Like a lot of the rest of the federal government right now, NASA is reeling during the first turbulent days of the Trump administration.
The last two weeks have brought a change in leadership in the form of interim administrator Janet Petro, whose ascension was a surprise. Her first act was to tell agency employees to remove diversity, equity, inclusion, and accessibility contracts and to “report” on anyone who did not carry out this order. Soon, civil servants began receiving emails from the US Office of Personnel Management that some perceived as an effort to push them to resign.
Then there are the actions of SpaceX founder Elon Musk. Last week he sowed doubt by claiming NASA had “stranded” astronauts on the space station. (The astronauts are perfectly safe and have a ride home.) Perhaps more importantly, he owns the space agency’s most important contractor and, in recent weeks, has become deeply enmeshed in operating the US government through his Department of Government Efficiency. For some NASA employees, whether or not it is true, there is now an uncomfortable sense that they are working for Musk and to dole out contracts to SpaceX.
This concern was heightened late Friday when Petro announced that a longtime SpaceX employee named Michael Altenhofen had joined the agency “as a senior advisor to the NASA Administrator.” Altenhofen is an accomplished engineer who interned at NASA in 2005 but has spent the last 15 years at SpaceX, most recently as a leader of human spaceflight programs. He certainly brings expertise, but his hiring also raises concerns about SpaceX’s influence over NASA operations. Petro did not respond to a request for comment on Monday about potential conflicts of interest and the scope of Altenhofen’s involvement.
I spent this weekend talking and texting with NASA sources at various centers around the country, and the overriding message is that morale at the agency is “absurdly low.” Meetings between civil servants and their leadership, such as an all-hands gathering at NASA’s Langley Research Center in Virginia recently, have been fraught with tension. No one knows what will happen next.
Racing has always been used to improve the breed, but now mostly with software.
Credit: Aurich Lawson | Getty Images | NASA
Credit: Aurich Lawson | Getty Images | NASA
DAYTONA BEACH—Last week, ahead of the annual Rolex 24 at Daytona and the start of the North American road racing season, IMSA (the sport’s organizers) held a tech symposium across the road from the vast speedway at Embry-Riddle University. Last year, panelists, including Crowdstrike’s CSO, explained the draw of racing to their employers; this time, organizations represented included NASA, Michelin, AMD, and Microsoft. And while they were all there to talk about racing, it seems everyone was also there to talk about simulation and AI.
I’ve long maintained that endurance racing, where grids of prototypes and road car-based racers compete over long durations—24 hours, for example—is the most relevant form of motorsport, the one that makes road cars better. Formula 1 has budgets and an audience to dwarf all others, and there’s no doubt about the level of talent and commitment required to triumph in that arena. The Indy 500 might have more history. And rallying looks like the hardest challenge for both humans and machines.
But your car owes its disc brakes to endurance racing, plus its dual-clutch transmission, if it’s one of the increasing number of cars fitted with such. But let’s not overblow it. Over the years, budgets have had to be reined in for the health of the sport. That—plus a desire for parity among the teams so that no one clever idea runs away with the series—means there are plenty of spec or controlled components on a current endurance racer. Direct technology transfer, then, happens less and less often—at least in terms of new mechanical bits or bobs you might find inside your next car.
Software has become a new competitive advantage for the teams that race hybrid sports prototypes from Acura, BMW, Cadillac, Porsche, and Lamborghini, just as it is between teams in Formula E.
But this year’s symposium shone a light on a different area of tech transfer, where Microsoft or NASA can use the vast streams of data that pour out of a 60-car, 24-hour race to build more accurate simulations and AI tools—maybe even ones that will babysit a crewed mission to Mars.
Sorry, did you say Mars?
“Critically, it takes light 20 minutes to make that trip, which has some really unfortunate operational impacts,” said Ian Maddox of NASA’s Marshall Space Flight Center’s Habitation office. A 40-minute delay between asking a question and getting an answer wouldn’t work for a team trying to win the Rolex 24, and “it certainly isn’t going to work for us,” he said.
“And so we’re placed in—I’ll be frank—the really uncomfortable position of having to figure out how to build AI tools to help the crew on board a Mars ship diagnose and respond to their own problems. So to be their own crew, to be their own engineering teams, at least for the subset of problems that can get really bad in the course of 45 minutes to an hour,” Maddox said.
Building those kinds of tools will require a “giant bucket of really good data,” Maddox said, “and that’s why we’ve come to IMSA.”
Individually, the hybrid prototypes and GT cars in an IMSA race are obviously far less complicated than a Mars-bound spacecraft. But when you get that data from all the cars in the race together, the size starts to become comparable.
“And fundamentally, you guys have things that roll and we have things that rotate, and you have things that get hot and cold, and so do we,” Maddox said. “When you get down to the actual measurement level, there are a lot of similarities between the stuff that you guys use to understand vehicle performance and the stuff we use to understand vehicle performance.”
Not just Mars
Other speakers pointed to areas of technology development—like tire development—that you may have read about recently here on Ars Technica. “[A tire is] a composite material made with more than 200 components with very non-linear behavior. It’s pressure-sensitive, it’s temperature-sensitive. It changes with wear… and actually, the ground interaction is also one of the worst mechanisms to try to anticipate and to understand,” said Phillippe Tramond, head of research of motorsport at Michelin.
For the past four years, Michelin has been crunching data gathered from cars racing on its rubber (and the other 199 components). “And eventually, we are able to build and develop a thermomechanical tire model able to mimic and simulate tire behavior, tire performance, whatever the specification is,” Tramond said.
That tool has been quite valuable to the teams racing in the GTP class of hybrid prototypes, as it means that their driver-in-the-loop simulators are now even more faithful to real life. But Michelin has also started using the tire model when developing road tires for specific cars with individual OEMs.
For Sid Siddhartha, a principal researcher at Microsoft Research, the data is again the draw. Siddhartha has been using AI to study human behavior, including in the game Rocket League. “We were able to actually show that we can really understand and home in on individual human behavior in a very granular way, to the point where if I just observe you for two or three seconds, or if I look at some of your games, I can tell you who played it,” Siddhartha said.
That led to a new approach by the Alpine F1 team, which wanted to use Siddhartha’s AI to improve its simulation tools. F1 teams will run entirely virtual simulations on upgraded cars long before they fire those changes up in the big simulator and let their human drivers have a go (as described above). In Alpine’s case, they wanted something more realistic than a lap time simulator that just assumed perfect behavior.
The dreaded BoP
“Eventually, we are connected to IMSA, and IMSA is interested in a whole host of questions that are very interesting to us at Microsoft Research,” Siddhartha said. “They’re interested in what are the limits of driver and car? How do you balance that performance across different classes? How do you anticipate what might happen when people make different strategic decisions during the race? And how do you communicate all of this to a fan base, which has really blown me away, as John was saying, who are interested in following the sport and understanding what’s going on.”
“Sports car racing is inherently complex,” said Matt Kurdock, IMSA’s managing director of engineering. “We’ve got four different classes. We have, in each car, four different drivers. And IMSA’s challenge is to extract from this race data that’s being collected and figure out how to get an appropriate balance so that manufacturers stay engaged in the sport,” Kurdock said.
IMSA has the cars put through wind tunnels and runs CFD simulations on them as well. “We then plug all this information into one of Michelin’s tools, which is their canopy vehicle dynamic simulation, which runs in the cloud, and from this, we start generating a picture of where we believe the optimized performance of each platform is,” Kurdock said.
Jonathan is the Automotive Editor at Ars Technica. He has a BSc and PhD in Pharmacology. In 2014 he decided to indulge his lifelong passion for the car by leaving the National Human Genome Research Institute and launching Ars Technica’s automotive coverage. He lives in Washington, DC.
NASA’s acting administrator is moving swiftly to remove diversity, equity, inclusion, and accessibility—or DEIA—programs from the space agency.
