double the original certification for the rover’s mobility system and farther than any vehicle has traveled on the surface of another world.

This enhanced-color mosaic is made from three separate images taken on September 8, 2025, each of which was acquired using the Perseverance rover’s Mastcam-Z instrument. The images were processed to improve visual contrast and enhance color differences. The view shows a location known as “Mont Musard” and another region named “Lac de Charmes,” where the rover’s team will be looking for more rock core samples to collect in the year ahead. The mountains in the distance are approximately 52 miles (84 kilometers) away.

Going for 100

Now, engineers are asking Perseverance to perform well beyond expectations. An evaluation of the rover’s health concluded it can operate until at least 2031. The rover uses a radioactive plutonium power source, so it’s not in danger of running out of electricity or fuel any time soon. The Curiosity rover, which uses a similar design, has surpassed 13 years of operations on Mars.

There are two systems that are most likely to limit the rover’s useful lifetime. One is the robotic arm, which is necessary to collect samples, and the other is the rover’s six wheels and the drive train that powers them.

“To make sure we can continue operations and continue driving for a long, long way, up to 100 kilometers (62 miles), we are doing some additional testing,” Lee said. “We’ve successfully completed a rotary actuator life test that has now certified the rotary system to 100 kilometers for driving, and we have similar testing going on for the brakes. That is going well, and we should finish those early part of next year.”

Ars asked Lee why JPL decided on 100 kilometers, which is roughly the same distance as the average width of Lake Michigan. Since its arrival in 2021, Perseverance has climbed out of Jezero Crater and is currently exploring the crater’s rugged rim. If NASA sends a lander to pick up samples from Perseverance, the rover will have to drive back to a safe landing zone for a handoff.

“We actually had laid out a traverse path exploring the crater rim, much more of the crater rim than we have so far, and then be able to return to a rendezvous site,” Lee said. “So we did an estimate of the total mission drive duration to complete that mission, added margin for science exploration, added margin in case we need the rendezvous at a different site… and it just turned out to add up to a nice, even 100 kilometers.”

The time-lapse video embedded below shows the Perseverance rover’s record-breaking 1,351-foot (412-meter) drive on June 19, 2025.

Despite the disquiet on the future of MSR, the Perseverance rover has dutifully collected specimens and placed them in 33 titanium sample tubes since arriving on Mars. Perseverance deposited some of the sealed tubes on the surface of Mars in late 2022 and early 2023 and has held onto the remaining containers while continuing to drive toward the rim of Jezero.

The dual-depot approach preserves the option for future MSR mission planners to go after either batch of samples.

Scientists selected Jezero as the target for the Perseverance mission because they suspected it was the site of an ancient dried-up river delta with a surplus of clay-rich minerals. The rover’s instruments confirmed this hypothesis, finding sediments in the crater floor that were deposited at the bottom of a lake of liquid water billions of years ago, including sandstones and mudstones known to preserve fossilized life in comparable environments on Earth.

A research team published findings in the journal Nature in September describing the discovery of chemical signatures and structures in a rock that could have been formed by ancient microbial life. Perseverance lacks the bulky, sprawling instrumentation to know for sure, so ground teams ordered the rover to collect a pulverized specimen from the rock in question and seal it for eventual return to Earth.

Fill but don’t seal

Lee said Perseverance will continue filling sample tubes in the expectation that they will eventually come back to Earth.

“We do expect to continue some sampling,” Lee said. “We have six open sample tubes, unused sample tubes, onboard. We actually have two that we took samples and didn’t seal yet. So we have options of maybe replacing them if we’re finding that there’s even better areas that we want to collect from.”

The rover’s management team at JPL is finalizing the plan for Perseverance through 2028. Lee expects the rover will remain at Jezero’s rim for a while. “There are quite a number of very prime, juicy targets we would love to go explore,” he said.

In the meantime, if Perseverance runs across an alluring rock, scientists will break out the rover’s coring drill and fill more tubes.

“We certainly have more than enough to keep us busy, and we are not expecting a major perturbation to our science explorations in the next two and a half years as a result of sample return uncertainty,” Lee said.

Perseverance has its own suite of sophisticated instruments. The instruments can’t do what labs on Earth can, but the rover can scan rocks to determine what they’re made of, search for life-supporting organic molecules, map underground geology, and capture startling vistas that inspire and inform.

This photo montage shows sample tubes shortly after they were deposited onto the surface by NASA’s Perseverance Mars rover in late 2022 and early 2023. Credit: NASA/JPL-Caltech/MSSS

The rover’s sojourn along the Jezero Crater rim is taking it through different geological eras, from the time Jezero harbored a lake to its formation at an even earlier point in Martian history. Fundamentally, researchers are asking the question “What was it like if you were a microbe living on the surface of Mars?” said Briony Horgan, a mission scientist at Purdue University.

Along the way, the rover will stop and do a sample collection if something piques the science team’s interest.

“We are adopting a strategy, in many cases, to fill a tube, and we have the option to not seal it,” Lee said. “Most of our tubes are sealed, but we have the option to not seal it, and that gives us a flexibility downstream to replace the sample if there’s one that we find would make an even stronger representative of the diversity we are discovering.”

An indefinite wait

Planetary scientists have carefully curated the specimens cached by the Perseverance rover. The samples are sorted for their discovery potential, with an emphasis on the search for ancient microbial life. That’s why Perseverance was sent to Jezero in the first place.

China is preparing its own sample-return mission, Tianwen-3, for launch as early as 2028, aiming to deliver Mars rocks back to Earth by 2031. If the Tianwen-3 mission keeps to this scheduleand is successfulChina will almost certainly be first to pull off the achievement. Officials have not announced the landing site for Tianwen-3, so the jury is still out on the scientific value of the rocks China aims to bring back.

NASA’s original costly architecture for Mars Sample Return would have used a lander built by JPL and a small solid-fueled rocket to launch the rock samples back into space after collecting them from the Perseverance rover. The capsule containing the Mars rocks would then transfer them to another spacecraft in orbit around Mars. Once Earth and Mars reached the proper orbital alignment, the return spacecraft would begin the journey home. All told, the sample return campaign would last several years.

NASA asked commercial companies to develop their own ideas for Mars Sample Return in 2024. SpaceX, Blue Origin, Lockheed Martin, and Rocket Lab submitted their lower-cost commercial concepts to NASA, but progress stalled there. NASA’s former administrator, Bill Nelson, punted on a decision on what to do next with Mars Sample Return in the final weeks of the Biden administration.

A few months later, the new Trump administration proposed outright canceling the Mars Sample Return mission. Mars Sample Return, known as MSR, was ranked as the top priority for planetary science in a National Academies decadal survey. Researchers say they could learn much more about Mars and the possibilities of past life there by bringing samples back to Earth for analysis.

Budget writers in the House of Representatives voted to restore funding for Mars Sample Return over the summer, but the Senate didn’t explicitly weigh in on the mission. NASA is now operating under a stopgap budget passed by Congress last month, and MSR remains in limbo.

There are good arguments for going with a commercial sample-return mission, using a similar approach to the one NASA used to buy commercial cargo and crew transportation services for the International Space Station. NASA might also offer prizes or decide to wait for a human expedition to Mars for astronauts to scoop up samples by hand.

Eric Berger, senior space editor at Ars, discussed these options a few months ago. After nearly a year of revolving-door leadership, NASA finally got a Senate-confirmed administrator this week. It will now be up to the new NASA chief, Jared Isaacman, to chart a new course for Mars Sample Return.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NASA will soon find out if the Perseverance rover can really persevere on Mars Read More »

the-$4.3-billion-space-telescope-trump-tried-to-cancel-is-now-complete

The $4.3 billion space telescope Trump tried to cancel is now complete


“We’re going to be making 3D movies of what is going on in the Milky Way galaxy.”

Artist’s concept of the Nancy Grace Roman Space Telescope. Credit: NASA Goddard Space Flight Center Scientific Visualization Studio

A few weeks ago, technicians inside a cavernous clean room in Maryland made the final connection to complete assembly of NASA’s Nancy Grace Roman Space Telescope.

Parts of this new observatory, named for NASA’s first chief astronomer, recently completed a spate of tests to ensure it can survive the shaking and intense sound of a rocket launch. Engineers placed the core of the telescope inside a thermal vacuum chamber, where it withstood the airless conditions and extreme temperature swings it will see in space.