In an email sent to agency employees on Wednesday afternoon, acting administrator Janet Petro wrote, “We are taking steps to close all agency DEIA offices and end all DEIA-related contracts in accordance with President Trump’s executive orders titled Ending Radical and Wasteful Government DEI Programs and Preferencing and Initial Rescissions of Harmful Executive Orders and Actions.”
During his run for a second term as president, Trump campaigned on ending programs in the federal government that promote diversity, equity, and inclusion. He signed executive orders to that effect shortly after his inauguration on Monday.
Programs seen as divisive
These programs had their roots in affirmative action but exploded in popularity half a decade ago amid Trump’s first presidency and the #MeToo and Black Lives Matter movements. DEI programs and officers became commonplace in academia and major US corporations. However, even before the election of Trump, the DEI movement appeared to have crested. For example, last year the Massachusetts Institute of Technology ended the use of diversity statements for faculty hiring.
In explaining NASA’s position, Petro said of the agency’s existing DEIA activities, “These programs divided Americans by race, wasted taxpayer dollars, and resulted in shameful discrimination.”
Petro’s email is notable for its suggestion that some civil servants at NASA may have sought to shroud DEIA programs from the Trump administration since the presidential election in early November.
“We are aware of efforts by some in government to disguise these programs by using coded or imprecise language,” she wrote. “If you are aware of a change in any contract description or personnel position description since November 5, 2024 to obscure the connection between the contract and DEIA or similar ideologies, please report all facts and circumstances.”
This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.
SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?
Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.
On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.
Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.
This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.
Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX
The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.
In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.
Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.
With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.
The seventh test flight of Starship is scheduled for launch Thursday afternoon.
SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX
SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.
There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.
SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.
You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.
We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.
There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.
If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.
Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.
In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.
Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX
Questions for 2025
Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.
SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.
Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?
Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?
And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.
The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.
Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.
Ars: What do you hope to see from Flight 7 of Starship?
Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.
Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?
Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.
A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX
Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?
Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.
Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?
Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.
Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.
Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?
Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.
Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani
Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?
Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.
Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?
Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.
Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.
Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”
Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?
Lisa Watson-Morgan: I see it occurring in ’25.
Ars: Anything more specific about the schedule for that?
Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.
Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?
Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.
Ars: You mentioned the long-duration flight demonstration. What does that entail?
Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.
Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?
Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.
Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?
Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
Julianna Scheiman, director of NASA science missions for SpaceX, said it made sense to pair the Firefly and ispace missions on the same Falcon 9 rocket.
“When we have two missions that can each go to the Moon on the same launch, that is something that we obviously want to take advantage of,” Scheiman said. “So when we found a solution for the Firefly and ispace missions to fly together on the same Falcon 9, it was a no-brainer to put them together.”
SpaceX stacked the two landers, one on top of the other, inside the Falcon 9’s payload fairing. Firefly’s lander, the larger of the two spacecraft, rode on top of the stack and deployed from the rocket first. The Resilience lander from ispace launched in the lower position, cocooned inside a specially designed canister. Once Firefly’s lander separated from the Falcon 9, the rocket jettisoned the canister, performed a brief engine firing to maneuver into a slightly different orbit, then released ispace’s lander.
This dual launch arrangement resulted in a lower launch price for Firefly and ispace, according to Scheiman.
“At SpaceX, we are really interested in and invested in lowering the cost of launch for everybody,” she said. “So that’s something we’re really proud of.”
The Resilience lunar lander is pictured at ispace’s facility in Japan last year. The company’s small Tenacious rover is visible on the upper left part of the spacecraft. credit: ispace Credit: ispace
The Blue Ghost and Resilience landers will take different paths toward the Moon.
Firefly’s Blue Ghost will spend about 25 days in Earth orbit, then four days in transit to the Moon. After Blue Ghost enters lunar orbit, Firefly’s ground team will verify the readiness of the lander’s propulsion and navigation systems and execute several thruster burns to set up for landing.
Blue Ghost’s final descent to the Moon is tentatively scheduled for March 2. The target landing site is in Mare Crisium, an ancient 350-mile-wide (560-kilometer) impact basin in the northeast part of the near side of the Moon.
After touchdown, Blue Ghost will operate for about 14 days (one entire lunar day). The instruments aboard Firefly’s lander include a subsurface drill, an X-ray imager, and an experimental electrodynamic dust shield to test methods of repelling troublesome lunar dust from accumulating on sensitive spacecraft components.
The Resilience lander from ispace will take four to five months to reach the Moon. It carries several intriguing tech demo experiments, including a water electrolyzer provided by a Japanese company named Takasago Thermal Engineering. This demonstration will test equipment that future lunar missions could use to convert the Moon’s water ice resources into electricity and rocket fuel.
The lander will also deploy a “micro-rover” named Tenacious, developed by an ispace subsidiary in Luxembourg. The Tenacious rover will attempt to scoop up lunar soil and capture high-definition imagery of the Moon.
Ron Garan, CEO of ispace’s US-based subsidiary, told Ars that this mission is “pivotal” for the company.
“We were not fully successful on our first mission,” Garan said in an interview. “It was an amazing accomplishment, even though we didn’t have a soft landing… Although the hardware worked flawlessly, exactly as it was supposed to, we did have some lessons learned in the software department. The fixes to prevent what happened on the first mission from happening on the second mission were fairly straightforward, so that boosts our confidence.”
The ispace subsidiary led by Garan, a former NASA astronaut, is based in Colorado. While the Resilience lander launched Wednesday is not part of the CLPS program, the company will build an upgraded lander for a future CLPS mission for NASA, led by Draper Laboratory.
“I think the fact that we have two lunar landers on the same rocket for the first time in history is pretty substantial,” Garan said. I think we all are rooting for each other.”
Investors need to see more successes with commercial lunar landers to fully realize the market’s potential, Garan said.
“That market, right now, is very nascent. It’s very, very immature. And one of the reasons for that is that it’s very difficult for companies that are contemplating making investments on equipment, experiments, etc., to put on the lunar surface and lunar orbit,” Garan said. “It’s very difficult to make those investments, especially if they’re long-term investments, because there really hasn’t been a proof of concept yet.”
“So every time we have a success, that makes it more likely that these companies that will serve as the foundation of a commercial lunar market movement will be able to make those investments,” Garan said. “Conversely, every time we have a failure, the opposite happens.”
We’re just a few days away from getting a double-dose of heavy-lift rocket action.
Stratolaunch’s Talon-A hypersonic rocket plane will be used for military tests involving hypersonic missile technology. Credit: Stratolaunch
Welcome to Edition 7.26 of the Rocket Report! Let’s pause and reflect on how far the rocket business has come in the last 10 years. On this date in 2015, SpaceX made the first attempt to land a Falcon 9 booster on a drone ship positioned in the Atlantic Ocean. Not surprisingly, the rocket crash-landed. In less than a year and a half, though, SpaceX successfully landed reusable Falcon 9 boosters onshore and offshore, and now has done it nearly 400 times. That was remarkable enough, but we’re in a new era now. Within a few days, we could see SpaceX catch its second Super Heavy booster and Blue Origin land its first New Glenn rocket on an offshore platform. Extraordinary.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Our annual ranking of the top 10 US launch companies. You can easily guess who made the top of the list: the company that launched Falcon rockets 134 times in 2024 and launched the most powerful and largest rocket ever built on four test flights, each accomplishing more than the last. The combined 138 launches is more than NASA flew the Space Shuttle over three decades. SpaceX will aim to launch even more often in 2025. These missions have far-reaching impacts, supporting Internet coverage for consumers worldwide, launching payloads for NASA and the US military, and testing technology that will take humans back to the Moon and, someday, Mars.
Are there really 10? … It might also be fairly easy to rattle off a few more launch companies that accomplished big things in 2024. There’s United Launch Alliance, which finally debuted its long-delayed Vulcan rocket and flew two Atlas V missions and the final Delta IV mission, and Rocket Lab, which launched 16 missions with its small Electron rocket this year. Blue Origin flew its suborbital New Shepard vehicle on three human missions and one cargo-only mission and nearly launched its first orbital-class New Glenn rocket in 2024. That leaves just Firefly Aerospace as the only other US company to reach orbit last year.
DoD announces lucrative hypersonics deal. Defense technology firm Kratos has inked a deal worth up to $1.45 billion with the Pentagon to help develop a low-cost testbed for hypersonic technologies, Breaking Defense reports. The award is part of the military’s Multi-Service Advanced Capability Hypersonic Test Bed (MACH-TB) 2.0 program. The MACH-TB program, which began as a US Navy effort, includes multiple “Task Areas.” For its part, Kratos will be tasked with “systems engineering, integration, and testing, to include integrated subscale, full-scale, and air launch services to address the need to affordably increase hypersonic flight test cadence,” according to the company’s release.
Multiple players … The team led by Kratos, which specializes in developing airborne drones and military weapons systems, includes several players such as Leidos, Rocket Lab, Stratolaunch, and others. Kratos last year revealed that its Erinyes hypersonic test vehicle successfully flew for a Missile Defense Agency experiment. Rocket Lab has launched multiple suborbital hypersonic experiments for the military using a modified version of its Electron rocket, and Stratolaunch reportedly flew a high-speed test vehicle and recovered it last month, according to Aviation Week & Space Technology. The Pentagon is interested in developing hypersonic weapons that can evade conventional air and missile defenses. (submitted by EllPeaTea)
The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.
ESA will modify some of its geo-return policies. An upcoming European launch competition will be an early test of efforts by the European Space Agency to modify its approach to policies that link contracts to member state contributions, Space News reports. ESA has long used a policy known as geo-return, where member states are guaranteed contracts with companies based in their countries in proportion to the contribution those member states make to ESA programs.
The third rail of European space … Advocates of geo-return argue that it provides an incentive for countries to fund those programs. This incentivizes ESA to lure financial contributions from its member states, which will win guaranteed business and jobs from the agency’s programs. However, critics of geo-return, primarily European companies, claim that it creates inefficiencies that make them less competitive. One approach to revising geo-return is known as “fair contribution,” where ESA first holds competitions for projects, and member states then make contributions based on how companies in their countries fared in the competition. ESA will try the fair contribution approach for the upcoming launch competition to award contracts to European rocket startups. (submitted by EllPeaTea)
RFA is building a new rocket. German launch services provider Rocket Factory Augsburg (RFA) is currently focused on building a new first stage for the inaugural flight of its RFA One rocket, European Spaceflight reports. The stage that was initially earmarked for the flight was destroyed during a static fire test last year on a launch pad in Scotland. In a statement given to European Spaceflight, RFA confirmed that it expects to attempt an inaugural flight of RFA One in 2025.
Waiting on a booster … RFA says it is “fully focused on building a new first stage and qualifying it.” The rocket’s second stage and Redshift OTV third stage are already qualified for flight and are being stored until a new first stage is ready. The RFA One rocket will stand 98 feet (30 meters) tall and will be capable of delivering payloads of up to 1.3 metric tons (nearly 2,900 pounds) into polar orbits. RFA is one of several European startups developing commercial small satellite launchers and was widely considered the frontrunner before last year’s setback. (submitted by EllPeaTea)
Pentagon provides a boost for defense startup. Defense technology contractor Anduril Industries has secured a $14.3 million Pentagon contract to expand solid-fueled rocket motor production, as the US Department of Defense moves to strengthen domestic manufacturing capabilities amid growing supply chain concerns, Space News reports. The contract, awarded under the Defense Production Act, will support facility modernization and manufacturing improvements at Anduril’s Mississippi plant, the Pentagon said Tuesday.
Doing a solid … The Pentagon is keen to incentivize new entrants into the solid rocket manufacturing industry, which provides propulsion for missiles, interceptors, and other weapons systems. Two traditional defense contractors, Northrop Grumman and L3Harris, control almost all US solid rocket production. Companies like Anduril, Ursa Major, and X-Bow are developing solid rocket motor production capability. The Navy previously awarded Anduril a $19 million contract last year to develop solid rocket motors for the Standard Missile 6 program. (submitted by EllPeaTea)
Relativity’s value seems to be plummeting. For several years, an innovative, California-based launch company named Relativity Space has been the darling of investors and media. But the honeymoon appears to be over, Ars reports. A little more than a year ago, Relativity reached a valuation of $4.5 billion following its latest Series F fundraising round. This was despite only launching one rocket and then abandoning that program and pivoting to the development of a significantly larger reusable launch vehicle. The decision meant Relativity would not realize any significant revenue for several years, and Ars reported in September on some of the challenges the company has encountered developing the much larger Terran R rocket.
Gravity always wins … Relativity is a privately held company, so its financial statements aren’t public. However, we can glean some clues from the published quarterly report from Fidelity Investments, which owns Relativity shares. As of March 2024, Fidelity valued its 1.67 million shares at an estimated $31.8 million. However, in a report ending November 29 of last year, which was only recently published, Fidelity’s valuation of Relativity plummeted. Its stake in Relativity was then thought to be worth just $866,735—a per-share value of 52 cents. Shares in the other fundraising rounds are also valued at less than $1 each.
SpaceX has already launched four times this year. The space company is off to a fast start in 2025, with four missions in the first nine days of the year. Two of these missions launched Starlink internet satellites, and the other two deployed an Emirati-owned geostationary communications satellite and a batch of Starshield surveillance satellites for the National Reconnaissance Office. In its new year projections, SpaceX estimates it will launch more than 170 Falcon rockets, between Falcon 9 and Falcon Heavy, Spaceflight Now reports. This is in addition to SpaceX’s plans for up to 25 flights of the Starship rocket from Texas.
What’s in store this year?… Highlights of SpaceX’s launch manifest this year will likely include an attempt to catch and recover Starship after returning from orbit, a first in-orbit cryogenic propellant transfer demonstration with Starship, and perhaps the debut of a second launch pad at Starbase in South Texas. For the Falcon rocket fleet, notable missions this year will include launches of commercial robotic lunar landers for NASA’s CLPS program and several crew flights, including the first human spaceflight mission to fly in polar orbit. According to public schedules, a Falcon 9 rocket could launch a commercial mini-space station for Vast, a privately held startup, before the end of the year. That would be a significant accomplishment, but we won’t be surprised if this schedule moves to the right.
China is dipping its toes into satellite refueling. China kicked off its 2025 launch activities with the successful launch of the Shijian-25 satellite Monday, aiming to advance key technologies for on-orbit refueling and extending satellite lifespans, Space News reports. The satellite launched on a Long March 3B into a geostationary transfer orbit, suggesting the unspecified target spacecraft for the refueling demo test might be in geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator.
Under a watchful eye … China has tested mission extension and satellite servicing capabilities in space before. In 2021, China launched a satellite named Shijian-21, which docked a defunct Beidou navigation satellite and towed it to a graveyard orbit above the geostationary belt. Reportedly, Shijian-21 satellite may have carried robotic arms to capture and manipulate other objects in space. These kinds of technologies are dual-use, meaning they have civilian and military applications. The US Space Force is also interested in satellite life extension and refueling tech, so US officials will closely monitor Shijian-25’s actions in orbit.
SpaceX set to debut upgraded Starship. An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week, Ars reports. The rocket could lift off as soon as Monday from SpaceX’s Starbase test facility in South Texas. This flight is the seventh full-scale demonstration launch for Starship. The rocket will test numerous upgrades, including a new flap design, larger propellant tanks, redesigned propellant feed lines, a new avionics system, and an improved antenna for communications and navigation.