Then, on November 25, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, joined the inner and outer portions of the Roman Space Telescope. With this milestone, NASA declared the observatory complete and on track for launch as soon as fall 2026.

“The team is ecstatic,” said Jackie Townsend, the observatory’s deputy project manager at Goddard, in a recent interview with Ars. “It has been a long road, but filled with lots of successes and an ordinary amount of challenges, I would say. It’s just so rewarding to get to this spot.”

An ordinary amount of challenges is not something you usually hear a NASA official say about a one-of-a-kind space mission. NASA does hard things, and they usually take more time than originally predicted. Astronomers endured more than 10 years of delays, fixes, and setbacks before the James Webb Space Telescope finally launched in 2021.

Webb is the largest telescope ever put into space. After launch, Webb had to perform a sequence of more than 50 major deployment steps, with 178 release mechanisms that had to work perfectly. Any one of the more than 300 single points of failure could have doomed the mission. In the end, Webb unfolded its giant segmented mirror and delicate sunshield without issue. After a quarter-century of development and more than $11 billion spent, the observatory is finally delivering images and science results. And they’re undeniably spectacular.

The completed Nancy Grace Roman Space Telescope, seen here with its solar panels deployed inside a clean room at NASA’s Goddard Space Flight Center in Maryland. Credit: NASA/Jolearra Tshiteya

Seeing far and wide

Roman is far less complex, with a 7.9-foot (2.4-meter) primary mirror that is nearly three times smaller than Webb’s. While it lacks Webb’s deep vision, Roman will see wider swaths of the sky, enabling a cosmic census of billions of stars and galaxies near and far (on the scale of the Universe). This broad vision will support research into dark matter and dark energy, which are thought to make up about 95 percent of the Universe. The rest of the Universe is made of regular atoms and molecules that we can see and touch.

It is also illustrative to compare Roman with the Hubble Space Telescope, which has primary mirrors of the same size. This means Roman will produce images with similar resolution to Hubble. The distinction lies deep inside Roman, where technicians have delicately laid an array of detectors to register the faint infrared light coming through the telescope’s aperture.

“Things like night vision goggles will use the same basic detector device, just tuned to a different wavelength,” Townsend said.

These detectors are located in Roman’s Wide Field Instrument, the mission’s primary imaging camera. There are 18 of them, each 4,096×4,096 pixels wide, combining to form a roughly 300-megapixel camera sensitive to visible and near-infrared light. Teledyne, the company that produced the detectors, says this is the largest infrared focal plane ever made.

The near-infrared channel on Hubble’s Wide Field Camera 3, which covers much the same part of the spectrum as Roman, has a single 1,024-pixel detector.

“That’s how you get to a much higher field-of-view for the Roman Space Telescope, and it was one of the key enabling technologies,” Townsend told Ars. “That was one place where Roman invested significant dollars, even before we started as a mission, to mature that technology so that it was ready to infuse into this mission.”

With these detectors in its bag, Roman will cover much more cosmic real estate than Hubble. For example, Roman will be able to re-create Hubble’s famous Ultra Deep Field image with the same sharpness, but expand it to show countless stars and galaxies over an area of the sky at least 100 times larger.

This infographic illustrates the differences between the sizes of the primary mirrors and detectors on the Hubble, Roman, and Webb telescopes. Credit: NASA

Roman has a second instrument, the Roman Coronagraph, with masks, filters, and adaptive optics to block out the glare from stars and reveal the faint glow from objects around them. It is designed to photograph planets 100 million times fainter than their stars, or 100 to 1,000 times better than similar instruments on Webb and Hubble. Roman can also detect exoplanets using the tried-and-true transit method, but scientists expect the new telescope will find a lot more than past space missions, thanks to its wider vision.

“With Roman’s construction complete, we are poised at the brink of unfathomable scientific discovery,” said Julie McEnery, Roman’s senior project scientist at NASA Goddard, in a press release. “In the mission’s first five years, it’s expected to unveil more than 100,000 distant worlds, hundreds of millions of stars, and billions of galaxies. We stand to learn a tremendous amount of new information about the universe very rapidly after Roman launches.”