The new largest rocket … Put together, all of these changes to the ship raise the rocket’s total height by nearly 6 feet (1.8 meters), so it now towers 404 feet (123.1 meters) tall. With this change, SpaceX will break its own record for the largest rocket ever launched. SpaceX plans to catch the rocket’s Super Heavy booster back at the launch site in Texas and will target a controlled splashdown of the ship in the Indian Ocean.
Blue Origin targets weekend launch of New Glenn. Blue Origin is set to launch its New Glenn rocket in a long-delayed, uncrewed test mission that would help pave the way for the space venture founded by Jeff Bezos to compete against Elon Musk’s SpaceX, The Washington Post reports. Blue Origin has confirmed it plans to launch the 320-foot-tall rocket during a three-hour launch window opening at 1 am EDT (06: 00 UTC) Sunday in the company’s first attempt to reach orbit.
Finally … This is a much-anticipated milestone for Blue Origin and for the company’s likely customers, which include the Pentagon and NASA. Data from this test flight will help the Space Force certify New Glenn to loft national security satellites, providing a new competitor for SpaceX and United Launch Alliance in the heavy-lift segment of the market. Blue Origin isn’t quite shooting for the Moon on this inaugural launch, but the company will attempt to reach orbit and try to land the New Glenn’s first stage booster on a barge in the Atlantic Ocean. (submitted by EllPeaTea)
Next three launches
Jan. 10: Falcon 9 | Starlink 12-12 | Cape Canaveral Space Force Station, Florida | 18: 11 UTC
Jan. 12: New Glenn | NG-1 Blue Ring Pathfinder | Cape Canaveral Space Force Station, Florida | 06: 00 UTC
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
Starship will test its payload deployment mechanism on its seventh test flight.
SpaceX’s first second-generation Starship, known as Version 2 or Block 2, could launch as soon as January 13. Credit: SpaceX
An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week.
The two-mile transfer moved the bullet-shaped spaceship one step closer to launch Monday from SpaceX’s Starbase test site in South Texas. The launch window opens at 5 pm EST (4 pm CST; 2200 UTC). This will be the seventh full-scale test flight of SpaceX’s Super Heavy booster and Starship spacecraft and the first of 2025.
In the coming days, SpaceX technicians will lift the ship on top of the Super Heavy booster already emplaced on the launch mount. Then, teams will complete the final tests and preparations for the countdown on Monday.
“The upcoming flight test will launch a new generation ship with significant upgrades, attempt Starship’s first payload deployment test, fly multiple reentry experiments geared towards ship catch and reuse, and launch and return the Super Heavy booster,” SpaceX officials wrote in a mission overview posted on the company’s website.
The mission Monday will repeat many of the maneuvers SpaceX demonstrated on the last two Starship test flights. The company will again attempt to return the Super Heavy booster to the launch site and attempt to catch it with two mechanical arms, or “chopsticks,” on the launch tower approximately seven minutes after liftoff.
SpaceX accomplished this feat on the fifth Starship test flight in October but aborted a catch attempt on a November flight because of damaged sensors on the tower chopsticks. The booster, which remained healthy, diverted to a controlled splashdown offshore in the Gulf of Mexico.
SpaceX’s next Starship prototype, Ship 33, emerges from its assembly building at Starbase, Texas, early Thursday morning. Credit: SpaceX/Elon Musk via X
For the next flight, SpaceX added protections to the sensors on the tower and will test radar instruments on the chopsticks to provide more accurate ranging measurements for returning vehicles. These modifications should improve the odds of a successful catch of the Super Heavy booster and of Starship on future missions.
In another first, one of the 33 Raptor engines that will fly on this Super Heavy booster—designated Booster 14 in SpaceX’s fleet—was recovered from the booster that launched and returned to Starbase in October. For SpaceX, this is a step toward eventually flying the entire rocket repeatedly. The Super Heavy booster and Starship spacecraft are designed for full reusability.
After separation of the booster stage, the Starship upper stage will ignite six engines to accelerate to nearly orbital velocity, attaining enough energy to fly halfway around the world before gravity pulls it back into the atmosphere. Like the past three test flights, SpaceX will guide Starship toward a controlled reentry and splashdown in the Indian Ocean northwest of Australia around one hour after liftoff.
New ship, new goals
The most significant changes engineers will test next week are on the ship, or upper stage, of SpaceX’s enormous rocket. The most obvious difference on Starship Version 2, or Block 2, is with the vehicle’s forward flaps. Engineers redesigned the flaps, reducing their size and repositioning them closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Cameras onboard Starship showed heat damage to the flaps during reentry on test flights last year.
SpaceX is also developing an upgraded Super Heavy booster that is slightly taller than the existing model. The next version of the booster will produce more thrust and will be slightly taller than the current Super Heavy, but for the upcoming test flight, SpaceX will still use the first-generation booster design.
Starship Block 2 has smaller flaps than previous ships. The flaps are located in a more leeward position to protect them from the heat of reentry. Credit: SpaceX
For next week’s flight, Super Heavy and Starship combined will hold more than 10.5 million pounds of fuel and oxidizer. The ship’s propellant tanks have 25 percent more volume than previous iterations of the vehicle, and the payload compartment, which contains 10 mock-ups of Starlink Internet satellites on this launch, is somewhat smaller. Put together, the changes add nearly 6 feet (1.8 meters) to the rocket’s height, bringing the full stack to approximately 404 feet (123.1 meters).
This means SpaceX will break its own record for launching the largest and most powerful rocket ever built. And the company will do it again with the even larger Starship Version 3, which SpaceX says will have nine upper stage engines, instead of six, and will deliver up to 440,000 pounds (200 metric tons) of cargo to low-Earth orbit.
Other changes debuting with Starship Version 2 next week include:
• Vacuum jacketing of propellant feedlines
• A new fuel feedline system for the ship’s Raptor vacuum engines
• An improved propulsion avionics module controlling vehicle valves and reading sensors
• Redesigned inertial navigation and star tracking sensors
• Integrated smart batteries and power units to distribute 2.7 megawatts of power across the ship
• An increase to more than 30 cameras onboard the vehicle.
Laying the foundation
The enhanced avionics system will support future missions to prove SpaceX’s ability to refuel Starships in orbit and return the ship to the launch site. For example, SpaceX will fly a more powerful flight computer and new antennas that integrate connectivity with the Starlink Internet constellation, GPS navigation satellites, and backup functions for traditional radio communication links. With Starlink, SpaceX said Starship can stream more than 120Mbps of real-time high-definition video and telemetry in every phase of flight.
These changes “all add additional vehicle performance and the ability to fly longer missions,” SpaceX said. “The ship’s heat shield will also use the latest generation tiles and includes a backup layer to protect from missing or damaged tiles.”
Somewhere over the Atlantic Ocean, a little more than 17 minutes into the flight, Starship will deploy 10 dummy payloads similar in size and weight to next-generation Starlink satellites. The mock-ups will soar around the world on a suborbital trajectory, just like Starship, and reenter over the unpopulated Indian Ocean. Future Starship flights will launch real next-gen Starlink satellites to add capacity to the Starlink broadband network, but they’re too big and too heavy to launch on SpaceX’s smaller Falcon 9 rocket.
SpaceX will again reignite one of the ship’s Raptor engines in the vacuum of space, repeating a successful test achieved on Flight 6 in November. The engine restart capability is important for several reasons. It gives the ship the ability to maneuver itself out of low-Earth orbit for reentry (not a concern for Starship’s suborbital tests), and will allow the vehicle to propel itself to higher orbits, the Moon, or Mars once SpaceX masters the technology for orbital refueling.
Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX
NASA has contracts with SpaceX to build a derivative of Starship to ferry astronauts to and from the surface of the Moon for the agency’s Artemis program. The NASA program manager overseeing SpaceX’s lunar lander contract, Lisa Watson-Morgan, said she was pleased with the results of the in-space engine restart demo last year.