Big numbers are crucial for learning how the Universe works, and Roman will feed vast volumes of data down to astronomers on Earth. “So much of what physics is trying to understand about the nature of the Universe today needs large number statistics in order to understand,” Townsend said.

In one of Roman’s planned sky surveys, the telescope will cover in nine months what would take Hubble between 1,000 and 2,000 years. In another survey, Roman will cover an area equivalent to 3,455 full moons in about three weeks, then go back and observe a smaller portion of that area repeatedly over five-and-a-half days—jobs that Hubble and Webb can’t do.

“We will do fundamentally different science,” Townsend said. “In some subset of our observations, we’re going to be making 3D movies of what is going on in the Milky Way galaxy and in distant galaxies. That is just something that’s never happened before.”

Getting here and getting there

Roman’s promised scientific bounty will come at a cost of $4.3 billion, including expenses for development, manufacturing, launch, and five years of operations.

This is about $300 million more than NASA expected when it formally approved Roman for development in 2020, an overrun the agency blamed on complications related to the coronavirus pandemic. Otherwise, Roman’s budget has been stable since NASA officials finalized the mission’s architecture in 2017, when it was still known by a bulky acronym: WFIRST, the Wide Field InfraRed Survey Telescope.

At that time, the agency reclassified the Roman Coronagraph as a technology demonstration, allowing managers to relax their requirements for the instrument and stave off concerns about cost growth.

Roman survived multiple attempts by the first Trump administration to cancel the mission. Each time, Congress restored funding to keep the observatory on track for launch in the mid-2020s. With Donald Trump back in the White House, the administration’s budget office earlier this year again wanted to cancel Roman. Eventually, the Trump administration released its fiscal year 2026 budget request in May, calling for a drastic cut to Roman, but not total cancellation.

Once again, both houses of Congress signaled their opposition to the cuts, and the mission remains on track for launch next year, perhaps as soon as September. This is eight months ahead of the schedule NASA has publicized for Roman for the last few years.

Townsend told Ars the mission escaped the kind of crippling cost overruns and delays that afflicted Webb through careful planning and execution. “Roman was under a cost cap, and we operated to that,” she said. “We went through reasonable efforts to preclude those kinds of highly complex deployments that lead you to having trouble in integration and test.”

The outer barrel section of the Roman Space Telescope inside a thermal vacuum chamber at NASA’s Goddard Space Flight Center, Maryland. Credit: NASA/Sydney Rohde

There are only a handful of mechanisms that must work after Roman’s launch. They include a deployable cover designed to shield the telescope’s mirror during launch and solar array wings that will unfold once Roman is in space. The observatory will head to an observing post about a million miles (1.5 million kilometers) from Earth.

“We don’t have moments of terror for the deployment,” Townsend said. “Obviously, launch is always a risk, the tip-off rates that you have when you separate from the launch vehicle… Then, obviously, getting the aperture door open so that it’s deployed is another one. But these feel like normal aerospace risks, not unusual, harrowing moments for Roman.”

It also helps that Roman will use a primary mirror gifted to NASA by the National Reconnaissance Office, the US government’s spy satellite agency. The NRO originally ordered the mirror for a telescope that would peer down on the Earth, but the spy agency no longer needed it. Before NASA got its hands on the surplus mirror in 2012, scientists working on the preliminary design for what became Roman were thinking of a smaller telescope.

The larger telescope will make Roman a more powerful tool for science, and the NRO’s donation eliminated the risk of a problem or delay manufacturing a new mirror. But the upside meant NASA had to build a more massive spacecraft and use a bigger rocket to accommodate it, adding to the observatory’s cost.

Tests of Roman’s components have gone well this year. Work on Roman continued at Goddard through the government shutdown in the fall. On Webb, engineers uncovered one problem after another as they tried to verify the observatory would perform as intended in space. There were leaky valves, tears in the Webb’s sunshield, a damaged transducer, and loose screws. With Roman, engineers so far have found no “significant surprises” during ground testing, Townsend said.

“What we always hope when you’re doing this final round of environmental tests is that you’ve wrung out the hardware at lower levels of assembly, and it looks like, in Roman’s case, we did a spectacular job at the lower level,” she said.

With Roman now fully assembled, attention at Goddard will turn to an end-to-end functional test of the observatory early next year, followed by electromagnetic interference testing, and another round of acoustic and vibration tests. Then, perhaps around June of next year, NASA will ship the observatory to Kennedy Space Center, Florida, to prepare for launch on a SpaceX Falcon Heavy rocket.

“We’re really down to the last stretch of environmental testing for the system,” Townsend said. “It’s definitely already seen the worst environment until we get to launch.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The $4.3 billion space telescope Trump tried to cancel is now complete Read More »

nasa-just-lost-contact-with-a-mars-orbiter,-and-will-soon-lose-another-one

NASA just lost contact with a Mars orbiter, and will soon lose another one

Technicians work on the MAVEN spacecraft at NASA’s Kennedy Space Center in Florida ahead of its launch in 2013. Credit: NASA/Kim Shiflett

But NASA’s two other Mars orbiters have been in space for more than 20 years. The older of the two, named Mars Odyssey, has been at Mars since 2001 and will soon run out of fuel, probably sometime in the next couple of years. NASA’s Mars Reconnaissance Orbiter, which launched in 2005, is healthy for its age, with enough fuel to last into the 2030s. MRO is also important to NASA because it has the best camera at Mars, with the ability to map landing sites for future missions.

Two European spacecraft, Mars Express and the ExoMars Trace Gas Orbiter, have radios to relay data between mission controllers and NASA’s landers on the Martian surface. Mars Express, now 22 years old, suffers from the same aging concerns as Mars Odyssey and MRO. The ExoMars Trace Gas Orbiter is newer, having arrived at Mars in 2016, but is also operating beyond its original lifetime.

China and the United Arab Emirates also have orbiters circling Mars, but neither spacecraft is equipped to serve as a communications relay.

NASA’s Curiosity and Perseverance rovers have the capability for direct-to-Earth communications, but the orbiting relay network can support vastly higher data throughput. Without overhead satellites, much of the science data and many of the spectacular images collected by NASA’s rovers might never make it off the planet.

MAVEN’s unique orbit, stretching as far as 2,800 miles (4,500 kilometers) above Mars, has some advantages for data relay. In that orbit, MAVEN could relay science data from rovers on the surface for up to 30 minutes at a time, longer than the relay periods available through NASA’s lower-altitude orbiters. Because of this, MAVEN could support the largest data volumes of any of the other relay options.

NASA just lost contact with a Mars orbiter, and will soon lose another one Read More »

nasa-astronauts-will-have-their-own-droid-when-they-go-back-to-the-moon

NASA astronauts will have their own droid when they go back to the Moon

Artemis IV will mark the second lunar landing of the Artemis program and build upon what is learned at the moon’s south pole on Artemis III.

“After his voyage to the Moon’s surface during Apollo 17, astronaut Gene Cernan acknowledged the challenge that lunar dust presents to long-term lunar exploration. Moon dust sticks to everything it touches and is very abrasive,” read NASA’s announcement of the Artemis IV science payloads.

A simple rendering a small moon rover labeled to show its science instruments

Rendering of Lunar Outpost’s MAPP lunar rover with its Artemis IV DUSTER science instruments, including the Electrostatic Dust Analyzer (EDA) and Relaxation SOunder and differentiaL VoltagE (RESOLVE). Credit: LASP/CU Boulder/Lunar Outpost

To that end, the solar-powered MAPP will support DUSTER (DUst and plaSma environmenT survEyoR), a two-part investigation from the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder. The autonomous rover’s equipment will include the Electrostatic Dust Analyzer (EDA), which will measure the charge, velocity, size, and flux of dust particles lofted from the lunar surface, and the RElaxation SOunder and differentiaL VoltagE (RESOLVE) instrument, which will characterize the average electron density above the lunar surface using plasma sounding.

The University of Central Florida and University of California, Berkeley, have joined with LASP to interpret measurements taken by DUSTER. The former will look at the dust ejecta generated during the Human Landing System (HLS, or lunar lander) liftoff from the Moon, while the latter will analyze upstream plasma conditions.

Lunar dust attaches to almost everything it comes into contact with, posing a risk to equipment and spacesuits. It can also obstruct solar panels, reducing their ability to generate electricity and cause thermal radiators to overheat. The dust can also endanger astronauts’ health if inhaled.