“The whole path to the Moon, as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold,” Morgan told Ars in a recent interview. “To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that.
“In addition, after we land, clearly, the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to launch the crews off the lunar surface),” she said. “So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.”
“The biggest technology challenge remaining”
SpaceX continues to experiment with Starship’s heat shield, which the company’s founder and CEO, Elon Musk, has described as “the biggest technology challenge remaining with Starship.” In order for SpaceX to achieve its lofty goal of launching Starships multiple times per day, the heat shield needs to be fully and immediately reusable.
While the last three ships have softly splashed down in the Indian Ocean, some of their heat-absorbing tiles stripped away from the vehicle during reentry, when it’s exposed to temperatures up to 2,600° Fahrenheit (1,430° Celsius).
Engineers removed tiles from some areas of the ship for next week’s test flight in order to “stress-test” vulnerable parts of the vehicle. They also smoothed and tapered the edge of the tile line, where the ceramic heat shield gives way to the ship’s stainless steel skin, to address “hot spots” observed during reentry on the most recent test flight.
“Multiple metallic tile options, including one with active cooling, will test alternative materials for protecting Starship during reentry,” SpaceX said.
SpaceX is also flying rudimentary catch fittings on Starship to test their thermal performance on reentry. The ship will fly a more demanding trajectory during descent to probe the structural limits of the redesigned flaps at the point of maximum entry dynamic pressure, according to SpaceX.
All told, SpaceX’s inclusion of a satellite deployment demo and ship upgrades on next week’s test flight will lay the foundation for future missions, perhaps in the next few months, to take the next great leap in Starship development.
In comments following the last Starship test flight in November, SpaceX founder and CEO Elon Musk posted on X that the company could try to return the ship to a catch back at the launch site—something that would require the vehicle to complete at least one full orbit of Earth—as soon as the next flight following Monday’s mission.
“We will do one more ocean landing of the ship,” Musk posted. “If that goes well, then SpaceX will attempt to catch the ship with the tower.”
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
“We want to have the quickest, cheapest way to get these 30 samples back.”
This photo montage shows sample tubes shortly after they were deposited onto the surface by NASA’s Perseverance Mars rover in late 2022 and early 2023. Credit: NASA/JPL-Caltech/MSSS
For nearly four years, NASA’s Perseverance rover has journeyed across an unexplored patch of land on Mars—once home to an ancient river delta—and collected a slew of rock samples sealed inside cigar-sized titanium tubes.
These tubes might contain tantalizing clues about past life on Mars, but NASA’s ever-changing plans to bring them back to Earth are still unclear.
On Tuesday, NASA officials presented two options for retrieving and returning the samples gathered by the Perseverance rover. One alternative involves a conventional architecture reminiscent of past NASA Mars missions, relying on the “sky crane” landing system demonstrated on the agency’s two most recent Mars rovers. The other option would be to outsource the lander to the space industry.
NASA Administrator Bill Nelson left a final decision on a new mission architecture to the next NASA administrator working under the incoming Trump administration. President-elect Donald Trump nominated entrepreneur and commercial astronaut Jared Isaacman as the agency’s 15th administrator last month.
“This is going to be a function of the new administration in order to fund this,” said Nelson, a former Democratic senator from Florida who will step down from the top job at NASA on January 20.
The question now is: will they? And if the Trump administration moves forward with Mars Sample Return (MSR), what will it look like? Could it involve a human mission to Mars instead of a series of robotic spacecraft?
The Trump White House is expected to emphasize “results and speed” with NASA’s space programs, with the goal of accelerating a crew landing on the Moon and sending people to explore Mars.
NASA officials had an earlier plan to bring the Mars samples back to Earth, but the program slammed into a budgetary roadblock last year when an independent review team concluded the existing architecture would cost up to $11 billion—double the previous cost projection—and wouldn’t get the Mars specimens back to Earth until 2040.
This budget and schedule were non-starters for NASA. The agency tasked government labs, research institutions, and commercial companies to come up with better ideas to bring home the roughly 30 sealed sample tubes carried aboard the Perseverance rover. NASA deposited 10 sealed tubes on the surface of Mars a couple of years ago as insurance in case Perseverance dies before the arrival of a retrieval mission.
“We want to have the quickest, cheapest way to get these 30 samples back,” Nelson said.
How much for these rocks?
NASA officials said they believe a stripped-down concept proposed by the Jet Propulsion Laboratory in Southern California, which previously was in charge of the over-budget Mars Sample Return mission architecture, would cost between $6.6 billion and $7.7 billion, according to Nelson. JPL’s previous approach would have put a heavier lander onto the Martian surface, with small helicopter drones that could pick up sample tubes if there were problems with the Perseverance rover.
NASA previously deleted a “fetch rover” from the MSR architecture and instead will rely on Perseverance to hand off sample tubes to the retrieval lander.
An alternative approach would use a (presumably less expensive) commercial heavy lander, but this concept would still utilize several elements NASA would likely develop in a more traditional government-led manner: a nuclear power source, a robotic arm, a sample container, and a rocket to launch the samples off the surface of Mars and back into space. The cost range for this approach extends from $5.1 billion to $7.1 billion.
Artist’s illustration of SpaceX’s Starship approaching Mars. Credit: SpaceX
JPL will have a “key role” in both paths for MSR, said Nicky Fox, head of NASA’s science mission directorate. “To put it really bluntly, JPL is our Mars center in NASA science.”
If the Trump administration moves forward with either of the proposed MSR plans, this would be welcome news for JPL. The center, which is run by the California Institute of Technology under contract to NASA, laid off 955 employees and contractors last year, citing budget uncertainty, primarily due to the cloudy future of Mars Sample Return.
Without MSR, engineers at the Jet Propulsion Laboratory don’t have a flagship-class mission to build after the launch of NASA’s Europa Clipper spacecraft last year. The lab recently struggled with rising costs and delays with the previous iteration of MSR and NASA’s Psyche asteroid mission, and it’s not unwise to anticipate more cost overruns on a project as complex as a round-trip flight to Mars.
Ars submitted multiple requests to interview Laurie Leshin, JPL’s director, in recent months to discuss the lab’s future, but her staff declined.
Both MSR mission concepts outlined Tuesday would require multiple launches and an Earth return orbiter provided by the European Space Agency. These options would bring the Mars samples back to Earth as soon as 2035, but perhaps as late as 2039, Nelson said. The return orbiter and sample retrieval lander could launch as soon as 2030 and 2031, respectively.
“The main difference is in the landing mechanism,” Fox said.
To keep those launch schedules, Congress must immediately approve $300 million for Mars Sample Return in this year’s budget, Nelson said.
NASA officials didn’t identify any examples of a commercial heavy lander that could reach Mars, but the most obvious vehicle is SpaceX’s Starship. NASA already has a contract with SpaceX to develop a Starship vehicle that can land on the Moon, and SpaceX founder Elon Musk is aggressively pushing for a Mars mission with Starship as soon as possible.
NASA solicited eight studies from industry earlier this year. SpaceX, Blue Origin, Rocket Lab, and Lockheed Martin—each with their own lander concepts—were among the companies that won NASA study contracts. SpaceX and Blue Origin are well-capitalized with Musk and Amazon’s Jeff Bezos as owners, while Lockheed Martin is the only company to have built a lander that successfully reached Mars.
This slide from a November presentation to the Mars Exploration Program Analysis Group shows JPL’s proposed “sky crane” architecture for a Mars sample retrieval lander. The landing system would be modified to handle a load about 20 percent heavier than the sky crane used for the Curiosity and Perseverance rover landings. Credit: NASA/JPL
The science community has long identified a Mars Sample Return mission as the top priority for NASA’s planetary science program. In the National Academies’ most recent decadal survey released in 2022, a panel of researchers recommended NASA continue with the MSR program but stated the program’s cost should not undermine other planetary science missions.
Teeing up for cancellation?
That’s exactly what is happening. Budget pressures from the Mars Sample Return mission, coupled with funding cuts stemming from a bipartisan federal budget deal in 2023, have prompted NASA’s planetary science division to institute a moratorium on starting new missions.
“The decision about Mars Sample Return is not just one that affects Mars exploration,” said Curt Niebur, NASA’s lead scientist for planetary flight programs, in a question-and-answer session with solar system researchers Tuesday. “It’s going to affect planetary science and the planetary science division for the foreseeable future. So I think the entire science community should be very tuned in to this.”
Rocket Lab, which has been more open about its MSR architecture than other companies, has posted details of its sample return concept on its website. Fox declined to offer details on other commercial concepts for MSR, citing proprietary concerns.
“We can wait another year, or we can get started now,” Rocket Lab posted on X. “Our Mars Sample Return architecture will put Martian samples in the hands of scientists faster and more affordably. Less than $4 billion, with samples returned as early as 2031.”
Through its own internal development and acquisitions of other aerospace industry suppliers, Rocket Lab said it has provided components for all of NASA’s recent Mars missions. “We can deliver MSR mission success too,” the company said.
Rocket Lab’s concept for a Mars Sample Return mission. Credit: Rocket Lab
Although NASA’s deferral of a decision on MSR to the next administration might convey a lack of urgency, officials said the agency and potential commercial partners need time to assess what roles the industry might play in the MSR mission.
“They need to flesh out all of the possibilities of what’s required in the engineering for the commercial option,” Nelson said.
On the program’s current trajectory, Fox said NASA would be able to choose a new MSR architecture in mid-2026.
Waiting, rather than deciding on an MSR plan now, will also allow time for the next NASA administrator and the Trump White House to determine whether either option aligns with the administration’s goals for space exploration. In an interview with Ars last week, Nelson said he did not want to “put the new administration in a box” with any significant MSR decisions in the waning days of the Biden administration.
One source with experience in crafting and implementing US space policy told Ars that Nelson’s deferral on a decision will “tee up MSR for canceling.” Faced with a decision to spend billions of dollars on a robotic sample return or billions of dollars to go toward a human mission to Mars, the Trump administration will likely choose the latter, the source said.
If that happens, NASA science funding could be freed up for other pursuits in planetary science. The second priority identified in the most recent planetary decadal survey is an orbiter and atmospheric probe to explore Uranus and its icy moons. NASA has held off on the development of a Uranus mission to focus on the Mars Sample Return first.
Science and geopolitics
Whether it’s with robots or humans, there’s a strong case for bringing pristine Mars samples back to Earth. The titanium tubes carried by the Perseverance rover contain rock cores, loose soil, and air samples from the Martian atmosphere.
“Bringing them back will revolutionize our understanding of the planet Mars and indeed, our place in the solar system,” Fox said. “We explore Mars as part of our ongoing efforts to safely send humans to explore farther and farther into the solar system, while also … getting to the bottom of whether Mars once supported ancient life and shedding light on the early solar system.”
Researchers can perform more detailed examinations of Mars specimens in sophisticated laboratories on Earth than possible with the miniature instruments delivered to the red planet on a spacecraft. Analyzing samples in a terrestrial lab might reveal biosignatures, or the traces of ancient life, that elude detection with instruments on Mars.
“The samples that we have taken by Perseverance actually predate—they are older than any of the samples or rocks that we could take here on Earth,” Fox said. “So it allows us to kind of investigate what the early solar system was like before life began here on Earth, which is amazing.”
Fox said returning Mars samples before a human expedition would help NASA prioritize where astronauts should land on the red planet.
In a statement, the Planetary Society said it is “concerned that NASA is again delaying a decision on the program, committing only to additional concept studies.”
“It has been more than two years since NASA paused work on MSR,” the Planetary Society said. “It is time to commit to a path forward to ensure the return of the samples already being collected by the Perseverance rover.
“We urge the incoming Trump administration to expedite a decision on a path forward for this ambitious project, and for Congress to provide the funding necessary to ensure the return of these priceless samples from the Martian surface.”
China says it is developing its own mission to bring Mars rocks back to Earth. Named Tianwen-3, the mission could launch as soon as 2028 and return samples to Earth by 2031. While NASA’s plan would bring back carefully curated samples from an expansive environment that may have once harbored life, China’s mission will scoop up rocks and soil near its landing site.
“They’re just going to have a mission to grab and go—go to a landing site of their choosing, grab a sample and go,” Nelson said. “That does not give you a comprehensive look for the scientific community. So you cannot compare the two missions. Now, will people say that there’s a race? Of course, people will say that, but it’s two totally different missions.”
Still, Nelson said he wants NASA to be first. He said he has not had detailed conversations with Trump’s NASA transition team.
“I think it was a responsible thing to do, not to hand the new administration just one alternative if they want to have a Mars Sample Return,” Nelson said. “I can’t imagine that they don’t. I don’t think we want the only sample return coming back on a Chinese spacecraft.”
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
To a large extent, NASA resisted this change during the remainder of the Trump administration, keeping its core group of major contractors, such as Boeing and Lockheed Martin, in place. It had help from key US Senators, including Richard Shelby, the now-retired Republican from Alabama. But this time, the push for change is likely to be more concerted, especially with key elements of NASA’s architecture, including the Space Launch System rocket, being bypassed by privately developed rockets such as SpaceX’s Starship vehicle and Blue Origin’s New Glenn rocket.
Not one, but both
In all likelihood, NASA will adopt a new “Artemis” plan that involves initiatives to both the Moon and Mars. When Musk said “we’re going straight to Mars,” he may have meant that this will be the thrust of SpaceX, with support from NASA. That does not preclude a separate initiative, possibly led by Blue Origin with help from NASA, to develop lunar return plans.
Isaacman, who is keeping a fairly low profile ahead of his nomination, has not weighed in on Musk’s comments. However, when his nomination was announced one month ago, he did make a germane comment on X.
“I was born after the Moon landings; my children were born after the final space shuttle launch,” he wrote. “With the support of President Trump, I can promise you this: We will never again lose our ability to journey to the stars and never settle for second place. We will inspire children, yours and mine, to look up and dream of what is possible. Americans will walk on the Moon and Mars and in doing so, we will make life better here on Earth.”
In short, NASA is likely to adopt a two-lane strategy of reaching for both the Moon and Mars. Whether the space agency is successful with either one will be a major question asked of the new administration.
Ars solves the mystery by going directly to a primary source—the president himself.
The first launch of the space shuttle finally came on April 12, 1981. Credit: NASA
The first launch of the space shuttle finally came on April 12, 1981. Credit: NASA
With 39th President Jimmy Carter passing away at the age of 100, we are revisiting this story of how he unexpectedly saved the space shuttle.
We’d been chatting for the better part of two hours when Chris Kraft’s eyes suddenly brightened. “Hey,” he said, “Here’s a story I’ll bet you never heard.” Kraft, the man who had written flight rules for NASA at the dawn of US spaceflight and supervised the Apollo program, had invited me to his home south of Houston for one of our periodic talks about space policy and space history. As we sat in recliners upstairs, in a den overlooking the Bay Oaks Country Club, Kraft told me about a time the space shuttle almost got canceled.
It was the late 1970s, when Kraft directed the Johnson Space Center, the home of the space shuttle program. At the time, the winged vehicle had progressed deep into a development phase that started in 1971. Because the program had not received enough money to cover development costs, some aspects of the vehicle (such as its thermal protective tiles) were delayed into future budget cycles. In another budget trick, NASA committed $158 million in fiscal year 1979 funds for work done during the previous fiscal year.