“We need to develop a complete picture of the dust and plasma environment at the lunar south pole and how it varies over time and location to ensure astronaut safety and the operation of exploration equipment,” said Xu Wang, senior researcher at LASP and principal investigator of DUSTER, in a University of Colorado statement. “By studying this environment, we gain crucial insights that will guide mitigation strategies and methods to enable long-term, sustained human exploration on the Moon.”

NASA astronauts will have their own droid when they go back to the Moon Read More »

in-a-major-new-report,-scientists-build-rationale-for-sending-astronauts-to-mars

In a major new report, scientists build rationale for sending astronauts to Mars

The committee also looked at different types of campaigns to determine which would be most effective for completing the science objectives noted above. The campaign most likely to be successful, they found, was an initial human landing that lasts 30 days, followed by an uncrewed cargo delivery to facilitate a longer 300-day crewed mission on the surface of Mars. All of these missions would take place in a single exploration zone, about 100 km in diameter, that featured ancient lava flows and dust storms.

Science-driven exploration

Notably, the report also addresses the issue of planetary protection, a principle that aims to protect both celestial bodies (i.e., the surface of Mars) and visitors (i.e., astronauts) from biological contamination. This has been a thorny issue for human missions to Mars, as some scientists and environmentalists say humans should be barred from visiting a world that could contain extant life.

In recent years, NASA has been working with the International Committee on Space Research to design a plan in which human landings might occur in some areas of the planet, while other parts of Mars are left in “pristine” condition. The committee said this work should be prioritized to reach a resolution that will further the design of human missions to Mars.

“NASA should continue to collaborate on the evolution of planetary protection guidelines, with the goal of enabling human explorers to perform research in regions that could possibly support, or even harbor, life,” the report states.

If NASA is going to get serious about pressing policymakers and saying it is time to fund a human mission to Mars, the new report is important because it provides the justification for sending people—and not just robots—to the surface of Mars. It methodically goes through all the things that humans can and should do on Mars and lays out how NASA’s human spaceflight and science exploration programs can work together.

“The report says here are the top science priorities that can be accomplished by humans on the surface of Mars,” Elkins-Tanton said. “There are thousands of scientific measurements that could be taken, but we believe these are the highest priorities. We’ve been on Mars for 50 years. With humans there, we have a huge opportunity.”

In a major new report, scientists build rationale for sending astronauts to Mars Read More »

congress-warned-that-nasa’s-current-plan-for-artemis-“cannot-work”

Congress warned that NASA’s current plan for Artemis “cannot work”

As for what to do about it, Griffin said legislators should end the present plan.

“The Artemis III mission and those beyond should be canceled and we should start over, proceeding with all deliberate speed,” Griffin said. He included a link to his plan, which is not dissimilar from the “Apollo on Steroids” architecture he championed two decades ago, but was later found to be unaffordable within NASA’s existing budget.

“There need to be consequences”

Other panel members offered more general advice.

Clayton Swope, deputy director of the Aerospace Security Project for the Center for Strategic and International Studies, said NASA should continue to serve as an engine for US success in space and science. He cited the Commercial Lunar Payload Services program, which has stimulated a growing lunar industry. He also said NASA spending on basic research and development is a critical feedstock for US innovation, and a key advantage over the People’s Republic of China.

“When you’re looking at the NASA authorization legislation, look at it in a way where you are the genesis of that innovation ecosystem, that flywheel that really powers US national security and economic security, in a way that the PRC just can’t match,” Swope said. “Without science, we would never have had something like the Manhattan Project.”

Another witness, Dean Cheng of the Potomac Institute for Policy Studies, said NASA—and by extension Congress—must do a better job of holding itself and its contractors accountable.

Many of NASA’s major exploration programs, including the Orion spacecraft, Space Launch System rocket, and their ground systems, have run years behind schedule and billions of dollars over budget in the last 15 years. NASA has funded these programs with cost-plus contracts, so it has had limited ability to enforce deadlines with contractors. Moreover, Congress has more or less meekly gone along with the delays and continued funding the programs.

Cheng said that whatever priorities policymakers decide for NASA,  failing to achieve objectives should come with consequences.