This could not go on, and according to Kraft the situation boiled over during a 1978 meeting in a large conference floor on the 9th floor of Building 1, the Houston center’s headquarters. All the program managers and other center directors gathered there along with NASA’s top leadership. That meeting included Administrator Robert Frosch, a physicist President Carter had appointed a year earlier.
Kraft recalls laying bare the budget jeopardy faced by the shuttle. “We were totally incapable of meeting any sort of flight schedule,” he said. Further postponing the vehicle would only add to the problem because the vehicle’s high payroll costs would just be carried forward.
There were two possible solutions proposed, Kraft said. One was a large funding supplement to get development programs back on track. Absent that, senior leaders felt they would have to declare the shuttle a research vehicle, like the rocket-powered X-15, which had made 13 flights to an altitude as high as 50 miles in the 1960s. “We were going to have to turn it, really, into a nothing vehicle,” Kraft said. “We were going to have to give up on the shuttle being a delivery vehicle into orbit.”
On the eve of the 40th anniversary of the first human landing on the Moon, Apollo 11 crew members, Buzz Aldrin, left, Michael Collins, and Neil Armstrong and NASA Mission Control creator Chris Kraft, right, during their visit to the National Air and Space Museum on July 19, 2009.
Credit: NASA/Getty Images
On the eve of the 40th anniversary of the first human landing on the Moon, Apollo 11 crew members, Buzz Aldrin, left, Michael Collins, and Neil Armstrong and NASA Mission Control creator Chris Kraft, right, during their visit to the National Air and Space Museum on July 19, 2009. Credit: NASA/Getty Images
Armed with these bleak options, Frosch returned to Washington. Some time later he would meet with Carter, not expecting a positive response, as the president had never been a great friend to the space program. But Carter, according to Kraft, had just returned from Strategic Arms Limitation Talks (SALT) in Vienna, and he had spoken with the Soviet leader, Leonid Brezhnev, about how the United States was going to be able to fly the shuttle over Moscow continuously to ensure they were compliant with the agreements.
So when Frosch went to the White House to meet with the president and said NASA didn’t have the money to finish the space shuttle, the administrator got a response he did not expect: “How much do you need?”
In doing so, Jimmy Carter saved the space shuttle, Kraft believes. Without supplementals for fiscal year 1979 and 1980, the shuttle would never have flown, at least not as the iconic vehicle that would eventually fly 135 missions and 355 individual fliers into space. It took some flights as high as 400 miles above the planet before retiring five years ago this week. “That was the first supplemental NASA had ever asked for,” Kraft said. “And we got that money from Jimmy Carter.”
As I walked out of Kraft’s house that afternoon in late spring, I recall wondering whether this could really be true. Could Jimmy Carter, of all people, be the savior of the shuttle? All because he had been bragging about the shuttle’s capabilities to the Soviets and, therefore, didn’t want to show weakness? This Cold War mystery was now nearly 40 years in the past, but most of the protagonists still lived. So I began to ask questions.
Carter’s apathy toward space
At the root of my skepticism was this simple fact—Jimmy Carter was no great friend to the space program or, at least initially, the shuttle. Less than five months after he became president, on the date of June 9, 1977, Carter wrote the following in his White House Diary: “We continued our budget meetings. It’s obvious that the space shuttle is just a contrivance to keep NASA alive, and that no real need for the space shuttle was determined before the massive construction program was initiated.”
On NASA’s own 50th anniversary website, space historian John Logsdon described the Carter presidency in less than flattering terms. “Jimmy Carter was perhaps the least supportive of US human space efforts of any president in the last half-century,” Logsdon wrote.
In 1978 President Jimmy Carter visited Kennedy Space Center to check on the space shuttle’s progress and participate in an awards ceremony. Here he is greeted by Kennedy Space Center Director Lee Scherer. NASA
Then there was Carter’s vice president, Walter Mondale, who in 1972 had called the space shuttle a “senseless extravaganza.” A senator from Minnesota at the time, Mondale had vigorously opposed early funding measures to begin development of the shuttle. His views exemplified those who believed the United States had more pressing needs for its money than chasing the stars.
“I believe it would be unconscionable to embark on a project of such staggering cost when many of our citizens are malnourished, when our rivers and lakes are polluted, and when our cities and rural areas are dying,” Mondale argued during one debate over shuttle funding. “What are our values? What do we think is more important?”
Now these two men were responsible for establishing priorities for the government’s budget and supporting a shuttle that was already years behind schedule as it faced cost overruns of hundreds of millions of dollars. They were going to keep the program afloat?
The shuttle, canceled?
If Kraft is to be believed, cost overruns began really catching up to the shuttle program in 1978, necessitating the big meeting at Johnson Space Center. By then the Enterprise had already made its first free flight in the atmosphere, and the test vehicle was a public relations success. However, the programs to develop the space shuttle’s main engines and its thermal protective tiles remained far behind schedule. It does not seem beyond the realm of possibility that the program might be canceled altogether and that program managers might have worried about this.
John Logsdon, the eminent space historian who has written books about Nixon’s space policy and is working on one about Reagan, told Ars that as costs mounted, the White House Office of Management and Budget suggested to Carter that he might want to cancel the program in 1978 and 1979. This set off a series of White House meetings that culminated in an influential memo to Carter from Brigadier General Robert Rosenberg, of the National Security Council. Titled “Why Shuttle Is Needed,” the Rosenberg memo offered an effective counterpoint to the OMB concerns about cost, according to Logsdon. Written in November 1979, it helped lead Carter to a decision to fund the vehicle.
The crew of Star Trek gathers around space shuttle Enterprise in 1977.
Credit: NASA
The crew of Star Trek gathers around space shuttle Enterprise in 1977. Credit: NASA
“Strong national support and prestige is focused on Shuttle as a means for maintaining space dominance as evidenced by broad user interest and recent space policy statements,” Rosenberg wrote. “Significant delay or abandonment of the Shuttle and manned space capabilities at this time would be viewed as a loss of national pride and direction. The notion that we are forced for short term economic reasons to abandon a major area of endeavor in which we have achieved world leadership at great cost is simply not credible.”
A key player in the shuttle program at this time, Robert Thompson, pushed back on the idea that the shuttle was ever at any real risk of being canceled. Thompson and Kraft are contemporaries. They were classmates at Virginia Tech University in the early 1940s, and later both were original members of the Space Task Group that put together Project Mercury. When Kraft managed flight operations during the Apollo Program, Thompson was in charge of capsule recovery. Ultimately Thompson became the first shuttle program manager in 1970, a post he headed until 1981. Today, Thompson lives about a mile away from Kraft, and his home overlooks the same golf course.
“I never worried an instant about Carter cutting the funding off,” he said in an interview at his dining room table. “You’d have to be an idiot to get up in front of people and say, ‘I’m now going to trash $5 billion even though we’re that close to the finish line, and I’m going to quit human spaceflight.’ Carter was kind of an oddball guy to be president, but he wasn’t stupid.”
So why wasn’t it canceled?
Still, there seem to be valid reasons for concern about a program that would ultimately run three years behind schedule and, according to NASA’s comptroller, about 30 percent over its initial $5.15 billion estimated development cost. Why did Carter remain so steadfastly behind the shuttle? Was it really because Carter valued the shuttle in his arms control discussions with the Soviet Union? The answer appears to be yes.
“It is conceivable that one of his arguments to Brezhnev on why there should be SALT was our ability to use the shuttle to verify the agreements,” Logsdon said. Whereas the president unquestionably felt lukewarm toward spaceflight, he felt conversely strong about arms control. And to verify that the Soviet Union was complying with the treaty, the United States would need a constellation of spy satellites. Back in 1970, to win Department of Defense support at the program’s outset, NASA had redesigned the shuttle to launch national security payloads. Now, that decision paid off.