“One, it needs to be bipartisan, to make very clear throughout our system that this is something that everyone is pushing for,” Cheng said of establishing priorities for NASA. “And two, that there are consequences, budgetary, legal, and otherwise, to the agency, to supplying companies. If they fail to deliver on time and on budget, that it will not be a ‘Well, okay, let’s try again next year.’ There need to be consequences.”

Congress warned that NASA’s current plan for Artemis “cannot work” Read More »

lego-announces-nasa-artemis-sls-rocket-set-to-lift-off-(literally)-in-2026

Lego announces NASA Artemis SLS rocket set to lift off (literally) in 2026

How do you top a highly detailed scale model of NASA’s new moon-bound rocket and its support tower? If you’re Lego, you make it so it can actually lift off.

Lego’s NASA Artemis Space Launch System Rocket, part of its Technic line of advanced building sets, will land on store shelves for $60 on January 1, 2026, and then “blast off” from kitchen tables, office desks and living room floors. The 632-piece set climbs skyward, separating from its expendable stages along the way, until the Orion crew spacecraft and its European Service Module top out the motion on their way to the moon—or wherever your imagination carries it.

“The educational LEGO Technic set shows the moment a rocket launches, in three distinct stages,” reads the product description on Lego’s website. “Turn the crank to see the solid rocket boosters separate from the core stage, which then also detaches. Continue turning to watch the upper stage with its engine module, Orion spacecraft and launch abort system separate.”

Crank it up

Illustration

The lid of the mobile launcher opens to reveal the gears that set the Lego Technic NASA Artemis Space Launch System Rocket into motion. Credit: LEGO

The new set captures all the major milestones of the first eight and a half minutes of an Artemis mission (with the exception of the jettison of the abort system tower, which on the real rocket occurs before the Orion separates from the core stage). Lego worked with NASA and the European Space Agency (ESA) to ensure the overall accuracy of the display.

“On the way up, there is sound. You can hear it—it is really noisy, the rocket,” said Olaf Kegger, the set’s designer at Lego, at an unveiling of his creation. He added that there is no sound when the motion is reversed, as the real SLS, “of course, does not go [back] down like this.”

Lego announces NASA Artemis SLS rocket set to lift off (literally) in 2026 Read More »

nasa-nominee-appears-before-congress,-defends-plans-to-revamp-space-agency

NASA nominee appears before Congress, defends plans to revamp space agency

Private astronaut Jared Isaacman returned to Congress on Wednesday for a second confirmation hearing to become NASA administrator before the US Senate Committee on Commerce, Science, and Transportation in Washington, DC.

There appeared to be no showstoppers during the hearing, in which Isaacman reiterated his commitment to the space agency’s Artemis Program and defended his draft plan for NASA, “Project Athena,” which calls for an assessment of how NASA should adapt to meet the modern space age.

During his testimony, Isaacman expressed urgency as NASA faces a growing threat from China to its supremacy in spaceflight.

“After more than a half-century, America is set to launch NASA astronauts around the Moon in just a matter of months—a challenging endeavor to say the least—and one that requires full-time leadership,” Isaacman said. “We are in a great competition with a rival that has the will and means to challenge American exceptionalism across multiple domains, including in the high ground of space. This is not the time for delay, but for action, because if we fall behind—if we make a mistake—we may never catch up, and the consequences could shift the balance of power here on Earth.”

Second time around

Isaacman appeared before this Senate committee nine months ago, after his original nomination by President Trump to lead the space agency. That hearing went reasonably well, and he was days away from being confirmed by about two-thirds of the Senate when the president pulled his nomination for political reasons. But Isaacman’s time was not done, and throughout the summer and fall, his supporters pressed his case, leading to Trump’s re-nomination in early November.

For much of September and October, there was a political struggle between Isaacman’s supporters and those who backed the interim NASA administrator, Sean Duffy, to lead the space agency full-time. As part of this tussle, Duffy’s team leaked copies of Isaacman’s draft plan, Project Athena, to reform NASA. Duffy’s team sought to cherry-pick elements of the plan to cast Isaacman as an agent of chaos, intent on canceling NASA field centers and killing useful programs.

NASA nominee appears before Congress, defends plans to revamp space agency Read More »