A book about Carter’s space policy, Back Down to Earth by Mark Damohn, draws this conclusion about a president who liked NASA’s robotic exploration and science but didn’t see the value of humans in space. “The ability of the shuttle to launch arms control verification satellites is what saved it during the Carter administration,” Damohn writes. His book does not recount any meetings with Brezhnev. When asked whether Carter might have discussed the shuttle with the Soviet general secretary and whether that might have influenced his decisions, Damohn replied that Kraft’s story is essentially correct except for the part of Carter bragging to Brezhnev. Bragging is not in Carter’s personality, Damohn told Ars.
Another person who could verify or debunk Kraft’s anecdote is Frosch himself, who left NASA in 1981 and remains a senior research fellow at Harvard’s Kennedy School of Government. After I related Kraft’s story, Frosch said he didn’t recall a Brezhnev connection with Carter’s decision to support shuttle funding. “That does not mean it’s not true,” he added. “I just don’t remember any clear sequence like that. But it’s certainly possible if the dates fit together correctly.”
The timeline
Do the dates fit together? For some of the story, yes, and for other parts, no. Kraft recounted fiscal problems plaguing the space shuttle program in 1977 and 1978 that delayed development of the space shuttle’s main engines, thermal protection system, and other flight critical elements. According to TA Heppenheimer’s excellent History of the Space Shuttle, by May of 1979 the shuttle’s costs had already run $830 million over the initial $5.2 billion projected cost.
Moreover, by the time of Kraft’s come-to-Jesus meeting with the shuttle program managers and Frosch at Johnson Space Center, the vehicle had already missed its original March 1978 flight date. Ultimately, the vehicle would not fly until April 12, 1981.
It is also true that the White House provided additional funding when NASA needed it most. The president approved a $185 million supplemental for fiscal year 1979 to address the technical and manufacturing delays, and NASA would receive another $300 million supplemental for the fiscal year 1980 budget. The message from Carter to his OMB officials at this time regarding these supplementals was clear—“find the money.”
What is not consistent with Kraft’s narrative is the notion that Carter bragged about the shuttle to Brezhnev and then felt compelled to follow through with the shuttle’s development for this reason. The 1979 supplemental was formally signed into law by Carter on June 4, 1979, and by then he had already greenlit another supplemental for 1980. These dates are important, because Carter did not meet with Brezhnev in Vienna to sign the SALT II Treaty until June 15.
United States President Jimmy Carter, left, and Leonid Brezhnev, First Secretary of the Communist Party of the Soviet Union, welcomed journalists to the Soviet Embassy in Vienna, Austria, on June 17, 1979, on the eve of the signing of the SALT II treaty limiting strategic arms.
Credit: AFP/Getty Images
United States President Jimmy Carter, left, and Leonid Brezhnev, First Secretary of the Communist Party of the Soviet Union, welcomed journalists to the Soviet Embassy in Vienna, Austria, on June 17, 1979, on the eve of the signing of the SALT II treaty limiting strategic arms. Credit: AFP/Getty Images
This means Carter could not have “bragged” about the shuttle and then have funded it. However, this does not mean the talks with Brezhnev had zero influence on Carter’s feelings for the space shuttle during the last 18 months of his turbulent presidency.
By 1980, amid double-digit inflation, spiraling gas prices, and Ayatollah Khomeini’s revolution in Iran, the United States was slipping into another recession. As part of that year’s budget process, the president sought broad spending cuts. Administration officials told NASA to find budget cuts of $460 million to $860 million for the coming fiscal year.
But ultimately, NASA’s budget was spared. Heppenheimer’s book says this happened because “Carter exempted the Pentagon from these cutbacks, which meant that the Defense Department could stand fast in the wake of Moscow’s invasion of Afghanistan. This exemption gave Frosch an opening, as he argued that the shuttle should also be spared from cutbacks on national security grounds.” The president agreed.
Effectively, then, the shuttle program received extra funding in 1980 from a president that did not support human spaceflight and a vice president that adamantly opposed it. The funds came during a recession when the rest of the federal government was undergoing significant budget cuts. That is perhaps a greater marvel than the majestic orbiters themselves.
The ultimate source
For some perspective on all of this, Ars reached out to Carter through Steven Hochman, director of research at The Carter Center. He hadn’t heard the Brezhnev-space shuttle story, but he was happy to assist our reporting by bringing some questions to the 39th president of the United States.
Why did the president ultimately support funding the shuttle in its time of need? “I was not enthusiastic about sending humans on missions to Mars or outer space,” Carter told Ars. “But I thought the shuttle was a good way to continue the good work of NASA. I didn’t want to waste the money already invested.”
Carter also confirmed that he did, in fact, discuss the space shuttle and its capabilities with Brezhnev at the SALT II Treaty meetings in Vienna in June 1979. “I did explain to the Soviets that the space shuttle was peaceful, would not carry weapons, and would always land in the US,” Carter explained.
Finally, Hochman reviewed Carter’s schedule and found that the president had met with Frosch four times, including a brief discussion on July 11, 1979 at Camp David with the NASA administrator. This came shortly after the final treaty negotiations in Vienna. Hochman said it would not have been at all surprising if Carter discussed with Frosch that he mentioned the shuttle during the Brezhnev meeting.
From this we can draw a few conclusions—principally that despite some timeline inconsistencies, Kraft’s story appears to be mostly true. The shuttle program was in big trouble and could have been canceled or drastically modified had Carter not stepped in. Moreover, this was not a drawn out process. By all accounts Carter acted swiftly in the shuttle’s time of need. One of Carter’s primary motivations in doing so was enforcing the SALT II Treaty and, critically, Carter discussed the shuttle with Brezhnev during the treaty meetings. Important presidential decisions about the shuttle were made before and after the treaty meetings.
Perhaps what stands out most of all is the lasting, yet almost completely forgotten impact Carter had on this country’s space legacy. Despite just a passing interest in human space exploration, Carter ultimately played a pivotal role in ensuring that the longest-flying US spacecraft in history got built. That decision was instrumental, too, in development of the International Space Station. After all, NASA’s primary purpose for the shuttle was to eventually build an orbital station.
As someone who championed peace during his post-presidency, Carter no doubt would welcome the station’s driving idea of building an international consensus to work together in space. And ironically, after the shuttle finally stopped flying in 2011, America would come to rely on Russia to get into space. Today, we work with the very Cold War enemies with whom Carter negotiated arms treaties, contended with in Afghanistan, and vowed to watch closely from the orbital vehicle he shepherded across the finish line.
Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.
One source said the space transition team has been working off of ideas that Trump has talked about publicly, including his interest in Mars. For example, during a campaign speech this fall, Trump referenced SpaceX founder Elon Musk, who played a significant role during the campaign both in terms of time and money, and his desire to settle Mars.
“We are leading in space over Russia and China… It’s my plan, I’ll talk to Elon,” Trump said in September. “Elon get those rocket ships going because we want to reach Mars before the end of my term, and we want also to have great military protection in space.”
Ideas under consideration
The transition team has been discussing possible elements of an executive order or other policy directives. They include:
Establishing the goal of sending humans to the Moon and Mars, by 2028
Canceling the costly Space Launch System rocket and possibly the Orion spacecraft
Consolidating Goddard Space Flight Center and Ames Research Center at Marshall Space Flight Center in Alabama
Retaining a small administration presence in Washington, DC, but otherwise moving headquarters to a field center
Rapidly redesigning the Artemis lunar program to make it more efficient
“Is any of this written in stone? No,” a source told Ars.
Additionally, substantive changes will need to be worked through the White House Office of Management and Budget, and negotiated with Congress, which funds NASA.
Previously, Trump has announced that entrepreneur and commercial astronaut Jared Isaacman will be nominated to serve as NASA Administrator. Although he has been working to create a staff for his administration, Isaacman has not been involved in the transition team discussions, sources said. Rather, after he is confirmed, Isaacman is likely to be given authority to review major programs at the space agency “at the speed of light.”